JP2011190183A - Fluorous sugar-bonded crown ether derivative - Google Patents

Fluorous sugar-bonded crown ether derivative Download PDF

Info

Publication number
JP2011190183A
JP2011190183A JP2010055097A JP2010055097A JP2011190183A JP 2011190183 A JP2011190183 A JP 2011190183A JP 2010055097 A JP2010055097 A JP 2010055097A JP 2010055097 A JP2010055097 A JP 2010055097A JP 2011190183 A JP2011190183 A JP 2011190183A
Authority
JP
Japan
Prior art keywords
fluorous
sugar
crown ether
bonded
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010055097A
Other languages
Japanese (ja)
Inventor
Takashi Yamanoi
孝 山ノ井
Teruhiro Yoshida
彰宏 吉田
Yoshinobu Oda
慶喜 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP2010055097A priority Critical patent/JP2011190183A/en
Publication of JP2011190183A publication Critical patent/JP2011190183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorous sugar-bonded crown ether derivative having an anomer carbon atom of a hemiketal structure as a cyclic carbon atom of the crown ether, where a hydroxy group of the sugar molecule is bonded to a fluorous tag, a fluorous sugar-bonded crown ether derivative composed of a sugar molecule, whose hydroxy group is bonded to a fluorous tag, and a crown ether bonded thereto by chemical synthesis, and a manufacturing method of these. <P>SOLUTION: The fluorous sugar-bonded crown ether derivative is manufactured by bonding a fluorous tag to a sugar-bonded crown ether having an anomer carbon atom of a hemiketal structure of the sugar as a cyclic carbon atom of the crown ether. The fluorous sugar-bonded crown ether derivative is also manufactured by bonding a fluorous tag to a hydroxy group of the sugar and subjecting the resultant compound to a condensation reaction with an azacrown ether. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高度にフッ素化された炭化水素基、場合によりさらにヘテロ原子を含む炭化水素基(以後、フルオラスタグと称する)で修飾された糖分子を結合したクラウンエーテル誘導体(以後、フルオラス化糖結合型クラウンエーテル誘導体と称する)、およびその製造法に関するものである。具体的には、糖分子のヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含み、その糖分子の水酸基に式[3]のフルオラスタグを修飾させた式[1]のフルオラス化糖結合型クラウンエーテル誘導体、および水酸基に式[3]のフルオラスタグを結合させた糖分子と、クラウンエーテルを炭素数1〜4、場合によりヘテロ原子を含むリンカーにより結合させた式[2]のフルオラス化糖結合型クラウンエーテル誘導体、およびそれらの製造法に関するものである。   The present invention relates to a crown ether derivative (hereinafter referred to as a fluorous sugar) in which a sugar molecule modified with a highly fluorinated hydrocarbon group, and optionally a hydrocarbon group further containing a hetero atom (hereinafter referred to as a fluorous tag). And a method for producing the same. Specifically, the fluorinated sugar bond of formula [1], wherein the anomeric carbon atom of the hemiketal structure of the sugar molecule is contained in the cyclic carbon atom of the crown ether, and the hydroxyl tag of the sugar molecule is modified with the fluorous tag of formula [3] Fluorination of formula [2] in which a crown ether derivative and a sugar molecule in which a fluorous tag of formula [3] is bonded to a hydroxyl group and a crown ether bonded with a linker having 1 to 4 carbon atoms and optionally a hetero atom The present invention relates to a sugar-bonded crown ether derivative and a production method thereof.

クラウンエーテルは、CH2CH2X(Xは酸素原子、窒素原子、硫黄原子などのヘテロ原子)鎖の繰り返し構造からなる環状化合物である。クラウンエーテルは、自由度の非常に高い化合物であり、その環の大きさによって、様々なイオンを取り込むことが知られており、例えば有機合成化学の分野では、金属イオンを取り込ませ、触媒として広く利用されている。また、キラルなクラウンエーテルは、不斉触媒となり得る(例えば非特許文献1を参照)。 Crown ether is a cyclic compound having a repeating structure of CH 2 CH 2 X (X is a heteroatom such as oxygen atom, nitrogen atom, sulfur atom). Crown ether is a compound with a very high degree of freedom, and is known to incorporate various ions depending on the size of its ring. For example, in the field of synthetic organic chemistry, it incorporates metal ions and is widely used as a catalyst. It's being used. Moreover, a chiral crown ether can become an asymmetric catalyst (for example, refer nonpatent literature 1).

