JP2011187763A - Coil component and method of manufacturing the same - Google Patents

Coil component and method of manufacturing the same Download PDF

Info

Publication number
JP2011187763A
JP2011187763A JP2010052561A JP2010052561A JP2011187763A JP 2011187763 A JP2011187763 A JP 2011187763A JP 2010052561 A JP2010052561 A JP 2010052561A JP 2010052561 A JP2010052561 A JP 2010052561A JP 2011187763 A JP2011187763 A JP 2011187763A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
toroidal
core
wire ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010052561A
Other languages
Japanese (ja)
Inventor
Kazuyuki Ono
一之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010052561A priority Critical patent/JP2011187763A/en
Publication of JP2011187763A publication Critical patent/JP2011187763A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil component and a method of manufacturing the same, and to uniformize the intervals of winding at an outer circumferential part of a toroidal magnetic core. <P>SOLUTION: When the shape of a cross-section vertical to a circumference of the toroidal magnetic core is rectangular, a coil component can be obtained by inserting an air core coil through a gap of a magnetic gap part G of the toroidal magnetic core comprising a magnetic gap. Even if the air core coil is square-pyramid shape, by being inserted through the magnetic gap part G, it is gradually deformed into an annular coil, and hence, it is possible to uniformize the interval of windings even at the outer circumferential part of the toroidal magnetic core. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種交流機器における整流回路、雑音防止回路、共振回路等に装備される線輪部品及びその部品構成に関するものである。   The present invention relates to a wire ring component equipped in a rectifier circuit, a noise prevention circuit, a resonance circuit, and the like in various AC devices, and a component configuration thereof.

特許文献1に記載された従来技術には、磁気ギャップ部が、C字状のコア片の中心軸と直交する断面における貫通方向が、C字状コアの半径方向に対して傾斜しているC字状のコア片と、磁気ギャップ部内にコイル導線が通過可能な隙間を残してコア片を収容するケースとから構成されることで、巻線作業が従来よりも容易であり、自動化が可能となる線輪部品が開示されている。   In the prior art described in Patent Document 1, the magnetic gap portion has a C-direction in which the penetrating direction in a cross section perpendicular to the central axis of the C-shaped core piece is inclined with respect to the radial direction of the C-shaped core. It is made up of a letter-shaped core piece and a case that accommodates the core piece leaving a gap through which the coil conductor can pass in the magnetic gap part, so that winding work is easier than before and can be automated A wire ring component is disclosed.

特開2000−277337号公報JP 2000-277337 A

特許文献1に示される従来技術では、コイル銅線をコアの隙間からコアの中央孔へ通過させ、コイル銅線がコアの中央孔部に接する際にコイル銅線はコア中央孔に沿って大きく変形されることになる。一方、トロイダル磁芯への巻線は、磁芯の内周も外周も等間隔で巻かれることで巻線の長さが最小限に抑えられ、巻線の部材費および直流抵抗を最小限に抑えることができるが、従来技術では前記のようにコイル銅線が大きく変形されるため、特にトロイダル磁芯外周部での巻線間隔を均一にすることが困難であった。   In the prior art disclosed in Patent Document 1, when the coil copper wire is passed through the gap between the cores to the center hole of the core and the coil copper wire contacts the center hole of the core, the coil copper wire greatly increases along the core center hole. Will be transformed. On the other hand, the winding to the toroidal magnetic core is wound at equal intervals on the inner and outer circumferences of the magnetic core, thereby minimizing the length of the winding and minimizing the material cost and DC resistance of the winding. Although the coil copper wire is greatly deformed as described above in the prior art, it is difficult to make the winding interval uniform especially at the outer peripheral portion of the toroidal magnetic core.

本発明は、磁気ギャップを備えたトロイダル磁芯を用いた線輪部品であって、前記磁気ギャップは、前記トロイダル磁芯の円周の中心軸と垂直な前記トロイダル磁芯の断面においては、前記中心軸より引き出した直線に沿って形成されていて、さらに前記磁気ギャップの形成部を示す前記引き出した直線の方向は、前記中心軸に沿った前記トロイダル磁芯の高さに対して螺旋状に回転してゆく構造であることを特徴とする線輪部品とすることで上記課題の解決を可能とする。   The present invention is a wire ring component using a toroidal magnetic core having a magnetic gap, wherein the magnetic gap is in the cross section of the toroidal magnetic core perpendicular to the central axis of the circumference of the toroidal magnetic core. It is formed along a straight line drawn from the central axis, and the direction of the drawn straight line showing the magnetic gap forming portion is spiral with respect to the height of the toroidal magnetic core along the central axis. The above-mentioned problem can be solved by using a wire ring component characterized by a rotating structure.

