JP2011182871A - Illumination optical system and endoscope - Google Patents

Illumination optical system and endoscope Download PDF

Info

Publication number
JP2011182871A
JP2011182871A JP2010049306A JP2010049306A JP2011182871A JP 2011182871 A JP2011182871 A JP 2011182871A JP 2010049306 A JP2010049306 A JP 2010049306A JP 2010049306 A JP2010049306 A JP 2010049306A JP 2011182871 A JP2011182871 A JP 2011182871A
Authority
JP
Japan
Prior art keywords
phosphor
light
excitation light
illumination
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010049306A
Other languages
Japanese (ja)
Inventor
Makito Komukai
牧人 小向
Akira Mizuyoshi
明 水由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010049306A priority Critical patent/JP2011182871A/en
Publication of JP2011182871A publication Critical patent/JP2011182871A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/304Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using chemi-luminescent materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination optical system using a fluorescent body by which excited light can be effectively utilized. <P>SOLUTION: The first illumination optical system 52 is configured to include the fluorescent body 60 and a cover glass 62. In the cover glass 62, the dichroic film 64 is formed in the opposite surface 62a opposite to the fluorescent body 60. The dichroic film 64 has an optical property for reflecting the excited light of the fluorescent body 60 and transmitting white light which is the fluorescent light of the fluorescent body 60. The excited light transmitting through the fluorescent body 60 is reflected by the dichroic film 64 and is incident on the fluorescent body 60 again. Thus, the excited light once transmitting through the fluorescent body 60 is incident on the fluorescent body 60 again and the fluorescent body 60 is excited by the excited light again, and thus the excited light can be effectively utilized. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、蛍光体を用いた照明光学系、及びこの照明光学系を備えた内視鏡に関する。   The present invention relates to an illumination optical system using a phosphor and an endoscope including the illumination optical system.

所定の波長の励起光が入射した際に、その励起光を吸収して励起し、白色の蛍光を発する3波長型の蛍光体を照明光学系に用いた内視鏡が、特許文献1で提案されている。このように蛍光体を用いた照明光学系では、発光ダイオードやレーザダイオードなどの半導体発光素子を光源とすることができ、光源の低消費電力化や長寿命化、安全性の向上などを図ることができる。さらに、3波長型の蛍光体は、可視域全体に亘って比較的フラットな波長特性の白色光を発するので、演色性に優れた照明を行うことができる。   Patent Document 1 proposes an endoscope that uses a three-wavelength phosphor that absorbs and excites excitation light having a predetermined wavelength and emits white fluorescence in an illumination optical system. Has been. In this way, in an illumination optical system using a phosphor, a semiconductor light emitting element such as a light emitting diode or a laser diode can be used as a light source, so that the power consumption of the light source is reduced, the lifetime is increased, and safety is improved. Can do. Furthermore, since the three-wavelength phosphor emits white light with a relatively flat wavelength characteristic over the entire visible range, illumination with excellent color rendering can be performed.

また、特許文献1では、励起光を透過させ、蛍光として発せられた白色光を反射させる特性を有する光学フィルタを光源と蛍光体との間に配置し、蛍光体の後側に向かう白色光を前側に導くようにしている。蛍光体を用いた照明光学系には、光量があまり高くないという問題があるが、上記のように光学フィルタを設け、後側に向かう白色光を前側に導くようにすれば、照明光として照射される白色光の光量を高めることができる。   Moreover, in patent document 1, the optical filter which has the characteristic which permeate | transmits excitation light and reflects the white light emitted as fluorescence is arrange | positioned between a light source and fluorescent substance, and the white light which goes to the back side of fluorescent substance is I try to lead it to the front. The illumination optical system using a phosphor has a problem that the amount of light is not so high. However, if an optical filter is provided as described above to guide the white light toward the rear side to the front side, the illumination light is irradiated as illumination light. The amount of white light emitted can be increased.

特開2005−294288号公報JP 2005-294288 A

蛍光体に入射した励起光の一部は、蛍光体に吸収されることなく、そのまま蛍光体を透過してしまう。こうした励起光の透過は、当然、発せられる蛍光の光量の低下に繋がる。特許文献1では、光学フィルタを設けることによって、蛍光体から発せられた蛍光を効率良く照明光として利用できるようにしているが、蛍光体を透過する励起光については、何ら考慮がなされていない。このため、蛍光体を用いた照明光学系では、励起光を効率良く利用できるようにし、蛍光体を透過する励起光に起因する光量の低下を防止することが望まれている。   A part of the excitation light incident on the phosphor passes through the phosphor as it is without being absorbed by the phosphor. Such transmission of excitation light naturally leads to a decrease in the amount of emitted fluorescence. In Patent Document 1, an optical filter is provided so that fluorescence emitted from a phosphor can be efficiently used as illumination light. However, no consideration is given to excitation light transmitted through the phosphor. For this reason, in an illumination optical system using a phosphor, it is desired to make it possible to efficiently use excitation light and to prevent a decrease in the amount of light due to the excitation light transmitted through the phosphor.

本発明は、上記課題を鑑みてなされたものであり、蛍光体を用いた照明光学系において、励起光を効率良く利用できるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to make it possible to efficiently use excitation light in an illumination optical system using a phosphor.

上記目的を達成するため、本発明の照明光学系は、所定の波長の励起光が入射した際に、その励起光を吸収して励起し、前記励起光とは異なる波長の蛍光を発する蛍光体と、前記励起光を反射させ、前記蛍光を透過させる光学特性を有し、前記蛍光体を透過した前記励起光が前記蛍光体に向けて反射するように、前記蛍光体の前方に配置された反射部材とを備えたことを特徴とする。   To achieve the above object, the illumination optical system of the present invention is a phosphor that absorbs and excites excitation light having a predetermined wavelength and emits fluorescence having a wavelength different from that of the excitation light. And having an optical characteristic of reflecting the excitation light and transmitting the fluorescence, and disposed in front of the phosphor so that the excitation light transmitted through the phosphor is reflected toward the phosphor. And a reflecting member.

前記反射部材は、透光性のある材料で略板状に形成され、前記蛍光体と対向して配置される基板と、前記光学特性を有し、前記基板の前記蛍光体との対向面に形成されるダイクロイック膜とからなることが好ましい。この際、前記対向面は、凹曲面状に形成されていることが好ましい。さらに、前記蛍光体に前記励起光を入射させる光源を備えると、より好適である。   The reflecting member is formed in a substantially plate shape with a light-transmitting material, has a substrate disposed to face the phosphor, has the optical characteristics, and is disposed on a surface of the substrate facing the phosphor. The dichroic film is preferably formed. At this time, the facing surface is preferably formed in a concave curved surface shape. Furthermore, it is more preferable to provide a light source that causes the excitation light to enter the phosphor.

