JP2011189080A - Finger-tip pulse wave analyzer and vascular endothelium function evaluation system using the same - Google Patents

Finger-tip pulse wave analyzer and vascular endothelium function evaluation system using the same Download PDF

Info

Publication number
JP2011189080A
JP2011189080A JP2010059907A JP2010059907A JP2011189080A JP 2011189080 A JP2011189080 A JP 2011189080A JP 2010059907 A JP2010059907 A JP 2010059907A JP 2010059907 A JP2010059907 A JP 2010059907A JP 2011189080 A JP2011189080 A JP 2011189080A
Authority
JP
Japan
Prior art keywords
pulse wave
fingertip
pressure
blood
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010059907A
Other languages
Japanese (ja)
Other versions
JP5504477B2 (en
Inventor
Isao Kitajima
勲 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2010059907A priority Critical patent/JP5504477B2/en
Publication of JP2011189080A publication Critical patent/JP2011189080A/en
Application granted granted Critical
Publication of JP5504477B2 publication Critical patent/JP5504477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a finger-tip pulse wave analyzer excellent in high reproducibility and versatility while being applicable to vascular endothelium function measurement, and further to provide a vascular endothelium function evaluation system using the analyzer. <P>SOLUTION: The analyzer has a pressurizing tool attached around an upper arm for avascularization and opening, a fingertip probe attached around a fingertip, and an optical pulse detector capable of optically measuring an amount of change in a fingertip blood flow with a sensor arranged in the fingertip probe. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は糖尿病患者、動脈硬化発症前診断、メタボリックシンドローム検診等、血管柔軟性を検査するのに効果的な指尖脈波解析装置及びこれを用いた血管内皮機能評価システムに関する。   The present invention relates to a fingertip pulse wave analysis apparatus effective for examining vascular flexibility, such as a diabetic patient, pre-arteriosclerosis diagnosis, and metabolic syndrome screening, and a vascular endothelial function evaluation system using the same.

最近、動脈硬化検査法として血流依存性血管拡張反応(FMD)が注目されている。
ここでFMD(flow-mediated dilation:血流依存性血管拡張反応)とは、血管はアセチルコリン受容体からのシグナル伝達により、アルギニンから合成された一酸化窒素(NO)を介して血管が拡張する。
また、血管は機械的刺激や「shear stress:ずり応力」にも応答して血管内皮細胞よりNOが産性され、血管が拡張する。
近年、駆血開放後に血管内の血流増加により強力なshear sressが生じ、その後、一過性に血管が拡張する現象が明らかにされ、FMDと命名された。
すなわち、FMDはNO依存性の一過性血管拡張反応と理解されている。
FMDにより血管内皮細胞から産生される一酸化窒素等の血管拡張物質に反応する血管拡張性が診断できる。
FMDを利用した検査方法としては上腕動脈の血管超音波検査で血管径変化を直接計測する方法を用いる。
しかし、FMDの上腕動脈拡張率を超音波で測定する機器(BAUS:Brachial Artery Ultrasound)は、超音波による血管内径側定を原理とするため、内径描出が一定とならず、個人差が大きく再現性も乏しい。
また、超音波エコー検査者の技量に依存するところが大きく超音波検査機器が高額(数千万円)である問題があった。
そこで、最近、FMD計測に関して、上腕動脈拡張率をエコーで測定するというデータの不安定と高額なエコー機器を使用しない上腕駆血解放後の血管拡張反応を指尖の毛細血管の圧変化でとらえるPAT技術による新しいFMD測定法が開発されている。
ここで、PAT(Peripheral Arterisl Tonometry:末梢動脈圧計側器)とは、上腕駆血開放後の血管拡張反応を指尖の末梢動脈拍動の血流量の変化として検出するものである。 例えば、非特許文献1に、上腕動脈駆血解放後の血管拡張反応に対して、指尖の血流量変動を圧変化として検出する方法が開示されている。
また、PAT技術に関して特許文献1〜3が存在する。
PATでも動脈硬化の判定が可能である報告もある(三上正俊、鍵谷昭文、小澤禎治:加圧脈波による動脈硬化診断。日本臨床生理学会雑誌35:9−18,2005)。
しかし、PAT技術によりこれまでに商品化されている機器(エンドパッド2000、Itamer社(イスラエル))は、上腕の駆血部分が手動になっており、加圧が一定でなく不安定で、駆血できているかの判断は、検者の波形による主観的判断に依存し、手動で適宣、再加圧している。
指尖脈圧の駆血前後の指尖血流量を脈圧の比率(駆血後/駆血前)で計算するため、変化率が大きく出る。
また、指尖血管圧測定プローブが1回限りの「使い捨て」であり、ランニングコストが非常に高い問題を有している。
さらには次のような課題もあった。
一般に、指尖脈波の振幅は、指尖部をセンサーに圧着させる圧力によって変化する。最適な圧力でセンサーに圧着させると、大きな振幅のきれいな脈波をセンシングすることができるが、圧力が弱すぎると、振幅が小さくノイズ成分が大きくなり、圧力が強すぎると、逆に血流が阻害されて、振幅が小さくなる。
最適な圧力は、指の太さや、血管の硬さにより異なるので、バネ式の一般のプローブでは、圧力が弱すぎたり、強すぎたりするために、脈波が精度良く取れない場合がある。
また、バネ式のプローブでは、15分間の測定を続けて指先を圧迫し続けるために、脈波の振幅が減衰してしまうこともある。
Recently, blood flow-dependent vasodilator response (FMD) has attracted attention as an arteriosclerosis test method.
Here, FMD (flow-mediated dilation) means that blood vessels dilate via nitric oxide (NO) synthesized from arginine by signal transmission from acetylcholine receptors.
Further, in response to mechanical stimulation and “shear stress”, the blood vessels produce NO from the vascular endothelial cells and dilate the blood vessels.
In recent years, the phenomenon of strong shear sress due to increased blood flow in the blood vessel after the release of blood transfusion has been clarified, and thereafter the phenomenon of temporary blood vessel dilation has been clarified and named FMD.
That is, FMD is understood as a NO-dependent transient vasodilator response.
Vasodilatoryness that reacts with vasodilators such as nitric oxide produced from vascular endothelial cells by FMD can be diagnosed.
As an inspection method using the FMD, a method of directly measuring a blood vessel diameter change by a blood vessel ultrasonic inspection of the brachial artery is used.
However, the device that measures the brachial artery dilatation rate of the FMD with ultrasound (BAUS: Brachial Artery Ultrasound) is based on the principle of determining the inner diameter of a blood vessel using ultrasound, so that the inner diameter is not constant, and individual differences are greatly reproduced. Poor nature.
In addition, there is a problem that the ultrasonic echo inspection apparatus is expensive (tens of millions of yen), which largely depends on the skill of the ultrasonic echo inspector.
Therefore, recently, regarding FMD measurement, the instability of data for measuring the brachial artery dilatation rate by echo and the vasodilator response after releasing brachial artery blood pressure without using expensive echo devices are captured by changes in capillary pressure at the fingertips. New FMD measurement methods using PAT technology have been developed.
Here, PAT (Peripheral Arterisl Tonometry: peripheral arterial pressure gauge side device) detects a vasodilator response after releasing brachial blood pressure as a change in blood flow volume of peripheral arterial pulsation of the fingertip. For example, Non-Patent Document 1 discloses a method for detecting a blood flow fluctuation at the fingertip as a pressure change with respect to a vasodilator reaction after releasing brachial artery blood transfusion.
Further, Patent Documents 1 to 3 exist regarding the PAT technology.
There are reports that arteriosclerosis can also be determined by PAT (Masato Mikami, Akifumi Kagiya, Junji Ozawa: Diagnosis of arteriosclerosis by pressurized pulse wave. Japanese Journal of Clinical Physiology 35: 9-18, 2005).
However, devices that have been commercialized so far with PAT technology (Endpad 2000, Itamer (Israel)) have a manual blood pumping part of the upper arm, and the pressure is not constant and unstable. Judgment of whether blood is made depends on subjective judgment by the examiner's waveform, and is manually applied and repressurized.
Since the fingertip blood flow before and after the fingertip pulse pressure is calculated is calculated by the ratio of the pulse pressure (after the blood pressure before / after blood pressure), the rate of change is large.
Further, the fingertip blood pressure measuring probe is “disposable” only once, which has a problem that the running cost is very high.
There were also the following problems.
In general, the amplitude of the fingertip pulse wave varies depending on the pressure with which the fingertip is pressed against the sensor. When pressure is applied to the sensor at the optimum pressure, a clear pulse wave with a large amplitude can be sensed. However, if the pressure is too low, the amplitude is small and the noise component is large. Inhibited, the amplitude decreases.
Since the optimum pressure varies depending on the thickness of the finger and the hardness of the blood vessel, the pulse wave may not be accurately obtained with a spring-type general probe because the pressure is too weak or too strong.
In the spring type probe, since the measurement is continued for 15 minutes and the fingertip is continuously pressed, the amplitude of the pulse wave may be attenuated.

