JP2011182516A - Electric power supply and demand leveling system - Google Patents

Electric power supply and demand leveling system Download PDF

Info

Publication number
JP2011182516A
JP2011182516A JP2010042605A JP2010042605A JP2011182516A JP 2011182516 A JP2011182516 A JP 2011182516A JP 2010042605 A JP2010042605 A JP 2010042605A JP 2010042605 A JP2010042605 A JP 2010042605A JP 2011182516 A JP2011182516 A JP 2011182516A
Authority
JP
Japan
Prior art keywords
power
hydrogen
hydrogen gas
liquid
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010042605A
Other languages
Japanese (ja)
Inventor
Tamotsu Minagawa
保 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010042605A priority Critical patent/JP2011182516A/en
Publication of JP2011182516A publication Critical patent/JP2011182516A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

<P>PROBLEM TO BE SOLVED: To provide, as an alternative system for a system employing a pumping-up hydroelectric plant system, a power supply and demand leveling system that can store power from wind power generation, photovoltaic power generation or the like utilizing natural energy in addition to midnight power and does not involve the destruction of environment or the emission of a large quantity of CO<SB>2</SB>and is inexpensive and free from pollution. <P>SOLUTION: The power supply and demand leveling system is dispersedly installed at multiple electric power stations. It uses midnight surplus power to electrolyze water, turns hydrogen gas into liquid hydrogen by heat exchange and stores it, and generates power using hydrogen obtained by gasifying liquid hydrogen at the peak time of power demand. Power by wind power generation, photovoltaic power generation or the like, which has significant P (Active Power), Q (Reactive Power) and V (Voltage) short-period fluctuation, is also smoothed by a P, Q and V short-period fluctuation smoothing device 2 and is used to electrolyze water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力系統の周波数や電圧を安定化させる電力需給平準化システムに関する。   The present invention relates to a power supply and demand leveling system that stabilizes the frequency and voltage of a power system.

米国政府が2009年から推進している「スマート・グリッド・プロジェクト」と命名した省エネルギープロジェクトは、需要家側の省エネを目的としているのに対して、本発明は、電力供給者側の省エネを目的としている。   The energy saving project named “Smart Grid Project” promoted by the US government since 2009 is aimed at saving energy on the consumer side, whereas the present invention aims at saving energy on the power supplier side. It is said.

(昼間と深夜の電力需要変動対策)
図6に示すように、電力需要は、一日の間に時間単位で見ても大きく変化するため、電力需給を平準化して電力需要と発電量をバランスさせている揚水発電方式の代替システムとして、深夜の余剰電力を使って水を電気分解して発生した水素ガスを液体水素にして貯蔵しておき、電力需要ピーク時に貯蔵しておいた液体水素をガス化した水素ガスを使用して発電する電力需給平準化システムが考えられていた。(特許文献1参照)
(Measures against fluctuations in power demand during the daytime and late at night)
As shown in Fig.6, power demand varies greatly even in terms of time during the day, so as an alternative to the pumped storage power generation system that balances power demand and power generation by leveling power supply and demand The hydrogen gas generated by electrolyzing water using midnight surplus power is stored as liquid hydrogen, and power is generated using the hydrogen gas gasified from the liquid hydrogen stored at the peak power demand. Electric power supply and demand leveling system was considered. (See Patent Document 1)

(フェランチ現象の発生防止対策)
都市部の地中ケーブル送電線やEHV(2〜4導体)、UHV(6〜8導体)送電線を数10回線以上も収容した発変電所の静電容量は、近年非常に大きくなっているため、平日の深夜や、年末年始、5月のゴールデンウィーク、8月お盆休み等(特異日と称す)の期間中は、工場やオフィスが休みで都市の電力需要は大幅に減少するため、フェランチ現象(Ferranti phenomena)という電力系統の異常な電圧上昇が発生する。このような電力系統の異常な電圧上昇を防止するため、リアクトルや変圧器タップ調整、ShR(シャントリアクトル)の全量投入、SC(静止型コンデンサー)の解列、平行送電線2回線区間の1回線を解列して1回線の送電線として運転する等の対策が行われている。しかし、この1回線の送電線で事故が発生すれば、即、停電となる。更に、送電線事故が無いにも拘らず電力系統が不安定となることもあった。
(Measures to prevent the occurrence of the ferrant phenomenon)
The electrostatic capacity of substations that accommodate several tens or more of underground cable transmission lines, EHV (2 to 4 conductors), and UHV (6 to 8 conductors) transmission lines in urban areas has become very large in recent years. Therefore, during midnight on weekdays, New Year's holidays, Golden Week in May, Bon Festival holidays in August (referred to as special days), factories and offices are closed, and the power demand in the city decreases significantly. An abnormal voltage rise of the power system (Ferranti phenomena) occurs. In order to prevent such an abnormal voltage rise in the power system, adjustment of reactors and transformer taps, full introduction of ShR (Shunt Reactor), disconnection of SC (Static Capacitor), 1 line in 2 sections of parallel transmission lines Measures are taken such as disconnecting and operating as a single transmission line. However, if an accident occurs on this single transmission line, a power outage will occur immediately. In addition, the power system may become unstable despite no transmission line accidents.

(地球環境対策)
CO排出による地球環境破壊防止のためのグローバルなCO排出削減規制の強化及び石炭や石油等の化石燃料資源の枯渇によるコストの高騰等のため、化石燃料を使用しない発電方式として、自然エネルギー(再生可能エネルギー)を利用した風力発電・太陽光発電等が行われているが、その発電量の変動を吸収するために風力発電・太陽光発電等の電力を使って発生した水素ガスを液体水素にして貯蔵し、その液体水素をガス化した水素ガスを使用して発電することも考えられている。(特許文献2、非特許文献1参照)
(Global environmental measures)
For sharp rise in cost due to depletion of fossil fuel resources, such as strengthening and coal and oil global CO 2 emissions regulations for prevention of global environmental destruction caused by CO 2 emission, a power generation method that does not use fossil fuels, renewable energy Wind power and solar power generation using (renewable energy) is carried out, but liquid hydrogen gas generated using wind power and solar power generation to absorb fluctuations in power generation It is also considered to generate electricity using hydrogen gas that is stored as hydrogen and gasified from the liquid hydrogen. (See Patent Document 2 and Non-Patent Document 1)

特開2002−363779号公報JP 2002-36379 A 特開2004−99359号公報JP 2004-99359 A

後藤信、呉国紅、多田泰之、皆川保、「風力発電と電力貯蔵装置併用時における電力システムへの導入効果に関する基礎検討」、電気学会論文誌B、127巻5号、2007年、637−644頁Shin Goto, Beni Kure, Yasuyuki Tada, Tamotsu Minagawa, "Basic study on the effect of wind power generation and power storage system on power system", IEEJ Transaction B, Vol. 127, No. 5, 2007, 637- 644 pages

本発明の目的は、揚水発電方式の代替システムとして、従来の深夜の余剰電力に加えて、風力発電・太陽光発電等の自然エネルギーも蓄積しておき、電力需要ピーク時に、必要な電力を安定した出力や電圧で提供でき、環境破壊も大量のCO排出もない安価な無公害の電力需給平準化システムを提供することである。 The purpose of the present invention is to store natural energy such as wind power generation and solar power generation in addition to the conventional surplus power at midnight as an alternative system for the pumped storage power generation system, and stabilize the necessary power at the time of peak power demand. It is to provide an inexpensive non-polluting power supply and demand leveling system that can be provided with a high output and voltage, and does not destroy the environment or emit a large amount of CO 2 .

本発明のもう一つの目的は、自然エネルギーを利用した風力発電・太陽光発電等は、電力需要と無関係に発電され、P(有効電力)、Q(無効電力)、V(電圧)が時々刻々大きく変動し、電力系統の安定性を損なう原因となっているので、この課題を解決し、風力発電・太陽光発電等の発電量を有効に利用できるようにすることである。   Another object of the present invention is that wind power generation and solar power generation using natural energy are generated regardless of power demand, and P (active power), Q (reactive power), and V (voltage) are constantly changing. Since it fluctuates greatly and is a cause of impairing the stability of the power system, it is necessary to solve this problem so that the amount of power generation such as wind power generation and solar power generation can be used effectively.

本発明のもう一つの目的は、高価なSVC(Static Var Compensator、静止型無効電力補償装置:進相電流量を連続的に0〜最大量まで連続的に、且つ、高速に変化できるもの)、SVG(Static Var Generator、静止型無効電力補償装置:Var(無効電力)を+から−(最大進相電流量から最大遅相電流量)まで連続的に、且つ、変化できるもの)等の設備を配備することなく、フェランチ現象による電力系統の異常な電圧上昇や電力系統の不安定現象を防止することである。   Another object of the present invention is an expensive SVC (Static Var Compensator, static reactive power compensator: one that can continuously change the phase advance current amount from 0 to the maximum amount at high speed), Equipment such as SVG (Static Var Generator, Static Reactive Power Compensator: Var (Reactive Power) can be changed continuously from + to-(maximum advanced current amount to maximum delayed current amount)) It is to prevent an abnormal voltage rise of the power system due to the ferrant phenomenon and an unstable phenomenon of the power system without deployment.