また、本発明は、挿入部の先端に設けられた照明窓から観察対象を照明するための照明光を照射する内視鏡において、所定の波長の励起光が入射した際に、その励起光を吸収して励起し、白色の蛍光を発する蛍光体と、前記励起光を反射させ、前記蛍光を透過させる光学特性を有し、前記蛍光体を透過した前記励起光が前記蛍光体に向けて反射するように、前記蛍光体の前方に配置された反射部材とからなり、前記蛍光を照明光として前記照明窓から照射する照明光学系を備えたことを特徴とする。   Further, according to the present invention, when an excitation light having a predetermined wavelength is incident on an endoscope that emits illumination light for illuminating an observation target from an illumination window provided at the distal end of the insertion portion, the excitation light is A phosphor that absorbs and excites and emits white fluorescence, and has an optical characteristic that reflects the excitation light and transmits the fluorescence, and the excitation light transmitted through the phosphor reflects toward the phosphor. As described above, the illumination optical system includes a reflecting member disposed in front of the phosphor and irradiates the fluorescence from the illumination window as illumination light.

本発明では、蛍光体の前方に反射部材を配置し、蛍光体を透過した励起光が蛍光体に向けて反射するようにした。こうすれば、反射部材で反射した励起光が再び蛍光体に入射し、一度蛍光体を透過した励起光によって再度励起が行われるので、励起光を効率良く利用することができ、蛍光体を透過する励起光に起因する光量の低下を防ぐことができる。   In the present invention, a reflecting member is disposed in front of the phosphor so that the excitation light transmitted through the phosphor is reflected toward the phosphor. In this way, the excitation light reflected by the reflecting member is incident on the phosphor again and is excited again by the excitation light once transmitted through the phosphor, so that the excitation light can be used efficiently and transmitted through the phosphor. It is possible to prevent a decrease in the amount of light caused by the excitation light that is generated.

内視鏡システムの構成を示す説明図である。It is explanatory drawing which shows the structure of an endoscope system. 先端面の構成を示す平面図である。It is a top view which shows the structure of a front end surface. 先端部の内部の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure inside a front-end | tip part. 第1照明光学系の構成を概略的に示す説明図である。It is explanatory drawing which shows the structure of a 1st illumination optical system roughly. カバーガラスの対向面を凹曲面状にした例を示す説明図である。It is explanatory drawing which shows the example which made the opposing surface of the cover glass the concave curved surface shape. 実験及びシミュレーションの評価モデルの構成を示す説明図である。It is explanatory drawing which shows the structure of the evaluation model of experiment and simulation. 実験及びシミュレーションの結果を示すグラフである。It is a graph which shows the result of experiment and simulation. 照明光学系に光源を設けた例を示す断面図である。It is sectional drawing which shows the example which provided the light source in the illumination optical system.

図1に示すように、内視鏡システム2は、患者の体腔内を撮影する電子内視鏡10と、内視鏡画像を生成するプロセッサ装置12と、内視鏡画像を表示するモニタ14と、体腔内に送り込む水を貯留する送水タンク16とからなる。   As shown in FIG. 1, an endoscope system 2 includes an electronic endoscope 10 that images a patient's body cavity, a processor device 12 that generates an endoscope image, and a monitor 14 that displays the endoscope image. And a water supply tank 16 for storing water to be sent into the body cavity.

プロセッサ装置12には、発光ダイオード18(以下、LED18と称す)が設けられている。LED18は、約405nmの波長の近紫外光を照射する。この近紫外光は、患者の体腔内を照明するために用いられる。プロセッサ装置12は、所定の導光路を介してLED18の近紫外光を電子内視鏡10に入射させる。   The processor device 12 is provided with a light emitting diode 18 (hereinafter referred to as an LED 18). The LED 18 emits near-ultraviolet light having a wavelength of about 405 nm. This near-ultraviolet light is used to illuminate the patient's body cavity. The processor device 12 causes the near-ultraviolet light of the LED 18 to enter the electronic endoscope 10 through a predetermined light guide path.

さらに、プロセッサ装置12には、図示を省略したポンプが設けられている。プロセッサ装置12は、このポンプを駆動することにより、送気送水用の空気を電子内視鏡10に送り込む。このように、プロセッサ装置12は、内視鏡画像を生成する機能に加え、近紫外光、及び送気送水用の空気を電子内視鏡10に供給する機能を有している。   Further, the processor device 12 is provided with a pump (not shown). The processor device 12 feeds air for air / water feeding into the electronic endoscope 10 by driving the pump. As described above, the processor device 12 has a function of supplying near-ultraviolet light and air for air supply and water supply to the electronic endoscope 10 in addition to a function for generating an endoscope image.

電子内視鏡10は、患者の体腔内に挿入される挿入部20と、挿入部20の基端部分に連設され、医師や技師などの術者が手元で操作を行なう操作部22と、操作部22から延びるユニバーサルコード24とからなる。   The electronic endoscope 10 includes an insertion unit 20 that is inserted into a body cavity of a patient, an operation unit 22 that is connected to a proximal end portion of the insertion unit 20 and that is operated by a surgeon such as a doctor or a technician, It consists of a universal cord 24 extending from the operation unit 22.

挿入部20は、直径約10mmの細管状に形成されており、先端から順に、先端部26、湾曲部27、及び可撓管部28で構成されている。先端部26は、硬質な樹脂材料で形成されている。この先端部26の先端面26aには、観察対象からの像光を取り込むための観察窓40(図2参照)が設けられている。可撓管部28は、細径かつ長尺な管状に形成されるとともに、可撓性を有しており、操作部22と湾曲部27とを接続する。   The insertion portion 20 is formed in a narrow tube having a diameter of about 10 mm, and is composed of a distal end portion 26, a bending portion 27, and a flexible tube portion 28 in order from the distal end. The tip portion 26 is formed of a hard resin material. An observation window 40 (see FIG. 2) for capturing image light from the observation target is provided on the distal end surface 26a of the distal end portion 26. The flexible tube portion 28 is formed in a thin and long tubular shape and has flexibility, and connects the operation portion 22 and the bending portion 27.

湾曲部27は、操作部22に設けられた上下用操作ノブ30及び左右用操作ノブ31の回転操作に応じて上下左右に湾曲するように構成されている。操作部22の内部には、上下用操作ノブ30の回転操作に従動して回転するプーリと、左右用操作ノブ31の回転操作に従動して回転するプーリとが設けられている。各プーリには、ワイヤが巻き掛けられている。各ワイヤは、その両端部が湾曲部27に接続されており、各ノブ30、31の回転操作にともなう各プーリの回転に従動して湾曲部27を押し引きする。   The bending portion 27 is configured to bend up, down, left, and right according to the rotation operation of the up / down operation knob 30 and the left / right operation knob 31 provided in the operation unit 22. Inside the operation unit 22, there are provided a pulley that rotates following the rotation operation of the up / down operation knob 30 and a pulley that rotates following the rotation operation of the left / right operation knob 31. A wire is wound around each pulley. Both ends of each wire are connected to the bending portion 27, and push and pull the bending portion 27 following the rotation of each pulley accompanying the rotation operation of each knob 30, 31.

