JP2011185707A - Multipoint measurement method and survey apparatus - Google Patents

Multipoint measurement method and survey apparatus Download PDF

Info

Publication number
JP2011185707A
JP2011185707A JP2010050497A JP2010050497A JP2011185707A JP 2011185707 A JP2011185707 A JP 2011185707A JP 2010050497 A JP2010050497 A JP 2010050497A JP 2010050497 A JP2010050497 A JP 2010050497A JP 2011185707 A JP2011185707 A JP 2011185707A
Authority
JP
Japan
Prior art keywords
measurement
light emission
light
unit
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010050497A
Other languages
Japanese (ja)
Other versions
JP5654248B2 (en
Inventor
Kaoru Kumagai
薫 熊谷
Takaaki Saito
貴昭 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2010050497A priority Critical patent/JP5654248B2/en
Publication of JP2011185707A publication Critical patent/JP2011185707A/en
Application granted granted Critical
Publication of JP5654248B2 publication Critical patent/JP5654248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multipoint measurement method and a survey apparatus for reducing a measurement time or a power consumption without increasing a burden of a pulse laser diode. <P>SOLUTION: The survey apparatus includes: a light emitting part for emitting a pulse range-find light; a ranging part 17 for irradiating a to-be-measured object with the pulse range-find light, receiving a reflection light from the to-be-measured object, and implementing ranging; a light emission driving part 18 for driving the light emitting part; driving parts 13, 15 for integrally rotating and driving imaging parts 9, 12 and the range-find part; angle measuring parts 14, 16 for detecting rotation angles of the imaging parts and the range-find part; and a control device 21 for controlling an image capture by the imaging parts, a light emission in the light emission driving part, and the rotation and drive in the driving part. If a plurality of measurement points are set and the control device sequentially implements the measurements at a plurality of the measurement points, a movement time from one measurement point to next measurement point is calculated based on an image angle within the image and a rotation speed by the driving parts. The light emission driving part is controlled to deactivate the emission of the pulse range-find light during the movement time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レーザ光線を用いて光波距離測定を行う多点測定方法及び測量装置、特にパルスレーザ光線を用いて距離測定を行う多点測定方法及び測量装置に関するものである。   The present invention relates to a multipoint measurement method and surveying apparatus that perform lightwave distance measurement using a laser beam, and more particularly to a multipoint measurement method and surveying apparatus that perform distance measurement using a pulsed laser beam.

光波距離測定を行う場合、測距光として連続レーザ光とパルスレーザ光線とを用いる場合がある。パルスレーザ光線による光波距離測定では、1パルス毎に測距が行われ、多点測定を行う場合は、パルスレーザ光線による測距が行われる。   When performing optical distance measurement, continuous laser light and pulsed laser light may be used as distance measurement light. In light wave distance measurement using a pulse laser beam, distance measurement is performed for each pulse. When multipoint measurement is performed, distance measurement is performed using a pulse laser beam.

近年では、物の形状、例えばプラント、遺跡の形状等を測定する為、ノンプリズム方式による多点測定が行われ、数十万箇所から数百万箇所に及ぶ多点での測定が実行されている。   In recent years, in order to measure the shape of an object, such as the shape of a plant or ruins, multi-point measurement using a non-prism method has been performed, and measurement at multiple points ranging from hundreds of thousands to millions of points has been performed. Yes.

パルスレーザ光線によるノンプリズム方式での多点測定では、測定対象物迄の距離が長かった場合、或は測定対象物が黒っぽい色等の反射率が低い場合等で、充分な反射光が得られない場合、即ち反射光の光量が微小な場合は、同一測定点に所要数のパルスレーザ光線を照射し、所要数の反射光を受光し、受光した信号をデータ化し、取得データを足し合わせ、粗測定と精密測定の2つのモードを用いて距離測定を行う積算方式の測距方法がある。粗測定とは、対象物迄のおおまかな距離や反射光を捉える測定方法のことをいう。精密測定とは、粗測定より狭い距離範囲に於いて精度を追求した測定方法のことをいい、距離の算出は精密測定で行う。   In multi-point measurement by the non-prism method using a pulsed laser beam, sufficient reflected light can be obtained when the distance to the measurement object is long or when the measurement object has a low reflectivity such as a dark color. If not, that is, if the amount of reflected light is very small, irradiate the same number of pulsed laser beams to the same measurement point, receive the required number of reflected light, convert the received signal into data, add the acquired data, There is an integration-type distance measuring method that performs distance measurement using two modes of rough measurement and precision measurement. Coarse measurement refers to a measurement method that captures an approximate distance to an object and reflected light. Precision measurement is a measurement method that pursues accuracy in a narrower distance range than rough measurement, and the distance is calculated by precision measurement.

積算方式の測距方法について、図7〜図10により略述する。   The integrating distance measuring method will be briefly described with reference to FIGS.

図7(A)に示される様に、測距光をパルス発光し、測定対象物からの反射パルス光を受光し(図7(B)参照)、受光回路は反射パルス光を受光することで図7(C)に見られる様に、減衰振動波形(減衰波)を出力する。減衰波とは、一定或は略一定の周期で振幅が徐々に減衰する振動波形のことをいう。減衰波は、同調回路を備えたアンプに反射パルス信号を通過させることで得ることができる。この減衰波が最初に0レベルを横切った点Pを受光時間として検出する。減衰波の周期は、減衰波形の振幅に限らず一定であるので、波形の振幅に依存する誤差をなくすことができる。   As shown in FIG. 7A, the distance measuring light is pulsed, the reflected pulse light from the measurement object is received (see FIG. 7B), and the light receiving circuit receives the reflected pulse light. As seen in FIG. 7C, a damped oscillation waveform (damped wave) is output. A damped wave is a vibration waveform whose amplitude gradually attenuates at a constant or substantially constant period. The attenuation wave can be obtained by passing the reflected pulse signal through an amplifier including a tuning circuit. A point P at which the attenuation wave first crosses the 0 level is detected as a light receiving time. Since the period of the attenuation wave is not limited to the amplitude of the attenuation waveform, an error depending on the amplitude of the waveform can be eliminated.

図8、図9は図7で示した減衰波に基づき積算する為のデータの取得について示すものである。   8 and 9 show acquisition of data for integration based on the attenuation wave shown in FIG.

図8(B)は第1の反射パルス光で得られる第1の減衰波を示しており、第1の減衰波についてサンプリングクロックに同期して第1データ群(図8(C)中、白丸のプロットを示す)を取得する。   FIG. 8B shows a first attenuation wave obtained by the first reflected pulsed light. The first attenuation wave is synchronized with the sampling clock and the first data group (in FIG. 8C, white circles). (Shows the plot).

図9(B)は第2の反射パルス光で得られる第2の減衰波を示しており、第2の減衰波について同様に第2データ群(図9(C)中、白丸のプロットを示す)を取得する。   FIG. 9B shows the second attenuation wave obtained by the second reflected pulse light, and similarly, the second attenuation wave shows a plot of white circles in the second data group (FIG. 9C). ) To get.

第1の反射パルス光及び第2の反射パルス光の光量が小さい場合は、減衰波の振幅が小さく波形が明確でない。尚、図8(B)、図9(B)では分り易くする為に、波形を明確に示している。   When the light amounts of the first reflected pulse light and the second reflected pulse light are small, the amplitude of the attenuation wave is small and the waveform is not clear. In FIGS. 8B and 9B, the waveforms are clearly shown for easy understanding.

図10は、第1データ群と第2データ群とを積算して得られデータ3を示している。積算することで波形が大きくなり、又波形の形状が明確になる。又、反射パルス光にはノイズ成分が含まれているが、ノイズ成分はランダムであるので、積算することで相殺され、減衰波が明確になる。   FIG. 10 shows data 3 obtained by integrating the first data group and the second data group. By integrating, the waveform becomes large and the shape of the waveform becomes clear. Further, although the reflected pulse light includes a noise component, since the noise component is random, it is canceled out by integration and the attenuation wave becomes clear.

第1データ群及び第2データ群を積算して波形を明確にし、得られた減衰波により、測距が実行される。従って、反射光の光量が小さい場合でも、積算することで測距が可能となる。   The first data group and the second data group are integrated to clarify the waveform, and distance measurement is executed by the obtained attenuation wave. Therefore, even if the amount of reflected light is small, distance measurement is possible by integrating.

上記した様に、反射光の光量は、測定対象物迄の距離、測定対象物の反射率により変化し、測定対象物迄の距離が大きく、或は反射率が小さい場合は、充分な反射光量(積算量)となる迄、微小な反射光を足し合わせるので、一点を測定するのに時間が掛る。この為、多点測定の場合、多くの時間が費やされていた。   As described above, the amount of reflected light varies depending on the distance to the object to be measured and the reflectance of the object to be measured. If the distance to the object to be measured is large or the reflectance is small, the amount of reflected light is sufficient. Since a minute amount of reflected light is added up to (integrated amount), it takes time to measure one point. For this reason, in the case of multipoint measurement, a lot of time is spent.

更に、パルスレーザダイオード(PLD)は、所定時間(例えば10ns)でパルス発光し、発光負荷率(Duty)(例えば0.01%)が定められており、規定負荷率を超えて発光させた場合は、パルスレーザダイオードの損傷、劣化の原因となっていた。   Further, the pulse laser diode (PLD) emits pulses at a predetermined time (for example, 10 ns), and the light emission load factor (Duty) (for example, 0.01%) is determined. Caused damage and deterioration of the pulse laser diode.