本発明は、多数の電気所に分散配置されて運用される電力需給平準化システムである。風力発電所・太陽光発電所等からP、Q、V短周期変動の激しい電力を受電する電気所にはP、Q、V短周期変動平滑化装置2も備えて平滑化した電力を昼間に供給し、深夜時間帯では水を電気分解し、水素を貯蔵、翌日の発電に使用する。   The present invention is an electric power supply and demand leveling system that is distributed and operated in a large number of electric power stations. P, Q, and V short-period fluctuation smoothing device 2 is also provided at electric stations that receive P, Q, and V short-period fluctuations from wind power plants and solar power stations. In the midnight hours, water is electrolyzed, hydrogen is stored, and used for power generation the next day.

本発明の電力需給平準化システムは、水を電気分解して製造された液体水素を液体水素貯蔵装置30に貯蔵し、電力需要ピーク時に、前記液体水素貯蔵装置30に貯蔵された液体水素を水素ガス化装置40でガス化し、その水素ガスを水素ガスタンク41に貯蔵し、発電装置50がその水素ガスを用いて発電し、電力系統を使って送電する。   The power supply and demand leveling system of the present invention stores liquid hydrogen produced by electrolyzing water in the liquid hydrogen storage device 30, and converts the liquid hydrogen stored in the liquid hydrogen storage device 30 to hydrogen at the time of peak power demand. Gasification is performed by the gasifier 40, the hydrogen gas is stored in the hydrogen gas tank 41, the power generation device 50 generates power using the hydrogen gas, and transmits power using the power system.

また、本発明の発電装置50は、発電機軸と水素ガス燃焼原動機軸を自動的に連結/切り離し可能な発電機装置となっている。従って、発電所としての役割を果たすだけでなく、この水素ガス燃焼原動機で駆動し、自動並列装置を使って発電機(同期機)を電力系統に並列後、この水素ガス燃焼原動機軸と発電機軸とを連結するクラッチを切り離して同期調相機運転することで、電力系統網の電圧を平滑化する系統電力系統電圧調整装置として使用する。   Moreover, the power generator 50 of the present invention is a generator device that can automatically connect / disconnect the generator shaft and the hydrogen gas combustion prime mover shaft. Therefore, in addition to serving as a power plant, this hydrogen gas combustion prime mover is driven by this hydrogen gas combustion prime mover, and the generator (synchronous machine) is paralleled to the power system using an automatic parallel device. Is used as a system power system voltage regulator for smoothing the voltage of the power system network by disconnecting the clutch that connects the two and operating the synchronous phase adjuster.

平日の深夜および特異日の昼夜に、フェランチ現象の発生防止対策として、本発明のシステムが分散設置されている電気所の発電装置50を全て調相機運転モードで並列して運転する。   At midnight on weekdays and day and night on special days, as a measure for preventing the occurrence of the ferrant phenomenon, all the power generators 50 in the electric power station where the system of the present invention is distributedly installed are operated in parallel in the phase adjuster operation mode.

本発明は、従来の深夜の余剰電力に加えて、風力発電・太陽光発電等の自然エネルギーも蓄積しておくので、電力需要ピーク時に、必要な電力を安定した出力や電圧で提供でき、安定且つ高品質の電力を供給できる。また、本システムは離島などの単独系統で風力発電機を多数設置された場所でも効果が高い。   Since the present invention accumulates natural energy such as wind power generation and solar power generation in addition to conventional surplus power at midnight, it can provide necessary power at a stable output and voltage at the time of peak power demand. In addition, high-quality power can be supplied. In addition, this system is highly effective in places where many wind generators are installed in a single system such as a remote island.

また、平日の深夜および特異日の昼夜に、フェランチ現象の発生防止対策として、本発明のシステムが分散設置されている電気所の発電装置50を全て同期調相機運転で並列して置くことで電力系統の異常高電圧の発生を防止できる。   In addition, as a countermeasure for preventing the occurrence of the ferrant phenomenon at midnight on weekdays and day and night on special days, the power generators 50 of the electric power stations where the system of the present invention is distributedly installed are all placed in parallel by synchronous phase adjuster operation. Generation of abnormally high voltage in the system can be prevented.

本発明は、P、Q、V短周期変動平滑化装置を備え、風力発電・太陽光発電等の自然エネルギーも液体水素に変換、貯蔵し、電力需要ピーク時に電力エネルギーに変換するので、風力発電・太陽光発電等の自然エネルギーを電力会社からも歓迎されるエネルギーに変身させ、わが国のCO排出量を削減することができる。 The present invention includes a P, Q, V short-period fluctuation smoothing device, and converts natural energy such as wind power generation and solar power generation into liquid hydrogen, stores it, and converts it into power energy at the time of peak power demand.・ Transform natural energy, such as solar power, into energy that is welcomed by electric power companies and reduce CO 2 emissions in Japan.

本発明は、風力発電・太陽光発電等の変動の激しい電力を液体水素に変換・貯蔵後、電力需要ピーク時に、電力に再変換することで、安定した電力を電力系統に送電することにより従来利用できなかった自然エネルギーも有効に利用できる。また、揚水発電方式と比べ、エネルギーの蓄積と発電を電力需要地近辺で行うので、送電損失は大幅に少なくなる。   The present invention is based on the conventional technology by converting stable electricity such as wind power generation and solar power generation into liquid hydrogen, storing it, and then reconverting it into power at the time of peak power demand, thereby transmitting stable power to the power system. Natural energy that could not be used can also be used effectively. In addition, compared with the pumped storage power generation method, energy storage and power generation are performed near the power demand area, so transmission loss is significantly reduced.

本発明の発電装置50は、フェランチ現象の発生防止対策が必要な時に、電力系統に並列して同期調相機運転でき、電力系統の電圧を平滑化させることで電力系統の安定度が向上できる。   The power generation device 50 of the present invention can be operated in a synchronous phase adjuster in parallel with the power system when measures for preventing the occurrence of the ferrant phenomenon are required, and the stability of the power system can be improved by smoothing the voltage of the power system.

本発明の実施例1の小型電力需給平準化システムを示す。1 shows a small power supply and demand leveling system according to a first embodiment of the present invention. 本発明の実施例2の大型電力需給平準化システムを示す。The large-scale electric power supply and demand leveling system of Example 2 of the present invention is shown. 本発明の実施例3の製鉄所に隣接又は近接したコンビナート立地型小型電力需給平準化システムを示す。The complex location type | mold small electric power supply-and-supply leveling system which adjoins or adjoins to the steelworks of Example 3 of this invention is shown. 本発明の実施例4の水素燃料自動車用水素燃料販売スタンドシステムを示す。7 shows a hydrogen fuel sales stand system for a hydrogen fuel automobile according to a fourth embodiment of the present invention. 本発明の実施例5の人口衛星打上げ基地用液体水素・液体酸素補給システムを示す。10 shows a liquid hydrogen / liquid oxygen supply system for an artificial satellite launch base according to a fifth embodiment of the present invention. 電力需要の1日24時間変動と各種電力エネルギー分担を示す。The fluctuation of electric power demand 24 hours a day and various electric energy sharing are shown. 電力系統運用の保安確保及び最適化のための階層構造の運用指令形態を示す。A hierarchical operation command form for ensuring and optimizing power system operation security is shown. 本発明の小電力系統用のP、Q、V短周期変動平滑化装置の構成を示す。The structure of the P, Q, V short period fluctuation | variation smoothing apparatus for low power systems of this invention is shown. 本発明の小電力系統用のP、Q、V短周期変動平滑化装置の起動に用いる均一ブリッジ型サイリスタ励磁方式の同期機起動並列用サイリスタ磁励装置を示す。1 shows a synchronous bridge start-up thyristor magnetic excitation device of a uniform bridge type thyristor excitation system used for starting up a P, Q, V short period fluctuation smoothing device for a low power system of the present invention. 本発明の大電力系統用のP、Q、V短周期変動平滑化装置の構成を示す。The structure of the P, Q, V short period fluctuation smoothing apparatus for high power systems of this invention is shown. 本発明の同期調相機兼用の発電装置を示す。1 shows a power generator that also serves as a synchronous phase adjuster according to the present invention. 本発明の同期調相機、フライホイール調相機兼用の発電装置を示す。1 shows a power generator that also serves as a synchronous phase shifter and a flywheel phase shifter according to the present invention.

(前提条件)
電力系統の運用体制は、全世界で、保安確保のために、図7に示す階層構造の運用指令形態を採用している。
(1)各電力会社の中央給電指令所→地区電力系統遠隔監視制御所→電気所(水力、火力、原子力、地熱等の発電所と変電所)にいたる階層制御構造になっている。各電力会社の中央給電指令所の電力系統運用自動化システム(EMS:Energy Management System)90は、地区電力系統遠隔監視制御所(SCC:Supervisory Control Center)の地区遠隔監視制御システム91を介して各電気所を最適に運用する。電力系統運用自動化システム90の監視制御情報データはWAN又はLAN経由で、LFC(Load Frequency Control)、EDC(Economical Dispatch Control)制御信号は、より信頼度の高い専用ITC(Intelligent Telemeter Control System)を使って伝達される。
(2)水力発電所や変電所は全て無人で、運転は地区電力系統遠隔監視制御所から遠隔監視操作自動制御が実施されている。
(Prerequisite)
The operation system of the power system employs a hierarchical operation command form shown in FIG. 7 in order to ensure security throughout the world.
(1) Each power company has a hierarchical control structure from the central power supply command station to the district power system remote monitoring and control station to the electric power station (power plants and substations such as hydropower, thermal power, nuclear power, and geothermal power). The power system operation automation system (EMS: Energy Management System) 90 of each electric power company's central power supply command center is connected to each electric power via the district remote monitoring control system 91 of the district power system remote monitoring control center (SCC: Supervision Control Center). Operate optimally. The monitoring control information data of the power system operation automation system 90 is via WAN or LAN, and the LFC (Load Frequency Control) and EDC (Economic Display Control) control signals use a highly reliable dedicated ITC (Intelligent Telemeter Control). Is transmitted.
(2) All hydroelectric power stations and substations are unmanned, and the operation is controlled automatically by remote monitoring operation from the local power system remote monitoring and control station.