上記のトロイダル磁芯の磁気ギャップの方向がトロイダル磁芯の高さに対して螺旋状に回転してゆく構造は、例えば、飽和磁束密度が高い0.23mm厚珪素鋼に前記中心軸より引き出した直線に沿って磁気ギャップを設け、磁気ギャップの方向がトロイダル磁芯の高さに対して螺旋状に回転してゆくよう0.23mm厚珪素鋼を積み重ねる構成とすることで実現できる。また、MnZnフェライトコアの金型をトロイダル磁芯の磁気ギャップの方向がトロイダル磁芯の高さに対して螺旋状に回転してゆく構造として、MnZnフェライトのトロイダル磁心を得ても良い。   The structure in which the direction of the magnetic gap of the toroidal magnetic core rotates spirally with respect to the height of the toroidal magnetic core is, for example, drawn from the central axis into 0.23 mm thick silicon steel having a high saturation magnetic flux density. This can be realized by providing a magnetic gap along a straight line and stacking 0.23 mm thick silicon steel so that the direction of the magnetic gap spirally rotates with respect to the height of the toroidal magnetic core. In addition, the MnZn ferrite core mold may have a toroidal magnetic core of MnZn ferrite having a structure in which the direction of the magnetic gap of the toroidal core rotates spirally with respect to the height of the toroidal core.

また本発明は、磁気ギャップを備えたトロイダル磁芯を用いた線輪部品であって、前記磁気ギャップは、前記トロイダル磁芯の円周の中心軸を含む平面を、一意に定めた前記トロイダル磁芯の半径方向を軸として傾けた傾斜平面に沿って形成されていることを特徴とする線輪部品とすることでも上記課題の解決を可能とする。   The present invention is also a wire ring part using a toroidal magnetic core having a magnetic gap, wherein the magnetic gap has a plane that includes a central axis of a circumference of the toroidal magnetic core, and uniquely defines the toroidal magnetic core. The above-mentioned problem can be solved even by using a wire ring component characterized by being formed along an inclined plane inclined with the radial direction of the core as an axis.

上記のトロイダル磁心の時期ギャップを傾けた傾斜平面に沿って設ける構成は、例えばFeSi粉等を圧縮成形した圧粉磁芯に切り込みを入れることで作成できる。   The structure provided along the inclined plane in which the time gap of the toroidal magnetic core is inclined can be created, for example, by cutting a dust core obtained by compression molding FeSi powder or the like.

また本発明は、前記トロイダル磁芯を、前記高さ方向に複数積み重ねるか、または半径方向に同心円状に積み重ねた複合トロイダル磁芯を用いることを特徴とする線輪部品とすることでも上記課題の解決を可能とする。   Further, the present invention also provides a wire ring component characterized by using a composite toroidal magnetic core in which a plurality of the toroidal magnetic cores are stacked in the height direction or concentrically stacked in the radial direction. Enable the solution.

本発明により、例えばトロイダル磁心の円周に垂直な断面での形状が長方形である場合は、磁気ギャップを備えたトロイダル磁芯図1(a)の磁気ギャップ部Gの隙間より空芯コイル図2を挿入することで線輪部品が得られる。   According to the present invention, for example, when the shape of the cross section perpendicular to the circumference of the toroidal magnetic core is a rectangle, the air core coil FIG. 2 from the gap of the magnetic gap portion G of the toroidal magnetic core FIG. By inserting the wire ring part can be obtained.

空芯コイルは図2のように角筒状でも、磁気ギャップ部Gより挿入されることで徐々に円環状のコイルへ変形されてゆくため、トロイダル磁芯の外周部においても巻線の間隔を均一とできる。さらに、角柱状の空芯コイルに、予め角柱を螺旋形に変形した形状で、ポリテトラフルオロエチレン等の潤滑性のある材料で表面を覆った冶具を挿入し、空芯コイルを角柱形状から螺旋形状に変形、すなわち直線状となっている巻き軸が螺旋状となるよう変形させておくことで、よりスムーズに磁気ギャップを備えたトロイダル磁芯に挿入することができるため望ましい。また巻線の間隔を保ちながらトロイダル磁芯に装着でき、挿入時の作業性も向上する。なお、トロイダル磁心の円周に垂直な断面での形状に合わせて空芯コイルは円柱状や三角柱状などに変更してもよい。   Even if the air-core coil is a rectangular tube shape as shown in FIG. 2, it is gradually deformed into an annular coil by being inserted from the magnetic gap portion G. Therefore, the winding interval is also reduced at the outer peripheral portion of the toroidal magnetic core. Can be uniform. Furthermore, a jig whose shape is obtained by deforming the prism into a spiral shape and covering the surface with a lubricious material such as polytetrafluoroethylene is inserted into the prismatic air core coil, and the air core coil is spiraled from the prism shape. It is desirable to deform the shape, that is, to deform the linear winding shaft into a spiral shape, so that it can be more smoothly inserted into a toroidal core having a magnetic gap. In addition, it can be mounted on the toroidal core while maintaining the spacing between the windings, and the workability during insertion is improved. Note that the air-core coil may be changed to a cylindrical shape, a triangular prism shape, or the like in accordance with the shape of the cross section perpendicular to the circumference of the toroidal magnetic core.