従って、パルスレーザ光線では、発光負荷率の制限を受けて、Duty=0.01%以下となる様に発光が制御されていた。   Therefore, the light emission of the pulse laser beam is controlled so as to be Duty = 0.01% or less due to the limitation of the light emission load factor.

例えば、10nsのパルス幅(tp)で、Duty=0.01%の場合、発光周波数Tcは、Duty=tp/Tcであるので、Tc=10ns/0.01%=100E−6(ns)となる。又、周期は10KHzとなる。   For example, when the pulse width (tp) is 10 ns and Duty = 0.01%, the emission frequency Tc is Duty = tp / Tc, so that Tc = 10 ns / 0.01% = 100E−6 (ns). Become. The cycle is 10 KHz.

図11は、従来のパルス発光の状態を示しており、Duty=0.01%以下となる様にパルス幅tp及び発光周波数Tcが設定され、連続的にパルス発光される。   FIG. 11 shows a state of conventional pulse light emission, where the pulse width tp and the light emission frequency Tc are set so that Duty = 0.01% or less, and continuous pulse light emission is performed.

又、図12は、従来のパルス発光状態で測距を行った場合を示している。尚、測量装置はモータ駆動により回転されるものとする。   FIG. 12 shows a case where distance measurement is performed in a conventional pulse emission state. It is assumed that the surveying device is rotated by driving a motor.

測量装置の第1測定点の距離を算出するのに必要な発光回数が10000回であったとすると距離算出迄の時間は、100E−6[s]×10000[回]=1[s]となり、1秒を要し、第2測定点迄の移動時間を0.5秒とすると、第1測定点を測定し、第2測定点に移動する迄の一連の測定時間は、1.5秒を要することになる。   If the number of times of light emission necessary to calculate the distance of the first measurement point of the surveying instrument is 10,000 times, the time until the distance calculation is 100E-6 [s] × 10000 [times] = 1 [s], If 1 second is required and the movement time to the second measurement point is 0.5 seconds, the measurement time for measuring the first measurement point and moving to the second measurement point is 1.5 seconds. It will take.

上述した様に、従来ではDutyにより、発光周波数が決定されるので、反射光の光量が微小で、積算するパルス数が多くなる状況では、一点での測定回数が増大すると、比例的に測定時間が増大していた。   As described above, since the emission frequency is conventionally determined by the duty, in a situation where the amount of reflected light is small and the number of pulses to be integrated increases, the measurement time increases proportionally when the number of measurements at one point increases. Increased.

又従来の測量装置では、連続パルス発光であるので、移動時間、即ち測定していない時間もパルス発光されており、無駄な電力が消費されている。   Further, in the conventional surveying instrument, since continuous pulse emission is performed, pulse emission is performed during the movement time, that is, the time during which measurement is not performed, and wasteful power is consumed.

尚、積算方式の測定方法としては特許文献1に記載のものがある。   In addition, there exists a thing of patent document 1 as a measuring method of an integrating | accumulating system.

特開2005−214786号公報JP-A-2005-214786 特開2008−268004号公報JP 2008-268004 A

本発明は斯かる実情に鑑み、パルスレーザダイオードの負担を増加させることなく、測定時間を短縮させ、又電力消費量の低減を可能とした多点測定方法及び測量装置を提供するものである。   In view of such circumstances, the present invention provides a multipoint measurement method and surveying apparatus that can shorten the measurement time and reduce the power consumption without increasing the burden on the pulse laser diode.

本発明は、パルス測距光を測定点に所定発光回数照射して測定点からの反射パルス光を受光し、複数の測定点を順次測定する多点測定方法に於いて、次の測定点迄の移動時間を求め、該移動時間はパルス光の照射を停止し、該移動時間を含み前記所定回数の照射が設定した発光負荷率を超えない様にパルス測距光の発光周期を設定して測定点の測距を実行する多点測定方法に係るものである。   The present invention is a multi-point measurement method in which a pulse ranging light is irradiated to a measurement point a predetermined number of times, a reflected pulse light from the measurement point is received, and a plurality of measurement points are sequentially measured. The movement time of the pulse ranging light is set so that the irradiation time of the pulse light is stopped and the irradiation time of the predetermined number of times including the movement time does not exceed the set light emission load factor. The present invention relates to a multipoint measurement method for performing distance measurement of a measurement point.

又本発明は、前記所定発光回数は、測定点に対してパルス測距光を照射して粗測定を行い、該粗測定の測距結果に基づき設定される多点測定方法に係るものである。   Further, the present invention relates to a multipoint measurement method in which the predetermined number of times of light emission is determined by irradiating a pulse ranging light to a measurement point to perform rough measurement, and setting based on the distance measurement result of the rough measurement. .

又本発明は、前記所定発光回数は、前測定で設定された発光回数である多点測定方法に係るものである。   The present invention also relates to the multipoint measurement method, wherein the predetermined number of times of light emission is the number of times of light emission set in the previous measurement.

又本発明は、前記パルス測距光を測定点に所定発光回数照射して測距を行い、次の測定点に移動する迄の前記移動時間は発光を停止するバースト測定モードと、パルス測距光を発光負荷率を超えない周期で連続して発光する連続測定モードとを有し、前記発光周期が予め定めたリミット周期値を超える場合は、連続測定モードによる測定が実行される多点測定方法に係るものである。   The present invention also provides a burst measurement mode in which the pulse ranging light is irradiated to the measurement point for a predetermined number of times of light emission, the distance is measured, and the movement time until the movement to the next measurement point is stopped. A multi-point measurement in which measurement is performed in the continuous measurement mode when the light emission period exceeds a predetermined limit period value. It concerns the method.

又本発明は、多点測定が行われる測定対象物について撮像し、前記測定点は撮像された画像上に設定され、前記移動時間は測定点間の画角と測定点間を移動する速度により求められる多点測定方法に係るものである。   The present invention also captures an image of an object to be measured at multiple points, the measurement points are set on the captured image, and the moving time depends on the angle of view between the measurement points and the speed of movement between the measurement points. This relates to the required multipoint measurement method.

又本発明は、測定対象物を撮像する撮像部と、パルス測距光を射出する発光部と、前記測定対象物にパルス測距光を照射し、測定対象物からの反射光を受光して測距を行う測距部と、前記発光部を駆動する発光駆動部と、前記撮像部と前記測距部とを一体に回転駆動する駆動部と、前記撮像部及び測距部の回転角を検出する測角部と、前記撮像部の撮像を制御し、前記発光駆動部の発光を制御し、前記駆動部の回転駆動を制御する制御装置とを具備し、前記撮像部は少なくとも測定対象物を含む画像を撮像し、該画像中で複数の測定点が設定され、該制御装置は複数の測定点について順次測定を実行する場合に、1つの測定点から次の測定点迄の移動時間を前記画像中の画角と前記駆動部による回転速度に基づき演算し、移動時間中はパルス測距光の射出を停止する様前記発光駆動部を制御する測量装置に係るものである。   The present invention also provides an imaging unit that images a measurement object, a light emitting unit that emits pulse ranging light, irradiates the measurement object with pulse ranging light, and receives reflected light from the measurement object. A distance measuring unit that performs distance measurement, a light emission driving unit that drives the light emitting unit, a driving unit that integrally rotates the image capturing unit and the distance measuring unit, and rotation angles of the image capturing unit and the distance measuring unit. An angle measuring unit to detect, and a control device that controls imaging of the imaging unit, controls light emission of the light emission driving unit, and controls rotation driving of the driving unit, and the imaging unit is at least a measurement object When a plurality of measurement points are set in the image and the control device sequentially performs measurement for the plurality of measurement points, the control device calculates the movement time from one measurement point to the next measurement point. It is calculated based on the angle of view in the image and the rotation speed by the drive unit, and during the movement time it is a pulse. Those of the surveying device for controlling the emission driver as to stop emission of 距光.

又本発明は、前記制御装置は、前記移動時間を含み前記所定回数の照射が設定した発光負荷率を超えない様にパルス測距光の発光周期を設定し、該発光周期でパルス測距光を射出する様前記発光駆動部を制御する測量装置に係るものである。   According to the present invention, the control device sets a light emitting period of the pulse ranging light so that the predetermined number of times of irradiation including the moving time does not exceed a set light emission load factor, and the pulse ranging light with the light emitting period is set. The present invention relates to a surveying device that controls the light emission driving unit so as to emit light.

又本発明は、前記制御装置は、測定点に対してパルス測距光を照射して粗測定を行い、該粗測定の測距結果に基づき前記所定発光回数を設定する測量装置に係るものである。   Further, the present invention relates to a surveying device in which the control device performs a rough measurement by irradiating a measurement point with a pulse ranging light, and sets the predetermined number of times of light emission based on a distance measurement result of the rough measurement. is there.

又本発明は、前記制御装置は、設定した前記所定発光回数で測距を行った後、次の測定点を測定する場合、前記所定発光回数を保持して発光回数を設定する測量装置に係るものである。   Further, the present invention relates to a surveying apparatus in which the control device holds the predetermined number of times of light and sets the number of times of light emission when measuring the next measurement point after performing the distance measurement with the set number of times of light emission. Is.