これにより、上下用操作ノブ30を回転操作すると、湾曲部27が上下方向に湾曲し、左右用操作ノブ31を回転操作すると、湾曲部27が左右方向に湾曲する。術者は、各ノブ30、31を回転操作して湾曲部27を湾曲させ、先端面26aに設けられた観察窓40を任意の方向に向けることにより、体腔内の観察を行う。   Thereby, when the up / down operation knob 30 is rotated, the bending portion 27 is bent in the up / down direction, and when the left / right operation knob 31 is rotated, the bending portion 27 is bent in the left / right direction. The surgeon rotates the knobs 30 and 31 to bend the bending portion 27 and directs the observation window 40 provided on the distal end surface 26a in an arbitrary direction, thereby observing the inside of the body cavity.

操作部22には、各ノブ30、31の他に、鉗子やスネアなどといった処置具を挿入するための処置具挿入口32、観察窓40や体腔内に空気や水を送り込む送気送水を行うための送気送水ボタン33、及び体腔内に溜まった空気や残渣、体液などの吸引を行うための吸引ボタン34などが設けられている。   In addition to the knobs 30 and 31, the operation unit 22 performs air supply and water supply for supplying air and water into the treatment instrument insertion port 32 for inserting a treatment instrument such as forceps and a snare, the observation window 40, and the body cavity. There are provided an air supply / water supply button 33 for suction, a suction button 34 for sucking air, residue, body fluid and the like accumulated in the body cavity.

ユニバーサルコード24の操作部22と反対側の端部には、プロセッサ装置12から供給される光及び空気を取り込むための第1コネクタ36と、電源や各種の制御信号の伝送に用いられる第2コネクタ37とが設けられている。電子内視鏡10は、これらの各コネクタ36、37を介してプロセッサ装置12に着脱自在に接続される。   The end of the universal cord 24 opposite to the operation unit 22 has a first connector 36 for taking in light and air supplied from the processor device 12 and a second connector used for transmitting power and various control signals. 37 is provided. The electronic endoscope 10 is detachably connected to the processor device 12 through these connectors 36 and 37.

第1コネクタ36には、送気送水チューブ38が着脱自在に接続されるジョイントが設けられている。送水タンク16は、この送気送水チューブ38を介して第1コネクタ36に接続されている。送水タンク16に貯留された水は、送気送水チューブ38及び第1コネクタ36を介して電子内視鏡10に供給され、送気送水ボタン33の操作に応じて先端部26から吐出される。   The first connector 36 is provided with a joint to which an air / water supply tube 38 is detachably connected. The water supply tank 16 is connected to the first connector 36 via the air / water supply tube 38. The water stored in the water supply tank 16 is supplied to the electronic endoscope 10 via the air / water supply tube 38 and the first connector 36, and is discharged from the distal end portion 26 according to the operation of the air / water supply button 33.

図2に示すように、先端部26の先端面26aには、観察対象からの像光を取り込むための観察窓40と、照明光を出射させるための第1及び第2の2つの照明窓42、44と、処置具挿入口32に挿入した処置具の先端を露呈させる処置具出口46と、送気送水ボタン33の操作に応じて空気又は水を吐出する送気送水ノズル48とが設けられている。処置具挿入口32と処置具出口46とを接続する鉗子チャンネルは、吸引を行うための吸引管路も兼ねている。従って、吸引ボタン34を操作すると、処置具出口46から空気や体液などが吸引される。   As shown in FIG. 2, the distal end surface 26 a of the distal end portion 26 has an observation window 40 for capturing image light from the observation target, and first and second illumination windows 42 for emitting illumination light. , 44, a treatment instrument outlet 46 that exposes the distal end of the treatment instrument inserted into the treatment instrument insertion port 32, and an air / water supply nozzle 48 that discharges air or water according to the operation of the air / water supply button 33. ing. The forceps channel connecting the treatment instrument insertion port 32 and the treatment instrument outlet 46 also serves as a suction conduit for performing suction. Accordingly, when the suction button 34 is operated, air, body fluid, and the like are sucked from the treatment instrument outlet 46.

観察窓40、及び各照明窓42、44は、略円形に形成された開口である。観察窓40からは、観察対象からの像光を結像するための観察光学系50の一部が露呈している。各照明窓42、44からは、それぞれ第1照明光学系52、第2照明光学系54の一部が露呈している。各照明光学系52、54は、プロセッサ装置12から供給される近紫外光を基に、白色の照明光を生成し、その照明光を各照明窓42、44から照射する。   The observation window 40 and the illumination windows 42 and 44 are openings formed in a substantially circular shape. From the observation window 40, a part of the observation optical system 50 for forming the image light from the observation object is exposed. From each of the illumination windows 42 and 44, a part of the first illumination optical system 52 and the second illumination optical system 54 is exposed. Each illumination optical system 52, 54 generates white illumination light based on near-ultraviolet light supplied from the processor device 12, and irradiates the illumination light from each illumination window 42, 44.

これらの各光学系50、52、54の一端部は、各窓40、42、44に緊密に嵌め込まれている。これにより、各窓40、42、44を介して体液などが内部に浸入してしまうことを防ぐことができる。また、各光学系50、52、54の一端部は、それぞれ先端面26aと略面一になっている。   One end of each of these optical systems 50, 52, 54 is closely fitted in each window 40, 42, 44. Thereby, it can prevent that a bodily fluid etc. penetrate | invade into an inside via each window 40,42,44. One end of each optical system 50, 52, 54 is substantially flush with the tip surface 26a.

各照明窓42、44は、観察窓40を挟み、かつ観察窓40に対して略対称となるように配置されている。このように2つの照明窓42、44を配置し、ほぼ等しい光量の照明光を各照明窓42、44から照射することにより、観察窓40の観察領域の全体に亘って均一に照明し、観察領域内に照明ムラが生じることを抑えることができる。   The illumination windows 42 and 44 are disposed so as to be substantially symmetrical with respect to the observation window 40 with the observation window 40 interposed therebetween. By arranging the two illumination windows 42 and 44 in this way and irradiating substantially equal amounts of illumination light from the illumination windows 42 and 44, the entire observation region of the observation window 40 is illuminated uniformly and observed. It is possible to suppress uneven illumination in the region.

送気送水ノズル48は、吐出する空気又は水が観察窓40に向かうように形成されている。これにより、送気送水ノズル48から吐出される水によって観察窓40が洗浄され、観察窓40に付着した血液や粘液などを洗い流すことができる。   The air / water nozzle 48 is formed so that the air or water to be discharged is directed toward the observation window 40. Thereby, the observation window 40 is washed with water discharged from the air / water supply nozzle 48, and blood, mucus, and the like attached to the observation window 40 can be washed away.