また、フルオラス化合物とは、高度にフッ素化された炭化水素、場合によりさらにヘテロ原子を含む炭化水素類を有する化合物であり、フッ素の含有率が60%を超えると有機溶媒、水には殆ど混じり合わず、ペルフルオロへキサンなどの多フッ素化溶媒(以後、フルオラス溶媒と称する)と混じるようになる。このことから、反応系からの分液操作等で容易に回収が可能な環境調和型の化合物として期待が高まっている。その一環として、最近、フルオラスタグを結合させたクラウンエーテル誘導体が合成され、通常のクラウンエーテルと同様にカリウムイオンを包接する能力が認められ、分液操作によってフルオラス溶媒でのクラウンエーテル誘導体の回収が行える事が報告されているに至っている(非特許文献2を参照)。   The fluoro compound is a compound having a highly fluorinated hydrocarbon, and optionally a hydrocarbon containing a hetero atom. If the fluorine content exceeds 60%, it is almost mixed with organic solvent and water. However, they are mixed with polyfluorinated solvents such as perfluorohexane (hereinafter referred to as fluorous solvents). For this reason, expectations are growing as an environmentally conscious compound that can be easily recovered by a liquid separation operation from a reaction system. As part of this, a crown ether derivative with a fluorous tag attached was recently synthesized, and the ability to include potassium ions in the same way as ordinary crown ethers was recognized. Recovery of the crown ether derivative in a fluorous solvent was achieved by liquid separation operation. It has been reported that this can be done (see Non-Patent Document 2).

また、本発明者らも、フルオラスタグを結合したクラウンエーテル誘導体をいくつか合成し、分液操作を行っている。しかし、フッ素の含有率が50%〜60%程度であるにもかかわらず、一部の有機溶媒を除いて、フルオラス溶媒での回収が困難であった。このことから、フッ素の含有率は直接関係ないことが示唆された。そこで、含有率を単に高めるのではなく、フルオラスタグを集積化させることで、化合物全体のフルオラス性が高まり、フルオラス溶媒への高い溶解性を示すものと期待された。   In addition, the present inventors have also synthesized several crown ether derivatives to which a fluorous tag is bonded, and performed a liquid separation operation. However, despite the fact that the fluorine content is about 50% to 60%, it is difficult to recover with a fluorous solvent except for some organic solvents. This suggested that the fluorine content was not directly related. Therefore, it was expected that by integrating the fluorous tag rather than simply increasing the content rate, the fluorous property of the whole compound was increased and high solubility in a fluorous solvent was exhibited.

そこで、糖分子を結合させたクラウンエーテル(以後、糖結合型クラウンエーテルと称する。特許文献1を参照)に着目した。糖結合型クラウンエーテルは、糖分子のもつ水酸基を化学修飾する事が出来る。この水酸基にフルオラスタグを結合させる事で、糖分子にフルオラスタグを集積化したフルオラス化糖結合型クラウンエーテル誘導体を合成する事ができると考えられる。このような背景から、フルオラス化糖結合型クラウンエーテル誘導体は、フルオラス溶媒による高い溶解性を持ち、回収可能な優れた環境調和型の触媒として利用できることが期待される。   Therefore, attention was focused on a crown ether to which sugar molecules are bonded (hereinafter referred to as sugar-bonded crown ether; see Patent Document 1). The sugar-bonded crown ether can chemically modify the hydroxyl group of the sugar molecule. By binding a fluorous tag to this hydroxyl group, it is considered that a fluorous sugar-bonded crown ether derivative in which a fluorous tag is integrated in a sugar molecule can be synthesized. From such a background, it is expected that the fluorous sugar-bonded crown ether derivative has high solubility in a fluorous solvent and can be used as an excellent environment-friendly catalyst that can be recovered.

特開2009-215242号公報JP 2009-215242

Toshiyuki, I.ら、「Synthesis of Chiralazacrown Ethers Derived From ・-D-Glucose and Their Catalytic Properties on The Asymmetric Michael Addition」、Heterocycles, 2001年, 55巻, 37ページ.Toshiyuki, I. et al., `` Synthesis of Chiralazacrown Ethers Derived From ・ -D-Glucose and Their Catalytic Properties on The Asymmetric Michael Addition '', Heterocycles, 2001, 55, 37. 稲津敏行、「フルオラスケミストリー」、シーエムシー出版、2005年, 94ページ.Toshiyuki Inazu, `` Fluorous Chemistry '', CMC Publishing, 2005, 94 pages.