又本発明は、前記制御装置は、前記パルス測距光を測定点に所定発光回数照射して測距を行い、次の測定点に移動する迄の前記移動時間は発光を停止するバースト測定モードと、パルス測距光を発光負荷率を超えない周期で連続して発光する連続測定モードとを択一的に実行可能であり、前記発光周期が予め定めたリミット周期値を超える場合は、連続測定モードによる測定を実行する測量装置に係るものである。   Further, the present invention provides a burst measurement mode in which the control device performs distance measurement by irradiating the measurement point with the pulse ranging light for a predetermined number of times, and stops the emission during the movement time until moving to the next measurement point. And a continuous measurement mode in which pulse ranging light is continuously emitted in a cycle that does not exceed the light emission load factor, and can be executed continuously when the light emission cycle exceeds a predetermined limit cycle value. The present invention relates to a surveying instrument that performs measurement in a measurement mode.

本発明によれば、パルス測距光を測定点に所定発光回数照射して測定点からの反射パルス光を受光し、複数の測定点を順次測定する多点測定方法に於いて、次の測定点迄の移動時間を求め、該移動時間はパルス光の照射を停止し、該移動時間を含み前記所定回数の照射が設定した発光負荷率を超えない様にパルス測距光の発光周期を設定して測定点の測距を実行するので、測定時間の短縮が図れると共に、移動中は発光が停止されるので、消費電力の節約ができる。   According to the present invention, the following measurement is performed in the multi-point measurement method in which the pulse measurement light is irradiated to the measurement point a predetermined number of times, the reflected pulse light from the measurement point is received, and a plurality of measurement points are sequentially measured. The movement time to the point is obtained, and the irradiation time of the pulse ranging light is set so that the irradiation time of the pulse light is stopped and the predetermined number of irradiations does not exceed the set light emission load factor including the movement time. Then, since the distance measurement of the measurement point is executed, the measurement time can be shortened and the light emission is stopped during the movement, so that the power consumption can be saved.

又本発明によれば、前記所定発光回数は、測定点に対してパルス測距光を照射して粗測定を行い、該粗測定の測距結果に基づき設定されるので、正確で無駄のない測距が行える。   According to the present invention, the predetermined number of times of light emission is set based on the result of rough measurement by irradiating the measurement point with pulse ranging light and performing rough measurement. Can measure distance.

又本発明によれば、前記所定発光回数は、前測定で設定された発光回数であるので、複数の測定点について測距を行う場合、近接した測定点では測定条件が同一又は略同一の場合が多く、再設定の手順が省略でき、測定効率が向上する。   According to the present invention, the predetermined number of times of light emission is the number of times of light emission set in the previous measurement. Therefore, when distance measurement is performed for a plurality of measurement points, the measurement conditions at the adjacent measurement points are the same or substantially the same. In many cases, the resetting procedure can be omitted, and the measurement efficiency is improved.

又本発明によれば、前記パルス測距光を測定点に所定発光回数照射して測距を行い、次の測定点に移動する迄の前記移動時間は発光を停止するバースト測定モードと、パルス測距光を発光負荷率を超えない周期で連続して発光する連続測定モードとを有し、前記発光周期が予め定めたリミット周期値を超える場合は、連続測定モードによる測定が実行されるので、バースト測定モードの実行で発光素子に過剰な負担が掛らない様にし、部品寿命の短縮を防止する。   According to the invention, the pulse ranging light is irradiated to the measurement point for a predetermined number of times of light emission, the distance is measured, and the movement time until moving to the next measurement point is the burst measurement mode in which the light emission is stopped, and the pulse A continuous measurement mode that continuously emits ranging light at a cycle that does not exceed the light emission load factor, and when the light emission cycle exceeds a predetermined limit cycle value, measurement in the continuous measurement mode is executed. In the burst measurement mode, the light emitting element is not overburdened and the life of the parts is prevented from being shortened.

又本発明によれば、多点測定が行われる測定対象物について撮像し、前記測定点は撮像された画像上に設定され、前記移動時間は測定点間の画角と測定点間を移動する速度により求められるので、移動時間が画像の画角から求められるので、簡単に而も瞬時に求められる。   According to the present invention, an object to be measured at multiple points is imaged, the measurement points are set on the captured image, and the moving time moves between the angle of view between the measurement points and the measurement points. Since the movement time is obtained from the angle of view of the image because it is obtained by the speed, it can be obtained easily and instantaneously.

又本発明によれば、測定対象物を撮像する撮像部と、パルス測距光を射出する発光部と、前記測定対象物にパルス測距光を照射し、測定対象物からの反射光を受光して測距を行う測距部と、前記発光部を駆動する発光駆動部と、前記撮像部と前記測距部とを一体に回転駆動する駆動部と、前記撮像部及び測距部の回転角を検出する測角部と、前記撮像部の撮像を制御し、前記発光駆動部の発光を制御し、前記駆動部の回転駆動を制御する制御装置とを具備し、前記撮像部は少なくとも測定対象物を含む画像を撮像し、該画像中で複数の測定点が設定され、該制御装置は複数の測定点について順次測定を実行する場合に、1つの測定点から次の測定点迄の移動時間を前記画像中の画角と前記駆動部による回転速度に基づき演算し、移動時間中はパルス測距光の射出を停止する様前記発光駆動部を制御するので、消費電力の節約ができる。   Further, according to the present invention, the imaging unit that images the measurement object, the light emitting unit that emits pulse ranging light, the pulse ranging light is irradiated to the measurement object, and the reflected light from the measurement object is received. A distance measuring unit that performs distance measurement, a light emission driving unit that drives the light emitting unit, a drive unit that integrally rotates the imaging unit and the distance measuring unit, and rotation of the imaging unit and the distance measuring unit. An angle measuring unit that detects an angle; and a control device that controls imaging of the imaging unit, controls light emission of the light emission driving unit, and controls rotation driving of the driving unit, wherein the imaging unit measures at least When an image including an object is picked up and a plurality of measurement points are set in the image, and the control device sequentially performs measurement on the plurality of measurement points, the movement from one measurement point to the next measurement point is performed. The time is calculated based on the angle of view in the image and the rotation speed by the drive unit, and during the movement time And it controls the light emission drive unit as to stop emission of the pulse distance measuring light can save power consumption.

又本発明によれば、前記制御装置は、前記移動時間を含み前記所定回数の照射が設定した発光負荷率を超えない様にパルス測距光の発光周期を設定し、該発光周期でパルス測距光を射出する様前記発光駆動部を制御するので、測定時間の短縮が図れる。   According to the invention, the control device sets the light emission period of the pulse ranging light so that the predetermined number of irradiations including the movement time does not exceed the set light emission load factor, and the pulse measurement is performed at the light emission period. Since the light emission driving unit is controlled so as to emit distance light, the measurement time can be shortened.

又本発明によれば、前記制御装置は、測定点に対してパルス測距光を照射して粗測定を行い、該粗測定の測距結果に基づき前記所定発光回数を設定するので、正確で無駄のない測距が行える。   Further, according to the present invention, the control device performs rough measurement by irradiating the measurement point with pulse ranging light, and sets the predetermined number of times of light emission based on the distance measurement result of the rough measurement. Distance can be measured without waste.

又本発明によれば、前記制御装置は、設定した前記所定発光回数で測距を行った後、次の測定点を測定する場合、前記所定発光回数を保持して発光回数を設定するので、複数の測定点について測距を行う場合、近接した測定点では測定条件が同一又は略同一の場合が多く、再設定の手順が省略でき、測定効率が向上する。   Further, according to the present invention, when measuring the next measurement point after measuring the predetermined number of times of light emission, the control device holds the number of times of light emission and sets the number of times of light emission. When ranging is performed for a plurality of measurement points, the measurement conditions are often the same or substantially the same at adjacent measurement points, and the resetting procedure can be omitted, improving measurement efficiency.

又本発明によれば、前記制御装置は、前記パルス測距光を測定点に所定発光回数照射して測距を行い、次の測定点に移動する迄の前記移動時間は発光を停止するバースト測定モードと、パルス測距光を発光負荷率を超えない周期で連続して発光する連続測定モードとを択一的に実行可能であり、前記発光周期が予め定めたリミット周期値を超える場合は、連続測定モードによる測定を実行するので、バースト測定モードの実行で発光素子に過剰な負担が掛らない様にし、部品寿命の短縮を防止する等の優れた効果を発揮する。   Further, according to the present invention, the control device performs the distance measurement by irradiating the pulse distance measuring light to the measurement point a predetermined number of times of light emission, and the movement time until moving to the next measurement point is a burst in which the light emission is stopped. The measurement mode and the continuous measurement mode that continuously emits the pulse ranging light at a cycle that does not exceed the light emission load factor can be executed alternatively, and the light emission cycle exceeds a predetermined limit cycle value. Since the measurement in the continuous measurement mode is performed, the burst measurement mode is performed so that an excessive burden is not applied to the light emitting element, and excellent effects such as prevention of shortening of the component life are exhibited.

