JP2011185620A - Measuring device of elastic modulus of concrete - Google Patents

Measuring device of elastic modulus of concrete Download PDF

Info

Publication number
JP2011185620A
JP2011185620A JP2010048441A JP2010048441A JP2011185620A JP 2011185620 A JP2011185620 A JP 2011185620A JP 2010048441 A JP2010048441 A JP 2010048441A JP 2010048441 A JP2010048441 A JP 2010048441A JP 2011185620 A JP2011185620 A JP 2011185620A
Authority
JP
Japan
Prior art keywords
concrete
elastic modulus
load
bearing plate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048441A
Other languages
Japanese (ja)
Inventor
Tatsushi Otanaka
達志 大田中
Yuichi Nagano
雄一 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KEISOKU KK
Original Assignee
TOKYO KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KEISOKU KK filed Critical TOKYO KEISOKU KK
Priority to JP2010048441A priority Critical patent/JP2011185620A/en
Publication of JP2011185620A publication Critical patent/JP2011185620A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device of an elastic modulus of concrete for introducing the elastic modulus of concrete which is an important element for evaluating the safely and/or design of a concrete structure such as an underground structure. <P>SOLUTION: A concrete bearing plate 4 on which a strain meter 5 is installed is formed in a non-stress case 2 which is buried in concrete. A pressure jack 7 for applying a load in a direction withstanding concrete pressure applied to the bearing plate is formed between the bearing plate and a specified face in the case. A load meter 9 for measuring the load of the pressure jack is installed. The measurement of the elastic modulus of concrete can be immediately taken out by operation from the outside of the buried concrete at any time if needed. Thus, the device is composed effectively in view of safety control and quality control. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地下構造物等のコンクリート構造物としての安全性や設計評価を行うための重要な要素であるコンクリートの弾性係数を導くためのコンクリートの弾性係数測定装置に関する。   The present invention relates to a concrete elastic modulus measuring device for deriving the elastic modulus of concrete, which is an important element for performing safety and design evaluation as a concrete structure such as an underground structure.

地下構造物等を構築するにあたり、壁や梁はこれに掛かる大きな土圧や水圧に効果的に抵抗できる構造のものでなければならない。そのため地下トンネルや地下道路トンネル等の地下構造物を鉄筋コンクリートで構築するときは、特にコンクリートの持つ高い圧縮強度を利用することとなる。設計された鉄筋コンクリートは、コンクリートの弾性係数を予想して作られている。   When constructing an underground structure, the walls and beams must have a structure that can effectively resist the large earth pressure and water pressure applied to them. Therefore, when constructing underground structures such as underground tunnels and underground road tunnels with reinforced concrete, the high compressive strength of concrete is used. Designed reinforced concrete is made in anticipation of the elastic modulus of concrete.

しかし、鉄筋コンクリート構造物でも、その弾性係数はコンクリート打設後一定ではない。すなわち、鉄筋コンクリート構造物を管理する上で重要なことは、弾性係数を正確に把握し、想定した性質を保有しているかを知ることであるが、特公昭58−1736号公報あるいは特開平8−219910号公報のものでは、弾性係数を把握することはできないものである。
特公昭58−1736号公報 特開平8−219910号公報
However, even in a reinforced concrete structure, the elastic modulus is not constant after placing the concrete. That is, what is important in managing a reinforced concrete structure is to accurately grasp the elastic modulus and know whether it has the assumed properties, but Japanese Patent Publication No. 58-1736 or Japanese Patent Laid-Open No. 8- No. 219910 can not grasp the elastic modulus.
Japanese Patent Publication No.58-1736 Japanese Patent Laid-Open No. 8-219910

しかしながら、コンクリートの弾性係数は、コンクリートの打設直後から刻々と変化し始め10以上の長い年月を経過しないと一定した値にならない。   However, the elastic modulus of concrete begins to change every moment immediately after the concrete is placed, and does not reach a constant value unless a long period of 10 or more has passed.

本発明は、刻々と変化するコンクリートの弾性係数を求めるためのもので、その目的とするところは、必要なときに積極的に荷重を加え、コンクリートの弾性係数を導くためのコンクリートの弾性係数測定装置を提供することにある。   The present invention is for obtaining an elastic coefficient of concrete that changes every moment, and the object of the present invention is to measure the elastic coefficient of concrete in order to derive an elastic coefficient of concrete by applying a load positively when necessary. To provide an apparatus.