本発明では、フルオラス溶媒に高い溶解性を示すクラウンエーテル誘導体として、糖分子のヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含み、その糖分子の水酸基にフルオラスタグを結合させたクラウンエーテル誘導体、および水酸基にフルオラスタグを結合させた糖分子と、クラウンエーテルを炭素数1〜4、場合によりヘテロ原子を含むリンカーにより結合させたクラウンエーテル誘導体、およびそれらの製造法を提供することを課題とする。   In the present invention, as a crown ether derivative exhibiting high solubility in a fluorous solvent, a crown ether having an anomeric carbon atom of the hemiketal structure of a sugar molecule in the cyclic carbon atom of the crown ether and a fluorous tag bonded to the hydroxyl group of the sugar molecule PROBLEM TO BE SOLVED: To provide a derivative, a sugar molecule in which a fluorous tag is bound to a hydroxyl group, a crown ether derivative in which a crown ether is bound by a linker having 1 to 4 carbon atoms and optionally a hetero atom, and a method for producing them And

糖分子のヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含み、その糖分子の水酸基にフルオラスタグを結合させたクラウンエーテル誘導体、および水酸基にフルオラスタグを結合させた糖分子と、クラウンエーテルを炭素数1〜4、場合によりヘテロ原子を含むリンカーにより結合させたクラウンエーテル誘導体を製造するにあたり、下記式[3]のフルオラスタグを用いる事で、下記式[1]、および[2]の新規なフルオラス化糖結合型クラウンエーテル誘導体を製造することができる。   A crown ether derivative containing an anomeric carbon atom of the hemiketal structure of a sugar molecule in the cyclic carbon atom of the crown ether, and a fluorous tag bonded to the hydroxyl group of the sugar molecule, a sugar molecule having a fluorous tag bonded to the hydroxyl group, and a crown ether Is produced by using a fluorous tag of the following formula [3] to produce a crown ether derivative in which is bonded with a linker having 1 to 4 carbon atoms and optionally containing a hetero atom, the following formulas [1] and [2] A novel fluorous sugar-bonded crown ether derivative can be produced.

具体的には、第一に、糖分子のヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含んだ糖結合型クラウンエーテルに、下記式[3]のフルオラスタグを導入することで、下記式[1]の本発明のフルオラス化糖結合型クラウンエーテル誘導体に到達した。第二に、マンノースの1位をアリル化し、水酸基に下記式[3]のフルオラスタグを導入後、カルボン酸誘導体へと変換し、アザクラウンエーテルと脱水縮合させる事で、下記式[2]の本発明のフルオラス化糖結合型クラウンエーテル誘導体に到達した。   Specifically, first, by introducing a fluorous tag of the following formula [3] into a sugar-bonded crown ether containing the anomeric carbon atom of the hemiketal structure of the sugar molecule in the cyclic carbon atom of the crown ether, The fluorous sugar-bonded crown ether derivative of the present invention of the formula [1] was reached. Second, allylation at the 1-position of mannose, introduction of a fluorous tag of the following formula [3] into the hydroxyl group, conversion to a carboxylic acid derivative, and dehydration condensation with azacrown ether give the following formula [2] The fluorous sugar-bonded crown ether derivative of the present invention has been reached.

すなわち、本発明は、下記式[1]、および[2]のフルオラス化糖結合型クラウンエーテル誘導体と、下記式[3]のフルオラスタグを用いたそれらの製造法に関するものである。

Figure 2011190183
(Xは、酸素原子、硫黄原子、または窒素原子のヘテロ原子を示す。Yは、炭化水素を表し、場合により酸素原子、硫黄原子、または窒素原子のヘテロ原子を含む。pは、0から30までの整数を表す。mは、6から10までの整数を表す。qは、1から10までの整数を表す。nは0から3までの整数を表す。)
Figure 2011190183
(Xは、酸素原子、硫黄原子、または窒素原子のヘテロ原子を示す。Yは、炭化水素を表し、場合により酸素原子、硫黄原子、または窒素原子のヘテロ原子を含む。pは、0から30までの整数を表す。Zは、炭素数が1から4の炭化水素を表し、場合により酸素原子、硫黄原子、または窒素原子のヘテロ原子を含む。mは、6から10までの整数を表す。qは、1から10までの整数を表す。nは0から3までの整数を表す。)
Figure 2011190183
That is, the present invention relates to a method for producing a fluorous sugar-bonded crown ether derivative of the following formulas [1] and [2] and a fluorous tag of the following formula [3].
Figure 2011190183
(X represents an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. Y represents a hydrocarbon, and optionally includes an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. P is 0 to 30. (M represents an integer from 6 to 10. q represents an integer from 1 to 10. n represents an integer from 0 to 3.)
Figure 2011190183
(X represents an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. Y represents a hydrocarbon, and optionally includes an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. P is 0 to 30. Z represents a hydrocarbon having 1 to 4 carbon atoms, and optionally contains a hetero atom of an oxygen atom, a sulfur atom, or a nitrogen atom, and m represents an integer of 6 to 10. q represents an integer from 1 to 10. n represents an integer from 0 to 3.)
Figure 2011190183