本発明が実施される測量装置の一例を示す斜視図である。It is a perspective view which shows an example of the surveying apparatus by which this invention is implemented. 該測量装置の構成ブロック図である。It is a block diagram of the configuration of the surveying instrument. 本実施例に於ける、パルス測距光の発光、停止、測定点の移動との関係を示す説明図である。It is explanatory drawing which shows the relationship with light emission of pulse ranging light, a stop, and the movement of a measurement point in a present Example. (A)(B)(C)は、それぞれ本実施例に於ける発光、停止、発光回数と発光負荷率の関係を示す説明図である。(A), (B), and (C) are explanatory diagrams showing the relationship between light emission, stop, number of times of light emission, and light emission load factor, respectively, in this example. 本実施例の作動を示すフローチャートである。It is a flowchart which shows the action | operation of a present Example. (A)(B)は測定対象物の撮像画像と、設定した測定点との関係を示す図であり、(A)は測定点を特許文献2の方法を用いて自動で設定した場合、(B)は格子状に設定した場合を示している。(A) (B) is a figure which shows the relationship between the picked-up image of a measuring object, and the set measurement point, (A) is the case where a measurement point is set automatically using the method of patent document 2, B) shows a case where a lattice shape is set. パルス測距光、反射パルス光と、受光回路が反射パルス光を受光して発する減衰波との関係を示す図である。It is a figure which shows the relationship between pulse ranging light and reflected pulse light, and the attenuation wave which a light receiving circuit receives and receives reflected pulse light. 前記減衰波から積算用のデータを取得する場合の説明図である。It is explanatory drawing in the case of acquiring the data for integration from the said attenuation wave. 前記減衰波から積算用のデータを取得する場合の説明図である。It is explanatory drawing in the case of acquiring the data for integration from the said attenuation wave. 前記積算用のデータを積算して得られる減衰波を示す図である。It is a figure which shows the attenuation wave obtained by integrating | accumulating the said data for integration. 従来の連続モードでの発光状態を示す説明図である。It is explanatory drawing which shows the light emission state in the conventional continuous mode. 従来の連続モードでのパルス測距光の発光、停止、測定点の移動との関係を示す説明図である。It is explanatory drawing which shows the relationship with light emission of the pulse ranging light in the conventional continuous mode, a stop, and the movement of a measurement point.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明が実施される測量装置について、図1、図2を参照して説明する。   First, a surveying apparatus in which the present invention is implemented will be described with reference to FIGS.

尚、用いられる測量装置1は、例えばトータルステーションであり、測定点に対してパルスレーザ光線を照射し、測定点からの反射パルス光を受光して、各パルス毎に測距を行い、測距結果を平均化し、更に測定点からの反射光量が少ない場合は、反射光を積算し、反射光が微小であっても高精度の距離測定を行うものである。   Note that the surveying instrument 1 used is, for example, a total station, which irradiates a pulse laser beam to a measurement point, receives reflected pulse light from the measurement point, performs distance measurement for each pulse, and results of distance measurement When the amount of reflected light from the measurement point is small, the reflected light is integrated, and even if the reflected light is very small, a highly accurate distance measurement is performed.

該測量装置1は主に、図示しない三脚に取付けられる整準部2、該整準部2に設けられた基盤部3、該基盤部3に鉛直軸心を中心に回転可能に設けられた托架部4、該托架部4に水平軸心を中心に回転可能に設けられた望遠鏡部5から構成されている。尚、前記測量装置1には、該測量装置1の概略の視準方向を設定する為の照星照門10が設けられている。   The surveying instrument 1 mainly includes a leveling part 2 attached to a tripod (not shown), a base part 3 provided on the leveling part 2, and a gutter provided on the base part 3 so as to be rotatable around a vertical axis. The frame unit 4 includes a telescope unit 5 provided on the frame unit 4 so as to be rotatable about a horizontal axis. The surveying instrument 1 is provided with a sight sight gate 10 for setting a general collimation direction of the surveying instrument 1.

前記托架部4は表示部6、操作入力部7を具備し、前記望遠鏡部5は、測定対象物を視準する第2望遠鏡11と該第2望遠鏡11の光学系を通して視準方向の画像(狭角画像)を取得する第2撮像部12を有し、更に前記第2望遠鏡11より低倍率で広範囲な視野を有する第1望遠鏡8と該第1望遠鏡8の光学系を介して視準方向、或は略視準方向の画像(広角画像)を取得する第1撮像部9を具備している。該第1撮像部9及び前記第2撮像部12には撮像画像をデジタル画像信号として出力する、例えばデジタルカメラが用いられる。   The frame unit 4 includes a display unit 6 and an operation input unit 7, and the telescope unit 5 collimates the image in the collimation direction through the second telescope 11 that collimates the measurement object and the optical system of the second telescope 11. A first telescope 8 having a second imaging unit 12 for acquiring a (narrow-angle image) and having a wide field of view at a lower magnification than the second telescope 11 and collimation via the optical system of the first telescope 8 A first imaging unit 9 that acquires an image in a direction or a substantially collimated direction (wide-angle image) is provided. The first imaging unit 9 and the second imaging unit 12 use, for example, a digital camera that outputs a captured image as a digital image signal.

前記第1撮像部9、前記第2撮像部12が有する受光素子は、例えば画素の集合体であるCCD、CMOS等であり、受光する画素の位置が特定でき、又受光する画素の位置から画角が求められる様になっている。   The light receiving elements included in the first image pickup unit 9 and the second image pickup unit 12 are, for example, a CCD, CMOS, or the like, which is a collection of pixels. A corner is required.

図2により、前記測量装置1の基本構成について説明する。   The basic configuration of the surveying instrument 1 will be described with reference to FIG.

前記望遠鏡部5は、前記第2望遠鏡11の光学系を共有する測距部17を内蔵し、該測距部17は発光素子(図示せず)を具備し、該発光素子が射出した測距光を測定対象物に照射し、測定対象物からの反射光を受光して測定対象物迄の光波距離測定を行う。又、前記望遠鏡部5には発光駆動部18が設けられ、該発光駆動部18によって前記発光素子が発光され、或は発光モードが制御される様になっている。   The telescope unit 5 includes a distance measuring unit 17 that shares the optical system of the second telescope 11, and the distance measuring unit 17 includes a light emitting element (not shown), and the distance measured by the light emitting element is emitted. The measurement object is irradiated with light, the reflected light from the measurement object is received, and the light wave distance measurement to the measurement object is performed. The telescope unit 5 is provided with a light emission drive unit 18, and the light emission drive unit 18 emits light from the light emitting element or the light emission mode is controlled.

前記托架部4には、該托架部4を水平方向に回転させる為の水平駆動部13が設けられると共に前記托架部4の前記基盤部3に対する水平回転角を検出し、視準方向の水平角を検出する水平測角部14が設けられる。又前記托架部4には、水平軸心を中心に前記望遠鏡部5を回転する鉛直駆動部15が設けられると共に前記望遠鏡部5の鉛直角を検出し、視準方向の鉛直角を測角する鉛直測角部16が設けられる。   The rack part 4 is provided with a horizontal drive part 13 for rotating the rack part 4 in the horizontal direction, and detects a horizontal rotation angle of the rack part 4 with respect to the base part 3 and collimation direction. A horizontal angle measuring unit 14 for detecting the horizontal angle is provided. The rack 4 is provided with a vertical drive unit 15 that rotates the telescope unit 5 around a horizontal axis, and detects the vertical angle of the telescope unit 5 to measure the vertical angle in the collimating direction. A vertical angle measuring unit 16 is provided.

前記托架部4には制御装置21が内蔵され、該制御装置21は、前記水平駆動部13、前記鉛直駆動部15の駆動を制御して前記托架部4、前記望遠鏡部5を回転して該望遠鏡部5を所定の方向に向け、又所定の範囲を走査し、前記第1望遠鏡8、前記第2望遠鏡11の切替えを制御して、所要の倍率の画像を取得し、更に前記測距部17と前記発光駆動部18を制御して所定の測定点の測距を行う。   The rack unit 4 includes a control device 21 that controls the driving of the horizontal driving unit 13 and the vertical driving unit 15 to rotate the rack unit 4 and the telescope unit 5. The telescope unit 5 is pointed in a predetermined direction and a predetermined range is scanned, and switching between the first telescope 8 and the second telescope 11 is controlled to acquire an image with a required magnification, and the measurement is further performed. The distance unit 17 and the light emission drive unit 18 are controlled to measure a predetermined measurement point.

前記制御装置21は、制御演算部(CPU)22、記憶部23、画像処理部24、撮像部選択部25、画像記憶部26、前記表示部6、前記操作入力部7等から構成されている。尚、前記表示部6をタッチパネルとし、前記操作入力部7の一部として機能させてもよい。   The control device 21 includes a control calculation unit (CPU) 22, a storage unit 23, an image processing unit 24, an imaging unit selection unit 25, an image storage unit 26, the display unit 6, the operation input unit 7, and the like. . The display unit 6 may be a touch panel and may function as a part of the operation input unit 7.