特表2000−515789号公報Special Table 2000-515789 特表2003−527149号公報Special table 2003-527149 gazette 特表2004−528052号公報Special table 2004-528052 gazette 特公平6−9546号公報Japanese Patent Publication No. 6-9546

Bonetti PO,Pumper GM,Higano ST,et al:Non-invasive Identification of patients with early colonary atherosclerosis by assessment of digitasl reacyive hyperemia.J Am Coll cardiol 44:2137-2141,2004Bonetti PO, Pumper GM, Higano ST, et al: Non-invasive Identification of patients with early colonary atherosclerosis by assessment of digitasl reacyive hyperemia. J Am Coll cardiol 44: 2137-2141,2004

血管内皮機能測定に適用できる高い再現性と凡用性に優れた指尖脈波解析装置の提供を目的とする。
さらには、本装置を用いた血管内皮機能評価システムの提供も目的とする。
An object of the present invention is to provide a finger plethysmogram analysis device that is applicable to vascular endothelial function measurement and has excellent reproducibility and versatility.
It is another object of the present invention to provide a vascular endothelial function evaluation system using this apparatus.

本発明に係る脈波解析装置は、上腕に装着され、駆血及び開放するための加圧手段と、指先に装着される指尖プローブと、当該指尖プローブに設けたセンサーを用いて指尖血流変化量を光学的に測定できる光学的脈波検出手段を有することを特徴とする。
ここで、前記加圧手段は自動血圧計であってもよい。
なお、光学的計測手段は、特許文献4に記載の発光ダイオードにて、赤外線を照射し、毛細血管内のヘモグロビンとの反応における反射・吸収率をフォトダイオードで検知し、その反射光量により血流量を解析する技術を取り込むことができるが、本発明は、さらに指尖部とセンサーとの間に最適圧力が負荷されるように調整可能な装着圧力調整手段を有することを特徴とする。
この脈波解析装置を用いた本発明に係る血管内皮機能評価システムは、左右の手の指尖部から検知された両方の指尖脈波の振幅を合致させるように係数処理する係数処理手段を有し、一方の指尖部に対応する上腕が駆血及び血流再開された後に検知された指尖脈波から脈波ピーク値検出手段を用いて検出した、脈波ピーク値と前記係数処理して得られた脈波ベース値との差から血管内皮機能レベルを評価する評価手段、上腕の駆血前、及び血流再開された後の脈波の収縮期圧に占める反射波成分の割合AI(Augmentation Index)値から血管内皮機能レベルを評価する評価手段及び、加速度脈波の脈波特徴量として血管老化年齢指数(AG)を用いて血管内皮機能レベルを評価する評価手段のうち、少なくともいずれか1つ以上有することを特徴とする。
ここで評価手段は単独で判定してもよいが、2つ以上を組み合せることでより総合的な評価が可能となる。
A pulse wave analysis device according to the present invention is applied to a fingertip using a pressurizing means that is attached to the upper arm, for driving and releasing blood, a fingertip probe that is attached to a fingertip, and a sensor provided on the fingertip probe. An optical pulse wave detecting means capable of optically measuring a blood flow change amount is provided.
Here, the pressurizing means may be an automatic blood pressure monitor.
The optical measuring means irradiates infrared rays with the light emitting diode described in Patent Document 4, detects the reflection / absorption rate in the reaction with hemoglobin in the capillary blood vessel with the photodiode, and the blood flow volume by the reflected light quantity However, the present invention is further characterized by having a mounting pressure adjusting means that can be adjusted so that an optimum pressure is applied between the fingertip and the sensor.
The vascular endothelial function evaluation system according to the present invention using this pulse wave analysis device includes coefficient processing means for performing coefficient processing so that the amplitudes of both fingertip pulse waves detected from the fingertips of the left and right hands are matched. A pulse wave peak value detected by the pulse wave peak value detection means from the finger tip pulse wave detected after the upper arm corresponding to one finger apex is driven and blood flow resumed, and the coefficient processing Means for evaluating the vascular endothelial function level from the difference from the pulse wave base value obtained in this way, the ratio of the reflected wave component to the systolic pressure of the pulse wave before the brachial blood transfusion and after the blood flow is resumed At least of an evaluation means for evaluating a vascular endothelial function level from an AI (Augmentation Index) value, and an evaluation means for evaluating a vascular endothelial function level using a blood vessel aging age index (AG) as a pulse wave feature amount of an acceleration pulse wave, It has any one or more and That.
Here, the evaluation means may be determined alone, but a more comprehensive evaluation is possible by combining two or more.