図3は、図2のA−a線(各照明窓42、44の中心を通る線)で切断した先端部26の断面を概略的に示す断面図である。図3に示すように、観察光学系50の奥には、イメージセンサ55が設けられている。観察光学系50は、複数枚のレンズを組み合わせて構成され、観察窓40を介して入射した像光をイメージセンサ55の撮像面に結像させる。イメージセンサ55は、観察光学系50が結像した像光を撮像し、その像光に応じた撮像信号を出力する。このイメージセンサ55は、配線を介して第2コネクタ37と電気的に接続されている。そして、イメージセンサ55は、第2コネクタ37を介してプロセッサ装置12と電気的に接続される。   3 is a cross-sectional view schematically showing a cross section of the distal end portion 26 cut along the line Aa in FIG. 2 (a line passing through the centers of the illumination windows 42 and 44). As shown in FIG. 3, an image sensor 55 is provided in the back of the observation optical system 50. The observation optical system 50 is configured by combining a plurality of lenses, and forms image light incident through the observation window 40 on the imaging surface of the image sensor 55. The image sensor 55 captures the image light formed by the observation optical system 50 and outputs an image signal corresponding to the image light. The image sensor 55 is electrically connected to the second connector 37 through wiring. The image sensor 55 is electrically connected to the processor device 12 via the second connector 37.

プロセッサ装置12は、イメージセンサ55から出力される撮像信号に対して画像処理を行うとともに、コンポジット信号やコンポーネント信号などの映像信号にエンコードし、その映像信号をモニタ14に出力する。これにより、患者の体腔内などを撮影した内視鏡画像がモニタ14に表示される。なお、イメージセンサ55には、例えば、CCDイメージセンサやCMOSイメージセンサが用いられる。   The processor device 12 performs image processing on the imaging signal output from the image sensor 55, encodes it into a video signal such as a composite signal or a component signal, and outputs the video signal to the monitor 14. As a result, an endoscopic image of the patient's body cavity or the like is displayed on the monitor 14. As the image sensor 55, for example, a CCD image sensor or a CMOS image sensor is used.

第1照明光学系52の奥には、第1ライトガイド56が設けられている。同様に、第2照明光学系54の奥には、第2ライトガイド57が設けられている。各ライトガイド56、57は、可撓性を有する光ファイバを多数束ねることによって形成されている。各ライトガイド56、57は、一方の端面を各照明光学系52、54と対面させ、挿入部20、操作部22、及びユニバーサルコード24の内部を通って、他方の端面を第1コネクタ36から露呈させている。そして、各ライトガイド56、57は、第1コネクタ36がプロセッサ装置12に接続された際に、プロセッサ装置12内に設けられた光出射面に前記他方の端面を対面させる。これにより、プロセッサ装置12に設けられたLED18からの近紫外光が各ライトガイド56、57によって案内され、各照明光学系52、54に入射する。   A first light guide 56 is provided in the back of the first illumination optical system 52. Similarly, a second light guide 57 is provided in the back of the second illumination optical system 54. Each of the light guides 56 and 57 is formed by bundling a number of flexible optical fibers. Each light guide 56, 57 has one end face facing each illumination optical system 52, 54, passes through the insertion part 20, operation part 22, and universal cord 24, and the other end face from the first connector 36. It is exposed. Each of the light guides 56 and 57 causes the other end face to face a light emitting surface provided in the processor device 12 when the first connector 36 is connected to the processor device 12. As a result, near-ultraviolet light from the LED 18 provided in the processor device 12 is guided by the light guides 56 and 57 and enters the illumination optical systems 52 and 54.

図4に示すように、第1照明光学系52は、蛍光体60と、カバーガラス(基板)62とで構成されている。蛍光体60とカバーガラス62とは、それぞれの光学中心が第1ライトガイド56の光軸と一致するように配置される。なお、第2照明光学系54の構成は、第1照明光学系52の構成と同じであるので、第2照明光学系54の構成の説明は省略する。   As shown in FIG. 4, the first illumination optical system 52 includes a phosphor 60 and a cover glass (substrate) 62. The phosphor 60 and the cover glass 62 are arranged so that their optical centers coincide with the optical axis of the first light guide 56. Note that the configuration of the second illumination optical system 54 is the same as the configuration of the first illumination optical system 52, and thus the description of the configuration of the second illumination optical system 54 is omitted.

蛍光体60は、約405nmの波長の近紫外光が入射した際に、その近紫外光を吸収して励起し、白色の蛍光を発する、いわゆる3波長型の蛍光体である。蛍光体60は、上記特性を有する蛍光材料によって平行平板状に形成され、第1ライトガイド56の出射端面56aと対向するように配置されている。これにより、第1ライトガイド56から出射された近紫外光が蛍光体60に入射し、蛍光体60が励起される。   The phosphor 60 is a so-called three-wavelength phosphor that absorbs near-ultraviolet light when excited by near-ultraviolet light having a wavelength of about 405 nm and emits white fluorescence. The phosphor 60 is formed in a parallel plate shape with the phosphor material having the above characteristics, and is disposed so as to face the emission end surface 56 a of the first light guide 56. Thereby, the near-ultraviolet light emitted from the first light guide 56 enters the phosphor 60, and the phosphor 60 is excited.

カバーガラス62は、第1照明窓42の形状に応じた円板状に形成されている。このカバーガラス62には、透光性のある無色透明な周知の光学ガラスが用いられている。カバーガラス62は、蛍光体60の前方に蛍光体60と対向して配置され、その表面が先端面26aと略面一になるように、第1照明窓42に緊密に嵌め込まれる。   The cover glass 62 is formed in a disc shape corresponding to the shape of the first illumination window 42. For the cover glass 62, a transparent and colorless and transparent known optical glass is used. The cover glass 62 is disposed in front of the phosphor 60 so as to face the phosphor 60, and is closely fitted into the first illumination window 42 so that the surface thereof is substantially flush with the tip surface 26a.

カバーガラス62には、蛍光体60と対向する対向面62aにダイクロイック膜64が形成されている。ダイクロイック膜64は、蛍光体60の励起光である近紫外光を反射させ、蛍光体60の蛍光である白色光を透過させる光学特性を有している。すなわち、本例では、カバーガラス62とダイクロイック膜64とによって、請求項記載の反射部材が構成されている。なお、上記光学特性を有するダイクロイック膜64は、周知のように、誘電体の多層膜によって形成すればよい。また、ダイクロイック膜64の光学特性は、少なくとも励起光を反射させ、蛍光を透過させるものであればよく、これら以外の波長の光については、反射させても透過させてもよい。   A dichroic film 64 is formed on the cover glass 62 on the facing surface 62 a facing the phosphor 60. The dichroic film 64 has an optical characteristic of reflecting near-ultraviolet light that is excitation light of the phosphor 60 and transmitting white light that is fluorescence of the phosphor 60. That is, in this example, the reflective member according to the claims is constituted by the cover glass 62 and the dichroic film 64. As is well known, the dichroic film 64 having the above optical characteristics may be formed of a dielectric multilayer film. The optical characteristics of the dichroic film 64 may be any as long as it reflects at least the excitation light and allows the fluorescence to pass therethrough. Light having other wavelengths may be reflected or transmitted.