前記記憶部23はプログラム格納領域と、データ格納領域を有し、前記プログラム格納領域には測定に必要な計算プログラム、或は後述する画像処理を行う為の画像処理プログラム、処理された画像から測定点を選択する測定点設定プログラム、選択された測定点について測定順序を設定し、測定順序に従って順次移動しつつ測距を実行するシーケンスプログラム、測定を行う場合に、粗測定を実行するか本測定を実行するかを判断し、反射光の強度に基づき測距に必要な積算量を演算し、積算するパルスの回数を演算し、設定する積算量設定プログラム、画像の測定点間の画角と前記托架部4の水平回転速度及び前記望遠鏡部5の鉛直回転速度に基づき測定点間の移動時間を演算し、測定点間の移動時間及び必要な積算量を得る為に要される時間等に基づき測定モード(後述)を設定する測定モード設定プログラム等の各種プログラムが格納されている。   The storage unit 23 has a program storage area and a data storage area, and the program storage area is measured from a calculation program necessary for measurement, an image processing program for performing image processing to be described later, or a processed image. Measurement point setting program that selects points, sequence program that sets the measurement order for the selected measurement points, and performs distance measurement while moving sequentially according to the measurement order. Is calculated, the integrated amount necessary for distance measurement is calculated based on the intensity of reflected light, the number of pulses to be integrated is calculated, the integrated amount setting program to be set, the angle of view between the measurement points of the image, Necessary for calculating the movement time between the measurement points based on the horizontal rotation speed of the frame unit 4 and the vertical rotation speed of the telescope unit 5 and obtaining the movement time between the measurement points and the necessary integration amount. Various programs are stored, such as measurement mode setting program for setting the measurement mode based on time or the like (described later).

又、前記記憶部23のデータ格納部には、前記水平測角部14で検出した各測定点に対応する水平角、前記鉛直測角部16で検出した各測定点に対する鉛直角、各測定点の測定結果(測距距離)等のデータが格納される。   The data storage unit of the storage unit 23 includes a horizontal angle corresponding to each measurement point detected by the horizontal angle measurement unit 14, a vertical angle for each measurement point detected by the vertical angle measurement unit 16, and each measurement point. The data such as the measurement result (ranging distance) is stored.

又、前記制御演算部22には前記測距部17、前記水平測角部14、前記鉛直測角部16からの測定結果が入力され、距離測定、鉛直角、水平角の測定が行われ、測定結果は前記制御演算部22を介し前記記憶部23に格納されると共に前記表示部6に表示される様になっている。又、測距距離、鉛直角、水平角はそれぞれ測定点に関連付けられて格納される。   The control calculation unit 22 receives measurement results from the distance measurement unit 17, the horizontal angle measurement unit 14, and the vertical angle measurement unit 16, and performs distance measurement, vertical angle measurement, and horizontal angle measurement. The measurement result is stored in the storage unit 23 via the control calculation unit 22 and displayed on the display unit 6. Further, the distance measurement distance, the vertical angle, and the horizontal angle are stored in association with the measurement points.

前記撮像部選択部25により選択された前記第1撮像部9、前記第2撮像部12のいずれかが撮像した画像は前記表示部6に表示され、又デジタル画像データとして前記画像記憶部26に格納される。   An image captured by either the first image capturing unit 9 or the second image capturing unit 12 selected by the image capturing unit selecting unit 25 is displayed on the display unit 6 and also stored in the image storage unit 26 as digital image data. Stored.

前記画像処理部24は、前記画像記憶部26に格納された画像(例えば前記第1撮像部9で取得した画像)を合成して、より広範囲の合成画像とする。又、前記画像処理部24は合成画像をエッジ処理する等して、輪郭線、角点を検出し、前記画像記憶部26に格納すると共に前記表示部6に表示する。尚、前記画像記憶部26を省略し、前記記憶部23に画像格納領域を設け、該画像格納領域に画像データ、更に前記画像処理部24で画像処理して得られた輪郭線、角点を格納する様にしてもよい。   The image processing unit 24 synthesizes an image stored in the image storage unit 26 (for example, an image acquired by the first imaging unit 9) to form a wider range of synthesized image. Further, the image processing unit 24 detects edge lines and corner points by performing edge processing on the composite image, etc., and stores them in the image storage unit 26 and displays them on the display unit 6. The image storage unit 26 is omitted, an image storage area is provided in the storage unit 23, image data is stored in the image storage area, and contour lines and corner points obtained by image processing by the image processing unit 24 are displayed. You may make it store.

以下、上記した測量装置の作動について説明する。   Hereinafter, the operation of the surveying apparatus described above will be described.

先ず、本実施例の概要を説明する。   First, the outline of the present embodiment will be described.

本実施例では、積算方式の測距方法を用いたノンプリズム距離測定が実行され、測距光の発光形態が連続モードとバーストモードの形態を有する。   In this embodiment, non-prism distance measurement is performed using an integration-type distance measurement method, and the light emission form of the distance measurement light includes a continuous mode and a burst mode.

ここで、連続モードとは、図11、図12で示した発光形態であり、発光負荷率(Duty)が、規定負荷率を超えない様に、パルス幅と発光間隔(発光周期)が設定され、設定されたパルス幅と発光間隔で連続してパルス発光させる形態である。   Here, the continuous mode is the light emission mode shown in FIGS. 11 and 12, and the pulse width and the light emission interval (light emission cycle) are set so that the light emission load factor (Duty) does not exceed the specified load factor. In this mode, pulse light emission is continuously performed with a set pulse width and light emission interval.

又、バーストモードとは、図11で示される連続モードより発光周期を早めた周期で発光させたパルス列と、パルスレーザダイオードを全く発光させない休止期間とを交互に組合わせパルスレーザダイオードの発光負荷率を超えない様に設定された発光形態である。尚、発光負荷率は、使用するパルスレーザダイオードの規格で定められており、規格に基づき設定してもよく、或は安全を考慮して規格で定められた値より小さくしてもよい。   In the burst mode, the pulse load of the pulse laser diode is alternately combined with a pulse train that emits light at a period earlier than that of the continuous mode shown in FIG. 11 and a pause period during which the pulse laser diode does not emit light at all. The light emission form is set so as not to exceed. The light emission load factor is determined by the standard of the pulse laser diode to be used, and may be set based on the standard, or may be smaller than the value determined by the standard in consideration of safety.

図3により、バーストモードの一例について説明する。   An example of the burst mode will be described with reference to FIG.

パスル幅10ns、第1測定点から第2測定点迄の移動時間が0.5秒、第1測定点の距離を算出するのに必要な発光回数が10000回であったとし、移動時間0.5秒を休止期間とすると、パルスレーザダイオードの最大デューティ比0.01%を超えない様な発光周期Tbを求める。   Assume that the pulse width is 10 ns, the moving time from the first measuring point to the second measuring point is 0.5 seconds, and the number of times of light emission necessary to calculate the distance of the first measuring point is 10,000. If 5 seconds is a rest period, a light emission period Tb that does not exceed 0.01% of the maximum duty ratio of the pulse laser diode is obtained.

計算式は次の通りであり、
(10[ns]/Tb)×(10000×Tb/(10000×Tb+0.5[s]))×100=0.01%
Tb=50E−6[s](20KHz)
と求められる。
The calculation formula is as follows:
(10 [ns] / Tb) × (10000 × Tb / (10000 × Tb + 0.5 [s])) × 100 = 0.01%
Tb = 50E-6 [s] (20 KHz)
Is required.

更に、距離算出迄の時間は、
(50E−6[s])×10000[回]=0.5秒となる。
Furthermore, the time to calculate the distance is
(50E-6 [s]) × 10000 [times] = 0.5 seconds.

ここで、第1測定点から第2測定点迄の移動時間が0.5秒であることから、第1測定点の距離算出を開始してから第2測定点に移動する迄の合計時間は1秒となる(図3参照)。   Here, since the movement time from the first measurement point to the second measurement point is 0.5 seconds, the total time from the start of the distance calculation of the first measurement point to the movement to the second measurement point is 1 second (see FIG. 3).

上記した様に、連続発光モードであると、1.5秒を要するので、バーストモードとすることで、測定時間の短縮化が図れ、更に移動時間は発光を停止しているので、省電力化が図れる。   As described above, the continuous light emission mode takes 1.5 seconds, so the burst mode can shorten the measurement time, and the travel time stops light emission, thus saving power. Can be planned.

上記の例では移動時間(発光停止時間)を0.5秒とし、距離を算出するのに必要な発光回数10000回で繰返し周期Tbを求めたが、実際の測定に於いては、測定点毎に反射光量、次の測定点迄の移動時間は異なり、距離を算出するのに必要な発光回数が測定点毎に異なるので、繰返し周期Tbは測定点毎に演算して設定する。   In the above example, the movement time (light emission stop time) is set to 0.5 seconds, and the repetition period Tb is obtained with the number of light emission times of 10,000 required to calculate the distance. However, since the amount of reflected light and the movement time to the next measurement point are different, and the number of times of light emission necessary to calculate the distance is different for each measurement point, the repetition period Tb is calculated and set for each measurement point.

但し、バーストモード時はパルスレーザダイオードの繰返し周期をあまり早めると発光素子の劣化及び破壊を起こしかねないのでリミット周期値が設けられる。   However, in the burst mode, if the repetition period of the pulse laser diode is made too fast, the light emitting element may be deteriorated and destroyed, so that a limit period value is provided.

図4(A)(B)(C)により、バーストモードの他の具体例について説明する。尚、パルス発光のパルス幅はいずれも10nsとし、パルス発光間隔は10us(100KHz)とする。   With reference to FIGS. 4A, 4B, and 4C, another specific example of the burst mode will be described. The pulse width of pulse emission is 10 ns, and the pulse emission interval is 10 us (100 KHz).