電力系統運用自動化システム90が、本発明の電力需給平準化を実施する場合、送電損失が少なく、電圧変動も少なく、電力系統安定度も良く、コストも最小の電力系統潮流分布になるよう各地の発電所出力を最適化し、複数の電気所に装備された電力需給平準化システムは地区遠隔監視制御システム91によって自動的に遠隔制御される。本発明の電力需給平準化システムが連繋する電力系統の中央給電指令所の電力系統運用自動化システム90は、1日24時間分の全系統総需要(MW)カーブを予想し、全発電所の最適な発電出力分担を自動的に決定する。
本発明の電力需給平準化システムは、GPS(Global Positioning System)信号を受信し、電力需給平準化システムが備える「制御装置70」のSCADA(System Control And Data Acquisition:制御用信号およびデータの送信、受信、伝達などのデータリンクをLAN、WAN、ITC等を使って実施するインターフェース)で、電力系統運用自動化システム90からの指令、制御信号を受信し、計測データ、制御操作、事故発生・検出等の事象発生時刻をミリ秒単位の精度でスタンピングしているので事故現象解析を的確に、且つ、敏速に事故現象を究明できる。これらのデータは、「制御装置70」のSCADAでデータ処理され、上位の制御所や指令所にアップロードされる。
When the power system operation automation system 90 implements the power supply and demand leveling of the present invention, the power system power distribution is reduced so that the power system power flow distribution is small so that power transmission loss is small, voltage fluctuation is small, power system stability is good, and cost is minimum. The power supply and demand leveling system that optimizes the power plant output and is installed in a plurality of electric power stations is automatically remotely controlled by the district remote monitoring and control system 91. The power system operation automation system 90 of the central power supply command station of the power system linked with the power supply and demand leveling system of the present invention predicts the total system total demand (MW) curve for 24 hours a day, and optimizes all power stations. Automatic generation output sharing is automatically determined.
The power supply and demand leveling system of the present invention receives a GPS (Global Positioning System) signal, and transmits a SCADA (System Control And Data Acquisition: control signal and data transmission) of the “control device 70” provided in the power supply and demand leveling system. Interfaces that implement data links such as reception and transmission using LAN, WAN, ITC, etc., receive commands and control signals from the power system operation automation system 90, and receive measurement data, control operations, accident occurrence / detection, etc. The event occurrence time is stamped with millisecond accuracy, so the accident phenomenon can be analyzed accurately and promptly. These data are processed by SCADA of “control device 70” and uploaded to a higher control station or command station.

(発電装置の方式)
本発明の電力需給平準化システムに用いる発電方式として、次の四つが考えられる。
(1)水素燃料電池方式(数百kW以下の電気所)
水素燃料電池にも種々な方式と特性があるが、騒音がなく、環境性に優れているがコストは高くなる。貯蔵できるエネルギーも少なく小規模発電向きである。
(2)水素燃料ロータリーエンジン発電方式(数万kW以下の電気所)
水素ガス、ガソリン、LNGガス等を使用できる。発電効率は少々劣るが電力需要の直近位置で発電できるので送電損失を大幅に減少できる。補修、運転等は容易、且つ、機器は丈夫である。同期調相機運転やフライホイール調相機運転も容易である。電力系統の軽負荷時に発生する様々な課題(軽負荷時のフェランチ現象による異常電圧、系統安定度等)の解決に有効である。
(3)ガスタービン発電方式(数10万kW未満の電気所)
水素ガスタービン発電方式で20〜80MW級の中規模の発電向きである。極低温の液体水素貯蔵装置を保有し、大量の水素ガスを燃焼して高温度ガスでタービンを駆動し発電するので、発電に係わる熱管理が重要である。単体の水素ガスタービンだけでは熱効率が悪い。液体水素や液体酸素の極低温とタービンの廃熱を地域冷暖房と組み合わせて、熱効率を上げることができる(都市内立地のケース)。
(4)コンバイドサイクル発電方式(数100万kW以上の電気所)
上記のガスタービン発電装置3台の高温廃熱ガスを蒸気ボイラー(1台)に導き発生した蒸気を利用して蒸気タービン発電機(1台)で発電する。このコンバイドサイクル発電方式が、現在一番熱効率が高い。
なお、(2)〜(4)の発電装置は、LNGガスに水素ガス10〜30%程度混合した燃料を用いて発電してもよい。
(Power generation system)
As the power generation method used in the power supply / demand leveling system of the present invention, the following four methods are conceivable.
(1) Hydrogen fuel cell system (Electric power station of several hundred kW or less)
Hydrogen fuel cells also have various methods and characteristics, but they have no noise and are environmentally friendly, but cost is high. It has little energy to store and is suitable for small-scale power generation.
(2) Hydrogen fuel rotary engine power generation system (electrical power stations of tens of thousands of kW or less)
Hydrogen gas, gasoline, LNG gas, etc. can be used. Although the power generation efficiency is slightly inferior, the power generation loss can be greatly reduced because power can be generated in the immediate vicinity of the power demand. Repair, operation, etc. are easy and the equipment is strong. Synchronous phase shifter operation and flywheel phase shifter operation are also easy. It is effective in solving various problems (abnormal voltage due to ferrant phenomenon at light load, system stability, etc.) that occur when the power system is lightly loaded.
(3) Gas turbine power generation system (Electric power stations less than several hundred thousand kW)
The hydrogen gas turbine power generation system is suitable for medium-scale power generation of 20 to 80 MW class. Since a cryogenic liquid hydrogen storage device is owned, a large amount of hydrogen gas is burned and a turbine is driven by high temperature gas to generate power, heat management related to power generation is important. A single hydrogen gas turbine alone has poor thermal efficiency. Thermal efficiency can be increased by combining the cryogenic temperature of liquid hydrogen and liquid oxygen and the waste heat of the turbine with district cooling and heating (in the case of urban location).
(4) Combined cycle power generation method (Electric power stations of several million kW or more)
The steam turbine generator (1 unit) generates electric power by using the steam generated by introducing the high-temperature waste heat gas of the three gas turbine power generation devices to a steam boiler (1 unit). This combined cycle power generation method has the highest thermal efficiency at present.
Note that the power generation devices (2) to (4) may generate power using a fuel in which about 10 to 30% of hydrogen gas is mixed with LNG gas.

(運用形態)
本発明の電力需給平準化システムの運転モードは以下の5種類ある。
(1)発電(揚水発電所代替)モード:
平日の電力需要ピーク時間帯に最大出力で4〜6時間程度の発電を行う。運転時間は事前に生成・貯蔵した水素ガス量で決まる。発電中は電力需給平準化、送電損失減少、二次系統送電電圧安定化を行う。
(2)系統電圧制御専用モード:
前記の電力系統に連繋した発電機(=同期機)の原動機を切離して連繋系統の同期調相機運転を行い、平日深夜および特異日の軽負荷時の異常電圧を防止する役目を分担する。
(3)電力変動抑制運転モード:
風力発電や鉄鋼所のコールドストリップミル使用により送電線のP、Q、Vに発生する秒オーダの変動をフラィホィールと同期調相機運転で平滑化する。
(4)水素生成モード:
水電気分解、液体水素生成と液体水素貯蔵を行う一連の運転操作を実行する。
(5)試験モード:
各装置単位に装置の状態をオフラインで試験、チェックする。
(6)停止モード:
運転中の機器を停止させる。
(その他)
P、Q、V短周期変動平滑化装置は、ユニット数を増減することで必要な容量を確保し、制御装置とリンクできる。
現地電気所の制御装置70および地区遠隔監視制御システム91の制御装置デスプレー上に運転モードと状態を表示し、運転モード選択操作、実施および停止操作を実行する。
(Operational form)
There are the following five types of operation modes of the power supply and demand leveling system of the present invention.
(1) Power generation (substitution for pumped storage power plant) mode:
It generates power for about 4 to 6 hours at the maximum output during the peak power demand hours on weekdays. The operation time is determined by the amount of hydrogen gas generated and stored in advance. During power generation, power supply and demand leveling, transmission loss reduction, and secondary system transmission voltage stabilization are performed.
(2) System voltage control dedicated mode:
The power generator of the generator (= synchronous machine) connected to the electric power system is disconnected to perform the synchronous phase adjuster operation of the connected system, and plays a role of preventing abnormal voltage at midnight on weekdays and light loads on special days.
(3) Power fluctuation suppression operation mode:
By using wind power generation and cold strip mills at steelworks, fluctuations in the order of seconds generated in P, Q, and V of transmission lines are smoothed by flywheel and synchronous phase shifter operation.
(4) Hydrogen production mode:
A series of operation operations are carried out for water electrolysis, liquid hydrogen generation and liquid hydrogen storage.
(5) Test mode:
Test and check the device status offline for each device.
(6) Stop mode:
Stop the operating equipment.
(Other)
The P, Q, V short period fluctuation smoothing device can secure the necessary capacity by increasing or decreasing the number of units and can be linked with the control device.
The operation mode and the state are displayed on the control device display of the local electric power station control device 70 and the district remote monitoring control system 91, and the operation mode selection operation, execution and stop operation are executed.