上記の目的を達成するため、本発明に係るコンクリートの弾性係数測定装置は、コンクリートの中に埋設する無応力ケース内に、ひずみ計を設置したコンクリート支圧板を設け該支圧板とケース内定面との間に、前記支圧板に掛かるコンクリート圧に対抗する方向に荷重を加える圧力ジャッキを設け、該圧力ジャッキの荷重を測定する荷重計を設置したことを特徴とし、コンクリートの弾性係数の測定が必要に応じてその都度得られるように構成した。   In order to achieve the above object, a concrete elastic modulus measuring apparatus according to the present invention is provided with a concrete bearing plate provided with a strain gauge in a no-stress case embedded in concrete, A pressure jack that applies a load in a direction opposite to the concrete pressure applied to the bearing plate is installed, and a load meter that measures the load of the pressure jack is installed, and it is necessary to measure the elastic modulus of the concrete It was configured so that it could be obtained each time.

また、請求項2に係るコンクリートの弾性係数測定装置は、前記圧力ジャッキが、圧力ホースを介して埋設コンクリート外に設置した圧力源に連係するとともに、前記荷重計及びひずみ計の値を計測ケーブルを介して埋設コンクリート外に取り出せるようになっていることを特徴とし、コンクリートの弾性係数の数値を外部操作で知ることができるように構成した。   The concrete elastic modulus measuring apparatus according to claim 2 is characterized in that the pressure jack is linked to a pressure source installed outside the buried concrete via a pressure hose, and the values of the load meter and strain gauge are measured with a cable. It was designed to be able to be taken out from the buried concrete, and the numerical value of the elastic modulus of the concrete can be known by external operation.

本発明によれば、コンクリートの弾性係数の測定が必要に応じてその都度得られ、安全管理上、品質管理上有効であるという優れた効果を奏するものである。   According to the present invention, the measurement of the elastic modulus of concrete is obtained whenever necessary, and the excellent effect of being effective in terms of safety management and quality control is achieved.

また、請求項2によれば、コンクリートの弾性係数の数値が外部からの操作で即時に確認できるという優れた効果を奏するものである。   Further, according to claim 2, there is an excellent effect that the numerical value of the elastic modulus of concrete can be confirmed immediately by an external operation.

次に、本発明の実施の態様を添付図面に基づいて説明する。図1は本願測定装置の要部を示す断面図、図2は本願測定装置の使用状態を示す断面図である。   Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a main part of the measurement device of the present application, and FIG. 2 is a cross-sectional view showing a usage state of the measurement device of the present application.

図1において、1は本願測定装置である。本願測定装置1はコンクリートの中に埋設する無応力ケース2を備える。無応力ケース2は金属製の内皮と外皮との間に、樹脂発泡体(たとえば、ウレタン樹脂発泡体)3を介装してなる有低円筒体で構成されている。この樹脂発泡体3を介装したのは、その緩衝性によりケース2内に充填させた測定用コンクリートAの測定に際し、ケース外の被測定コンクリートBの応力から有効に遮断(絶縁)できるようにしたものである。   In FIG. 1, reference numeral 1 denotes a measuring device of the present application. The present application measuring apparatus 1 includes a stress-free case 2 embedded in concrete. The stress-free case 2 is constituted by a low-cylinder body in which a resin foam (for example, urethane resin foam) 3 is interposed between a metal inner skin and an outer skin. The resin foam 3 is interposed so that the measurement concrete A filled in the case 2 can be effectively cut off (insulated) from the stress of the concrete B to be measured outside the case due to its buffering property. It is a thing.

前記無応力ケース2内には、その円筒部内壁に摺接した状態でコンクリート支圧板4が挿入されている。該コンクリート支圧板4のケース口2a側の中央には、ひずみ計5が鉛直状に設置されている。このひずみ計5は、前記ケース2内に充填させた測定用コンクリートAの硬化に伴い、前記コンクリート支圧板4に与えるひずみを計測し、その計測値は計測ケーブル6を経て取り出される。   A concrete bearing plate 4 is inserted into the no-stress case 2 while being in sliding contact with the inner wall of the cylindrical portion. In the center of the concrete bearing plate 4 on the case mouth 2a side, a strain gauge 5 is installed vertically. The strain gauge 5 measures the strain applied to the concrete bearing plate 4 as the measuring concrete A filled in the case 2 is cured, and the measured value is taken out via the measuring cable 6.