図4(A)は、発光回数が10000回、移動時間が900msである場合であり、この場合、以下の式により発光間隔10us(100KHz)でデューティ比が0.01%となる。   FIG. 4A shows a case where the number of times of light emission is 10,000 and the movement time is 900 ms. In this case, the duty ratio becomes 0.01% at a light emission interval of 10 us (100 KHz) according to the following equation.

Duty[%]=(10ns/10us)×100×(100ms/1000ms)
=0.01%
Duty [%] = (10 ns / 10 us) × 100 × (100 ms / 1000 ms)
= 0.01%

図4(B)は、発光回数が5000回、移動時間が450msである場合であり、この場合、以下の式により発光間隔10us(100KHz)でデューティ比が0.01%となる。   FIG. 4B shows a case where the number of times of light emission is 5000 times and the moving time is 450 ms. In this case, the duty ratio is 0.01% at a light emission interval of 10 us (100 KHz) according to the following formula.

Duty[%]=(10ns/10us)×100×(50ms/500ms)
=0.01%
Duty [%] = (10 ns / 10 us) × 100 × (50 ms / 500 ms)
= 0.01%

図4(C)は、発光回数が5000回、移動時間が400msである場合であり、この場合、以下の式により発光間隔20us(50KHz)でデューティ比が0.01%となる。   FIG. 4C shows a case where the number of times of light emission is 5000 times and the movement time is 400 ms. In this case, the duty ratio becomes 0.01% at a light emission interval of 20 us (50 KHz) according to the following equation.

Duty[%]=(10ns/20us)×100×(100ms/500ms)
=0.01%
Duty [%] = (10 ns / 20 us) × 100 × (100 ms / 500 ms)
= 0.01%

図4(A)(B)(C)に見られる様に、発光回数と次の測定点迄の移動時間を求めることで、Duty[%]=0.01%となる様に発光間隔を設定することができ、又、移動時間を発光停止とすることで、発光間隔を連続発光の場合に比して短くでき、測定時間を短縮することができる。   As shown in FIGS. 4A, 4B, and 4C, the light emission interval is set so that Duty [%] = 0.01% by obtaining the number of times of light emission and the movement time to the next measurement point. In addition, by setting the movement time to stop the light emission, the light emission interval can be shortened compared to the case of continuous light emission, and the measurement time can be shortened.

次に、図5、図6を参照して本実施例の作動について説明する。   Next, the operation of this embodiment will be described with reference to FIGS.

先ず、前記照星照門10によって、視準方向即ち測定方向を決定し、第1撮像部9又は第2撮像部12によって測定対象物を含む画像を取得する(STEP:01)。広角画像を有する前記第1撮像部9を選択するか、狭角画像を有する前記第2撮像部12を選択するかは、測定対象物迄の距離、或は測定範囲等を考慮して決定する。尚、前記測距部17によって測距された測定対象物迄の距離に応じて前記撮像部選択部25により自動で前記第1撮像部9、前記第2撮像部12の選択をする様にしてもよい。   First, a collimation direction, that is, a measurement direction is determined by the sight sight gate 10, and an image including a measurement object is acquired by the first imaging unit 9 or the second imaging unit 12 (STEP: 01). Whether to select the first imaging unit 9 having a wide-angle image or the second imaging unit 12 having a narrow-angle image is determined in consideration of the distance to the measurement object, the measurement range, or the like. . The first imaging unit 9 and the second imaging unit 12 are automatically selected by the imaging unit selection unit 25 according to the distance to the measurement object measured by the ranging unit 17. Also good.

取得した画像は、デジタル画像データとして前記画像記憶部26に格納される。   The acquired image is stored in the image storage unit 26 as digital image data.

撮像画像が前記表示部6に表示され、該表示部6に表示された画像を確認しつつ、測定点を決定する(STEP:02)。   A captured image is displayed on the display unit 6, and a measurement point is determined while confirming the image displayed on the display unit 6 (STEP: 02).

測定点については、画像処理によって抽出してもよい。画像処理による抽出は、前記デジタル画像データをエッジ処理し、特徴点を抽出し、この特徴点を測定点nとして設定する等である(図6(A)参照)。或は、測定範囲に格子状の枠を設定し、枠の交点を測定点nとしてもよい(図6(B)参照)。   The measurement points may be extracted by image processing. Extraction by image processing includes edge processing of the digital image data, extracting feature points, and setting the feature points as measurement points n (see FIG. 6A). Alternatively, a grid-like frame may be set in the measurement range, and the intersection of the frames may be set as the measurement point n (see FIG. 6B).

各測定点nに対して、測定の順番を定める。測定順は、前記制御演算部22が自動で行ってもよく、或は、作業者が前記表示部6上から順番を設定してもよい。   The order of measurement is determined for each measurement point n. The control calculation unit 22 may automatically perform the measurement order, or the operator may set the order from the display unit 6.

前記測定点nの順番を設定することで、1つの測定点nから次の測定点n+1に移動する場合の移動時間が演算される(STEP:03)。   By setting the order of the measurement points n, the movement time when moving from one measurement point n to the next measurement point n + 1 is calculated (STEP: 03).

例えば測定点nと測定点n+1について、画像データ上から測定点nと測定点n+1との間の画角が演算され、演算された画角と前記水平駆動部13及び前記鉛直駆動部15の回転速度に基づき、前記測定点nから前記測定点n+1へ移動する際の移動時間が演算される。   For example, for the measurement point n and the measurement point n + 1, the angle of view between the measurement point n and the measurement point n + 1 is calculated from the image data, and the calculated angle of view and the rotation of the horizontal driving unit 13 and the vertical driving unit 15 are calculated. Based on the speed, the moving time when moving from the measurement point n to the measurement point n + 1 is calculated.

測定点nに対して連続モード(図11参照)による粗測距が実行される、この粗測距では、測定点n迄の概略の距離が測定されるので、パルス光の発光回数は、測距値が得られる程度とする(STEP:04)。尚、粗測定は約100〜1000回の発光により測定され、精密測定に比べ10分の1〜5分の1の回数である。   Coarse distance measurement is performed on the measurement point n in the continuous mode (see FIG. 11). In this rough distance measurement, the approximate distance to the measurement point n is measured. It is assumed that the distance value is obtained (STEP: 04). In addition, the rough measurement is measured by light emission of about 100 to 1000 times, and is 1/10 to 1/5 of the number compared with the precision measurement.

粗測定の測距結果に基づき、精密測定に必要な発光回数が求められる(STEP:05)。   Based on the distance measurement result of the rough measurement, the number of times of light emission necessary for the precise measurement is obtained (STEP: 05).

前記移動時間と前記発光回数からパルス発光間隔(パルス発光周期n)を演算する(STEP:06)。   A pulse emission interval (pulse emission period n) is calculated from the movement time and the number of emission times (STEP 06).

演算されたパルス発光周期nがリミット周期値より短くないかどうかが判断され、判断結果に基づき発光形態が連続モードによる測定(以下連続測定モード)か、或は発光形態がバーストモードによる測定(以下バースト測定モード)かが判断される。   It is determined whether or not the calculated pulse emission cycle n is shorter than the limit cycle value. Based on the determination result, the emission mode is measured in the continuous mode (hereinafter referred to as the continuous measurement mode), or the emission mode is measured in the burst mode (hereinafter referred to as the burst mode). Burst measurement mode).

演算されたパルス発光周期nがリミット周期値より大きい(時間的に長い)場合は、バースト測定モードが選択され、演算されたパルス発光周期により、パルスレーザダイオードがパルス発光される(STEP:07)。又、演算されたパルス発光周期nがリミット周期値より小さい(時間的に短い)場合は、パルスレーザダイオード保護の為、連続測定モードが選択され、次の測定点に対しては連続測定モードにより測距が実行される。   When the calculated pulse emission period n is larger than the limit period value (long in time), the burst measurement mode is selected, and the pulse laser diode emits pulses in accordance with the calculated pulse emission period (STEP: 07). . If the calculated pulse emission period n is smaller than the limit period value (short in time), the continuous measurement mode is selected to protect the pulse laser diode, and the next measurement point is selected according to the continuous measurement mode. Ranging is executed.

測定点nからの反射光について前記演算された発光回数分積算され、測定点nについての精密測定が行われる(STEP:08)。   The reflected light from the measurement point n is integrated for the calculated number of times of light emission, and precise measurement is performed for the measurement point n (STEP: 08).

測定点nの測定が完了すると、測定点n+1の更に次の測定点n+2があるかどうかが確認され(STEP:09)、ないと判断されると、測定点nで設定された発光周期nが測定点n+1での発光周期として設定され、パルスレーザダイオードが測定点nと同じ発光回数でパルス発光される(STEP:10)。   When the measurement at the measurement point n is completed, it is confirmed whether there is a next measurement point n + 2 after the measurement point n + 1 (STEP: 09). If it is determined that there is no measurement point n + 1, the light emission period n set at the measurement point n is determined. It is set as the light emission period at the measurement point n + 1, and the pulse laser diode emits pulses with the same number of light emission as the measurement point n (STEP: 10).