図1に示す本発明の実施例1は、電力需要が集中する都市内又は都市近郊の多数の電気所に設置され、主として二次系統(66kV又は154kV)又は配電系統(6.6kV)に連繋される小型電力需給平準化システム100を示す。   The first embodiment of the present invention shown in FIG. 1 is installed in a large number of electric stations in or near a city where power demand is concentrated, and is mainly linked to a secondary system (66 kV or 154 kV) or a distribution system (6.6 kV). 1 shows a small power supply and demand leveling system 100 to be used.

(設備構成)
水を電気分解して水素ガスと酸素ガスを発生させる水電気分解装置10、液体水素・液体酸素製造装置20、液体水素貯蔵装置30、液体酸素貯蔵装置31、液体水素をガス化する水素ガス化装置40、水素ガスタンク41、水素ガスで発電する発電装置50を備えるが、全て1対1の必要はない。例えば、5セットの水電気分解装置10と発電装置50が、2セットの液体水素貯蔵装置30と水素ガス化装置40と水素ガスタンク41を共有して使用するように設計することでコストを低減できる。
発電装置50は水素ロータリーエンジンに直結された交流同期発電機(発電容量110kW、マツダ水素ロータリーエンジンRX−8、ハイドロエンジンRE、高圧水素ガスタンク35MPa)25台分(2.75MW)を1セットとし、将来、4セット程度まで増設可能である。これに加えて、風力発電・太陽光発電等のP、Q、V短周期変動が激しい電力を平滑化し水電気分解装置10が安定に水を電気分解できるようにするP、Q、V短周期変動平滑化装置2、販売する液体水素を出荷する液体水素出荷装置32、酸素を必要とする病院や工場のために液体酸素を出荷する液体酸素出荷装置33を設けてもよい。風力発電・太陽光発電等の自然エネルギー発電に良好な地点であれば、風力発電・太陽光発電等の発電装置を設けてもよい。実施例1では、風力発電装置1とP、Q、V短周期変動平滑化装置2とを設けて、風力発電装置1と一般商用電力送電網80からの電力がP、Q、V短周期変動平滑化装置2で平滑される。
なお、酸素の供給、販売の予定が無い場合は水電気分解直後に空気中に放出するので、この場合は酸素関係の液体酸素貯蔵装置31、バルブV202、V311等の関連バルブを閉鎖する。
(Equipment configuration)
Water electrolysis device 10 that electrolyzes water to generate hydrogen gas and oxygen gas, liquid hydrogen / liquid oxygen production device 20, liquid hydrogen storage device 30, liquid oxygen storage device 31, hydrogen gasification that gasifies liquid hydrogen Although the apparatus 40, the hydrogen gas tank 41, and the electric power generation apparatus 50 which generate | occur | produces with hydrogen gas are provided, all need not be 1: 1. For example, the cost can be reduced by designing the two sets of the water electrolysis apparatus 10 and the power generation apparatus 50 to share the two sets of the liquid hydrogen storage apparatus 30, the hydrogen gasification apparatus 40, and the hydrogen gas tank 41. .
The power generation device 50 is an AC synchronous generator (power generation capacity 110 kW, Mazda hydrogen rotary engine RX-8, hydro engine RE, high pressure hydrogen gas tank 35 MPa) 25 units (2.75 MW) directly connected to the hydrogen rotary engine as one set, In the future, it can be expanded to about 4 sets. In addition to this, the P, Q, and V short cycles, such as wind power generation and solar power generation, that smooth the P, Q, and V short cycle fluctuations and enable the water electrolyzer 10 to stably electrolyze water A fluctuation smoothing device 2, a liquid hydrogen shipping device 32 for shipping liquid hydrogen to be sold, and a liquid oxygen shipping device 33 for shipping liquid oxygen for a hospital or factory that requires oxygen may be provided. If it is a good point for natural energy power generation such as wind power generation or solar power generation, a power generation device such as wind power generation or solar power generation may be provided. In the first embodiment, the wind power generator 1 and the P, Q, V short cycle fluctuation smoothing device 2 are provided, and the electric power from the wind power generator 1 and the general commercial power transmission network 80 is P, Q, V short cycle fluctuation. Smoothing is performed by the smoothing device 2.
If there is no plan to supply or sell oxygen, it is released into the air immediately after water electrolysis. In this case, the oxygen-related liquid oxygen storage device 31, valves V202, V311 and other related valves are closed.

(設備運用)
各装置配管の自動バルブは全て初期状態では閉となっている。本装置の起動、停止、発電量又は電力受電量等は全て中央給電指令所の電力系統運用自動化システム90からの指令、制御信号を地区遠隔監視制御システム91経由で受信して制御装置70により自動的に運転される。制御装置70は、上記の一連の機器を備えた電気所内の全装置の運転状況を的確に監視制御する。
水素生成モードでは、制御装置70は、水電気分解装置10、液体水素・液体酸素製造装置20、液体水素貯蔵装置30、液体酸素貯蔵装置31を稼動させ、電力系統連繋装置60(電気所の母線、保護リレー、遮断器等々)を制御して一般商用電力送配電網80から深夜電力を受電する。次に、バルブV101(水素用)とバルブV102(酸素用)を開いて、深夜電力を使って水電気分解装置10で水素及び酸素ガスを分離生成する。循環する冷媒と熱交換させることにより、生成された水素ガスと酸素ガスを液化させる冷凍極低温交換器と前記冷媒を圧縮するリサイクル圧縮機で圧縮された冷媒を膨張させる膨張タービンを備えた液体水素・液体酸素製造装置20で液体水素及び液体酸素を生成する。次に、バルブV201を開いて、液体水素を液体水素貯蔵装置30に貯蔵し、バルブV202を開いて、液体酸素を液体酸素貯蔵装置31に24時間以内程度貯蔵する。また、P、Q、V短周期変動平滑化装置2で平滑化された風力発電装置1の電力も、水電気分解装置10の電力として使用する。
発電モードでは、制御装置70は、電力需要ピーク時に地区遠隔監視自動制御システム91から発電指令と運転開始指示のデータを受信すると、バルブV301を開いて、液体水素を水素ガス化装置40で発電装置50の廃熱と海水、湖水、河川水等の潜熱等を使ってガス化し、バルブV401を開いて、水素ガスタンク41に収納し、バルブV411を開いて、水素ガスを発電装置50に供給し、水素ロータリーエンジンを起動、規定回転数に到達すると発電機の自動並列装置が回転数及び電圧を適切に調整して発電機を電力系統に並列する。水素ロータリーエンジン発電機は最大100台あるが全発電機を数分以内に全て並列できる。発電装置50で発電された電力は電力系統連繋装置60により一般商用電力送配電網80に送電される。
発電を停止する時は電力系統連繋装置60で当該発電セットの遮断器を制御装置70から自動又は手動等で開路すると当該セットの全発電機(25台分)が解列され、当該セットのバルブV411も自動的に閉鎖され、水素ロータリーエンジンも全てを停止する。また、この系列の全発電機が解列された場合はバルブV301、V401、V411は自動的に閉鎖される。電力系統の事故で当該セットの遮断器がオフされると当該セットの全発電機(25台分)も停止され電力系統の事故波及を防止する。
(Equipment operation)
All automatic valves of each equipment pipe are closed in the initial state. The start and stop of this device, the amount of power generation and the amount of power received, etc. are all automatically received by the control device 70 by receiving commands and control signals from the power system operation automation system 90 of the central power supply command station via the district remote monitoring control system 91. Driven. The control device 70 accurately monitors and controls the operation status of all the devices in the electric station including the series of devices described above.
In the hydrogen generation mode, the control device 70 operates the water electrolysis device 10, the liquid hydrogen / liquid oxygen production device 20, the liquid hydrogen storage device 30, and the liquid oxygen storage device 31 to operate the power system linking device 60 (the power station bus). , A protection relay, a circuit breaker, etc.) are controlled to receive midnight power from the general commercial power transmission / distribution network 80. Next, the valve V101 (for hydrogen) and the valve V102 (for oxygen) are opened, and hydrogen and oxygen gas are separated and generated by the water electrolyzer 10 using midnight power. Liquid hydrogen comprising a refrigeration cryogenic exchanger for liquefying the generated hydrogen gas and oxygen gas by heat exchange with the circulating refrigerant, and an expansion turbine for expanding the refrigerant compressed by the recycle compressor for compressing the refrigerant -Liquid hydrogen and liquid oxygen are produced by the liquid oxygen production apparatus 20. Next, the valve V201 is opened to store liquid hydrogen in the liquid hydrogen storage device 30, and the valve V202 is opened to store liquid oxygen in the liquid oxygen storage device 31 within about 24 hours. Further, the power of the wind power generator 1 smoothed by the P, Q, V short period fluctuation smoothing device 2 is also used as the power of the water electrolysis device 10.
In the power generation mode, when the control device 70 receives the power generation instruction and the operation start instruction data from the district remote monitoring automatic control system 91 at the time of the power demand peak, the control device 70 opens the valve V301 and generates the liquid hydrogen with the hydrogen gasifier 40. 50, waste gas and latent heat of seawater, lake water, river water, etc. are used for gasification, valve V401 is opened and stored in hydrogen gas tank 41, valve V411 is opened, and hydrogen gas is supplied to power generator 50. When the hydrogen rotary engine is started and the specified rotational speed is reached, the automatic parallel device of the generator appropriately adjusts the rotational speed and voltage and parallels the generator to the power system. Although there are a maximum of 100 hydrogen rotary engine generators, all generators can be paralleled within a few minutes. The electric power generated by the power generation device 50 is transmitted to the general commercial power transmission / distribution network 80 by the power grid connection device 60.
When power generation is stopped, when the circuit breaker of the power generation set is opened automatically or manually from the control device 70 by the power system linking device 60, all the generators (25 units) of the set are disconnected, and the valve of the set V411 is also closed automatically, and the hydrogen rotary engine is also stopped. Further, when all the generators in this series are disconnected, the valves V301, V401, V411 are automatically closed. When the breaker in the set is turned off due to an accident in the power system, all the generators (for 25 units) in the set are also stopped to prevent the accident from spreading in the power system.