前記コンクリート支圧板4と前記無応力ケース2の内底面2bとの間には、コンクリート支圧板4に荷重を加えるための圧力ジャッキ(油圧ジャッキを利用することが多い)7と、該圧力ジャッキ7がコンクリート支圧板4に加えた荷重を計測する荷重計9とが設置されている。   Between the concrete bearing plate 4 and the inner bottom surface 2b of the stress-free case 2, a pressure jack 7 (often using a hydraulic jack) for applying a load to the concrete bearing plate 4 and the pressure jack 7 Is installed with a load cell 9 for measuring the load applied to the concrete bearing plate 4.

前記圧力ジャッキ7は、コンクリート支圧板4に対して、前記無応力ケース2のケース口2aからの圧に対抗する方向の荷重を加えるもので、圧力ホース8を介して圧力源(図示せず)に繋がっている。また、前記荷重計9により得た数値は計測ケーブル10により取り出せるようになっている。   The pressure jack 7 applies a load in a direction opposite to the pressure from the case opening 2a of the no-stress case 2 to the concrete bearing plate 4, and a pressure source (not shown) is provided via a pressure hose 8. It is connected to. The numerical value obtained by the load meter 9 can be taken out by the measuring cable 10.

次に、本願測定装置1の作用を説明する。本願測定装置1は、図2に示す如く、打設したコンクリートA内に設置されるから、前記無応力ケース2の内部及び外部にはコンクリートが充満する。しかして、内部のコンクリートBと外部のコンクリートAとは無応力ケース2の口部では繋がっているが、円筒部では内外皮間に介装した樹脂発泡体3を介して絶縁されている。   Next, the operation of the measurement device 1 will be described. As shown in FIG. 2, the measuring device 1 of the present application is installed in the cast concrete A, so that the inside and outside of the stress-free case 2 are filled with concrete. Thus, the inner concrete B and the outer concrete A are connected at the mouth of the stress-free case 2, but the cylindrical portion is insulated via the resin foam 3 interposed between the inner and outer skins.

次に、内部のコンクリートBに、圧力ジャッキ7によりコンクリート支圧板4に荷重を加えると、ひずみ計5の値(ひずみ量)と、荷重計9の値(荷重値)とが同時に計測されてコンクリートの弾性係数が求められる。すなわち、加えた荷重をコンクリート支圧板4の面積で除して応力が求められる(応力=荷重値/支圧板の面積)。この応力をひずみ量で除することにより弾性係数が求められる(弾性係数=応力/ひずみ量)。   Next, when a load is applied to the concrete bearing plate 4 by the pressure jack 7 to the internal concrete B, the value of the strain meter 5 (strain amount) and the value of the load meter 9 (load value) are measured at the same time. Is obtained. In other words, the stress is obtained by dividing the applied load by the area of the concrete bearing plate 4 (stress = load value / area of the bearing plate). The elastic modulus is obtained by dividing this stress by the strain amount (elastic modulus = stress / strain amount).

上記の方法により必要なときに、圧力ジャッキ7を通して積極的に無応力ケース2の内部のコンクリートに荷重を加え、経時的に弾性係数を求める計測を、常に、現場で実施しておけば、コンクリートの弾性係数の正確な測定が可能であり、現場の安全管理及び品質管理を実施することができる。   When it is necessary by the above method, concrete is applied to the concrete inside the unstressed case 2 through the pressure jack 7 and the measurement to obtain the elastic modulus over time is always carried out at the site. It is possible to accurately measure the elastic modulus, and to perform on-site safety management and quality control.

本願は、地下構造物等を構築した後、その変形状態により実際の荷重状態(内部応力状態)を推定し、コンクリート構造物としての安全性や設計評価を行うための重要な要素であるコンクリートの弾性係数を導くためのもので、産業上の利用可能性は極めて高いものである。   In this application, after building an underground structure, the actual load state (internal stress state) is estimated from its deformation state, and the concrete structure is an important element for safety and design evaluation as a concrete structure. It is for deriving the elastic modulus, and its industrial applicability is extremely high.

本願測定装置の要部を示す断面図である。It is sectional drawing which shows the principal part of this application measuring apparatus. 本願測定装置の使用状態を示す断面図である。It is sectional drawing which shows the use condition of this application measuring apparatus.