本発明のフルオラス化糖結合型クラウンエーテル誘導体は、糖分子の持つ水酸基にフルオラスタグを集積させる事により、一般の有機溶媒とは混じり合わず、フルオラス溶媒と良好に混じり合う事が考えられ、種々の反応後、フルオラス溶媒による回収が可能であると考えられる。さらにフルオラス化糖結合型クラウンエーテル誘導体は、クラウンエーテル構造を持つことから、イオンを取り込むことが期待され、有機化学反応における新しい触媒としての効果が期待される。また、糖分子は光学活性であるため、触媒的不斉反応への応用も期待される。   The fluorous sugar-bonded crown ether derivative of the present invention can be mixed well with a fluorous solvent without being mixed with a general organic solvent by accumulating a fluorous tag on a hydroxyl group of a sugar molecule. After the reaction, it is considered that recovery with a fluorous solvent is possible. Furthermore, since the fluorous sugar-bonded crown ether derivative has a crown ether structure, it is expected to incorporate ions, and is expected to be effective as a new catalyst in organic chemical reactions. In addition, since sugar molecules are optically active, application to catalytic asymmetric reactions is also expected.

以下、本発明を詳細に説明する。
本発明は、糖分子のヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含み、その糖分子の水酸基にフルオラスタグを結合させたクラウンエーテル誘導体、および水酸基にフルオラスタグを結合させた糖分子と、クラウンエーテルを化学合成により結合させたクラウンエーテル誘導体を製造するにあたり、式[3]のフルオラスタグを用いる事で式[1]、式[2]の新規なフルオラス化糖結合型クラウンエーテル誘導体を製造する。
Hereinafter, the present invention will be described in detail.
The present invention relates to a crown ether derivative in which an anomeric carbon atom of a hemiketal structure of a sugar molecule is contained in a cyclic carbon atom of a crown ether, and a fluorous tag is bonded to a hydroxyl group of the sugar molecule, and a sugar molecule in which a fluorous tag is bonded to the hydroxyl group And a novel fluorous sugar-bonded crown ether derivative of formula [1] and formula [2] by using a fluorous tag of formula [3] in producing a crown ether derivative in which crown ether is bonded by chemical synthesis Manufacturing.

式[1]のフルオラス化糖結合型クラウンエーテル誘導体は、次のようにして合成する。
糖の水酸基をベンジル基で保護した、糖のヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含んだ糖結合型クラウンエーテルを合成する。次に、ベンジル基を脱保護し、式[3]のフルオラスタグと縮合することで、[1]に示すフルオラス化糖結合型クラウンエーテル誘導体を得る。
The fluorous sugar-bonded crown ether derivative of the formula [1] is synthesized as follows.
A sugar-bonded crown ether is synthesized in which the anomeric carbon atom of the hemiketal structure of the sugar is contained in the cyclic carbon atom of the crown ether and the sugar hydroxyl group is protected with a benzyl group. Next, the benzyl group is deprotected and condensed with a fluorous tag of the formula [3] to obtain a fluorous sugar-bonded crown ether derivative shown in [1].

式[2]のフルオラス化糖結合型クラウンエーテル誘導体は、次のようにして合成する。
塩酸を充分に溶かしたアリルアルコールに、マンノースを溶解させ、1位にアリル基を導入した後、水酸基を式[3]のフルオラスタグと縮合する。その後、オゾン酸化、続く次亜塩素酸ナトリウムによる酸化によりカルボン酸誘導体に変換する。次に、アザクラウンエーテルと縮合反応を行うことで、式[2]に示すフルオラス化糖結合型クラウンエーテル誘導体を得る。
The fluorous sugar-bonded crown ether derivative of the formula [2] is synthesized as follows.
Mannose is dissolved in allyl alcohol in which hydrochloric acid is sufficiently dissolved, an allyl group is introduced at the 1-position, and then the hydroxyl group is condensed with a fluorous tag of the formula [3]. Thereafter, it is converted to a carboxylic acid derivative by ozone oxidation followed by oxidation with sodium hypochlorite. Next, a condensation reaction with azacrown ether is performed to obtain a fluorous sugar-bonded crown ether derivative represented by the formula [2].

以下に実施例を挙げて本発明を具体的に説明するが、以下の実施例により何等の制限を受けるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples.