図4(a)に示すように、蛍光体60は、第1ライトガイド56から出射された近紫外光L1を吸収して励起し、白色の蛍光L2を発する。蛍光L2は、ダイクロイック膜64及びカバーガラス62を透過し、第1照明窓42を介して電子内視鏡10の外部に出射される。   As shown in FIG. 4A, the phosphor 60 absorbs and excites near-ultraviolet light L1 emitted from the first light guide 56, and emits white fluorescence L2. The fluorescence L2 passes through the dichroic film 64 and the cover glass 62, and is emitted to the outside of the electronic endoscope 10 through the first illumination window 42.

このように、第1照明光学系52は、プロセッサ装置12から供給される近紫外光L1を蛍光体60で白色の蛍光L2に変換し、この蛍光L2を照明光として第1照明窓42から照射する。こうすれば、可視域全体に亘って比較的フラットな波長特性の白色光が得られ、演色性に優れた照明を行うことができる。また、光源にLED18を用いることができるので、光源の低消費電力化や長寿命化、安全性の向上などを図ることもできる。   As described above, the first illumination optical system 52 converts the near-ultraviolet light L1 supplied from the processor device 12 into white fluorescence L2 by the phosphor 60, and irradiates the fluorescence L2 from the first illumination window 42 as illumination light. To do. In this way, white light having a relatively flat wavelength characteristic over the entire visible range can be obtained, and illumination with excellent color rendering can be performed. In addition, since the LED 18 can be used as the light source, it is possible to reduce the power consumption, extend the life, and improve the safety of the light source.

また、図4(b)にL3で示すように、第1ライトガイド56から出射された近紫外光の一部は、蛍光体60に吸収されることなく、そのまま蛍光体60を透過する。この際、透過した近紫外光L3は、ダイクロイック膜64で反射し、再び蛍光体60に入射する。   4B, a part of the near-ultraviolet light emitted from the first light guide 56 passes through the phosphor 60 as it is without being absorbed by the phosphor 60. At this time, the transmitted near-ultraviolet light L3 is reflected by the dichroic film 64 and enters the phosphor 60 again.

このように、第1照明光学系52では、一度蛍光体60を透過した近紫外光L3を再び蛍光体60に入射させ、近紫外光L3によって再度蛍光体60を励起させるので、励起光としての近紫外光を効率良く利用することができ、蛍光体60を透過する近紫外光L3によって蛍光L2の光量が低下してしまうことを防ぐことができる。   Thus, in the first illumination optical system 52, the near-ultraviolet light L3 once transmitted through the phosphor 60 is incident again on the phosphor 60, and the phosphor 60 is excited again by the near-ultraviolet light L3. Near-ultraviolet light can be used efficiently, and the amount of fluorescence L2 can be prevented from being reduced by the near-ultraviolet light L3 transmitted through the phosphor 60.

また、近紫外光L3が外部に漏れ、照明光の一部として照射されてしまうと、少し青味掛かった白色光になってしまい、照明光の演色性が損なわれてしまう。これに対し、本例では、近紫外光L3が外部に漏れることが無いので、近紫外光L3に起因する照明光の演色性の低下も防ぐことができる。   Further, if the near-ultraviolet light L3 leaks to the outside and is irradiated as part of the illumination light, it becomes white light that is slightly bluish, and the color rendering property of the illumination light is impaired. On the other hand, in this example, since the near ultraviolet light L3 does not leak to the outside, the color rendering property of the illumination light caused by the near ultraviolet light L3 can be prevented from being lowered.

上記実施形態では、蛍光体60と対向する対向面62aにダイクロイック膜64を設けたが、対向面62aと反対側の面、すなわち第1照明窓42を介して外部に露呈される側の面に、ダイクロイック膜64を形成してもよい。   In the above embodiment, the dichroic film 64 is provided on the facing surface 62a facing the phosphor 60, but on the surface opposite to the facing surface 62a, that is, the surface exposed to the outside through the first illumination window 42. Alternatively, the dichroic film 64 may be formed.

上記実施形態では、対向面62aが平面状に形成されたカバーガラス62を示したが、図5に示すカバーガラス66のように、対向面66aを凹曲面状に形成してもよい。このように、対向面66aを凹曲面状に形成し、平凹レンズ状のカバーガラス66とすれば、図5(b)に示すように、一度蛍光体60を透過し、ダイクロイック膜64で反射した近紫外光L3が蛍光体60に集光され、確実に蛍光体60に入射するようになるので、近紫外光の利用効率をより高めることができる。さらには、蛍光L2がカバーガラス66を透過する際に、対向面66aの曲率に応じて広がるようになるので、照明光の照射角度を広げることもできる。   In the above embodiment, the cover glass 62 in which the facing surface 62a is formed in a flat shape is shown. However, the facing surface 66a may be formed in a concave curved surface like the cover glass 66 shown in FIG. In this way, if the facing surface 66a is formed in a concave curved surface shape to form a plano-concave lens-like cover glass 66, as shown in FIG. 5B, the fluorescent material 60 is once transmitted and reflected by the dichroic film 64. Since the near-ultraviolet light L3 is condensed on the phosphor 60 and reliably enters the phosphor 60, the utilization efficiency of the near-ultraviolet light can be further increased. Furthermore, when the fluorescence L2 passes through the cover glass 66, it spreads according to the curvature of the facing surface 66a, so that the illumination angle of the illumination light can be widened.

なお、対向面66aの凹曲面は、略半球状に窪んだものでもよいし、シリンドリカル状に窪んだものでもよい。さらには、完全な曲面ではなく、平面を曲面状に並べた多角形状の凹面としてもよい。   The concave curved surface of the facing surface 66a may be recessed in a substantially hemispherical shape or may be recessed in a cylindrical shape. Furthermore, it may be a polygonal concave surface in which flat surfaces are arranged in a curved shape instead of a complete curved surface.