本発明において、指尖プローブに装着圧力調整手段を用いたのは次のような特徴による。
先に、プローブの装着圧力(センサーに負荷される圧力)によって指尖脈波の振幅が変化することを述べた。
これを図6に基づいて具体的に説明する。
横軸にプローブ装着圧力(指尖をセンサーに圧着させる圧力)をとり、縦軸にセンサーにより検出される脈波の振幅をとると、装着圧力の上昇につれて脈波の振幅が大きくなり、圧力の変化に対する血管容積変化の値(コンプライアンスC)が最大になる圧力(図6の点線で示した曲線の傾きが最も大きくなる圧力)と、それ以上圧力をかけると逆に脈波の振幅が減少しはじめる最大振幅圧力とが出現する。
そこで、ノイズの影響を最小限に抑え再現性の高いデータを得るには、このコンプライアンスCが最大になる圧力又は最大振幅圧力にプローブの装置圧を調整するのがよい。
なお、計測時は両方の圧力にてデータをとり、解析時に被検者の年齢や体型に応じて選択使用するとよい。
In the present invention, the mounting pressure adjusting means is used for the fingertip probe because of the following characteristics.
Previously, it was described that the amplitude of the finger plethysmogram changes depending on the probe mounting pressure (pressure applied to the sensor).
This will be specifically described with reference to FIG.
Taking the probe mounting pressure (pressure to press the fingertip against the sensor) on the horizontal axis and the amplitude of the pulse wave detected by the sensor on the vertical axis, the amplitude of the pulse wave increases as the mounting pressure increases. The pressure at which the value of blood vessel volume change (compliance C) with respect to the change becomes maximum (the pressure at which the slope of the curve shown by the dotted line in FIG. The starting maximum amplitude pressure appears.
Therefore, in order to obtain highly reproducible data while minimizing the influence of noise, it is preferable to adjust the device pressure of the probe to the pressure at which the compliance C is maximized or the maximum amplitude pressure.
In addition, it is good to take data with both pressures at the time of measurement, and to select and use it according to the age and body shape of the subject at the time of analysis.

本発明において、脈波のAI値とは、収縮期血圧に占める反射波成分の割合をいい、この値は動脈硬化の進展により変化する。
また、得られた脈波から加速度脈波を解析することでも動脈硬化の状況を評価できる。
In the present invention, the AI value of the pulse wave refers to the ratio of the reflected wave component in the systolic blood pressure, and this value changes with the progress of arteriosclerosis.
The state of arteriosclerosis can also be evaluated by analyzing the acceleration pulse wave from the obtained pulse wave.

本発明に係る脈波解析装置は、指尖血流変化量を光学的に検知し、駆血側指尖脈波ピーク値と対象側(コントロール)ピーク値との差によって解析するので、従来の指尖脈圧比で計測する方法に対して、ノイズの影響が少なく再現性が高い。
また、AI(Augmentation Index)値、加速度脈波の脈波特微量としての血管老化年齢指数(AG)は、駆血前の値と駆血開放後の値が、内皮機能が正常の場合と、内皮機能が低下した場合では変化が見られる。
そこで、脈波の振幅の情報にAI(Augmentation Index)値、加速度脈波の脈波波形の特徴量の情報を加えて総合的に評価することにより、ノイズの影響が少なく再現性が高い結果が得られる。
従来の指尖圧プローブは「使い捨て」であるのに対して本発明に係る光学的脈波検出手段は、繰り返し使用できるので検査費用が安価になる。
また、指先をセンサーに圧着させる圧力を、被験者ごとに最適な圧力を駆血前に設定するため、ノイズの影響が少なく再現性が高いデータが得られる。
さらに、自動血圧計で駆血条件を自動制御すると、駆血状態をリアルタイムに把握し、制御できるため再現性が高い。
さらに駆血できる最低の血圧値を測定者にあわせて設定するため、被検者の身体的負担も軽減される。
Since the pulse wave analysis device according to the present invention optically detects the fingertip blood flow change amount and analyzes it based on the difference between the blood pressure side fingertip pulse wave peak value and the target side (control) peak value, Compared to the method using fingertip pulse pressure ratio, noise is less affected and reproducibility is high.
In addition, the AI (Augmentation Index) value, the blood vessel aging age index (AG) as the pulse wave characteristic amount of the acceleration pulse wave, the value before and after the release of the tourniquet, the normal endothelial function, Changes are seen when endothelial function is reduced.
Therefore, comprehensive evaluation by adding AI (Augmentation Index) value and feature information of pulse wave waveform of acceleration pulse wave to the amplitude information of pulse wave results in high reproducibility with little influence of noise. can get.
While the conventional fingertip pressure probe is “disposable”, the optical pulse wave detecting means according to the present invention can be used repeatedly, so that the inspection cost is low.
In addition, since the pressure at which the fingertip is pressed against the sensor is set to an optimum pressure for each subject before blood transfusion, data with less influence of noise and high reproducibility can be obtained.
Furthermore, when the blood pressure condition is automatically controlled by an automatic blood pressure monitor, the blood pressure state can be grasped and controlled in real time, so that the reproducibility is high.
Furthermore, since the lowest blood pressure value that can be driven is set according to the measurer, the physical burden on the subject is also reduced.