式[1]のフルオラス化糖結合型クラウンエーテル誘導体(n=2、Xが酸素原子の化合物)の合成
糖分子のヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含み、糖分子の水酸基をベンジル基で置換したn=2、Xが酸素原子の糖結合型クラウンエーテル誘導体(103.1 mg/ 0.14 mmol)を、純水(3.0 mL)、メタノール(3.0 mL)、テトラヒドロフラン(3.0 mL)に溶かし、水酸化パラジウム(89.9 mg/ 0.64 mmol)を入れ水素添加した。その後、水酸化パラジウムを除去し、溶媒を濃縮後、ジクロロメタン(3.0 mL)、ノベックR HFC-7100(フルオラス溶媒; 3.0 mL)を加え、フルオラスタグ(3-[(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro)-N-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl)undecanamide]propionic acid(以下、BfpOHと略す); 655.2 mg/ 0.64 mmol)、ジメチルアミノピリジン(97.8 mg/ 0.81 mmol)、ジシクロヘキシルカルボジイミド(165.1 mg/ 0.81 mmol)を入れ、超音波中で17時間反応させた。メタノール、FluorinertR FC-72(フルオラス溶媒)、ノベックR HFC-7100で分液操作を行った後、フルオラス層を濃縮し、カラムクロマトグラフィー(展開溶媒比クロロホルム:メタノール=20:1)によって精製を行い、式[1]のn=2、Xが酸素原子のフルオラス化糖結合型クラウンエーテル誘導体(504.1 mg)を得た。
MALDI-TOF-MASS: 4454.38 (M+Na+), calcd. for 4455.35.
The anomeric carbon atom of the hemiketal structure of the synthetic sugar molecule of the fluorous sugar-bonded crown ether derivative of formula [1] (n = 2, X is an oxygen atom compound) is contained in the cyclic carbon atom of the crown ether, and the hydroxyl group of the sugar molecule A sugar-bonded crown ether derivative (103.1 mg / 0.14 mmol) in which n = 2 and X is an oxygen atom is substituted with pure water (3.0 mL), methanol (3.0 mL), and tetrahydrofuran (3.0 mL). Then, palladium hydroxide (89.9 mg / 0.64 mmol) was added and hydrogenated. After removing palladium hydroxide and concentrating the solvent, dichloromethane (3.0 mL) and Novec R HFC-7100 (fluorus solvent; 3.0 mL) were added, and the fluorous tag (3-[(4,4,5,5, 6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro) -N- (4,4,5,5,6,6,7,7,8, 8,9,9,10,10,11,11,11-heptadecafluoroundecyl) undecanamide] propionic acid (hereinafter abbreviated as BfpOH); 655.2 mg / 0.64 mmol), dimethylaminopyridine (97.8 mg / 0.81 mmol), dicyclohexylcarbodiimide (165.1 mg / 0.81 mmol) was added, and the mixture was reacted in an ultrasonic wave for 17 hours. After performing liquid separation operation with methanol, Fluorinert R FC-72 (fluorus solvent), Novec R HFC-7100, the fluorous layer was concentrated and purified by column chromatography (developing solvent ratio chloroform: methanol = 20: 1). Then, a fluorous sugar-bonded crown ether derivative (504.1 mg) in which n = 2 in formula [1] and X is an oxygen atom was obtained.
MALDI-TOF-MASS: 4454.38 (M + Na + ), calcd. For 4455.35.

式[2]のフルオラス化糖結合型クラウンエーテル誘導体(n=2、Xが酸素原子、ZがCH2C(O)の化合物)の合成
(工程1)
マンノース(30.4 g/ 0.17 mol)と、塩酸ガスを充分に溶かしたアリルアルコール(150.0 mL/ 2.6 mol)を入れ、24時間撹拌した。炭酸水素ナトリウムで塩酸を中和し、ろ過、濃縮を行い無水硫酸ナトリウムによって乾燥させた。カラムクロマトグラフィー(展開溶媒比クロロホルム:メタノール=8:1)によってアリルマンノシドを得た。得られたアリルマンノシド(122.7 mg/ 0.56 mmol)を用い、ジクロロメタン(5.0 mL)、ノベックR HFC-7100(5.0 mL)を加え、BfpOH(2.7 g/ 2.67 mmol)、ジメチルアミノピリジン(544.4 mg/ 4.46 mmol)、ジシクロヘキシルカルボジイミド(919.0 mg/ 4.46 mmol)を入れ8日間撹拌させた。ベンゼン、FluorinertR FC-72で分液操作を行った後、フルオラス層を濃縮し、カラムクロマトグラフィー(展開溶媒比ヘキサン:酢酸エチル=2:1)によって精製を行い、フルオラスタグを導入したアリルマンノシド(1.9 g)を得た。
MALDI-TOF-MASS: 4262.22 (M+Na+), calcd. for 4263.25.
Synthesis of a fluorinated sugar-bonded crown ether derivative of formula [2] (compound with n = 2, X is an oxygen atom, and Z is CH 2 C (O)) (Step 1)
Mannose (30.4 g / 0.17 mol) and allyl alcohol (150.0 mL / 2.6 mol) in which hydrochloric acid gas was sufficiently dissolved were added and stirred for 24 hours. Hydrochloric acid was neutralized with sodium bicarbonate, filtered, concentrated and dried over anhydrous sodium sulfate. Allyl mannoside was obtained by column chromatography (developing solvent ratio chloroform: methanol = 8: 1). Using the obtained allyl mannoside (122.7 mg / 0.56 mmol), dichloromethane (5.0 mL), Novec R HFC-7100 (5.0 mL) were added, BfpOH (2.7 g / 2.67 mmol), dimethylaminopyridine (544.4 mg / 4.46 mmol) ), Dicyclohexylcarbodiimide (919.0 mg / 4.46 mmol) was added and allowed to stir for 8 days. After performing a liquid separation operation with benzene and Fluorinert R FC-72, the fluorous layer was concentrated and purified by column chromatography (developing solvent ratio hexane: ethyl acetate = 2: 1), and allyl mannoside with a fluorous tag introduced ( 1.9 g) was obtained.
MALDI-TOF-MASS: 4262.22 (M + Na + ), calcd. For 4263.25.