また本発明により、例えば磁気ギャップを備えたトロイダルを積み重ねて図1(a)のような複合トロイダル磁芯とし、巻線を装着後に相対的にトロイダル磁芯を円周方向に図1(b)のように回転させ、各々のトロイダル磁芯のギャップが連続しないようにした図3のような線輪部品が得られ、高いインダクタンス値を保ちながらも、優れた直流重畳特性を得ることができる。なお、相対的にトロイダル磁芯を円周方向に回転させなくとも、本発明による効果を享受できる。複合トロイダル磁芯としては、例えば高効率なMnZnフェライトによるトロイダル磁芯と飽和磁束密度が高い珪素鋼0.23mm積層トロイダル磁芯の組み合わせなどがある。   Further, according to the present invention, for example, the toroids having a magnetic gap are stacked to form a composite toroidal core as shown in FIG. 1A, and the toroidal core is relatively arranged in the circumferential direction after the winding is mounted. Thus, the wire ring component as shown in FIG. 3 in which the gaps between the toroidal cores are not continuous is obtained, and excellent DC superposition characteristics can be obtained while maintaining a high inductance value. Note that the effect of the present invention can be enjoyed without relatively rotating the toroidal core in the circumferential direction. Examples of the composite toroidal magnetic core include a combination of a toroidal magnetic core made of highly efficient MnZn ferrite and a silicon steel 0.23 mm laminated toroidal magnetic core having a high saturation magnetic flux density.

トロイダル磁芯に絶縁性がない場合は、トロイダル磁芯を樹脂製のケース図4に収容するか、またはトロイダル磁芯の表面に絶縁塗料を塗布することで絶縁性を確保する。また、巻線の絶縁性が十分得られるような場合は、絶縁性のないトロイダル磁心へ直接巻線を設けても良い。また、予め空芯コイルを円環状、特に螺旋状に変形させておけば、本発明により空芯コイルの急激な変形がなくなったことで、空芯コイルとトロイダル磁心との摩擦が従来よりも少ないため、巻線への損傷も少なくなり、より確実に巻線の絶縁性を確保することができる。   When the toroidal magnetic core is not insulative, the toroidal magnetic core is accommodated in a resin case shown in FIG. 4, or the insulating property is secured by applying an insulating paint to the surface of the toroidal magnetic core. When sufficient insulation of the winding is obtained, the winding may be provided directly on a toroidal magnetic core having no insulation. In addition, if the air core coil is deformed in an annular shape, in particular, a spiral shape in advance, the rapid deformation of the air core coil is eliminated by the present invention, so that the friction between the air core coil and the toroidal magnetic core is less than the conventional one. Therefore, the damage to the winding is reduced, and the insulation of the winding can be ensured more reliably.

また磁気ギャップの間隔をトロイダル磁心の高さに対して変化させると、トロイダル磁心の磁気飽和が分散されるため望ましい。特に、トロイダル磁心の高さ方向の上端や下端付近の磁気ギャップの間隔を広げると、より空芯コイルの挿入がスムーズになるため望ましい。   It is also desirable to change the magnetic gap interval with respect to the height of the toroidal core because the magnetic saturation of the toroidal core is dispersed. In particular, it is desirable to increase the gap between the magnetic gaps near the upper end and the lower end in the height direction of the toroidal core because the air core coil can be inserted more smoothly.

空芯コイルの巻線は、トロイダル磁心に挿入する必要があるため、空芯コイルの形状を保持できる程度の剛性が必要となるため、用いる銅線にも一定の剛性が求められる。一方、高インダクタンス用途において細い導体線を空芯コイルとして使用する場合、また高周波用途において複数の細い導体線を束ねたものを空芯コイルとして使用する場合には空芯コイルの形状を保持することが困難となるが、空芯コイルのうち、トロイダル磁心の内周部に当たる箇所で、空芯コイルの外側へ粘着テープを貼り付けることで形態を保持する上での必要な剛性を与えれば、本発明の効果を享受できる。   Since the winding of the air-core coil needs to be inserted into the toroidal magnetic core, it needs to be rigid enough to maintain the shape of the air-core coil. Therefore, the copper wire used needs to have a certain rigidity. On the other hand, when using a thin conductor wire as an air-core coil in high-inductance applications, or when using a bundle of multiple thin conductor wires as an air-core coil in high-frequency applications, maintain the shape of the air-core coil. However, if the rigidity required to maintain the form is given by sticking the adhesive tape to the outside of the air core coil at the location where it hits the inner periphery of the toroidal magnetic core, The effects of the invention can be enjoyed.

また、高いインダクタンス値が必要な場合は、トロイダル磁心の磁気ギャップへ軟磁性体を挿入しても良い。挿入する軟磁性体としては、フェライトやFe−Si−Al系磁性材料等の軟磁性粉とエポキシ樹脂やシリコーン等の結合材を混合した複合磁性体を用いても良く、フェライト板を磁気ギャップに接着剤を塗布して磁気ギャップに挿入後に接着しても良い。また、トロイダル磁心と同じ磁性材料に接着剤を塗布し磁気ギャップに挿入後接着しても良い、この場合は接着部の2箇所が磁気ギャップとなる。   When a high inductance value is required, a soft magnetic material may be inserted into the magnetic gap of the toroidal magnetic core. As the soft magnetic material to be inserted, a composite magnetic material in which soft magnetic powder such as ferrite or Fe-Si-Al magnetic material and a binder such as epoxy resin or silicone are mixed may be used, and the ferrite plate is used as a magnetic gap. An adhesive may be applied and bonded after insertion into the magnetic gap. Alternatively, an adhesive may be applied to the same magnetic material as that of the toroidal magnetic core and bonded after being inserted into the magnetic gap. In this case, two portions of the bonded portion become the magnetic gap.