本発明に係る装置の構成例を示す。The structural example of the apparatus which concerns on this invention is shown. 血流量の測定原理を示す。The measurement principle of blood flow is shown. 装置の制御例を示す。The example of control of an apparatus is shown. 計測データの例を示す。An example of measurement data is shown. データの解析例を示す。An example of data analysis is shown. 脈波の振幅と指尖をセンサーに圧着させる圧力との関係図を示す。The relationship figure of the pressure which presses the amplitude of a pulse wave and a fingertip to a sensor is shown. AI( Augmentation Index )値の計算原理を示す。The calculation principle of AI (Augmentation Index) value is shown. 駆血前後のAI値の変化を示す。The change of AI value before and after the blood transfusion is shown. 駆血前後の加速度脈波の特微量として血管老化年齢指数(AG)の変化を示す。Changes in blood vessel aging age index (AG) are shown as trace amounts of acceleration pulse waves before and after blood transfusion. 加速度脈波の例を示す。The example of an acceleration pulse wave is shown. 推定RHI値算出方法 (比=駆血側値/対照側値と差=駆血側値―対照側の比較)例を示す。An example of an estimated RHI value calculation method (ratio = traumatic side value / control side value and difference = traumatic side value−control side comparison) is shown. エンドパッド2000による脈波同時測定による波形比較例を示す。The waveform comparison example by the pulse wave simultaneous measurement by end pad 2000 is shown.

本発明に係る脈波解析装置の構成例を図1に示す。
上腕に装着するための自動血圧計等の加圧手段1と、両手指の血流変化量を光学的に計測するための指尖プローブ2と上腕の駆血条件、及び指の加圧条件を制御する装置本体3とを備え、取得したデータはリアルタイムに解析及び表示するPC4に接続されている。
A configuration example of a pulse wave analysis apparatus according to the present invention is shown in FIG.
Pressurizing means 1 such as an automatic sphygmomanometer for wearing on the upper arm, fingertip probe 2 for optically measuring the blood flow change amount of both fingers and the upper arm, blood pressure conditions, and finger pressure conditions The apparatus main body 3 to be controlled is provided, and the acquired data is connected to a PC 4 for analyzing and displaying in real time.

指尖プローブの下側には赤外線発光ダイオードとフォトダイオードが指尖部の内部でそれらの光軸が交差するように配置されている。
その原理を図2に模式的に示す。
発光ダイオードで照射された赤外線は血流中のヘモグロビンにて一部が吸収され、その反射光量が血流の増減で変化する。
この変化がフォトダイオードにて電圧変化として出力される。
Below the fingertip probe, an infrared light emitting diode and a photodiode are arranged so that their optical axes intersect inside the fingertip portion.
The principle is schematically shown in FIG.
A part of the infrared ray irradiated by the light emitting diode is absorbed by hemoglobin in the bloodstream, and the amount of reflected light changes as the blood flow increases or decreases.
This change is output as a voltage change by the photodiode.

次に計測手段を図3で説明する。
左右の手の指尖部にそれぞれ指尖プローブ2を装着し、駆血する側を検査側とし、駆血しない側をコントロール側とする。
指尖部をフォトダイオードのセンサーに圧着させる最適圧力を求めるために、駆血前に事前測定を行う。
例えば指尖プローブに連結した空気ポンプ6と圧力センサを用いて最低血圧より30mmHg低い値から最低血圧より50mmHg高いまで徐々に加圧して、脈波をモニターし脈波の振幅が最大になった時の圧力又は、コンプライアンスCが最大になった圧力を最適圧力とし、本測定時の指尖部圧力とする。
最大の脈波振幅になる圧力を評価に用いるとノイズが小さくなり、コンプライアンスC=血管容積変化/圧力変化を指標として、最大値なる圧力を用いるとより変化しやすく鋭敏なデータの変化を入手できる。
図3に示した例では、フォトダイオードからの電圧変化を増幅回路にて増幅し、A/D変換後にコンピュータ4にてモニタリングする例になっている。
指尖部を最適圧力に維持したまま、上腕部の加圧前の測定を一定時間行う。
次に、一方の腕の上腕部を自動血圧計(加圧手段1)で加圧し、一定時間駆血する。
完全な駆血に達したかどうかを判断し、達成していない場合は駆血が達成されるまで加圧を継続する。
図3に示した例では空気ポンプ6と圧力センサ及び減圧弁の組み合せにて加圧制御した例になっている。
駆血が完全であるかどうかの判断方法は、左右の脈波の相関係数を計算し、相関係数が閾値よりも小さい時に駆血されていると判断する。
駆血達成後は圧力を維持する。
圧力の低下を監視、制御することで設定圧力を自動的に維持する。
その後、除圧し血流を再開する。
Next, the measuring means will be described with reference to FIG.
The fingertip probes 2 are attached to the fingertips of the left and right hands, respectively, and the side to be driven is the examination side and the side that is not to be driven is the control side.
In order to find the optimal pressure to press the fingertip against the photodiode sensor, a pre-measurement is performed before blood pumping.
For example, when the air pressure is gradually increased from a value 30 mmHg lower than the minimum blood pressure to 50 mmHg higher than the minimum blood pressure using the air pump 6 and pressure sensor connected to the fingertip probe, and the pulse wave is monitored and the amplitude of the pulse wave becomes maximum Or the pressure at which the compliance C is maximized is the optimum pressure, and is the fingertip pressure at the time of the actual measurement.
When the pressure with the maximum pulse wave amplitude is used for evaluation, noise is reduced, and compliance C = change in blood vessel volume / pressure change is used as an index, and when the pressure with the maximum value is used, more easily changeable and sensitive data changes can be obtained. .
In the example shown in FIG. 3, the voltage change from the photodiode is amplified by an amplifier circuit and monitored by the computer 4 after A / D conversion.
The measurement before pressurization of the upper arm is performed for a certain time while maintaining the fingertip at the optimum pressure.
Next, the upper arm of one arm is pressurized with an automatic sphygmomanometer (pressurizing means 1), and is driven for a certain period of time.
Determine if full blood transfusion has been reached, and if not, continue pressurization until blood transfusion is achieved.
In the example shown in FIG. 3, the pressure is controlled by a combination of the air pump 6, the pressure sensor, and the pressure reducing valve.
As a method for determining whether or not the blood transfusion is complete, the correlation coefficient between the left and right pulse waves is calculated, and it is determined that the blood is being driven when the correlation coefficient is smaller than the threshold value.
Maintain pressure after achieving blood transfusion.
The set pressure is automatically maintained by monitoring and controlling the pressure drop.
Thereafter, the pressure is released and blood flow is resumed.