次に、図6に示す評価モデル80を用いて実験及びシミュレーションを行った結果、及びその比較を示す。評価モデル80は、蛍光体82とガラス板84とで構成された照明光学系である。蛍光体82は、直径0.9mmの円柱状に形成されている。ガラス板84は、直径10mm、厚さ1mmの円板状に形成されている。蛍光体82とガラス板84とは、それぞれ中心が一致し、かつ蛍光体82がガラス板84の一面に接するように配置されている。また、ガラス板84の蛍光体82が接する一面には、光吸収膜86が設けられている。この光吸収膜86は、前記一面の蛍光体82が接した部分に形成され、入射した光を吸収して反射を防止する光学特性を有している。   Next, the results of experiments and simulations using the evaluation model 80 shown in FIG. The evaluation model 80 is an illumination optical system that includes a phosphor 82 and a glass plate 84. The phosphor 82 is formed in a cylindrical shape having a diameter of 0.9 mm. The glass plate 84 is formed in a disk shape having a diameter of 10 mm and a thickness of 1 mm. The phosphor 82 and the glass plate 84 are arranged so that the centers thereof coincide with each other and the phosphor 82 is in contact with one surface of the glass plate 84. A light absorbing film 86 is provided on the surface of the glass plate 84 that is in contact with the phosphor 82. The light absorption film 86 is formed at a portion where the phosphor 82 on one surface is in contact with the optical absorption film 86 and has an optical characteristic of absorbing incident light and preventing reflection.

実験では、まずガラス板84を除いた状態で蛍光体82に所定の波長の励起光を入射させることにより、蛍光体82から発せられる蛍光の出力、及び蛍光体82を透過した励起光の出力を測定した。この後、図6のようにガラス板84に蛍光体82を接しさせた状態で蛍光体82に励起光を入射させることにより、ガラス板84を透過した蛍光の出力、及びガラス板84を透過した励起光の出力を測定した。   In the experiment, first, excitation light having a predetermined wavelength is made incident on the phosphor 82 with the glass plate 84 removed, whereby the output of fluorescence emitted from the phosphor 82 and the output of excitation light transmitted through the phosphor 82 are obtained. It was measured. Thereafter, as shown in FIG. 6, excitation light is incident on the phosphor 82 in a state where the phosphor 82 is in contact with the glass plate 84, thereby transmitting the fluorescence output transmitted through the glass plate 84 and the glass plate 84. The output of the excitation light was measured.

上記の各測定結果から、蛍光体82からの蛍光の出力をA1、ガラス板84からの蛍光の出力をB1とし、B1/A1によってガラス板84に対する蛍光の透過率を算出するとともに、蛍光体82からの励起光の出力をA2、ガラス板84からの励起光の出力をB2とし、B2/A2によってガラス板84に対する励起光の透過率を算出した。そして、ガラス板84の硝材を屈折率1.51のBK7、屈折率1.77のLaSFn7、屈折率1.898のLaSFn22と変えて各出力の測定及び各透過率の算出を行うことにより、蛍光及び励起光の硝材毎の透過率を実験結果として取得した。   From the above measurement results, the fluorescence output from the phosphor 82 is A1, the fluorescence output from the glass plate 84 is B1, and the fluorescence transmittance with respect to the glass plate 84 is calculated by B1 / A1. The output of the excitation light from the glass plate 84 is A2, the output of the excitation light from the glass plate 84 is B2, and the transmittance of the excitation light to the glass plate 84 is calculated by B2 / A2. Then, by changing the glass material of the glass plate 84 to BK7 having a refractive index of 1.51, LaSFn7 having a refractive index of 1.77, and LaSFn22 having a refractive index of 1.898, measurement of each output and calculation of each transmittance are performed. And the transmittance | permeability for every glass material of excitation light was acquired as an experimental result.

シミュレーションでは、上記実験で用いたガラス板84の硝材毎の透過率をコンピュータプログラムによる解析によって算出した。このシミュレーションでは、ガラス板84の光出射端面84aでのフレネル反射損失、及びガラス板84と蛍光体82とが接する面84bでのフレネル反射損失があるものとするとともに、反射光の光吸収膜86とガラス板84の接する面での反射がないものとして解析を行った。また、評価モデル80では、光出射端面84aで反射した光が光吸収膜86によって吸収され、反射が防止される。このため、シミュレーションでは、ガラス板84内での多重反射による透過光はないものとして解析を行った。   In the simulation, the transmittance of each glass material of the glass plate 84 used in the above experiment was calculated by analysis using a computer program. In this simulation, it is assumed that there is a Fresnel reflection loss at the light emitting end face 84a of the glass plate 84 and a Fresnel reflection loss at the surface 84b where the glass plate 84 and the phosphor 82 are in contact with each other. The analysis was performed assuming that there was no reflection at the surface where the glass plate 84 contacts. Further, in the evaluation model 80, the light reflected by the light emitting end face 84a is absorbed by the light absorption film 86, and reflection is prevented. For this reason, in the simulation, the analysis was performed assuming that there is no transmitted light due to multiple reflection in the glass plate 84.

さらに、ガラス板84の屈折率は、入射する光の波長によって異なるが、励起光の近紫外から蛍光の白色光に含まれる赤色成分までの波長帯域におけるガラス板84の屈折率差にともなう透過率の算出結果の変化は、0.5%程度でしかない。このため、本シミュレーションでは、上記した硝材の屈折率のみを用いて解析を行い、その解析結果を蛍光及び励起光のそれぞれに適用することとした。   Further, the refractive index of the glass plate 84 varies depending on the wavelength of the incident light, but the transmittance with the refractive index difference of the glass plate 84 in the wavelength band from the near ultraviolet of the excitation light to the red component contained in the fluorescent white light. The change in the calculation result is only about 0.5%. For this reason, in this simulation, analysis was performed using only the refractive index of the glass material described above, and the analysis result was applied to each of fluorescence and excitation light.

上記実験及びシミュレーションの結果を、図7に示す。図7では、実線及び四角形のポイントで蛍光の実験結果を示し、点線及び菱形のポイントで励起光の実験結果を示し、二点鎖線及び三角形のポイントでシミュレーションの結果を示している。   The results of the experiment and simulation are shown in FIG. In FIG. 7, the experimental results of fluorescence are shown by solid and square points, the experimental results of excitation light are shown by dotted and diamond points, and the simulation results are shown by two-dot chain lines and triangular points.

ガラス板84に入射した光は、光出射端面84aから出射するとともに、ガラス板84と空気との屈折率差により、その一部が光出射端面84aを反射面として反射する。従って、ガラス板84に入射した光の透過率が100%になることはない。そして、光出射端面84aでの反射率は、空気との屈折率差に従って大きくなる。図7の実験結果でも、ガラス板84の硝材の屈折率が大きくなるほど、すなわち屈折率が1である空気との屈折率差が大きくなるほど、透過率が低くなっている。   The light incident on the glass plate 84 is emitted from the light emission end face 84a, and a part of the light is reflected by the light emission end face 84a as a reflection surface due to the difference in refractive index between the glass plate 84 and air. Therefore, the transmittance of light incident on the glass plate 84 does not become 100%. The reflectance at the light exit end face 84a increases according to the difference in refractive index from air. Also in the experimental results of FIG. 7, the transmittance decreases as the refractive index of the glass material of the glass plate 84 increases, that is, as the refractive index difference with air having a refractive index of 1 increases.