また、一定の直流電流に交流電流が重畳された電流が通電される場合など、通電電流の極性が逆転しない用途では、トロイダル磁心の磁気ギャップへ磁石を挿入することで、直流重畳特性を一層改善することができる。挿入する磁石としては、SmCo等の磁石粉とエポキシ樹脂やシリコーン等の結合材を混合した複合磁性体を用いても良く、板面と垂直な方向へ着磁した磁石板に接着剤を塗布して磁気ギャップに挿入後接着しても良い。この場合、線輪部品への極性の接続間違いを防ぐため、線輪部品への極性表示や、逆極性接続時の保護回路を設けてもよい。   Also, in applications where the polarity of the current does not reverse, such as when a current in which an AC current is superimposed on a constant DC current is applied, the DC superposition characteristics are further improved by inserting a magnet into the magnetic gap of the toroidal core. can do. As the magnet to be inserted, a composite magnetic material in which magnet powder such as SmCo and a binder such as epoxy resin or silicone are mixed may be used. An adhesive is applied to a magnet plate magnetized in a direction perpendicular to the plate surface. Then, it may be bonded after being inserted into the magnetic gap. In this case, in order to prevent erroneous connection of the polarity to the wire ring component, a polarity display on the wire ring component and a protection circuit at the time of reverse polarity connection may be provided.

本発明によって、従来よりも巻線への損傷が少なく、かつ作業性よく等間隔に巻線を装着でき、直流重畳特性に優れた線輪部品を提供することができる。また、従来よりも空芯コイル挿入時の摩擦が少ないことから、トロイダル磁芯と空芯コイル間を近接させることが可能となるため、線間容量と直流抵抗の削減も可能となるほか、巻線もより確実に固定され、特性の安定化にも貢献する。   According to the present invention, it is possible to provide a wire ring component that has less damage to the winding than in the prior art, can be mounted at equal intervals with good workability, and has excellent direct current superposition characteristics. In addition, since there is less friction when inserting an air-core coil than in the past, it is possible to make the toroidal magnetic core and the air-core coil closer to each other. The wire is also fixed more securely, contributing to stabilization of characteristics.

本発明の実施形態における磁芯の斜視図である。図1(a)は各々の磁芯の磁気ギャップが連続している構成を示す図であり、図1(b)は各々の磁芯を相対的に回転させて磁気ギャップを不連続とした構成を示す図である。It is a perspective view of the magnetic core in the embodiment of the present invention. FIG. 1A is a diagram showing a configuration in which the magnetic gaps of the magnetic cores are continuous, and FIG. 1B is a configuration in which the magnetic gaps are discontinuous by relatively rotating the magnetic cores. FIG. 本発明の実施形態における空芯コイルの斜視図である。It is a perspective view of the air core coil in the embodiment of the present invention. 本発明の実施形態における線輪部品の斜視図である。It is a perspective view of a wire ring component in an embodiment of the present invention. 本発明の実施形態における樹脂ケースの斜視図である。図4(a)は磁芯1を収納する樹脂ケースを示す図であり、図4(b)は磁芯2を収納する樹脂ケースを示す図である。It is a perspective view of the resin case in the embodiment of the present invention. FIG. 4A is a diagram showing a resin case that houses the magnetic core 1, and FIG. 4B is a diagram showing a resin case that houses the magnetic core 2. 本発明の実施形態における磁芯へ空芯コイルを挿入する方向を示す図である。X、Y軸は磁芯の半径方向を含む平面内にあり、Z軸は磁芯の高さ方向である。図5(a)は磁芯をZ軸方向から見たときの空芯コイル挿入方向を示す図であり、図5(b)は磁芯をX軸方向から見たときの空芯コイル挿入方向を示す図である。It is a figure which shows the direction which inserts an air core coil in the magnetic core in embodiment of this invention. The X and Y axes are in a plane including the radial direction of the magnetic core, and the Z axis is the height direction of the magnetic core. FIG. 5A is a diagram showing the air core coil insertion direction when the magnetic core is viewed from the Z-axis direction, and FIG. 5B is the air core coil insertion direction when the magnetic core is viewed from the X-axis direction. FIG. 本発明の実施形態における磁芯へ空芯コイルを挿入する工程の説明図である。図6(a)は磁芯の磁気ギャップへ空芯コイルを挿入したことを示す図であり、図6(b)はさらに磁芯に挿入した空芯コイルを磁芯の円周に沿って挿入したことを示す図である。It is explanatory drawing of the process of inserting an air core coil in the magnetic core in embodiment of this invention. FIG. 6A is a diagram showing that an air-core coil is inserted into the magnetic gap of the magnetic core, and FIG. 6B is a diagram showing that the air-core coil inserted into the magnetic core is further inserted along the circumference of the magnetic core. It is a figure which shows having performed. 本発明の実施形態における直流重畳特性を示す図である。It is a figure which shows the direct current | flow superimposition characteristic in embodiment of this invention. 従来例と本発明の実施形態における直流重畳特性を示す図である。It is a figure which shows the direct current | flow superimposition characteristic in a prior art example and embodiment of this invention. 磁芯の材質と鉄損の関係を示す図である。It is a figure which shows the relationship between the material of a magnetic core, and an iron loss.