脈波データ解析
末梢血管血流変化を指尖脈波でモニタリングしたものが図4に示すチャート例である。
図4にて上段の脈波が検査側で、下段の脈波がコントロール側である。
縦軸が脈波高、横軸が時間を示す。
加圧側では駆血により一定時間、脈波が消失していることがわかる。
図4の脈波データをPCに取り込み計算されたリアルタイム解析した例を図5に示す。
左右の脈波のベースラインの部分の誤差が最小になるように、最小誤差法を利用して係数を掛けて振幅を合せた(a,b)後、駆血側の脈波のピーク値とコントロール側の脈波ピーク値の差(ベースラインの振幅を合せた後のAのピーク)−(ベースラインの振幅を合せた後のピークB)を計算する。
ここで脈波のピーク値とは振幅の上限側のピーク値をいう。
差の駆血後2〜2.5分後の累積値を算出し、内皮機能指数(図5の縦軸)に設定する。
図5では、駆血前に左右のベースラインを合せた状態が(a,b)で、その時の脈波の振幅差はδ=0であったものが、駆血を開放し血流を再開させた場合のA−B=δの値を縦軸に示す。
差の曲線をプロットして駆血後2.5分の位置、25秒間隔で平均振幅を計算し、その値を反応性駆血再灌流による血管拡張指標 RHI(reactive hyperemia index)の推定値として設定する。
これにより、内皮機能の状態を指数として表現できる。
Pulse wave data analysis FIG. 4 shows an example of a chart in which changes in peripheral blood flow are monitored by fingertip pulse waves.
In FIG. 4, the upper pulse wave is on the inspection side, and the lower pulse wave is on the control side.
The vertical axis represents pulse wave height, and the horizontal axis represents time.
It can be seen that on the pressure side, the pulse wave disappears for a certain time due to the blood pumping.
FIG. 5 shows an example of real-time analysis in which the pulse wave data of FIG. 4 is taken into a PC and calculated.
After amplifying the amplitudes by multiplying the coefficients using the minimum error method (a, b) so that the errors in the baseline portions of the left and right pulse waves are minimized, The difference between the pulse wave peak values on the control side (peak of A after adjusting the amplitude of the baseline) − (peak B after adjusting the amplitude of the baseline) is calculated.
Here, the peak value of the pulse wave means a peak value on the upper limit side of the amplitude.
The cumulative value of the difference 2 to 2.5 minutes after the blood transfusion is calculated and set to the endothelial function index (vertical axis in FIG. 5).
In FIG. 5, the state in which the left and right baselines are combined before blood transfusion is (a, b), and the pulse wave amplitude difference at that time is δ 0 = 0. The value of AB = δ 1 in the case of resumption is shown on the vertical axis.
Plot the difference curve and calculate the average amplitude at 25 min intervals at 25 minutes after blood transfusion, and use that value as the estimated value of RHI (reactive hyperemia index) by reactive blood transfusion reperfusion Set.
Thereby, the state of endothelial function can be expressed as an index.

<AI値を評価に用いた例>
血圧波形は、図7に示すように心臓から拍出される一次波(駆出波)とさらに1次波が反射されることで形成される反射波との合成波として形成される。
この合成波は動脈硬化の進展により修飾されるためこのパラメーターを取り込むことはデータ解析上重要となる。
とくに、収縮期血圧に占める反射波成分の割合は、augmentation index (AI)として脈波から求めることができる。
本発明機器で得られた脈波の1つの波形を詳細に分析すると2つのピークがあり、初めに現れるのが駆出波でその振幅最大値をP1、次に出現するものが反射波でその振幅最大値をP2とするとAIは100×(P1−P2)/P1で表示される。
図8に本発明機器で得られた脈波から計算されたAIの経時的変化例を示す。
内皮機能が低下した動脈硬化進行症例では、駆血前後でAIが全く変化していないことがわかる。
<Example using AI value for evaluation>
As shown in FIG. 7, the blood pressure waveform is formed as a combined wave of a primary wave (ejection wave) pumped out of the heart and a reflected wave formed by further reflecting the primary wave.
Since this synthetic wave is modified by the progress of arteriosclerosis, it is important for data analysis to incorporate this parameter.
In particular, the ratio of the reflected wave component in the systolic blood pressure can be obtained from the pulse wave as augmentation index (AI).
When one waveform of the pulse wave obtained by the device of the present invention is analyzed in detail, there are two peaks, the first appearing is the ejection wave, the maximum amplitude is P1, and the next appearing is the reflected wave. When the maximum amplitude value is P2, AI is displayed as 100 × (P1−P2) / P1.
FIG. 8 shows an example of change with time of AI calculated from the pulse wave obtained by the device of the present invention.
It can be seen that AI is not changed at all before and after the blood transfusion in the case of advanced arteriosclerosis in which the endothelial function is lowered.