離島用の小規模な単独電力系統に風力発電を導入し、出来るだけ安価にP、Q、Vの短周期変動を平滑化するケースに適用するP、Q、V短周期変動平滑化装置2は、図8Aと図8Bに示す小電力系統用のP、Q、V短周期変動平滑化装置である。しかし、多くの風力発電機(IG:Induction Generatorを用いるものが一般的である。)を有する風力発電所を大電力系統に並列するケースに適用するP、Q、V短周期変動平滑化装置2は、図8Cに示すEDLC(Electric Double Layer Capacitor)装置を使って平滑化を行う大電力系統用のP、Q、V短周期変動平滑化装置である。
図8Aに示す小電力系統用のP、Q、V短周期変動平滑化装置は台座21上に設置した同期機22とフライホイール23と、同期機22の軸とフライホイール23の軸を連結/切離可能に連結するクラッチ24と、同期機起動並列用サイリスタ励磁装置25とで構成され、送電線からの電力を用いる同期機並列用サイリスタ励磁装置25からの直流電流パルスが電源線を通して同期機22に供給され直流電流パルス・モータとして駆動する。また、図8Bに、この小電力系統用のP、Q、V短周期変動平滑化装置の起動に用いる均一ブリッジ型サイリスタ励磁方式の同期機起動並列用サイリスタ励磁装置25を示す。均一ブリッジ型サイリスタ励磁方式はサイリスタ27、励磁用変圧器(PPT)28、自動電圧調整装置(AVR)29から構成されるサイリスタ逆変換装置を用いて電源周波数を変えることで、周波数に同期して電動機の速度を停止状態から定格速度まで上昇させる起動方式である。サイリスタ27は、同期機が電源と常に同期を保つように電動機回転位置に同期した点弧信号によって動作する。この小電力系統用のP、Q、V短周期変動平滑化装置の起動は先ず、同期機だけをサイリスタ起動して系統に並列後、クラッチでフライホイール軸を接続する。
大電力系統に並列される多くの風力発電機を有する風力発電所の場合は、前記のフライホイールを用いる小電力系統用のP、Q、V短周期変動平滑化装置では効果が少ないため、図8Cに示す大電力系統用のP、Q、V短周期変動平滑化装置を使用する。図8Cに示す大電力系統用のP、Q、V平滑化装置は、遮断器(CB:Circuit Breaker)201−203と、DC/AC変換装置204、205と、高速に充電、放電可能な蓄電池であるEDLC装置(Battery)206−207とで構成されコンパクトに収容された装置で、EDLC装置206−207を用いて電気エネルギーを一時的にコンデンサーに蓄電し、この直流電源エネルギーをP、Q、Vを平滑するようにDC/AC変換装置204、205を使って交流変換して電力系統に電力を供給することでP、Q、Vを平滑するものである。図に示す様にこの運用はP、Q、Vの目標値を時間のカーブとして目標値を与えることにより時々刻々の目標値からの偏差値(ΔP:Pの変動量観測値、ΔV:Vの変動量観測値)を小さくするように制御される。P、Q、Vの目標値を与えるソフトウェアを様々な制御目的に応じた目標値を与えることで、対象とする電力系統に適切な運転を行える。
P、Q、V短周期変動平滑化装置2の起動と停止はオペレータの判断により遠隔制御で実施できる。しかし、最新のAI(Artificial Intelligence:人工知能、Expert System、Neural Network、Fuzzy、フラクタル等の総称)理論を使って起動/停止を全自動で実施することもできる。一番簡単な方法は、t秒間で測定されたP、Q、Vについてそれぞれn個分(通常2〜4個)の最新の観測データから算出したt秒先の予測値に基づいてP、Q、Vの調整の有無と調整量を求めて制御する。P、Q、Vの観測値が一定の時間、例えば20分以上、閾値内に留まっている安定な場合はP、Q、V短周期変動平滑化装置2を自動的に停止するなど適切なソフトウェアを作ることで自動運転が可能となる。
P, Q, V short cycle fluctuation smoothing device 2 applied to a case where wind power generation is introduced into a small isolated power system for remote islands and smoothes short cycle fluctuations of P, Q, V as cheaply as possible. FIG. 8A and FIG. 8B are P, Q, and V short-cycle fluctuation smoothing devices for a low-power system. However, a P, Q, V short-period fluctuation smoothing device 2 is applied to a case where a wind power plant having many wind power generators (generally using IG: Induction Generator) is parallel to a large power system. Is a P, Q, V short-period fluctuation smoothing device for a large power system that performs smoothing using an EDLC (Electric Double Layer Capacitor) device shown in FIG. 8C.
The P, Q, V short-period fluctuation smoothing device for a small power system shown in FIG. 8A connects the synchronous machine 22 and the flywheel 23 installed on the pedestal 21, and the axis of the synchronous machine 22 and the axis of the flywheel 23. A clutch 24 that is detachably connected and a synchronous machine start-up parallel thyristor excitation device 25, and a DC current pulse from the synchronous machine parallel thyristor excitation device 25 that uses power from the transmission line passes through the power supply line. 22 is supplied as a direct current pulse motor. FIG. 8B shows a synchronous bridge start-up thyristor exciter 25 of the uniform bridge type thyristor excitation method used for starting up the P, Q, V short period fluctuation smoothing device for the low power system. The uniform bridge type thyristor excitation method is synchronized with the frequency by changing the power supply frequency by using a thyristor reverse conversion device composed of a thyristor 27, an excitation transformer (PPT) 28, and an automatic voltage regulator (AVR) 29. This is a start-up method that increases the speed of the electric motor from the stopped state to the rated speed. The thyristor 27 is operated by an ignition signal synchronized with the motor rotation position so that the synchronous machine is always synchronized with the power source. The P, Q, V short period fluctuation smoothing device for the small power system is started by first starting a thyristor of only the synchronous machine and paralleling it to the system, and then connecting a flywheel shaft with a clutch.
In the case of a wind power plant having many wind power generators in parallel with a large power system, the P, Q, V short period fluctuation smoothing device for a small power system using the flywheel has little effect. The P, Q, V short period fluctuation smoothing device for large power system shown in 8C is used. The P, Q, and V smoothing devices for a large power system shown in FIG. 8C are a circuit breaker (CB: Circuit Breaker) 201-203, DC / AC converters 204 and 205, and a storage battery that can be charged and discharged at high speed. The EDLC device (Battery) 206-207 is a compactly housed device, and the EDLC device 206-207 is used to temporarily store electrical energy in a capacitor, and this DC power source energy is stored in P, Q, The DC / AC converters 204 and 205 are used for AC conversion so as to smooth V, and power is supplied to the power system to smooth P, Q, and V. As shown in the figure, this operation gives the target values of the target values of P, Q, and V as time curves, thereby providing a deviation value from the target value every moment (ΔP: observed fluctuation amount of P, ΔV: V It is controlled to reduce the fluctuation amount observation value). By giving the target values corresponding to various control purposes to the software that gives the target values of P, Q, and V, it is possible to perform appropriate operation for the target power system.
The start and stop of the P, Q, V short cycle fluctuation smoothing device 2 can be implemented by remote control at the operator's discretion. However, start / stop can also be performed fully automatically using the latest AI (Artificial Intelligence: generic name of artificial intelligence, expert system, neural network, fuzzy, fractal, etc.) theory. The easiest way, P was measured at t 1 seconds, Q, based on the predicted value of the latest t 1 seconds ahead calculated from the observed data of n each correspond (2-4 Normal) for V P , Q and V are adjusted and the amount of adjustment is determined and controlled. Appropriate software such as automatically stopping the P, Q, V short-period fluctuation smoothing device 2 when the observed values of P, Q, V remain stable within a certain time, for example, 20 minutes or more. Automatic operation is possible by making