また、図7の実験及びシミュレーションの結果からは、励起光の実験結果がシミュレーションの結果とほぼ同等であるのに対し、蛍光の実験結果は、シミュレーションの結果よりも透過率が上昇していることが分る。   Further, from the results of the experiment and simulation of FIG. 7, the experimental result of the excitation light is almost the same as the result of the simulation, whereas the transmittance of the experimental result of the fluorescence is higher than the result of the simulation. I understand.

この透過率の上昇は、シミュレーションが蛍光体82での再励起を考慮していないのに対し、実験では、光出射端面84aで反射した励起光が再び蛍光体82に入射し、蛍光体82が再励起することによって、蛍光の光量が増加したことに起因している。さらに、この透過率の上昇は、ガラス板84の硝材の屈折率が大きくなるほど、すなわち光出射端面84aで反射する励起光の光量が増えるほど顕著になっている。従って、上記実施形態で示したように、光出射端面84aにダイクロイック膜64を設けるなどして励起光のみの反射率を高めるようにすれば、本発明の効果をより高めることができる。   This increase in transmittance does not consider re-excitation in the phosphor 82 in the simulation, but in the experiment, the excitation light reflected by the light exit end face 84a is incident on the phosphor 82 again, and the phosphor 82 This is due to the increase in the amount of fluorescent light due to re-excitation. Furthermore, this increase in transmittance becomes more prominent as the refractive index of the glass material of the glass plate 84 increases, that is, as the amount of excitation light reflected by the light emitting end face 84a increases. Therefore, as described in the above embodiment, if the reflectance of only the excitation light is increased by providing the dichroic film 64 on the light emitting end face 84a, the effect of the present invention can be further enhanced.

上記実施形態では、第1照明窓42を塞ぐカバーガラス62、66を基板として示したが、これに限ることなく、蛍光体60とカバーガラスとの間に配置される任意の透明な板を基板としてもよい。また、基板の材料は、光学ガラスに限ることなく、光学プラスチックとしてもよい。さらに、上記実施形態では、基板としてのカバーガラス62、66とダイクロイック膜64とで反射部材を構成したが、反射部材の構成は、これに限ることなく、励起光のみを蛍光体60に向けて反射させることができるものであればよい。   In the above embodiment, the cover glasses 62 and 66 that close the first illumination window 42 are shown as substrates. However, the present invention is not limited to this, and any transparent plate disposed between the phosphor 60 and the cover glass is used as the substrate. It is good. The material of the substrate is not limited to optical glass, and may be optical plastic. Furthermore, in the said embodiment, although the reflection member was comprised with the cover glasses 62 and 66 as a board | substrate, and the dichroic film | membrane 64, the structure of a reflection member is not restricted to this, Only excitation light is directed to the fluorescent substance 60. Anything that can be reflected is acceptable.

上記実施形態では、プロセッサ装置12に設けられたLED18から供給される近紫外光を各ライトガイド56、57を介して各照明光学系52、54に入射させる構成としたが、これに限ることなく、図8に示す第1照明光学系100、第2照明光学系102のように、照明光学系自体に光源としてのLED104、106を設ける構成としてもよい。   In the above embodiment, the near ultraviolet light supplied from the LED 18 provided in the processor device 12 is made incident on the illumination optical systems 52 and 54 via the light guides 56 and 57. However, the present invention is not limited to this. As in the first illumination optical system 100 and the second illumination optical system 102 shown in FIG. 8, the illumination optical system itself may be provided with LEDs 104 and 106 as light sources.

各LED104、106は、それぞれ蛍光体60の後方に配置され、蛍光体60に励起光である近紫外光を入射させる。こうすれば、電子内視鏡10に各ライトガイド56、57を設ける必要がなくなるので、挿入部20やユニバーサルコード24の細径化を図ることができる。さらには、プロセッサ装置12に光源や光入射用のコネクタを設ける必要がなくなるので、プロセッサ装置12の小型化、低価格化を図ることもできる。   Each of the LEDs 104 and 106 is disposed behind the phosphor 60 and makes near ultraviolet light, which is excitation light, incident on the phosphor 60. By doing so, it is not necessary to provide the light guides 56 and 57 in the electronic endoscope 10, so that the insertion portion 20 and the universal cord 24 can be reduced in diameter. Furthermore, since it is not necessary to provide the processor device 12 with a light source or a light incident connector, the processor device 12 can be reduced in size and price.

上記実施形態では、光源としてLEDを示したが、光源は、これに限ることなく、レーザダイオードなどの他の半導体発光素子でもよいし、紫外線ランプなどの特定波長の光を照射するランプでもよい。すなわち、光源は、蛍光体60の励起光を照射できるものであれば、如何なるものでもよい。   In the above embodiment, an LED is shown as the light source. However, the light source is not limited to this, and may be another semiconductor light emitting element such as a laser diode, or a lamp that emits light of a specific wavelength such as an ultraviolet lamp. That is, any light source may be used as long as it can irradiate the excitation light of the phosphor 60.

上記実施形態では、医療用の内視鏡に本発明を適用した例を示したが、本発明は、これに限ることなく、機器の内部や狭い配管内などを観察する工業用の内視鏡(ファイバスコープ)に適用してもよい。さらに、本発明は、内視鏡用の照明光学系に限ることなく、例えば、室内灯や懐中電灯などの一般的な照明装置の光学系、あるいは顕微鏡や液晶表示装置の光学系など、蛍光体を用いた他の如何なる照明光学系に適用してもよい。   In the above-described embodiment, an example in which the present invention is applied to a medical endoscope has been described. However, the present invention is not limited to this, and an industrial endoscope that observes the inside of a device, a narrow pipe, or the like. (Fiberscope) may be applied. Furthermore, the present invention is not limited to an endoscope illumination optical system, but includes phosphors such as an optical system of a general illumination device such as a room light or a flashlight, or an optical system of a microscope or a liquid crystal display device. The present invention may be applied to any other illumination optical system using.

また、上記実施形態では、約405nmの波長の近紫外光が入射した際に、白色の蛍光を発する3波長型の蛍光体60を用いたが、蛍光体が発する蛍光の波長、及び蛍光体を励起させる励起光の波長は、これに限定されるものではなく、照明光学系の用途に応じて適宜選択すればよい。   In the above embodiment, the three-wavelength phosphor 60 that emits white fluorescence when near-ultraviolet light having a wavelength of about 405 nm is incident is used. However, the fluorescence wavelength emitted by the phosphor and the phosphor The wavelength of the excitation light to be excited is not limited to this, and may be appropriately selected according to the use of the illumination optical system.