(工程2)
次に、工程1で得られた生成物(257.5 mg/ 0.06 mmol)をジクロロメタン(7.0 mL)、ノベックR HFC7100(7.0 mL)に溶かし、-78℃でオゾンガスをバブリングさせ、2時間後に、トリフェニルホスフィン(47.2 mg/ 0.18 mmol)を加えた。2時間半後、濃縮し、t-ブチルアルコール(7.0 mL)、純水(1.5 mL)、2-メチル-2-ブテン(28.0 μL/ 0.26 mmol)、亜塩素酸ナトリウム(55.9 mg/ 0.62 mmol)、リン酸二水素ナトリウム(23.6 mg/ 0.18 mmol)を入れた。3時間後、メタノール、FluorinertR FC-72で分液操作を行った後、フルオラス層を濃縮し、真空乾燥して、カルボン酸誘導体(257.11 mg)を得た。
MALDI-TOF-MASS: 4279.08 (M+Na+), calcd. for 4282.22.
(Process 2)
Next, the product obtained in Step 1 (257.5 mg / 0.06 mmol) was dissolved in dichloromethane (7.0 mL) and Novec R HFC7100 (7.0 mL), and ozone gas was bubbled at −78 ° C. After 2 hours, triphenyl was added. Phosphine (47.2 mg / 0.18 mmol) was added. After 2.5 hours, the mixture was concentrated, t-butyl alcohol (7.0 mL), pure water (1.5 mL), 2-methyl-2-butene (28.0 μL / 0.26 mmol), sodium chlorite (55.9 mg / 0.62 mmol) , Sodium dihydrogen phosphate (23.6 mg / 0.18 mmol) was added. After 3 hours, methanol, after a liquid separation operation in Fluorinert R FC-72, concentrated fluorous layer, and dried in vacuo to give the carboxylic acid derivative (257.11 mg).
MALDI-TOF-MASS: 4279.08 (M + Na + ), calcd. For 4282.22.

(工程3)
式[2]のフルオラス化糖結合型クラウンエーテル誘導体(n=2の化合物)の合成
工程2で得られた化合物(1.0 g/ 2.4 mmol)と、1−アザ−18−クラウン−6−エーテル(758.0 mg/ 2.9 mmol)、ジメチルアミノピリジン(586.4 mg/ 4.8 mmol)、ジシクロヘキシルカルボジイミド(990.4 mg/ 4.8 mmol)を、ジクロロメタン(10.0 mL)、ノベックR HFC-7100(10.0 mL)を加え、超音波中で12時間反応させた。メタノール、FluorinertR FC-72で分液操作を行った後、フルオラス層を濃縮し、カラムクロマトグラフィー(展開溶媒比ヘキサン:酢酸エチル=1:1から、クロロホルム:メタノール=10:1のグラジエント)によって精製を行い、式[2]のn=2、Xが酸素原子、ZがCH2C(O)のフルオラス化糖結合型クラウンエーテル誘導体(6.68 g)を得た。
1H-NMR (600 MHz, CDCl3): δ5.01 (H-1). 13C-NMR (150 MHz, CDCl3): δ97.86 (C-1). MALDI-TOF-MASS: 4523.04 (M+Na+), calcd. for 4526.38.
(Process 3)
The compound (1.0 g / 2.4 mmol) obtained in the synthesis step 2 of the fluorous sugar-bonded crown ether derivative (n = 2 compound) of the formula [2] and 1-aza-18-crown-6-ether ( 758.0 mg / 2.9 mmol), dimethylaminopyridine (586.4 mg / 4.8 mmol), dicyclohexylcarbodiimide (990.4 mg / 4.8 mmol), dichloromethane (10.0 mL), Novec R HFC-7100 (10.0 mL), and in ultrasound For 12 hours. After liquid separation operation with methanol and Fluorinert R FC-72, the fluorous layer was concentrated and purified by column chromatography (developing solvent ratio of hexane: ethyl acetate = 1: 1, chloroform: methanol = 10: 1 gradient) Purification was performed to obtain a fluorous sugar-bonded crown ether derivative (6.68 g) of formula [2], where n = 2, X is an oxygen atom, and Z is CH 2 C (O).
1 H-NMR (600 MHz, CDCl 3 ): δ5.01 (H-1). 13 C-NMR (150 MHz, CDCl 3 ): δ97.86 (C-1). MALDI-TOF-MASS: 4523.04 ( M + Na + ), calcd. For 4526.38.