以下、本発明の実施の形態を図面に沿って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明における線輪部品の一例として、磁芯を収納した樹脂ケース11、12に巻線3が設けられた線輪部品を図3に示す。樹脂ケース11、12には、各々図1に示すトロイダル形状の磁心1、2が収納され、樹脂ケース11とトロイダル磁心1、樹脂ケース12と磁心2とは磁心の磁気ギャップGと樹脂ケースの隙間Aの位置が一致するよう互いに接着固定されている。なお、磁気ギャップGの間隔を樹脂ケースの隙間Aより広めにすることで磁気ギャップGの露出を防ぎ、磁心と巻線の間の絶縁性を確保している。   As an example of the wire ring component in the present invention, FIG. 3 shows a wire ring component in which a winding 3 is provided on resin cases 11 and 12 containing a magnetic core. The toroidal magnetic cores 1 and 2 shown in FIG. 1 are accommodated in the resin cases 11 and 12, respectively. The resin case 11 and the toroidal magnetic core 1, and the resin case 12 and the magnetic core 2 are the magnetic gap G between the magnetic core and the gap between the resin cases. They are fixed to each other so that the positions of A coincide with each other. Note that the gap between the magnetic gaps G is wider than the gap A between the resin cases, thereby preventing the magnetic gap G from being exposed and ensuring the insulation between the magnetic core and the winding.

また、巻線3の両端部は絶縁被覆を除去し、半田めっきが施され、端子となっている。図3の線輪部品を作成するには、図1(a)のように磁芯間の磁気ギャップが互いに連続するよう配置し、角柱状の空芯コイル図2を磁芯の高さ方向に沿った磁気ギャップ面内方向(図5中矢印方向)より磁気ギャップに挿入(図6)し、さらに空芯コイルを磁芯の円周に沿って1周するまで挿入する。次に磁芯の円周の中心を軸として磁芯1を固定し、磁芯2を回転させることで磁芯1と磁芯2を相対的に回転させ、図1(b)のように磁芯間の磁気ギャップが連続しないようずらす構成とした後、接着剤を磁芯1と磁芯2の間に塗布して接着することなどにより固定する。   Further, both ends of the winding 3 are removed from the insulating coating, and are plated with solder to form terminals. To create the wire ring part of FIG. 3, the magnetic gaps between the magnetic cores are arranged so as to be continuous with each other as shown in FIG. The magnetic gap is inserted into the magnetic gap from the in-plane direction of the magnetic gap (arrow direction in FIG. 5) (FIG. 6), and the air-core coil is further inserted along the circumference of the magnetic core until it makes one turn. Next, the magnetic core 1 is fixed with the center of the circumference of the magnetic core as an axis, and the magnetic core 2 is rotated to relatively rotate the magnetic core 1 and the magnetic core 2, so that the magnetic core as shown in FIG. After making it the structure which shifts so that the magnetic gap between cores may not continue, it fixes by apply | coating an adhesive agent between the magnetic core 1 and the magnetic core 2, and adhere | attaching.

なお、磁心1と磁心2の間に図示しない仕切板を設けてもよい。この場合、仕切板の両面面に磁心1、2が嵌る凹みを設けておくと、磁心1、2を相対的に回転させる場合に磁心1と磁心2の円周の中心軸がずれることがないため、望ましい。また、仕切板の材質を熱可塑性の樹脂とするか、仕切板上に磁芯の半径方向に沿った接着剤注入用の溝を設けることで相対的に回転させた後の固定を作業性良く行えるため、望ましい。   A partition plate (not shown) may be provided between the magnetic core 1 and the magnetic core 2. In this case, if the recesses in which the magnetic cores 1 and 2 are fitted are provided on both surfaces of the partition plate, the central axes of the circumferences of the magnetic core 1 and the magnetic core 2 do not shift when the magnetic cores 1 and 2 are rotated relatively. Therefore, it is desirable. In addition, the material of the partition plate is made of thermoplastic resin, or the fixing after rotating relatively by providing a groove for injecting the adhesive along the radial direction of the magnetic core on the partition plate is easy to work. This is desirable because it can be done.

また、樹脂ケース11、12、仕切板は軟磁性粉末を結合材に分散した複合磁性体によって構成してもよく、この場合はインダクタンス値と直流重畳特性がより改善される。   In addition, the resin cases 11 and 12 and the partition plate may be formed of a composite magnetic material in which soft magnetic powder is dispersed in a binder. In this case, the inductance value and the DC superposition characteristics are further improved.