<加速度脈波の脈波特徴量として血管老化年齢指数(AG)を評価に用いた例>
指尖容積脈波に加えて、この波形から血液循環情報を得るために、指尖容積脈波を2階微分し、有用な情報を抽出したものが加速度脈波である。
われわれの検査機器で得られた容脈波からも容易に加速度脈波が算出できる。
図9に加速度脈波データ例を示す。
加速度脈波形は心臓の収縮期の波形であり、a,b,c,d,e波の5つの成分波がみられる(e波は前弛緩期に相当と考えられている)。
基線より上を正、下を負の象限としたとき、a波は基線より常に上に位置する陽性波、b波は基線より常に下に位置する陰性波、c波、d波、e波は生体の条件により、陽性または陰性に変化する。
波形評価のパラメーターとしては、基線をx軸として、各成分波の頂点までの距離をy座標としてとらえ、a 成分波の基線から頂点までの距離を基準にして、b,c,d,e波を解析する。
図10に本機器から得られた駆血前後の加速度脈波の変化としてAG=41−(bの絶対値)/aの変化を示す。
AGの計算式は、加速度脈波加齢指数(SDPTG aging index:SDPTGAI)=(b−c−d−e)/aを利用し、一般に男性「血管年齢」= 43.47×(b−c−d−e)/a+65.86、女性「血管年齢」=41.67×(b−c−d−e)/a+61.75が利用されているが、本機器を利用した加速度脈波データより、本機器ではAG(血管老化年齢指数)=41−(bの絶対値)/aに設定できる。
動脈硬化が進行し、内皮機能が低下すると駆血前後での加速度脈波の経時的変化が出現しなくなることがわかる。
本実施例では評価にb成分波を用いたが、c,d,e波を組み合せることも可能であり、AGを求める式も適宜変更して使用可能である。
<Example of using blood vessel aging age index (AG) for evaluation as pulse wave feature quantity of acceleration pulse wave>
In addition to the fingertip volume pulse wave, in order to obtain blood circulation information from this waveform, the fingertip volume pulse wave is second-order differentiated to extract useful information is an acceleration pulse wave.
The acceleration pulse wave can be easily calculated from the pulse wave obtained by our testing equipment.
FIG. 9 shows an example of acceleration pulse wave data.
The acceleration pulse waveform is a waveform in the systole of the heart, and five component waves of a, b, c, d, and e waves are observed (e waves are considered to correspond to the pre-relaxation period).
When the upper quadrant is positive and the lower quadrant is a negative quadrant, the a wave is always above the base line, the b wave is always below the base line, the negative wave, c wave, d wave, and e wave are It changes to positive or negative depending on the condition of the living body.
As parameters for waveform evaluation, the base line is the x-axis, the distance to the apex of each component wave is taken as the y coordinate, and the b, c, d, e wave is based on the distance from the base line of the component wave to the apex. Is analyzed.
FIG. 10 shows the change of AG = 41− (absolute value of b) / a as the change of the acceleration pulse wave before and after blood driving obtained from this device.
The calculation formula of AG uses an acceleration pulse wave aging index (SDPTGAI) = (bcde) / a, and generally male “blood vessel age” = 43.47 × (bc −d−e) /a+65.86, female “blood vessel age” = 41.67 × (b−c−d−e) /a+61.75 is used, but from acceleration pulse wave data using this device In this device, AG (blood vessel aging age index) = 41− (absolute value of b) / a can be set.
It can be seen that when arteriosclerosis progresses and the endothelial function decreases, the time-dependent change in the acceleration pulse wave before and after blood transfusion does not appear.
In this embodiment, the b component wave is used for the evaluation. However, it is possible to combine c, d, and e waves, and the formula for obtaining AG can be appropriately changed and used.

推定RHI値算出方法として、比=駆血側値/対照側値より、差=駆血側値―対照側値のほうがデータの安定性・再現性がよい理由を(図11)に示す。
血管内皮機能が正常な20歳台女性のデータに対して、上段は経時的に差で表示したもの 下段は経時的に比で表示したものを示す。
差で求めた値の標準偏差はSD=0.23、比で求めた値の標準偏差はSD=0.41であり、比のほうがデータのばらつきが大きくなることが分かる。
As a method for calculating the estimated RHI value, the reason why the difference = the value on the side of the blood pressure side−the value on the control side is better than the ratio = the value on the blood side of the control side−the value on the control side is shown in FIG.
For the data of women in their 20s with normal vascular endothelial function, the upper graph shows the difference over time, and the lower graph shows the ratio displayed over time.
The standard deviation of the value obtained by the difference is SD = 0.23, and the standard deviation of the value obtained by the ratio is SD = 0.41. It can be seen that the variation in the data is larger in the ratio.

エンドパッド2000(商品名)と本機器による脈波データの比較。
左腕を駆血側、右腕を対照として、両第2指にエンドパッド2000のプローブ、両第4指に研究機器のプローブを装着し、同時に駆血負荷を実施した脈波の経時的変化を図12に示す。
脈波振幅経過の経時的変化は両者ともほぼ一致した。
例として図12のAと‘Aの出現、Bの3つのピークと’Bの3つのピークに一致、さらに対照側に出現した予期せぬ脈波の変化Cも同様に‘Cで捉えていることがわかる。
以上、エンドパッドによる指尖脈圧変化と光学的計測法による指尖血流脈波は同じようにRHIを捉えることができることが確認できたが、本発明はセンサー圧を最適にし、RHI値の算出を差で求めたことから、データの精度及び再現性が高くなっている。
Comparison of pulse wave data by Endpad 2000 (trade name) and this device.
Using the left arm as the blood-feeding side and the right arm as the control, the end pad 2000 probe is attached to both second fingers, and the research equipment probe is attached to both fourth fingers. 12 shows.
The changes in the pulse wave amplitude over time were almost the same.
As an example, the appearance of A and 'A in FIG. 12, coincident with the three peaks of B and the three peaks of B, and also an unexpected pulse wave change C appearing on the control side is also captured by' C. I understand that.
As described above, it has been confirmed that the fingertip pulse pressure change by the end pad and the fingertip blood flow pulse wave by the optical measurement method can capture the RHI in the same way. However, the present invention optimizes the sensor pressure and the RHI value. Since the calculation is obtained by the difference, the accuracy and reproducibility of the data are high.

本発明は、生体における非浸襲的な直接血管機能を検査できる方法であるため、メタボリック検診事業等に活用できる可能性がある。
動脈硬化発症前診断として、血管病変早期発見に加え、メタボロックシンドロームで要指導となった住民の健康管理事業にも貢献できる。
また、スタチン系薬剤・抗血小板薬の動脈硬化に対する生体内薬効判定が可能となる。
Since the present invention is a method capable of examining a non-invasive direct blood vessel function in a living body, there is a possibility that the present invention can be utilized for a metabolic screening business or the like.
In addition to early detection of vascular lesions as a pre-arteriosclerosis diagnosis, it can also contribute to the health management business of residents who have received guidance from the Metaboloc syndrome.
In addition, it is possible to determine in vivo drug efficacy of statin drugs and antiplatelet drugs against arteriosclerosis.