クラウンエーテルとしての機能を持ち、さらに糖分子にフルオラスタグを集積しているため、フルオラス溶媒に高い溶解性を持ち、回収可能な優れた環境調和型の触媒として、有機化学合成に利用できることが考えられる。   It has a function as a crown ether and also has a fluorous tag integrated in the sugar molecule, so it has high solubility in a fluorous solvent and can be used for organic chemical synthesis as an excellent environmentally friendly catalyst that can be recovered. It is done.

Claims (3)

ヘミケタール構造のアノマー炭素原子をクラウンエーテルの環状炭素原子に含み、その糖分子の水酸基にフルオラスタグを結合させたフルオラス化糖結合型クラウンエーテル誘導体であって、下記式[1]に示すフルオラス化糖結合型クラウンエーテル誘導体。
Figure 2011190183
(Xは、酸素原子、硫黄原子、または窒素原子のヘテロ原子を示す。Yは、炭化水素を表し、場合により酸素原子、硫黄原子、または窒素原子のヘテロ原子を含む。pは、0から30までの整数を表す。mは、6から10までの整数を表す。qは、1から10までの整数を表す。nは0から3までの整数を表す。)
A fluorous sugar-bonded crown ether derivative containing an anomeric carbon atom of a hemiketal structure in the cyclic carbon atom of a crown ether and having a fluorous tag bonded to the hydroxyl group of the sugar molecule, the fluorous sugar represented by the following formula [1] Bonded crown ether derivative.
Figure 2011190183
(X represents an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. Y represents a hydrocarbon, and optionally includes an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. P is 0 to 30. (M represents an integer from 6 to 10. q represents an integer from 1 to 10. n represents an integer from 0 to 3.)
水酸基にフルオラスタグを結合させた糖分子と、クラウンエーテルを化学結合させたフルオラス化糖結合型クラウンエーテル誘導体であって、下記式[2]に示すフルオラス化糖結合型クラウンエーテル誘導体。
Figure 2011190183
(Xは、酸素原子、硫黄原子、または窒素原子のヘテロ原子を示す。Yは、炭化水素を表し、場合により酸素原子、硫黄原子、または窒素原子のヘテロ原子を含む。pは、0から30までの整数を表す。Zは、炭素数が1から4の炭化水素を表し、場合により酸素原子、硫黄原子、または窒素原子のヘテロ原子を含む。mは、6から10までの整数を表す。qは、1から10までの整数を表す。nは0から3までの整数を表す。)
A fluorous sugar-bonded crown ether derivative in which a sugar molecule having a fluorous tag bonded to a hydroxyl group and a crown ether are chemically bonded to each other, which is a fluorous sugar-bonded crown ether derivative represented by the following formula [2].
Figure 2011190183
(X represents an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. Y represents a hydrocarbon, and optionally includes an oxygen atom, a sulfur atom, or a nitrogen atom heteroatom. P is 0 to 30. Z represents a hydrocarbon having 1 to 4 carbon atoms, and optionally contains a hetero atom of an oxygen atom, a sulfur atom, or a nitrogen atom, and m represents an integer of 6 to 10. q represents an integer from 1 to 10. n represents an integer from 0 to 3.)
下記式[3]に示されるフルオラスタグを用いることを特徴とする、請求項1または2記載のフルオラス化糖結合型クラウンエーテル誘導体の製造法。
Figure 2011190183
The method for producing a fluorous sugar-bonded crown ether derivative according to claim 1 or 2, wherein a fluorous tag represented by the following formula [3] is used.
Figure 2011190183
JP2010055097A 2010-03-11 2010-03-11 Fluorous sugar-bonded crown ether derivative Pending JP2011190183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055097A JP2011190183A (en) 2010-03-11 2010-03-11 Fluorous sugar-bonded crown ether derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055097A JP2011190183A (en) 2010-03-11 2010-03-11 Fluorous sugar-bonded crown ether derivative