図2の空芯コイルは、ソレノイドコイルのほか、LF/MF 海事及び航空送信機用の線輪として用いられてきたバンク巻きや、ピラミッド巻き(Niels Jorgensen、OZ8NJ による)を行った巻線などを用いることもできる。なお、空芯コイルを確実に形態保持するためには、2から3層巻きとするのが望ましい。   In addition to the solenoid coil, the air-core coil shown in FIG. 2 includes a bank winding that has been used as a wire ring for LF / MF maritime and aeronautical transmitters, and a winding that performs pyramid winding (by Niels Jorgensen, OZ8NJ) It can also be used. In order to securely maintain the shape of the air-core coil, it is desirable to use two to three layers.

また、磁芯と樹脂ケース、磁芯1と磁芯2または磁芯と仕切板には、相互に対応する凹凸を備えたスナップフィット構造を備えることで相互の位置固定の精度と作業性が向上するため望ましい。   In addition, the magnetic core and the resin case, the magnetic core 1 and the magnetic core 2, or the magnetic core and the partition plate are provided with a snap-fit structure with corresponding irregularities, thereby improving the accuracy and workability of mutual positioning. This is desirable.

(実施例)
図7は実施例1と実施例2の直流重畳特性の比較結果である。実施例1、2共に巻線の巻数は12ターン、トロイダル形状磁芯の材質はFe−Si−Al系磁性材料圧粉磁芯、内径19mm、外径38mmで、実施例1は高さ14mmの磁芯一つのみで磁気ギャップは2mm、実施例2は高さ7mmで磁気ギャップ4mmの磁芯を2段重ね、磁気ギャップが連続しないよう、磁芯は相対的に回転して固定している。磁芯間の磁気ギャップの磁芯円周方向のずれは、2段の磁気ギャップが連続した位置から4mmである。図7より実施例1よりも実施例2の直流重畳特性が優れていることが確認された。
(Example)
FIG. 7 shows a comparison result of direct current superimposition characteristics between the first embodiment and the second embodiment. In both Examples 1 and 2, the number of windings is 12 turns, and the material of the toroidal magnetic core is a Fe-Si-Al-based magnetic material dust core, an inner diameter of 19 mm, an outer diameter of 38 mm, and Example 1 has a height of 14 mm. The magnetic gap is 2 mm with only one magnetic core, and in Example 2, the magnetic core with a height of 7 mm and a magnetic gap of 4 mm is stacked in two stages, and the magnetic core is relatively rotated and fixed so that the magnetic gap does not continue. . The deviation of the magnetic gap between the magnetic cores in the circumferential direction of the magnetic core is 4 mm from the position where the two-stage magnetic gap is continuous. From FIG. 7, it was confirmed that the direct current superimposition characteristics of Example 2 were superior to Example 1.

図8は従来例および実施例3〜7の直流重畳特性の比較結果である。トロイダル形状磁芯の材質は透磁率約2100のMnZnフェライトか、透磁率約15000、1枚あたりの厚さ0.23mmの積層珪素鋼板を使用している。また、いずれも巻線の巻数は12ターンで、磁芯の内径19mm、外径38mm、磁気ギャップは4mmである。   FIG. 8 is a comparison result of the DC superimposition characteristics of the conventional example and Examples 3-7. The toroidal magnetic core is made of MnZn ferrite having a magnetic permeability of about 2100 or a laminated silicon steel sheet having a magnetic permeability of about 15000 and a thickness of 0.23 mm per sheet. In any case, the number of windings is 12 turns, the inner diameter of the magnetic core is 19 mm, the outer diameter is 38 mm, and the magnetic gap is 4 mm.

従来例は材質がMnZnフェライト、高さ14mmで高さ方向に平行で半径方向にも平行な磁気ギャップを持つ磁芯であり、実施例3は高さ7mmのMnZnフェライト磁芯を2つ重ねた複合磁芯で、磁気ギャップは磁芯の半径方向に平行で磁芯の高さに伴って磁気ギャップの方向が螺旋状に回転してゆく螺旋状構成となっている。   The conventional example is a MnZn ferrite with a magnetic core having a magnetic gap of 14 mm in height and parallel to the height direction and parallel to the radial direction. In Example 3, two MnZn ferrite cores having a height of 7 mm are stacked. In the composite magnetic core, the magnetic gap is parallel to the radial direction of the magnetic core and has a spiral configuration in which the direction of the magnetic gap rotates spirally with the height of the magnetic core.

実施例4は、実施例3の2つの磁芯を磁気ギャップが連続した配置から円周方向で4mmずらすよう相対的に回転し、磁気ギャップに固有保磁力約800kA/mのランタノイドマグネットを挿入している。   In Example 4, the two magnetic cores of Example 3 are relatively rotated so as to be shifted by 4 mm in the circumferential direction from the arrangement in which the magnetic gap is continuous, and a lanthanoid magnet having an intrinsic coercive force of about 800 kA / m is inserted into the magnetic gap. ing.