揚水発電所には無い、または揚水発電所では簡単に実施できない便利な機能を本発明の発電装置50に持たせることができる。その機能の一つは、電圧調整用同期調相機の機能である。発電装置50の発電機軸と原動機軸を自動的に切り離して、発電装置50に、自動的に電力系統の電圧を調整する同期調相機を兼用させることができる。
図9に、支持基礎53上に設置された水素ガス・ロータリー・エンジン51と三相交流同期発電機52とを備える同期調相機兼用の発電装置50を示す。その動作は次の通りである。先ず、水素ガス・ロータリー・エンジン51を起動し、エンジン51の軸に自動クラッチAで自動的に連結/切り離し可能な軸を有する三相交流同期発電機を回転させる。この発電機52を電力系統に並列後、自動クラッチAの結合を解除し、水素ガス・ロータリー・エンジン51を停止させる。以後、電力系統に並列した発電機52の励磁電流を増やすと有効電力Pは零であるが無効電力Qを系統側に送出すると、系統電圧が上昇する。逆に、発電機52の励磁電流を減少させると有効電力Pは殆ど零であるが無効電力は−Q(発電機側に吸収)となり、発電機側の電圧が低下する。この励磁電流を自動的に制御することでこの発電機母線の電圧を一定にすることができる。この発電セットの発電機25台が全て並列後、ロータリーエンジンは全て切り離されているので水素ガスは不要であり、バルブV411は自動的に閉鎖する。
この同期調相機群を停止するときは回転している同期調相機群を一括又は数台ずつ解列することで同期調相機群を停止できる。
専用の電圧調整用同期調相機を設けるのでなく、電力需要ピーク時には発電機として使用し、軽負荷時にはフェランチ現象の発生防止対策として地区遠隔監視自動制御システム91から制御装置70の運転モードを切換えて必要な台数を並列し、同期調相機運転することで電力系統の電圧を所定の範囲に平滑化することができる。事前の予測解析結果から電圧制御が必要との判断がある場合は事前に必要台数を同期調相機として待機させておくこともできる。電力系統の異常な電圧上昇や降下が始まると同期調相機として自動的に無効電力を吸収/送出させることで系統電圧が一定に保たれる。
The power generation apparatus 50 of the present invention can be provided with a convenient function that is not in the pumped storage power plant or that cannot be easily implemented in the pumped storage power plant. One of the functions is a function of a voltage adjusting synchronous phase adjuster. The generator shaft and the prime mover shaft of the power generation device 50 can be automatically separated, and the power generation device 50 can also be used as a synchronous phase adjuster that automatically adjusts the voltage of the power system.
FIG. 9 shows a power generator 50 also serving as a synchronous phase adjuster including a hydrogen gas rotary engine 51 and a three-phase AC synchronous generator 52 installed on a support base 53. The operation is as follows. First, the hydrogen gas rotary engine 51 is started, and a three-phase AC synchronous generator having a shaft that can be automatically connected / disconnected to the shaft of the engine 51 by the automatic clutch A is rotated. After the generator 52 is placed in parallel with the power system, the automatic clutch A is disconnected and the hydrogen gas rotary engine 51 is stopped. Thereafter, when the excitation current of the generator 52 in parallel with the power system is increased, the active power P is zero, but when the reactive power Q is sent to the system side, the system voltage increases. Conversely, when the excitation current of the generator 52 is decreased, the active power P is almost zero, but the reactive power becomes -Q (absorbed on the generator side), and the voltage on the generator side decreases. By automatically controlling the exciting current, the voltage of the generator bus can be made constant. After all 25 generators of this power generation set are in parallel, all rotary engines are disconnected, so hydrogen gas is unnecessary, and the valve V411 is automatically closed.
When stopping the synchronous phase adjuster group, the synchronous phase adjuster group can be stopped by disconnecting the rotating synchronous phase adjuster group at once or several units at a time.
Instead of providing a dedicated synchronous phase adjuster for voltage adjustment, it is used as a generator at peak power demand, and the operation mode of the control device 70 is switched from the remote control automatic control system 91 as a countermeasure to prevent the occurrence of ferrant phenomenon at light loads. By paralleling the required number of units and operating the synchronous phase adjuster, the voltage of the power system can be smoothed to a predetermined range. If there is a determination that voltage control is necessary based on the result of the prediction analysis in advance, the required number can be made to stand by as a synchronous phase adjuster in advance. When an abnormal voltage rise or drop in the power system starts, the system voltage is kept constant by automatically absorbing / sending reactive power as a synchronous phase adjuster.

図10は、さらに、この発電機52の他端の軸と同様、自動クラッチで自動的に連結/切り離し可能な軸を有するフライホイール54を支持基礎53上に設置した軸受台に取り付けた同期調相機、フライホイール調相機兼用の発電装置50を示す。水素ガス・ロータリー・エンジン51と三相交流同期発電機52及びフライホイール54の軸を自動クラッチA、Bで結合している。先ず、水素ガス・ロータリー・エンジン51を起動し、三相交流同期発電機52及びフライホイール54を回転させる。この発電機52を系統に並列後、自動クラッチAの結合を解除し、水素ガス・ロータリー・エンジン51を停止させる。三相交流同期発電機52及びフライホイール54は並列した電力系統の周波数に同期して回転を続ける。系統周波数が加速上昇しようとすると、その分の電気エネルギーを系統側から吸収することでフライホイール54の回転も上昇する。他方、系統周波数が減速するとフライホイール54の回転エネルギーが減少した分を電気エネルギーとして系統側に放出する。このフライホイール効果は離島用の小規模な単独電力系統のみ有効であるが、装置を安価にできる。
通常は、発電機として使用し、フェランチ現象の発生防止対策が必要な時だけ、地区遠隔監視自動制御システムから制御装置70の運転モードを同期調相機モードに切換えて必要な台数を並列し、同期調相機として運転することで電圧を所定の範囲に平滑化することができる。また、地区遠隔監視自動制御システム91から制御装置70の運転モードを切換えて必要な台数を、フライホイール調相機運転することで電圧や周波数を所定の範囲に平滑化するなど多目的な役割を分担する。
FIG. 10 also shows a synchronous adjustment in which a flywheel 54 having a shaft that can be automatically connected / disconnected by an automatic clutch is attached to a bearing base installed on a support base 53 in the same manner as the shaft at the other end of the generator 52. The electric power generating apparatus 50 used as a phase machine and a flywheel phase adjuster is shown. The shafts of the hydrogen gas rotary engine 51, the three-phase AC synchronous generator 52 and the flywheel 54 are connected by automatic clutches A and B. First, the hydrogen gas rotary engine 51 is started, and the three-phase AC synchronous generator 52 and the flywheel 54 are rotated. After the generator 52 is arranged in parallel with the system, the coupling of the automatic clutch A is released, and the hydrogen gas rotary engine 51 is stopped. The three-phase AC synchronous generator 52 and the flywheel 54 continue to rotate in synchronization with the frequencies of the parallel power systems. When the system frequency is going to accelerate and increase, the rotation of the flywheel 54 also increases by absorbing the corresponding electrical energy from the system side. On the other hand, when the system frequency is decelerated, the reduced rotational energy of the flywheel 54 is released as electrical energy to the system side. This flywheel effect is effective only for a small isolated power system for a remote island, but the device can be made inexpensive.
Normally, it is used as a generator, and only when it is necessary to take measures to prevent the occurrence of the ferrant phenomenon, the operation mode of the control device 70 is switched from the district remote monitoring automatic control system to the synchronous phase adjuster mode, and the required number of units are synchronized in parallel. By operating as a phase adjuster, the voltage can be smoothed to a predetermined range. In addition, the operation mode of the control device 70 is switched from the district remote monitoring automatic control system 91, and the necessary number of units is shared by the flywheel phase adjuster to smooth the voltage and frequency to a predetermined range. .

風力発電・太陽光発電等の自然エネルギーにあまり変動が無い地点ではP、Q、V短周期変動平滑化装置2を備える必要はない。   It is not necessary to provide the P, Q, and V short-period fluctuation smoothing device 2 at a point where natural energy such as wind power generation and solar power generation does not vary much.

(効 果)
(1)個々のシステムが小型であっても多数分散配置することで、従来の揚水発電所以上の電力需給平準化能力がえられる。更に、電力需給平準化システムを標準化すれば大量生産による生産コスト削減が可能である。また、高額の費用を要するEHV、UHVなどの大容量長距離送電線の建設も必要なくなる。且つ、送電損失を大幅に低減できる。
(2)揚水発電所の建設による自然環境破壊もなくCO排出もない。更に、風力発電・太陽光発電等による電力系統擾乱現象を完全に無縁化するだけでなく、従来利用できなかった領域のエネルギーを吸収して貯蔵後、電力需要のピーク時に安定した良質の電力として高付加価値のクリーンエネルギーとして販売できる。
(3)小型電力需給平準化システム100は、都市内及び都市近郊の二次送電系統変電所に多数分散配置し、深夜、余剰電力を液体水素生成に使用し、貯蔵することは深夜の都心や都市近郊の電力負荷を増加させることを意味する。従って、深夜の軽負荷時の対策に貢献することになる。また、本方式の装置を深夜に同期調相機運転することで、高価なSVC、ShRなどの電圧調相設備を購入設置する必要もなく、且つ、大きい容量の電圧調相設備を得ることができる。深夜や特異日等の軽負荷時に電力系統の異常な電圧上昇防止、不安定化による停電事故防止等の効果がある。
(4)電力系統の質(周波数、電圧、安定供給、コスト等)を改善し、電力系統の安定性も改善して、高付加価値の電力を供給できる。
(5)フェランチ現象による電力系統の異常な電圧上昇だけでなく、風力発電・太陽光発電等からの送電や需要家側の特殊負荷(例えばコールド鉄板圧延、コールドストリップミル使用工場)等による送電線のP、Q、Vの短周期変動を平滑化することにより、安定した電力で水電気分解を行うことができる。(非特許文献1参照)
(Effect)
(1) Even if each system is small, a large number of distributed arrangements can provide power supply and demand leveling capabilities that are higher than those of conventional pumped storage power plants. Furthermore, if the power supply and demand leveling system is standardized, production costs can be reduced by mass production. In addition, construction of large-capacity long-distance transmission lines such as EHV and UHV, which require high costs, becomes unnecessary. In addition, transmission loss can be greatly reduced.
(2) There is no destruction of the natural environment due to the construction of a pumped storage power plant and no CO 2 emissions. Furthermore, it not only completely eliminates power system disturbance caused by wind power generation and solar power generation, but also absorbs and stores energy in areas that could not be used in the past, resulting in stable and high-quality power at peak power demand. Can be sold as high-value-added clean energy.
(3) A large number of small power supply and demand leveling systems 100 are distributed in the secondary transmission system substations in and around the city, and the surplus power is used for liquid hydrogen generation and stored in the middle of the night. It means increasing the electric load in the suburbs of the city. Therefore, it contributes to measures against light loads at midnight. In addition, by operating the device of this system at a synchronous phase adjuster at midnight, it is not necessary to purchase and install expensive voltage phase adjusting equipment such as SVC and ShR, and it is possible to obtain voltage capacity equipment with a large capacity. . It has the effect of preventing abnormal voltage rises in the power system at light loads such as late at night and on special days, and preventing power outage accidents due to instability.
(4) The power system quality (frequency, voltage, stable supply, cost, etc.) can be improved, the stability of the power system can be improved, and high value-added power can be supplied.
(5) Transmission lines not only due to an abnormal voltage rise in the power system due to the ferrant phenomenon, but also due to power transmission from wind power generation, solar power generation, etc. and special loads on the customer side (for example, cold iron plate rolling and cold strip mill factories) By smoothing short-period fluctuations of P, Q, and V, water electrolysis can be performed with stable power. (See Non-Patent Document 1)