Publications (1)

Publication Number Publication Date
JP2011190183A true JP2011190183A (en) 2011-09-29

Family

ID=44795484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055097A Pending JP2011190183A (en) 2010-03-11 2010-03-11 Fluorous sugar-bonded crown ether derivative

Country Status (1)

Country Link
JP (1) JP2011190183A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051993A (en) * 2002-07-18 2004-02-19 Xerox Corp Organometallic coating composition containing perfluorinated assisting solubilizing agent, metallic material and fluorinated solvent
JP2004051992A (en) * 2002-07-18 2004-02-19 Xerox Corp Method for solubilizing organometallic compound in fluorinated solvent by adding fluorinated non-catalyst co-solubilizer
JP2004506025A (en) * 2000-08-11 2004-02-26 シエーリング アクチエンゲゼルシヤフト Use of perfluoroalkyl-containing metal complexes as contrast agents in MR-imaging for imaging plaque, tumor and necrosis
JP2004506631A (en) * 2000-08-11 2004-03-04 シエーリング アクチエンゲゼルシヤフト Perfluoroalkyl-containing complex having sugar residue, method for producing the same and use thereof
JP2007238536A (en) * 2006-03-10 2007-09-20 Japan Science & Technology Agency Method for producing organic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506025A (en) * 2000-08-11 2004-02-26 シエーリング アクチエンゲゼルシヤフト Use of perfluoroalkyl-containing metal complexes as contrast agents in MR-imaging for imaging plaque, tumor and necrosis
JP2004506631A (en) * 2000-08-11 2004-03-04 シエーリング アクチエンゲゼルシヤフト Perfluoroalkyl-containing complex having sugar residue, method for producing the same and use thereof
JP2004051993A (en) * 2002-07-18 2004-02-19 Xerox Corp Organometallic coating composition containing perfluorinated assisting solubilizing agent, metallic material and fluorinated solvent
JP2004051992A (en) * 2002-07-18 2004-02-19 Xerox Corp Method for solubilizing organometallic compound in fluorinated solvent by adding fluorinated non-catalyst co-solubilizer
JP2007238536A (en) * 2006-03-10 2007-09-20 Japan Science & Technology Agency Method for producing organic compound

Similar Documents

Publication Publication Date Title
WO2015037460A1 (en) METHOD FOR PRODUCING OPTICALLY ACTIVE 3-(BIPHENYL-4-YL)-2-[(t-BUTOXYCARBONYL)AMINO]PROPAN-1-OL
WO2003053950A1 (en) New process for the preparation of optically active 2-[6-(substituted alkyl)-1,3-dioxan-4-yl]acetic acid derivatives
JP6459852B2 (en) Method for producing ether compound
CN105085323B (en) Novel synthesis process of Darunavir intermediate
CN108276461B (en) Cheap synthesis method of ethyl vanillin- β -D-glucopyranoside
JP4961568B2 (en) Ligand, production method thereof, and catalyst using the ligand
JP2011190183A (en) Fluorous sugar-bonded crown ether derivative
CN111018928B (en) Synthetic method and application of gastrodin hemihydrate
JP4534024B2 (en) Compound separation carrier and compound separation method
JP6001267B2 (en) Carbon-carbon bond type heavy fluorous tag
JP5636692B2 (en) Method for producing 5-hydroxy-1,3-dioxane and method for producing branched glycerol trimer using 5-hydroxy-1,3-dioxane obtained by the method as a raw material
CN111499524B (en) Method for preparing amino alcohol compound by using halogenated intermediate
JP6055293B2 (en) Ether compound production method
JP5115762B2 (en) Process for producing 4-formylpiperidine acetal derivative
CN1166657C (en) Dihydrofuran heterocyclic compounds and synthesis process thereof
CN113004155A (en) Preparation method of alpha, omega-diamino nonaethylene glycol
RU2612956C1 (en) Method for producing 1-adamantyl acetaldehyde
JP5394645B2 (en) Sugar-linked spirocrown ether derivatives
KR20210053796A (en) Method for prearation of kanamycin X from kanamycin A by chemical synthesis
TWI555739B (en) Preparation method of chiral mutiple substituted tetrahydropyran
JP2014037362A (en) Odorless thiol derivative having aglycone transition inhibition effect
KR100828032B1 (en) Method of preparing valiolone derivatives
JP2022029075A (en) Method for producing thioester derivative
JP2009256306A (en) Adamantane derivative having polymerizable unsaturated group, and method for producing the same
CN111171094A (en) Vanillin intermediate and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407