2 内視鏡システム
10 電子内視鏡(内視鏡)
12 プロセッサ装置
18、104、106 LED(光源)
20 挿入部
42 第1照明窓
44 第2照明窓
52、100 第1照明光学系
54、102 第2照明光学系
60 蛍光体
62、66 カバーガラス(基板)
62a、66a 対向面
64 ダイクロイック膜
2 Endoscope system 10 Electronic endoscope (endoscope)
12 processor unit 18, 104, 106 LED (light source)
DESCRIPTION OF SYMBOLS 20 Insertion part 42 1st illumination window 44 2nd illumination window 52,100 1st illumination optical system 54,102 2nd illumination optical system 60 Phosphor 62,66 Cover glass (board | substrate)
62a, 66a Opposing surface 64 Dichroic film

Claims (5)

所定の波長の励起光が入射した際に、その励起光を吸収して励起し、前記励起光とは異なる波長の蛍光を発する蛍光体と、
前記励起光を反射させ、前記蛍光を透過させる光学特性を有し、前記蛍光体を透過した前記励起光が前記蛍光体に向けて反射するように、前記蛍光体の前方に配置された反射部材とを備えたことを特徴とする照明光学系。
When excitation light of a predetermined wavelength is incident, the excitation light is absorbed and excited, and a phosphor emitting fluorescence having a wavelength different from that of the excitation light;
A reflecting member having an optical property of reflecting the excitation light and transmitting the fluorescence, and disposed in front of the phosphor so that the excitation light transmitted through the phosphor is reflected toward the phosphor. And an illumination optical system.
前記反射部材は、透光性のある材料で略板状に形成され、前記蛍光体と対向して配置される基板と、前記光学特性を有し、前記基板の前記蛍光体との対向面に形成されるダイクロイック膜とからなることを特徴とする請求項1記載の照明光学系。   The reflecting member is formed in a substantially plate shape with a light-transmitting material, has a substrate disposed to face the phosphor, has the optical characteristics, and is disposed on a surface of the substrate facing the phosphor. The illumination optical system according to claim 1, comprising a dichroic film to be formed. 前記対向面が、凹曲面状に形成されていることを特徴とする請求項2記載の照明光学系。   The illumination optical system according to claim 2, wherein the facing surface is formed in a concave curved surface shape. 前記蛍光体に前記励起光を入射させる光源を備えたことを特徴とする請求項1から3のいずれか1項に記載の照明光学系。   The illumination optical system according to any one of claims 1 to 3, further comprising a light source that causes the excitation light to enter the phosphor. 挿入部の先端に設けられた照明窓から観察対象を照明するための照明光を照射する内視鏡において、
所定の波長の励起光が入射した際に、その励起光を吸収して励起し、白色の蛍光を発する蛍光体と、前記励起光を反射させ、前記蛍光を透過させる光学特性を有し、前記蛍光体を透過した前記励起光が前記蛍光体に向けて反射するように、前記蛍光体の前方に配置された反射部材とからなり、前記蛍光を照明光として前記照明窓から照射する照明光学系を備えたことを特徴とする内視鏡。
In an endoscope that emits illumination light for illuminating an observation target from an illumination window provided at the distal end of the insertion portion,
When excitation light of a predetermined wavelength is incident, the excitation light is absorbed and excited, and has a fluorescent material that emits white fluorescence, and an optical characteristic that reflects the excitation light and transmits the fluorescence, An illumination optical system comprising a reflecting member disposed in front of the phosphor so that the excitation light transmitted through the phosphor is reflected toward the phosphor, and irradiating the fluorescence from the illumination window as illumination light An endoscope characterized by comprising:
JP2010049306A 2010-03-05 2010-03-05 Illumination optical system and endoscope Withdrawn JP2011182871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049306A JP2011182871A (en) 2010-03-05 2010-03-05 Illumination optical system and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049306A JP2011182871A (en) 2010-03-05 2010-03-05 Illumination optical system and endoscope

Publications (1)

Publication Number Publication Date
JP2011182871A true JP2011182871A (en) 2011-09-22

Family

ID=44789871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049306A Withdrawn JP2011182871A (en) 2010-03-05 2010-03-05 Illumination optical system and endoscope

Country Status (1)

Country Link
JP (1) JP2011182871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013111177A (en) * 2011-11-28 2013-06-10 Fujifilm Corp Light source device for endoscope
WO2013183387A1 (en) 2012-06-08 2013-12-12 株式会社フジクラ Illuminating structure and endoscope
EP2848186A4 (en) * 2012-05-11 2016-01-27 Olympus Corp Endoscope illumination optical assembly and endoscope
JP2016067378A (en) * 2014-09-26 2016-05-09 オリンパス株式会社 Endoscope apparatus and endoscope adaptor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013111177A (en) * 2011-11-28 2013-06-10 Fujifilm Corp Light source device for endoscope
EP2848186A4 (en) * 2012-05-11 2016-01-27 Olympus Corp Endoscope illumination optical assembly and endoscope
WO2013183387A1 (en) 2012-06-08 2013-12-12 株式会社フジクラ Illuminating structure and endoscope
US10058231B2 (en) 2012-06-08 2018-08-28 Fujikura Ltd. Lighting structure and endoscope
JP2016067378A (en) * 2014-09-26 2016-05-09 オリンパス株式会社 Endoscope apparatus and endoscope adaptor

Similar Documents

Publication Publication Date Title
JP4812430B2 (en) Endoscope device
JP5484263B2 (en) Light diffusing element and endoscope light guide provided with the same
JP5645385B2 (en) Endoscopic light projecting unit and endoscopic device equipped with the same
JP5274719B2 (en) Endoscope and endoscope illumination device
US6962565B2 (en) Excitation light illuminating probe, video endoscope system, and video endoscope for fluorescence observation
WO2005110188A1 (en) Endoscope device
JP2006346185A (en) Endoscope system
JP6383864B2 (en) Illumination device, endoscope and endoscope system
JP5394675B2 (en) Endoscope system
US10856731B2 (en) Illumination unit and endoscope
JP2011182871A (en) Illumination optical system and endoscope
JP4253663B2 (en) Endoscope
JP7128198B2 (en) Endoscope with a cover on the distal end of the cannula
JP5138444B2 (en) Endoscope
JP2013202305A (en) Light source device
JP2012205849A (en) Electronic endoscope
JP2011167442A (en) Illumination optical system and endoscope
JP2015000267A (en) Endoscope and endoscope system
JP5480929B2 (en) Endoscopic light projecting unit
US20230292991A1 (en) Medical visualization and/or illumination system and method for indicating non-visible illumination light
JP4308218B2 (en) Endoscope
JP2013075027A (en) Illumination optical system for endoscope and illumination device
JP2010187854A (en) Treatment instrument and endoscope using the same
JP6572065B2 (en) Endoscope light source device
JP2011206567A (en) Endoscope system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130424