図2に示す本発明の実施例2は、電力需要が集中する都市郊外又は大都市郊外から少々離れたLNG基地に隣接して設置された大型電気所内に設置され、水素ガスをLNGガス中に10〜30%程度まで混入した混合ガスを使用して大型のコンバインドサイクル発電装置で発電する大型電力需給平準化システムである。
図2は水素ガス・LNGガス混合装置L10と、LNGガス受入装置L20及びLNGを供給するLNG基地L50との関係をも示している。また、近辺に、風力発電・太陽光発電等の自然エネルギー発電に良好な地点があれば、風力発電・太陽光発電等の発電装置を設けてもよい。この実施例2では、海岸、港湾に面しているので風力発電装置1を構内に設置した。
The embodiment 2 of the present invention shown in FIG. 2 is installed in a large electric power station installed adjacent to an LNG base slightly away from the suburbs of cities or large cities where power demand is concentrated, and hydrogen gas is put into the LNG gas. This is a large power supply and demand leveling system that generates power with a large combined cycle power generator using a mixed gas mixed up to about 10 to 30%.
FIG. 2 also shows the relationship between the hydrogen gas / LNG gas mixing device L10 and the LNG gas receiving device L20 and the LNG base L50 that supplies LNG. In addition, if there is a good point for natural energy generation such as wind power generation or solar power generation in the vicinity, a power generation device such as wind power generation or solar power generation may be provided. In this Example 2, since it faces the coast and a harbor, the wind power generator 1 was installed in the premises.

(設備構成)
この実施例2の電力系統連繋装置60、水電気分解装置10、液体水素・液体酸素製造装置20、液体水素貯蔵装置30、液体酸素貯蔵装置31、水素ガス化装置40、水素ガスタンク41、制御装置70の機能は実施例1の各装置の機能と同じであるが設備容量の規模が格段に大きい。また、この大型電力需給平準化システム200はLNG基地に隣接して設置され、この発電所は運転員及び機器補修要員が常駐する。発電装置50は、高効率のコンバインドサイクル発電装置(第1系列:148MWガスタービン発電機3台、218MW蒸気タービン発電機1台で構成、認可発電容量は545MW、第2系列:第1系列と同じ、発電所としてはこのコンバインドサイクル発電装置の認可出力は1,090MW)である。また、LNG基地は、専用港湾、LNG陸揚げ装置、LNG貯蔵タンク、LNG気化装置を保有し、隣接する大型電力需給平準化システム200に気化したLNGガスをガスパイプで供給している。
(Equipment configuration)
Power system linking device 60, water electrolysis device 10, liquid hydrogen / liquid oxygen production device 20, liquid hydrogen storage device 30, liquid oxygen storage device 31, hydrogen gasification device 40, hydrogen gas tank 41, control device of this embodiment 2 The function 70 is the same as the function of each apparatus of the first embodiment, but the scale of the installed capacity is remarkably large. The large power supply and demand leveling system 200 is installed adjacent to the LNG base, and operators and equipment repair personnel are stationed at this power plant. The power generator 50 is a high-efficiency combined cycle power generator (first series: composed of three 148 MW gas turbine generators and one 218 MW steam turbine generator, approved power generation capacity is 545 MW, second series: the same as the first series As a power plant, the approval output of this combined cycle power generator is 1,090 MW). The LNG base also has a dedicated port, an LNG landing device, an LNG storage tank, and an LNG vaporizer, and supplies the vaporized LNG gas to the adjacent large-scale power supply and demand leveling system 200 through a gas pipe.

(設備運用)
深夜、水電気分解装置10で余剰電力を使って得た水素や酸素と、風力発電・太陽光発電等の自然エネルギーを使って得た水素や酸素を液化して、液体水素を貯蔵装置30に貯蔵し、液体酸素は貯蔵装置31に貯蔵する。電力需要ピーク時に合わせ水素ガス化装置40で海水、河川・湖水等の潜熱や発電装置50の廃熱を利用して水素をガス化しておく。この水素ガスは水素ガスタンク41に入った後、水素ガス用バルブV411を閉鎖したままで、バルブ412を開いて水素ガス・LNGガス混合装置L10に入れる。他方、LNGガスはLNG基地L50から本システムのLNGガス受入装置(計量装置)L20とバルブLV521を経由して水素ガス・LNGガス混合装置L10に入り、水素ガスが10〜30%程度混合したLNG・水素ガス燃料をガスタービンの発電装置50で燃焼させて発電し、電力系統連繋装置60を経由して送電線で送電する。
発電中の大型電力需給平準化システム200を停止するためには、停止モードを選択して該当する大型電力需給平準化システム200を自動的に停止し、各バルブを閉鎖する。
(Equipment operation)
At midnight, hydrogen and oxygen obtained by using surplus power in the water electrolysis apparatus 10 and hydrogen and oxygen obtained by using natural energy such as wind power generation and solar power generation are liquefied, and liquid hydrogen is stored in the storage device 30. The liquid oxygen is stored in the storage device 31. The hydrogen gasifier 40 gasifies hydrogen using the latent heat of seawater, rivers, lakes, etc. and the waste heat of the power generation device 50 in accordance with the peak power demand. After the hydrogen gas enters the hydrogen gas tank 41, the hydrogen gas valve V411 is kept closed and the valve 412 is opened to enter the hydrogen gas / LNG gas mixing device L10. On the other hand, LNG gas enters the hydrogen gas / LNG gas mixing device L10 from the LNG base L50 via the LNG gas receiving device (metering device) L20 and the valve LV521 of this system, and LNG mixed with about 10 to 30% of hydrogen gas. The hydrogen gas fuel is burned by the power generation device 50 of the gas turbine to generate power, and the power is transmitted through the power grid connection device 60 through the transmission line.
In order to stop the large power supply and demand leveling system 200 during power generation, the stop mode is selected, the corresponding large power supply and demand leveling system 200 is automatically stopped, and each valve is closed.

風力発電・太陽光発電等の自然エネルギーの発電所がないケースでは大型電力需給平準化システム200にP、Q、V短周期変動平滑化装置2を備える必要はない。   In the case where there is no natural energy power plant such as wind power generation or solar power generation, it is not necessary to provide the P, Q, and V short-period fluctuation smoothing device 2 in the large-scale power supply and demand leveling system 200.

(効 果)
10〜30%程度の水素ガスをLNGガスに混合したガスを使ってガスタービン式コンバインドサイクル発電装置で発電することで熱効率が高い(約55%)。また、液化LNG貯蔵とガス化に関する技術と管理は、液体水素貯蔵とガス化に関する技術と管理と共通することが多いので、隣設するLNG基地に、水電気分解装置10、液体水素・液体酸素製造装置20、水素ガス化装置40、水素ガスタンク41を設置し、LNG火力と同様に通常、関連企業となっているLNG会社の極低温液化ガス装置の運用とメインテナンス技術に精通した要員の知識と技能を有効に活用して、運転、補修、管理等の業務を委託することで要員の削減も可能である。
(Effect)
Thermal efficiency is high (approximately 55%) by generating electricity with a gas turbine type combined cycle power generator using a gas obtained by mixing about 10 to 30% hydrogen gas with LNG gas. In addition, since the technology and management related to liquefied LNG storage and gasification are often the same as the technology and management related to liquid hydrogen storage and gasification, the water electrolyzer 10, liquid hydrogen / liquid oxygen is installed in the adjacent LNG base. Manufacturing equipment 20, hydrogen gasifier 40, hydrogen gas tank 41, and knowledge of personnel who are familiar with the operation and maintenance technology of cryogenic liquefied gas equipment of LNG company, which is usually an affiliated company, as well as LNG thermal power It is possible to reduce the number of personnel by effectively utilizing skills and entrusting operations such as operation, repair, and management.