1 加圧手段
2 指尖プローブ
3 装置本体
4 PC
5 空気チューブ
6 空気ポンプ
1 Pressurizing means 2 Fingertip probe 3 Device body 4 PC
5 Air tube 6 Air pump

Claims (4)

上腕に装着され、駆血及び開放するための加圧手段と、指先に装着される指尖プローブと、当該指尖プローブに設けたセンサーを用いて指尖血流変化量を光学的に測定できる光学的脈波検出手段を有することを特徴とする脈波解析装置。   A fingertip blood flow change amount can be optically measured using a pressurizing means attached to the upper arm, for driving and releasing blood, a fingertip probe attached to the fingertip, and a sensor provided on the fingertip probe. A pulse wave analyzing apparatus comprising an optical pulse wave detecting means. 前記指尖プローブは、指尖部とセンサーとの間に最適圧力が負荷されるように調整可能な装着圧力調整手段を有することを特徴とする請求項1記載の脈波解析装置。   The pulse wave analysis device according to claim 1, wherein the fingertip probe has a mounting pressure adjusting means that can be adjusted so that an optimum pressure is applied between the fingertip portion and the sensor. 前記加圧手段は自動血圧計であることを特徴とする請求項1又は2記載の脈波解析装置。   The pulse wave analysis apparatus according to claim 1 or 2, wherein the pressurizing means is an automatic blood pressure monitor. 左右の手の指尖部から検知された両方の指尖脈波の振幅を合致させるように係数処理する係数処理手段を有し、
一方の指尖部に対応する上腕が駆血及び血流再開された後に検知された指尖脈波から脈波ピーク値検出手段を用いて検出した、脈波ピーク値と前記係数処理して得られた脈波ベース値との差から血管内皮機能レベルを評価する評価手段、
上腕の駆血前、及び血流再開された後の脈波の収縮期圧に占める反射波成分の割合AI(Augmentation Index)値から血管内皮機能レベルを評価する評価手段及び、
加速度脈波の脈波特徴量AG(血管老化年齢指数)を用いて血管内皮機能レベルを評価する評価手段のうち、
少なくともいずれか1つ以上有することを特徴とする血管内皮機能評価システム。
Coefficient processing means for performing coefficient processing so as to match the amplitudes of both fingertip pulse waves detected from the fingertips of the left and right hands;
The pulse wave peak value detected by using the pulse wave peak value detection means from the finger plethysmogram detected after the upper arm corresponding to one finger apex is driven and blood flow is resumed and obtained by the coefficient processing. An evaluation means for evaluating a vascular endothelial function level from a difference from a measured pulse wave base value,
Evaluation means for evaluating the vascular endothelial function level from the ratio AI (Augmentation Index) value of the reflected wave component in the systolic pressure of the pulse wave before blood transfusion of the upper arm and after resumption of blood flow;
Among the evaluation means for evaluating the vascular endothelial function level using the pulse wave feature amount AG (vascular aging age index) of the acceleration pulse wave,
A vascular endothelial function evaluation system comprising at least one of the above.
JP2010059907A 2010-03-16 2010-03-16 Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same Active JP5504477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010059907A JP5504477B2 (en) 2010-03-16 2010-03-16 Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059907A JP5504477B2 (en) 2010-03-16 2010-03-16 Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same

Publications (2)

Publication Number Publication Date
JP2011189080A true JP2011189080A (en) 2011-09-29
JP5504477B2 JP5504477B2 (en) 2014-05-28

Family

ID=44794630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059907A Active JP5504477B2 (en) 2010-03-16 2010-03-16 Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same

Country Status (1)