実施例5は、高さ7mmのMnZnフェライト磁芯と、高さ7mmの積層珪素鋼板磁芯を重ねた複合磁芯で、磁気ギャップが連続した配置から円周方向で4mmずらすよう相対的に回転している。   Example 5 is a composite magnetic core in which a MnZn ferrite magnetic core having a height of 7 mm and a laminated silicon steel sheet magnetic core having a height of 7 mm are overlapped, and the relative rotation is performed so that the magnetic gap is shifted by 4 mm in the circumferential direction from the continuous arrangement. is doing.

実施例6は、実施例3の2つの磁芯を磁気ギャップが連続した配置から円周方向で4mmずらすよう相対的に回転し、磁気ギャップに鉄系の軟磁性粉と結合剤を混合した複合磁性体で比透磁率が6となるよう配合比を調整したものを挿入している。   Example 6 is a composite in which the two magnetic cores of Example 3 are relatively rotated so as to be shifted by 4 mm in the circumferential direction from the arrangement in which the magnetic gaps are continuous, and a magnetic soft gap and a binder are mixed in the magnetic gap. A magnetic material having a blending ratio adjusted so that the relative permeability is 6 is inserted.

実施例7は、実施例3の2つの磁芯を磁気ギャップが連続した配置から円周方向で4mmずらすよう相対的に回転し、磁気ギャップに鉄系の軟磁性粉と結合剤を混合した複合磁性体で比透磁率が60となるよう配合比を調整したものを挿入している。   Example 7 is a composite in which the two magnetic cores of Example 3 are rotated relative to each other so as to be shifted by 4 mm in the circumferential direction from the arrangement in which the magnetic gap is continuous, and iron-based soft magnetic powder and a binder are mixed in the magnetic gap. A magnetic material having a blending ratio adjusted to a relative permeability of 60 is inserted.

図8より、単一の材質の磁芯で、磁気ギャップが連続している従来例と実施例3は直流重畳特性の上では大きな差は認められないが、実施例4から7のように、複数の磁芯を相対的に回転させて磁気ギャップを不連続とした構成や、磁気ギャップに軟磁性体や磁石を挿入する構成とすることで直流重畳特性をさらに改善することも、インダクタンス値を調整することも可能であることが確認された。   From FIG. 8, there is no significant difference in DC superposition characteristics between the conventional example in which the magnetic gap is continuous with a single material magnetic core and Example 3, but as in Examples 4 to 7, It is possible to further improve the DC superposition characteristics by adopting a configuration in which the magnetic gap is discontinuous by relatively rotating a plurality of magnetic cores, or a configuration in which a soft magnetic material or a magnet is inserted into the magnetic gap. It was confirmed that adjustment is possible.

また、図9の磁芯の材質と鉄損の関係より、飽和磁束密度の高い珪素鋼板は鉄損が大きく、比較的飽和磁束密度の少ないMnZnフェライトや比較的高価なアモルファスは鉄損が小さいことから、例えば珪素鋼板とMnZnフェライトを複合した磁芯を用いることで少なくとも振幅の小さい通電電流に対しては鉄損を改善することができ、振幅の大きい通電電流に対しても磁気飽和しない線輪部品を得ることができる。   In addition, from the relationship between the core material and iron loss in FIG. 9, the silicon steel sheet having a high saturation magnetic flux density has a large iron loss, and the MnZn ferrite having a relatively low saturation magnetic flux density and the relatively expensive amorphous material have a small iron loss. For example, by using a magnetic core made of a composite of a silicon steel plate and MnZn ferrite, the iron loss can be improved at least for an energizing current with a small amplitude, and the wire ring that does not become magnetically saturated with an energizing current with a large amplitude. Parts can be obtained.

本発明の各部構成は上記実施の形態に限らず、種々の変形が可能である。例えば、磁芯と導線の間を絶縁する樹脂ケースに代えて、エポキシ系若しくはナイロン系の塗料(ワニス)を磁芯の表面に塗布して絶縁層を形成することも可能である。   The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made. For example, instead of the resin case that insulates between the magnetic core and the conductive wire, an insulating layer can be formed by applying an epoxy-based or nylon-based paint (varnish) to the surface of the magnetic core.

1、2 磁芯
11、12 樹脂ケース
3 巻線
1, 2 Magnetic core 11, 12 Resin case 3 Winding

Claims (7)