1 本願測定装置
2 無応力ケース
2a 無応力ケースの口部
2b 底部
3 樹脂発泡体
4 コンクリート支圧板
5 ひずみ計
6 計測ケーブル
7 圧力ジャッキ
8 圧力ホース
9 荷重計
10 計測ケーブル
DESCRIPTION OF SYMBOLS 1 Application device 2 Stress-free case 2a Stress-free case mouth 2b Bottom 3 Resin foam 4 Concrete bearing plate 5 Strain meter 6 Measurement cable 7 Pressure jack 8 Pressure hose 9 Load meter 10 Measurement cable

Claims (2)

コンクリートの中に埋設する無応力ケース内に、ひずみ計を設置したコンクリート支圧板を設け、該支圧板とケース内定面との間に、前記支圧板に掛かるコンクリート圧に対抗する方向に荷重を加える圧力ジャッキを設け、該圧力ジャッキの荷重を測定する荷重計を設置したことを特徴とするコンクリートの弾性係数測定装置。   A concrete bearing plate equipped with a strain gauge is installed in a stress-free case embedded in concrete, and a load is applied between the bearing plate and the surface inside the case in a direction that opposes the concrete pressure applied to the bearing plate. A concrete elastic modulus measuring apparatus comprising a pressure jack and a load meter for measuring a load of the pressure jack. 前記圧力ジャッキが、圧力ホースを介して埋設コンクリート外に設置した圧力源に連係するとともに、前記荷重計及びひずみ計の値を計測ケーブルを介して埋設コンクリート外に取り出せるようになっていることを特徴とする請求項1に記載のコンクリートの弾性係数測定装置。   The pressure jack is linked to a pressure source installed outside the buried concrete via a pressure hose, and the values of the load meter and strain gauge can be taken out of the buried concrete via a measurement cable. The concrete elastic modulus measuring apparatus according to claim 1.
JP2010048441A 2010-03-04 2010-03-04 Measuring device of elastic modulus of concrete Pending JP2011185620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048441A JP2011185620A (en) 2010-03-04 2010-03-04 Measuring device of elastic modulus of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048441A JP2011185620A (en) 2010-03-04 2010-03-04 Measuring device of elastic modulus of concrete

Publications (1)

Publication Number Publication Date
JP2011185620A true JP2011185620A (en) 2011-09-22

Family

ID=44792117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048441A Pending JP2011185620A (en) 2010-03-04 2010-03-04 Measuring device of elastic modulus of concrete

Country Status (1)

Country Link
JP (1) JP2011185620A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334315A (en) * 2015-10-19 2016-02-17 中冶建筑研究总院有限公司 Measuring method of temperature shrinkage stress of mass concrete structures
CN107764437A (en) * 2017-10-30 2018-03-06 太原理工大学 Drawing and pressing type concrete stress sensor
JP2019514005A (en) * 2016-04-12 2019-05-30 セイフサーティファイドストラクチャー テクノロジア エス.アール.エル. Method and apparatus for measuring the stress of aggregate structures
CN110231457A (en) * 2019-07-05 2019-09-13 中冶集团武汉勘察研究院有限公司 A kind of test macro and method of structured clays elasticity modulus
CN110398429A (en) * 2019-06-24 2019-11-01 武汉大学 A kind of concrete filled steel tube Experimental Study on Seismic Behavior device and test method considering that work progress influences
CN110907273A (en) * 2019-11-15 2020-03-24 河北科技大学 Elasticity modulus measuring device of biomass granular fuel and using method thereof
CN111208011A (en) * 2020-02-26 2020-05-29 王琰 Coal ash evaporates presses aerated concrete block intensity detection device
CN111398038A (en) * 2020-04-29 2020-07-10 中铁二十局集团有限公司 Elastic modulus tester
CN111965060A (en) * 2020-08-03 2020-11-20 河海大学 Press-in type on-site modulus of resilience measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282285A (en) * 1975-12-27 1977-07-09 Ouyou Keisoku Kougiyou Kk Method of and apparatus for measuring young*s modulus of secularly hardening material
JPS581736B2 (en) * 1977-09-20 1983-01-12 鹿島建設株式会社 Concrete effective stress detection device
JPS60128325A (en) * 1983-12-15 1985-07-09 Kyowa Dengiyou:Kk Detecting device of young's modulus of concrete
JPS6341749U (en) * 1986-09-04 1988-03-18
JPH08219910A (en) * 1995-02-14 1996-08-30 Mizushigen Kaihatsu Kodan Zero stress detector for concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282285A (en) * 1975-12-27 1977-07-09 Ouyou Keisoku Kougiyou Kk Method of and apparatus for measuring young*s modulus of secularly hardening material
JPS581736B2 (en) * 1977-09-20 1983-01-12 鹿島建設株式会社 Concrete effective stress detection device
JPS60128325A (en) * 1983-12-15 1985-07-09 Kyowa Dengiyou:Kk Detecting device of young's modulus of concrete
JPS6341749U (en) * 1986-09-04 1988-03-18
JPH08219910A (en) * 1995-02-14 1996-08-30 Mizushigen Kaihatsu Kodan Zero stress detector for concrete