パルスレーザダイオードが発光され(STEP:11)、前記測距部17で測定点n+1からの反射光を受光し、受光信号が積算され(STEP:12)、測定点n+1での受光信号から測距可能な波形が形成されているかどうかが判断され(STEP:13)、測距が可能な場合は、距離が演算され、レーザ光線の発光が停止され、測定を終了する。或は待機状態に移行する(STEP:14)。   The pulse laser diode emits light (STEP: 11), the reflected light from the measurement point n + 1 is received by the distance measuring unit 17, the received light signal is integrated (STEP: 12), and the distance is measured from the received light signal at the measurement point n + 1. It is determined whether or not a possible waveform is formed (STEP: 13). If distance measurement is possible, the distance is calculated, the emission of the laser beam is stopped, and the measurement ends. Or it shifts to a standby state (STEP: 14).

次に、上記STEP:09に於いて、測定点n+2があると判断された場合、測定点n+1から測定点n+2への移動時間が、測定点n+1と測定点n+2との間の画角と、前記水平駆動部13及び前記鉛直駆動部15の回転速度に基づき演算される(STEP:16)。   Next, in STEP 09, when it is determined that there is a measurement point n + 2, the moving time from the measurement point n + 1 to the measurement point n + 2 is the angle of view between the measurement point n + 1 and the measurement point n + 2. Calculation is performed based on the rotational speeds of the horizontal driving unit 13 and the vertical driving unit 15 (STEP: 16).

演算された移動時間に基づき設定された発光回数が、測定点nでの発光回数、発光周期でよいかどうかが判断され(STEP:17)、よいと判断されれば、測定点nと同一の発光回数、発光周期でパルスレーザダイオードが発光される(STEP:18)。前記測距部17で測定点n+1からの反射光を受光し、受光信号が積算され(STEP:19)、測定点n+1での受光信号から測定可能な波形が形成されているかどうかが判断され(STEP:20)、測距可能な場合は測定点n+1の測距が行われる。   It is determined whether or not the number of times of light emission set based on the calculated travel time is the number of times of light emission at the measurement point n and the light emission period (STEP: 17). The pulse laser diode emits light with the number of times of light emission and the light emission period (STEP: 18). The distance measuring unit 17 receives the reflected light from the measurement point n + 1, integrates the received light signal (STEP: 19), and determines whether a measurable waveform is formed from the received light signal at the measurement point n + 1 ( (STEP 20), if the distance can be measured, the distance of the measurement point n + 1 is measured.

次に測定すべき測定点が存在している限りは、STEP:09〜STEP:16〜STEP:20〜STEP:08が繰返して実行され、次に測定すべき測定点がなくなった場合は、STEP:10〜STEP:14が実行され、測定が終了する。   As long as there are measurement points to be measured next, STEP: 09 to STEP: 16 to STEP: 20 to STEP: 08 are repeatedly executed. : 10 to STEP: 14 are executed, and the measurement is completed.

上記した様に、本実施例では測定対象物の画像を取得し、画像が取得されると、画像中に測定点が設定され、更に測定点に測定順序を設定し、設定した測定順序に従って、測定点について測定を実行する。   As described above, in this embodiment, an image of the measurement object is acquired, and when the image is acquired, measurement points are set in the image, and further, a measurement order is set at the measurement points, and according to the set measurement order, Measure the measurement point.

更に、測定点を測定する条件を設定する場合に、次に測定する測定点があるかどうかが判断され、次に測定する測定点がある場合は、次の測定点に移動する時間を予め演算する。移動時間は、パルス発光が停止した状態であり、この発光が停止された時間を含めて、発光負荷率がリミット値以下となる様にパルス発光周期が設定される。   Furthermore, when setting the conditions for measuring a measurement point, it is determined whether there is a next measurement point to be measured. If there is a next measurement point, the time to move to the next measurement point is calculated in advance. To do. The movement time is a state in which the pulse light emission is stopped, and the pulse light emission cycle is set so that the light emission load factor is equal to or less than the limit value including the time when the light emission is stopped.

尚、発光周期を設定する場合に、パルス数の発光回数が決定されなければならないが、必要となる発光回数は、測定点からの反射光量に依存する。従って、最初の測定、或は発光回数の再設定が必要となる場合は、粗測定を行い、粗測定の結果から発光回数が設定される。又、測定が最初の測定でない場合は、前測定の発光回数がそのまま設定される。これは、隣接する測定点では、距離、反射条件等同一の場合が多く、反射回数の再設定の手順が省略できる。尚、測定点が変ることで、距離、反射条件が変る場合は、粗測定が実行され、発光回数の再設定が行われる。   In setting the light emission period, the number of light emission times of the number of pulses must be determined, but the required number of light emission times depends on the amount of light reflected from the measurement point. Accordingly, when the first measurement or the resetting of the number of times of light emission is necessary, rough measurement is performed, and the number of times of light emission is set from the result of the rough measurement. If the measurement is not the first measurement, the number of times of light emission of the previous measurement is set as it is. This is because the distance and reflection conditions are often the same at adjacent measurement points, and the procedure for resetting the number of reflections can be omitted. If the distance and reflection conditions change due to the change of the measurement point, rough measurement is executed and the number of times of light emission is reset.

移動時間を、発光の休止時間として利用して発光負荷率を設定するバースト測定モードでは、測定時のパルス発光周期を短縮できるので、測定時間が短縮できる。   In the burst measurement mode in which the light emission load factor is set using the movement time as the light emission pause time, the pulse light emission period at the time of measurement can be shortened, so that the measurement time can be shortened.

又、パルス発光周期が予め定めたリミット値を超える場合は、発光素子保護の為、連続測定モードで測定される。従って、測定状況によってバースト測定モードと連続測定モードが混在することになるが、全体としては、測定時間を短縮することができ、又発光休止時間が存在するので、電力の消費量を低減させることができる。   When the pulse emission period exceeds a predetermined limit value, measurement is performed in the continuous measurement mode to protect the light emitting element. Therefore, the burst measurement mode and the continuous measurement mode are mixed depending on the measurement situation, but overall, the measurement time can be shortened, and the light emission pause time exists, so the power consumption can be reduced. Can do.

1 測量装置
4 托架部
5 望遠鏡部
6 表示部
7 操作入力部
8 第1望遠鏡
9 第1撮像部
10 照星照門
11 第2望遠鏡
12 第2撮像部
13 水平駆動部
14 水平測角部
15 鉛直駆動部
17 測距部
18 発光駆動部
21 制御装置
22 制御演算部
23 記憶部
24 画像処理部
25 撮像部選択部
26 画像記憶部
DESCRIPTION OF SYMBOLS 1 Surveying device 4 Elevation part 5 Telescope part 6 Display part 7 Operation input part 8 1st telescope 9 1st imaging part 10 Sight illusion 11 Second telescope 12 2nd imaging part 13 Horizontal drive part 14 Horizontal angle measuring part 15 Vertical drive unit 17 Distance measurement unit 18 Light emission drive unit 21 Control device 22 Control calculation unit 23 Storage unit 24 Image processing unit 25 Imaging unit selection unit 26 Image storage unit

Claims (10)