Country Link
JP (1) JP5504477B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126487A (en) * 2011-12-19 2013-06-27 Hiroshima Univ Apparatus for evaluating vascular endothelial function
WO2013111349A1 (en) * 2012-01-25 2013-08-01 株式会社ユネクス Arterial endothelial function biometric device
WO2014054788A1 (en) 2012-10-04 2014-04-10 北海道公立大学法人札幌医科大学 Finger arteriolar dilatability testing method, finger arteriolar dilatability testing device, and finger arteriolar dilatability testing program
WO2014111970A1 (en) * 2013-01-16 2014-07-24 テルモ株式会社 Blood pressure measuring device
CN104042195A (en) * 2014-05-04 2014-09-17 上海中嘉衡泰医疗科技有限公司 Vascular endothelial function analysis system and method
WO2014157605A1 (en) * 2013-03-29 2014-10-02 北海道公立大学法人札幌医科大学 Neurogenic baroreflex sensitivity measurement device, neurogenic baroreflex sensitivity measurement program and neurogenic baroreflex sensitivity measurement method
JP2015136417A (en) * 2014-01-21 2015-07-30 日本光電工業株式会社 Vascular endothelial function-evaluating device
JP2016112042A (en) * 2014-12-11 2016-06-23 セイコーエプソン株式会社 Bio-information obtaining device, bio-information obtaining method and electronic apparatus
WO2017179696A1 (en) * 2016-04-15 2017-10-19 オムロン株式会社 Biological information analysis device and system, and program
WO2024053380A1 (en) * 2022-09-09 2024-03-14 株式会社村田製作所 Vascular endothelial function evaluation system, vascular endothelial function evaluation device, and vascular endothelial function evaluation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232929A (en) * 1988-03-15 1989-09-18 Koorin Denshi Kk Method for controlling pressing force of pulse wave detector
JPH0654813A (en) * 1992-08-12 1994-03-01 Computer Konbiniensu:Kk Diagnostic method and device for using pulse wave collected from body surface in plural parts
JPH11332837A (en) * 1998-05-28 1999-12-07 Matsushita Electric Ind Co Ltd Biomonitor
JP2002136486A (en) * 2000-10-30 2002-05-14 Nippon Colin Co Ltd Arterial sclerosis evaluator
JP2003204945A (en) * 2002-01-10 2003-07-22 Nippon Colin Co Ltd Amplitude increase index-calculating device and arterial sclerosis-examining device
JP2005066087A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Circulatory organ function determining device
JP2007007077A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure monitoring apparatus
JP2007044261A (en) * 2005-08-10 2007-02-22 Utsunomiya Univ Blood vessel hardness measuring instrument
JP2008279061A (en) * 2007-05-10 2008-11-20 Sharp Corp Biosignal detecting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232929A (en) * 1988-03-15 1989-09-18 Koorin Denshi Kk Method for controlling pressing force of pulse wave detector
JPH0654813A (en) * 1992-08-12 1994-03-01 Computer Konbiniensu:Kk Diagnostic method and device for using pulse wave collected from body surface in plural parts
JPH11332837A (en) * 1998-05-28 1999-12-07 Matsushita Electric Ind Co Ltd Biomonitor
JP2002136486A (en) * 2000-10-30 2002-05-14 Nippon Colin Co Ltd Arterial sclerosis evaluator
JP2003204945A (en) * 2002-01-10 2003-07-22 Nippon Colin Co Ltd Amplitude increase index-calculating device and arterial sclerosis-examining device
JP2005066087A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Circulatory organ function determining device
JP2007007077A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure monitoring apparatus
JP2007044261A (en) * 2005-08-10 2007-02-22 Utsunomiya Univ Blood vessel hardness measuring instrument
JP2008279061A (en) * 2007-05-10 2008-11-20 Sharp Corp Biosignal detecting device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126487A (en) * 2011-12-19 2013-06-27 Hiroshima Univ Apparatus for evaluating vascular endothelial function
US9445727B2 (en) 2011-12-19 2016-09-20 Hiroshima University Apparatus for evaluating vascular endothelial function
WO2013111349A1 (en) * 2012-01-25 2013-08-01 株式会社ユネクス Arterial endothelial function biometric device
JP2013150730A (en) * 2012-01-25 2013-08-08 Yunekusu:Kk Arterial endothelial function biometric device
WO2014054788A1 (en) 2012-10-04 2014-04-10 北海道公立大学法人札幌医科大学 Finger arteriolar dilatability testing method, finger arteriolar dilatability testing device, and finger arteriolar dilatability testing program
US10376161B2 (en) 2012-10-04 2019-08-13 Sapporo Medical University Finger arterial dilatability testing method, finger arterial dilatability testing device, and finger arterial dilatability testing program
WO2014111970A1 (en) * 2013-01-16 2014-07-24 テルモ株式会社 Blood pressure measuring device
JP6001683B2 (en) * 2013-01-16 2016-10-05 テルモ株式会社 Blood pressure measurement device
US9826909B2 (en) 2013-03-29 2017-11-28 Sapporo Medical University Neurogenic baroreflex sensitivity measurement device, neurogenic baroreflex sensitivity measurement program and neurogenic baroreflex sensitivity measurement method
WO2014157605A1 (en) * 2013-03-29 2014-10-02 北海道公立大学法人札幌医科大学 Neurogenic baroreflex sensitivity measurement device, neurogenic baroreflex sensitivity measurement program and neurogenic baroreflex sensitivity measurement method
JPWO2014157605A1 (en) * 2013-03-29 2017-02-16 北海道公立大学法人 札幌医科大学 Neural baroreflex sensitivity measuring apparatus, neural baroreflex sensitivity measuring program, and neural baroreflex sensitivity measuring method
JP2015136417A (en) * 2014-01-21 2015-07-30 日本光電工業株式会社 Vascular endothelial function-evaluating device
CN104042195A (en) * 2014-05-04 2014-09-17 上海中嘉衡泰医疗科技有限公司 Vascular endothelial function analysis system and method
JP2016112042A (en) * 2014-12-11 2016-06-23 セイコーエプソン株式会社 Bio-information obtaining device, bio-information obtaining method and electronic apparatus
WO2017179699A1 (en) * 2016-04-15 2017-10-19 オムロン株式会社 Biological information analysis device and system, and program
WO2017179696A1 (en) * 2016-04-15 2017-10-19 オムロン株式会社 Biological information analysis device and system, and program
JPWO2017179696A1 (en) * 2016-04-15 2019-02-21 オムロン株式会社 Biological information analyzer, system, and program
JPWO2017179699A1 (en) * 2016-04-15 2019-02-21 オムロン株式会社 Biological information analyzer, system, and program
US11246501B2 (en) 2016-04-15 2022-02-15 Omron Corporation Biological information analysis device, system, and program
US11617516B2 (en) 2016-04-15 2023-04-04 Omron Corporation Biological information analysis device, biological information analysis system, program, and biological information analysis method
WO2024053380A1 (en) * 2022-09-09 2024-03-14 株式会社村田製作所 Vascular endothelial function evaluation system, vascular endothelial function evaluation device, and vascular endothelial function evaluation method

Also Published As

Publication number Publication date
JP5504477B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5504477B2 (en) Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same
Nabeel et al. Bi-modal arterial compliance probe for calibration-free cuffless blood pressure estimation
KR101577343B1 (en) The Apparatus and Method for estimating blood pressure
WO2015049963A1 (en) Bio-information measurement device and method therefor
US20020062086A1 (en) Method and apparatus for assessing hemodynamic parameters within the circulatory system of a living subject
WO2018099425A1 (en) Pulse detection module and blood pressure measurement device comprising same
Zahedi et al. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation
US20140142434A1 (en) System and method of measurement of systolic blood pressure
EP2554111A1 (en) Pulse wave velocity measurement device, pulse wave velocity measurement method and pulse wave velocity measurement program
JP5039123B2 (en) Finger artery elasticity measurement program, finger artery elasticity measurement device, and finger artery elasticity measurement method
US11154208B2 (en) System and method of measurement of average blood pressure
JP2016112277A (en) Blood pressure measurement device, electronic apparatus and blood pressure measurement method
Islam et al. Development of a noninvasive continuous blood pressure measurement and monitoring system
Wang et al. The non-invasive and continuous estimation of cardiac output using a photoplethysmogram and electrocardiogram during incremental exercise
CN111956234A (en) Accurate blood oxygen saturation measuring method and device based on photoacoustic technology
KR101640498B1 (en) Blood pressure estimating apparatus and method by using variable characteristic ratio
JP3700048B2 (en) Electronic blood pressure monitor
EP2214551A1 (en) Measurement of oxygen saturation of blood haemoglobin
Guo et al. Combining local PWV and quantified arterial changes for calibration-free cuffless blood pressure estimation: A clinical validation
KR101484542B1 (en) inspection system for a pulsation, an anemic, a vein elasticity and oxygensaturation using a smart phone
WO2007017661A1 (en) A device for measuring blood pressure
JP6620333B2 (en) Vascular function testing device
US20080082011A1 (en) Computer Input Apparatus with Health Care Function and Health Care Method
Balestrieri et al. Calibration of automated non invasive blood pressure measurement devices
KR102405849B1 (en) Blood Pressure Measurement System Using Dual Photo Plethysmo Graph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5504477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350