磁気ギャップを備えたトロイダル磁芯を用いた線輪部品であって、前記磁気ギャップは、前記トロイダル磁芯の円周の中心軸と垂直な前記トロイダル磁芯の断面においては、前記中心軸より引き出した直線に沿って形成されていて、さらに前記磁気ギャップの形成部を示す前記引き出した直線の方向は、前記中心軸に沿った前記トロイダル磁芯の高さに対して螺旋状に回転してゆく構造であることを特徴とする線輪部品。   A wire ring component using a toroidal magnetic core having a magnetic gap, wherein the magnetic gap is drawn from the central axis in a cross section of the toroidal magnetic core perpendicular to the central axis of the circumference of the toroidal magnetic core. Further, the direction of the drawn straight line indicating the magnetic gap forming portion rotates spirally with respect to the height of the toroidal magnetic core along the central axis. Wire ring parts characterized by a structure. 磁気ギャップを備えたトロイダル磁芯を用いた線輪部品であって、前記磁気ギャップは、前記トロイダル磁芯の円周の中心軸を含む平面を、一意に定めた前記トロイダル磁芯の半径方向を軸として傾けた傾斜平面に沿って形成されていることを特徴とする線輪部品。   A wire ring component using a toroidal magnetic core having a magnetic gap, wherein the magnetic gap has a radial direction of the toroidal magnetic core that uniquely defines a plane including a central axis of a circumference of the toroidal magnetic core. A wire ring component characterized by being formed along an inclined plane inclined as an axis. 請求項1または2に記載の線輪部品における前記トロイダル磁芯を、前記高さ方向に複数積み重ねるか、または半径方向に同心円状に積み重ねた複合トロイダル磁芯を用いることを特徴とする線輪部品。   A wire ring component using a composite toroidal magnetic core in which a plurality of the toroidal magnetic cores in the wire ring component according to claim 1 or 2 are stacked in the height direction or concentrically stacked in the radial direction. . 請求項3記載の線輪部品であって、前記トロイダル磁芯における前記磁気ギャップが、隣接する別のトロイダル磁芯の磁気ギャップと隣接しないことを特徴とする線輪部品。   The wire ring component according to claim 3, wherein the magnetic gap in the toroidal magnetic core is not adjacent to a magnetic gap of another adjacent toroidal magnetic core. 請求項3または4のいずれかに記載の線輪部品であって、複数の前記トロイダル磁芯は互いに透磁率、飽和磁化 、鉄損のいずれか一つ以上の磁気特性が異なることを特徴とする線輪部品。   5. The wire ring component according to claim 3, wherein the plurality of toroidal cores have different magnetic properties of at least one of magnetic permeability, saturation magnetization, and iron loss. Wire ring parts. 請求項1から4のいずれかに記載の線輪部品であって、前記磁気ギャップは、空隙か、非磁性体か、前記トロイダル磁芯と異なる透磁率を持つ軟磁性体か、または磁石よりなることを特徴とする線輪部品。   5. The wire ring component according to claim 1, wherein the magnetic gap is a gap, a nonmagnetic material, a soft magnetic material having a magnetic permeability different from that of the toroidal magnetic core, or a magnet. A wire ring component characterized by that. 請求項3から5のいずれかに記載の線輪部品は、前記複合トロイダル磁芯に巻線を設けた後、前記複数のトロイダル磁芯を、前記中心軸より互いに相対的に回転させることを特徴とする線輪部品の製造方法。   The wire ring component according to any one of claims 3 to 5, wherein after the winding is provided on the composite toroidal magnetic core, the plurality of toroidal magnetic cores are rotated relative to each other with respect to the central axis. A method for manufacturing a wire ring part.
JP2010052561A 2010-03-10 2010-03-10 Coil component and method of manufacturing the same Pending JP2011187763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052561A JP2011187763A (en) 2010-03-10 2010-03-10 Coil component and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052561A JP2011187763A (en) 2010-03-10 2010-03-10 Coil component and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011187763A true JP2011187763A (en) 2011-09-22

Family

ID=44793679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052561A Pending JP2011187763A (en) 2010-03-10 2010-03-10 Coil component and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011187763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215962A (en) * 2018-09-28 2019-01-15 威海东兴电子有限公司 Separable ring shape transformer
JP2019102510A (en) * 2017-11-29 2019-06-24 三菱電機株式会社 Current transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102510A (en) * 2017-11-29 2019-06-24 三菱電機株式会社 Current transformer
CN109215962A (en) * 2018-09-28 2019-01-15 威海东兴电子有限公司 Separable ring shape transformer

Similar Documents

Publication Publication Date Title
US9558879B2 (en) Teardrop-shaped magnetic core and coil device using same
JP2000277337A (en) Coil device and its manufacture
US20150244233A1 (en) Stator of rotating electric machine
JP2004103624A (en) Transformer and its manufacturing method
US20190006078A1 (en) Magnetic element
JP6631722B2 (en) Inductor
JP5399317B2 (en) Reactor
JP2011187763A (en) Coil component and method of manufacturing the same
JP6158386B1 (en) Coil parts
JP5698715B2 (en) Axial gap type brushless motor
CN107887106B (en) Coil component
JP2001068364A (en) Toroidal coil and its manufacturing method
JP6539024B2 (en) Coil and coil component
JP2011135091A (en) Magnetic core, and coil component
JP2001052945A (en) Closed magnetic path inductor and manufacture thereof
CN101779257B (en) Composite magnetic device
JP6425073B2 (en) Inductor
US11682936B2 (en) Motor
JP6039538B2 (en) Gapless magnetic core, coil device using the same, and method of manufacturing the coil device
JP5405368B2 (en) Wire ring parts
JP2014057462A (en) Stator of rotary electric machine
JP2011119546A (en) Magnetization device
WO2006070357A2 (en) Inductive electro-communication component core from ferro-magnetic wire
JP2008147342A (en) Magnetic element
JP2006032663A (en) Inductor and its manufacturing method