パルス測距光を測定点に所定発光回数照射して測定点からの反射パルス光を受光し、複数の測定点を順次測定する多点測定方法に於いて、次の測定点迄の移動時間を求め、該移動時間はパルス光の照射を停止し、該移動時間を含み前記所定回数の照射が設定した発光負荷率を超えない様にパルス測距光の発光周期を設定して測定点の測距を実行することを特徴とする多点測定方法。   In a multi-point measurement method in which a pulse ranging light is irradiated to a measurement point a predetermined number of times, a reflected pulse light from the measurement point is received, and a plurality of measurement points are measured in sequence, the travel time to the next measurement point is calculated. The travel time is determined by measuring the measurement point by stopping the pulsed light irradiation and setting the light emission period of the pulse ranging light so that the predetermined number of times of irradiation including the travel time does not exceed the set light emission load factor. A multi-point measurement method characterized by performing a distance. 前記所定発光回数は、測定点に対してパルス測距光を照射して粗測定を行い、該粗測定の測距結果に基づき設定される請求項1の多点測定方法。   The multipoint measurement method according to claim 1, wherein the predetermined number of times of light emission is set based on a rough measurement result obtained by irradiating the measurement point with pulse ranging light and performing a rough measurement. 前記所定発光回数は、前測定で設定された発光回数である請求項1の多点測定方法。   The multipoint measurement method according to claim 1, wherein the predetermined number of times of light emission is the number of times of light emission set in a previous measurement. 前記パルス測距光を測定点に所定発光回数照射して測距を行い、次の測定点に移動する迄の前記移動時間は発光を停止するバースト測定モードと、パルス測距光を発光負荷率を超えない周期で連続して発光する連続測定モードとを有し、前記発光周期が予め定めたリミット周期値を超える場合は、連続測定モードによる測定が実行される請求項1の多点測定方法。   Burst measurement mode in which the pulse ranging light is irradiated to the measurement point for a predetermined number of times of light emission and distance measurement is performed, and the movement time until moving to the next measurement point is stopped. The multi-point measurement method according to claim 1, wherein the measurement is performed in the continuous measurement mode when the light emission period exceeds a predetermined limit period value. . 多点測定が行われる測定対象物について撮像し、前記測定点は撮像された画像上に設定され、前記移動時間は測定点間の画角と測定点間を移動する速度により求められる請求項1の多点測定方法。   2. The measurement object to be subjected to multipoint measurement is imaged, the measurement point is set on the imaged image, and the moving time is obtained from an angle of view between the measurement points and a speed of movement between the measurement points. Multipoint measurement method. 測定対象物を撮像する撮像部と、パルス測距光を射出する発光部と、前記測定対象物にパルス測距光を照射し、測定対象物からの反射光を受光して測距を行う測距部と、前記発光部を駆動する発光駆動部と、前記撮像部と前記測距部とを一体に回転駆動する駆動部と、前記撮像部及び測距部の回転角を検出する測角部と、前記撮像部の撮像を制御し、前記発光駆動部の発光を制御し、前記駆動部の回転駆動を制御する制御装置とを具備し、前記撮像部は少なくとも測定対象物を含む画像を撮像し、該画像中で複数の測定点が設定され、該制御装置は複数の測定点について順次測定を実行する場合に、1つの測定点から次の測定点迄の移動時間を前記画像中の画角と前記駆動部による回転速度に基づき演算し、移動時間中はパルス測距光の射出を停止する様前記発光駆動部を制御することを特徴とする測量装置。   An imaging unit that captures an image of a measurement object, a light emitting unit that emits pulse ranging light, and a measurement object that irradiates the measurement object with pulse ranging light and receives reflected light from the measurement object to perform distance measurement. A distance unit, a light emission drive unit that drives the light emitting unit, a drive unit that integrally rotates the image capturing unit and the distance measuring unit, and an angle measuring unit that detects a rotation angle of the image capturing unit and the distance measuring unit. And a control device that controls imaging of the imaging unit, controls light emission of the light emission driving unit, and controls rotation driving of the driving unit, and the imaging unit captures an image including at least a measurement object Then, when a plurality of measurement points are set in the image and the control device sequentially executes measurement for the plurality of measurement points, the moving time from one measurement point to the next measurement point is calculated. Calculated based on the angle and rotational speed of the drive unit, and emitted pulse ranging light during the travel time Surveying apparatus characterized by controlling the light emission drive unit as to stop. 前記制御装置は、前記移動時間を含み前記所定回数の照射が設定した発光負荷率を超えない様にパルス測距光の発光周期を設定し、該発光周期でパルス測距光を射出する様前記発光駆動部を制御する請求項6の測量装置。   The control device sets the light emission period of the pulse ranging light so that the predetermined number of times of irradiation including the moving time does not exceed the set light emission load factor, and emits the pulse ranging light at the light emission period. The surveying instrument according to claim 6 which controls a light emission drive part. 前記制御装置は、測定点に対してパルス測距光を照射して粗測定を行い、該粗測定の測距結果に基づき前記所定発光回数を設定する請求項6の測量装置。   The surveying device according to claim 6, wherein the control device performs a rough measurement by irradiating a pulse ranging light to a measurement point, and sets the predetermined number of times of light emission based on a distance measurement result of the rough measurement. 前記制御装置は、設定した前記所定発光回数で測距を行った後、次の測定点を測定する場合、前記所定発光回数を保持して発光回数を設定する請求項6の測量装置。   7. The surveying apparatus according to claim 6, wherein the control device holds the predetermined number of times of light emission and sets the number of light emission times when measuring the next measurement point after performing the distance measurement with the set number of times of light emission. 前記制御装置は、前記パルス測距光を測定点に所定発光回数照射して測距を行い、次の測定点に移動する迄の前記移動時間は発光を停止するバースト測定モードと、パルス測距光を発光負荷率を超えない周期で連続して発光する連続測定モードとを択一的に実行可能であり、前記発光周期が予め定めたリミット周期値を超える場合は、連続測定モードによる測定を実行する請求項6の測量装置。   The control device performs the distance measurement by irradiating the pulse distance measuring light to the measurement point a predetermined number of times, and the movement time until moving to the next measurement point is the burst measurement mode in which the light emission is stopped, and the pulse distance measurement. The continuous measurement mode that emits light continuously at a cycle that does not exceed the light emission load factor can be alternatively executed, and when the light emission cycle exceeds a predetermined limit cycle value, measurement in the continuous measurement mode is performed. The surveying device according to claim 6 to be executed.
JP2010050497A 2010-03-08 2010-03-08 Multipoint measuring method and surveying device Active JP5654248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050497A JP5654248B2 (en) 2010-03-08 2010-03-08 Multipoint measuring method and surveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050497A JP5654248B2 (en) 2010-03-08 2010-03-08 Multipoint measuring method and surveying device

Publications (2)

Publication Number Publication Date
JP2011185707A true JP2011185707A (en) 2011-09-22
JP5654248B2 JP5654248B2 (en) 2015-01-14

Family

ID=44792188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050497A Active JP5654248B2 (en) 2010-03-08 2010-03-08 Multipoint measuring method and surveying device

Country Status (1)

Country Link
JP (1) JP5654248B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527575A (en) * 2015-09-21 2018-09-20 イメトラム リミテッドImetrum Limited Device and method for finding a measurement point using an image capture device
JP2019074375A (en) * 2017-10-13 2019-05-16 株式会社リコー Distance measuring device, moving body, distance measuring method, and program
JP2020180841A (en) * 2019-04-24 2020-11-05 株式会社トプコン Positioning device, positioning method, and program
CN112799081A (en) * 2019-11-14 2021-05-14 日立乐金光科技株式会社 Distance measuring device
US11105926B2 (en) 2017-06-08 2021-08-31 Topcon Corporation Phase difference frequency generating method, phase difference frequency generating device and electronic distance meter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028720A (en) * 1998-07-13 2000-01-28 Omron Corp Distance measuring device
JP2006322834A (en) * 2005-05-19 2006-11-30 Nikon Corp Distance measuring instrument and distance measuring method
JP2007327840A (en) * 2006-06-07 2007-12-20 Denso Corp Radar system
JP2008139035A (en) * 2006-11-30 2008-06-19 Yaskawa Electric Corp 3-d environment measurement device and mobile robot provided with the same
JP2008268004A (en) * 2007-04-20 2008-11-06 Topcon Corp Multipoint measuring method and survey instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028720A (en) * 1998-07-13 2000-01-28 Omron Corp Distance measuring device
JP2006322834A (en) * 2005-05-19 2006-11-30 Nikon Corp Distance measuring instrument and distance measuring method
JP2007327840A (en) * 2006-06-07 2007-12-20 Denso Corp Radar system
JP2008139035A (en) * 2006-11-30 2008-06-19 Yaskawa Electric Corp 3-d environment measurement device and mobile robot provided with the same
JP2008268004A (en) * 2007-04-20 2008-11-06 Topcon Corp Multipoint measuring method and survey instrument

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527575A (en) * 2015-09-21 2018-09-20 イメトラム リミテッドImetrum Limited Device and method for finding a measurement point using an image capture device
US11105926B2 (en) 2017-06-08 2021-08-31 Topcon Corporation Phase difference frequency generating method, phase difference frequency generating device and electronic distance meter
JP2019074375A (en) * 2017-10-13 2019-05-16 株式会社リコー Distance measuring device, moving body, distance measuring method, and program
JP7069629B2 (en) 2017-10-13 2022-05-18 株式会社リコー Distance measuring device, moving object, distance measuring method and program
JP2020180841A (en) * 2019-04-24 2020-11-05 株式会社トプコン Positioning device, positioning method, and program
JP7240945B2 (en) 2019-04-24 2023-03-16 株式会社トプコン Positioning device, positioning method and program
CN112799081A (en) * 2019-11-14 2021-05-14 日立乐金光科技株式会社 Distance measuring device
CN112799081B (en) * 2019-11-14 2024-05-14 日立乐金光科技株式会社 Distance measuring device

Also Published As

Publication number Publication date
JP5654248B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
US10473763B2 (en) LiDAR scanner
US8786837B2 (en) Distance measuring apparatus
JP5654248B2 (en) Multipoint measuring method and surveying device
US7936449B1 (en) Method and system for fast calibration of three-dimensional (3D) sensors
EP1519146B1 (en) Position detector
JP2013190272A (en) Three-dimensional laser measuring apparatus and three-dimensional laser measuring method
US9958547B2 (en) Three-dimensional imaging radar system and method based on a plurality of times of integral
US20080024795A1 (en) Three-dimensional shape measuring system, and three-dimensional shape measuring method
US20160299218A1 (en) Time-of-light-based systems using reduced illumination duty cycles
EP3296719A1 (en) Gas concentration measurement device
EP2587215A2 (en) Image measuring system
US11221412B2 (en) Eye-safe laser triangulation measurement system
JP2007256191A (en) Distance measuring method and range finder
JP2010164463A (en) Laser three-dimensional image measuring device
JP2017223489A (en) Survey system
CN111448474A (en) Full-waveform multi-pulse optical distance measuring instrument
JP2001313958A (en) Three-dimensional image reader
JP2005216160A (en) Image generating apparatus, intruder monitoring apparatus and image generating method
JP2017223541A (en) Laser scanner
JP2011021980A (en) Optical range finding device
JP6565128B2 (en) Laser light intensity control apparatus and laser light intensity control method
US20210270969A1 (en) Enhanced depth mapping using visual inertial odometry
JP2014163884A (en) Distance measurement device
CN112740065B (en) Imaging device, method for imaging and method for depth mapping
JP2003294840A (en) Laser range finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250