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334315A (en) * 2015-10-19 2016-02-17 中冶建筑研究总院有限公司 Measuring method of temperature shrinkage stress of mass concrete structures
JP2019514005A (en) * 2016-04-12 2019-05-30 セイフサーティファイドストラクチャー テクノロジア エス.アール.エル. Method and apparatus for measuring the stress of aggregate structures
CN107764437A (en) * 2017-10-30 2018-03-06 太原理工大学 Drawing and pressing type concrete stress sensor
CN107764437B (en) * 2017-10-30 2023-10-31 太原理工大学 Tension-compression type concrete stress sensor
CN110398429A (en) * 2019-06-24 2019-11-01 武汉大学 A kind of concrete filled steel tube Experimental Study on Seismic Behavior device and test method considering that work progress influences
CN110231457A (en) * 2019-07-05 2019-09-13 中冶集团武汉勘察研究院有限公司 A kind of test macro and method of structured clays elasticity modulus
CN110907273A (en) * 2019-11-15 2020-03-24 河北科技大学 Elasticity modulus measuring device of biomass granular fuel and using method thereof
CN111208011A (en) * 2020-02-26 2020-05-29 王琰 Coal ash evaporates presses aerated concrete block intensity detection device
CN111398038A (en) * 2020-04-29 2020-07-10 中铁二十局集团有限公司 Elastic modulus tester
CN111398038B (en) * 2020-04-29 2021-05-14 中铁二十局集团有限公司 Elastic modulus tester
CN111965060A (en) * 2020-08-03 2020-11-20 河海大学 Press-in type on-site modulus of resilience measuring device

Similar Documents

Publication Publication Date Title
JP2011185620A (en) Measuring device of elastic modulus of concrete
Terry et al. Creep and shrinkage in concrete-filled steel tubes
Bagge et al. In-situ methods to determine residual prestress forces in concrete bridges
Chen et al. External radial stress changes and axial capacity for suction caissons in soft clay
TWI540238B (en) Slope stabilization system
KR101294136B1 (en) Device for prediction underground dynamic behavior by using acoustic emission sensor and producing method thereof
Kou et al. Pullout performance of GFRP anti-floating anchor in weathered soil
Bica et al. Instrumentation and axial load testing of displacement piles
Zou et al. Influence of creep and drying shrinkage of reinforced concrete shear walls on the axial shortening of high-rise buildings
CN104897111A (en) Embedded type strain gauge
KR101432069B1 (en) Apparatus and methode for measuring in-situ stress of rock using overcoring
CN103913514A (en) Method for monitoring temperature and gradient cracks of large-volume concrete
MacDougall et al. Measured load capacity of buried reinforced concrete pipes
JP6179767B2 (en) Tunnel lining arch concrete stop management method
CN104897324A (en) Concrete strain gauge
KR101184048B1 (en) Early-age concrete strength estimation apparatus and method for using impedance
JP6337375B2 (en) Tunnel repair method by cavity filling
KR101331015B1 (en) Apparatus for Estimating Thermal Crack Susceptibility of Concrete and Method using thereof
EP3545275B1 (en) An integrated system and method for measuring deformations and/or stresses in one-dimensional elements
Flynn et al. Instrumented concrete pile tests–part 1: a review of instrumentation and procedures
CN203053966U (en) Device for monitoring steel bar corrosion in concrete structure
Lee et al. Measurement of bar strain during pull-out tests: use of electrical resistance gauge methods under large displacement
Shen et al. Distributed settlement and lateral displacement monitoring for shield tunnel based on an improved conjugated beam method
JP6993066B2 (en) Diagnostic method for concrete structures
KR101385083B1 (en) Prestress concrete structure providing exposed tendon and tensible force measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140417