図3に示す実施例3は、製鉄所に隣接又は近接したコンビナート立地型小型電力需給平準化システム300である。
製鉄所のコークス製造炉F10で石炭をコークスへ変換する工程では、コークスガス(COG)に約55%含まれる水素を排出ガスや廃熱を伴わない圧力スイング(PSA法)による吸着分離操作で精製する。また、分離後の残ガスはCOG或いは他副生ガス系統へ回収し製鉄プロセスの燃料に利用される。
The third embodiment shown in FIG. 3 is a complex location type small power supply and demand leveling system 300 adjacent to or close to an ironworks.
In the process of converting coal to coke in the coke production furnace F10 at the steelworks, hydrogen contained in about 55% of coke gas (COG) is purified by adsorption separation operation by pressure swing (PSA method) without exhaust gas or waste heat. To do. In addition, the separated residual gas is recovered to the COG or other by-product gas system and used as fuel for the iron making process.

(設備構成)
この実施例3の小型電力需給平準化システム300は、実施例1の小型電力需給平準化システム100と同様の風力発電装置1、P、Q、V短周期変動平滑化装置2、水電気分解装置10、液体水素・液体酸素製造装置20、液体水素貯蔵装置30、液体酸素貯蔵装置31、水素ガス化装置40、水素ガスタンク41、発電装置50、電力系統連系装置60、制御装置70を備え、液体水素・液体酸素製造装置20に水素ガスを供給するバルブFV400、V203を介して水素ガスタンクF30を結合し、さらに液体酸素貯蔵装置31から液体酸素を供給するバルブV311、FV312を介して液体酸素貯蔵装置F31に結合して構成される。
(Equipment configuration)
The small power supply and demand leveling system 300 according to the third embodiment is the same as the small power supply and demand leveling system 100 according to the first embodiment, the wind power generator 1, the P, Q, and V short-period fluctuation smoothing device 2, and the water electrolysis device. 10. Liquid hydrogen / liquid oxygen production apparatus 20, liquid hydrogen storage apparatus 30, liquid oxygen storage apparatus 31, hydrogen gasification apparatus 40, hydrogen gas tank 41, power generation apparatus 50, power grid interconnection apparatus 60, control apparatus 70, A hydrogen gas tank F30 is coupled to the liquid hydrogen / liquid oxygen production apparatus 20 via valves FV400 and V203 for supplying hydrogen gas, and liquid oxygen is stored via valves V311 and FV312 for supplying liquid oxygen from the liquid oxygen storage apparatus 31. It is configured to be coupled to the device F31.

(設備運用)
小型電力需給平準化システム300から製鉄所へは、液体酸素貯蔵装置31のバルブV311とFV312を経由して製鉄所の液体酸素貯蔵装置F31に製造した液体酸素を供給する。製鉄所では、液体酸素を酸素ガス化装置F40によってガス化して、酸素ガスを酸素ガスタンクに貯蔵し、鉄精錬工程F42に役立てる。逆に、製鉄所から小型電力需給平準化システム300へは、コークス製造炉F10の高熱により水分解により生成した高温の水素ガスを、小型電力需給平準化システム300からパイプで輸送した液体酸素の冷熱を使って高温の水素ガスを水素ガス冷却装置F20で冷却後、一端、バルブFV201を経由して水素ガスタンクF30に貯蔵してから、バルブFV400とV203を経由して小型電力需給平準化システム300の液体水素・液体酸素製造装置20に水素ガスを供給する。小型電力需給平準化システム300では、液体水素として液体水素貯蔵装置30に貯蔵する。
小型電力需給平準化システム300の起動から停止までの操作制御は、実施例1の小型電力需給平準化システム100と同様なので、詳細な説明は省略する。
(Equipment operation)
Liquid oxygen produced from the small power supply and demand leveling system 300 to the steelworks is supplied to the liquid oxygen storage device F31 of the steelworks via the valves V311 and FV312 of the liquid oxygen storage device 31. In the ironworks, liquid oxygen is gasified by the oxygen gasifier F40, and the oxygen gas is stored in an oxygen gas tank to be used for the iron refining process F42. On the other hand, from the ironworks to the small power supply and demand leveling system 300, the cold oxygen of the liquid oxygen transported by pipe from the small power supply and demand leveling system 300 to the high temperature hydrogen gas generated by water splitting by the high heat of the coke making furnace F10 After the high-temperature hydrogen gas is cooled by the hydrogen gas cooling device F20 using the gas generator, it is stored in the hydrogen gas tank F30 via the valve FV201, and then is supplied to the small power supply and demand leveling system 300 via the valves FV400 and V203. Hydrogen gas is supplied to the liquid hydrogen / liquid oxygen production apparatus 20. In the small power supply and demand leveling system 300, liquid hydrogen is stored in the liquid hydrogen storage device 30.
Since the operation control from the start to the stop of the small power supply and demand leveling system 300 is the same as that of the small power supply and demand leveling system 100 of the first embodiment, detailed description is omitted.

(効 果)
製鉄所に隣接又は近接して小型電力需給平準化システム300を設置した発電事業者は、製鉄所から不要の水素ガスの供与を受け、液体水素として貯蔵し、電力需要ピーク時に発電に役立て、他方、製鉄所は、発電事業者から水の電気分解で得た不要の酸素ガスの供与を受けて鉄精錬に役立てることができる。
このように、コンビナート立地型小型電力需給平準化システム300を設置した発電事業者と隣接した他企業とが水素、酸素、熱(高熱及び冷熱)等を相互に供給する等の様々なコンビナート立地企業間相互協力により、相互に大きなメリットを享受できると共に、CO排出も大幅に削減できる。
(Effect)
A power generation company that has installed a small electric power supply and demand leveling system 300 adjacent to or in close proximity to a steelworks receives unnecessary hydrogen gas from the steelworks, stores it as liquid hydrogen, and uses it for power generation during peak power demand. The steelworks can be used for iron refining by receiving unnecessary oxygen gas obtained from the electrolysis of water from the power generation company.
In this way, various complex location companies such as hydrogen generator, oxygen, heat (high heat and cold) are mutually supplied by the power generation company that installed the complex location type small power supply and demand leveling system 300 and other adjacent companies Through mutual cooperation, we can enjoy great benefits from each other and significantly reduce CO 2 emissions.

石油・天然ガス資源涸渇の対策は全世界の緊急の課題である。この対策として水素自動車の研究開発が進められ、実際の道路での実証試験に入っている。しかし、水素自動車開発が進んできたのに、我国では水素ガスを補給する水素販売スタンドは東京と大阪の実験用スタンド数箇所しかないので、安価に、且つ、安全な水素販売スタンドの開発が課題となっている。
地球温暖化防止のため全地球規模で化石燃料の節約を推進する有力な方策の一つである水素燃料自動車の実用化には水素燃料自動車用水素燃料販売スタンドの普及が不可欠である。液体水素をタンクローリーで水素燃料販売スタンドに輸送する方法は液体水素輸送途中のタンクローリーが交通事故や大規模地震災害に遭遇した場合には、大変な災害をもたらす可能性が大きいという問題がある。また、大規模地震の復旧では、重要拠点(県庁、警察、病院、通信・電話局等)の電気は数日〜1週間以内に、水道は1〜2ヶ月程度で、都市ガスは2〜3ヶ月程度で再開されている。
図4に示す本発明の実施例4は、簡易、且つ安全な水素燃料自動車用水素燃料販売スタンド網を実現し、以上の課題を解決する水素燃料自動車用水素燃料販売スタンドシステム400である。
Countering oil and natural gas resource depletion is an urgent issue worldwide. As a countermeasure against this, research and development of hydrogen vehicles is underway, and a demonstration test on an actual road is underway. However, even though hydrogen car development has progressed, there are only a few hydrogen sales stations in Tokyo and Osaka for hydrogen gas replenishment in Japan, so it is a challenge to develop a cheap and safe hydrogen sales station It has become.
The spread of hydrogen fuel sales stations for hydrogen fuel vehicles is indispensable for the practical application of hydrogen fuel vehicles, which is one of the leading measures to save fossil fuels on a global scale to prevent global warming. The method of transporting liquid hydrogen to a hydrogen fuel sales stand with a tank lorry has a problem that if the tank lorry in the middle of transporting liquid hydrogen encounters a traffic accident or a large-scale earthquake disaster, there is a high possibility of causing a serious disaster. Also, in the restoration of a large-scale earthquake, electricity from important bases (prefectural offices, police, hospitals, telecommunications / telephone stations, etc.) is within a few days to a week, water is about 1-2 months, and city gas is 2-3. It has been resumed in about a month.
A fourth embodiment of the present invention shown in FIG. 4 is a hydrogen fuel sales stand system 400 for a hydrogen fuel automobile that realizes a simple and safe hydrogen fuel sales stand network for a hydrogen fuel automobile and solves the above problems.

(設備構成)
実施例1の小型電力需給平準化システム100と同様の風力発電装置1、P、Q、V短周期変動平滑化装置2、水電気分解装置10、液体水素・液体酸素製造装置20、液体水素貯蔵装置30、液体酸素貯蔵装置31、水素ガス化装置40、水素ガスタンク41、発電装置50、電力系統連系装置60、制御装置70を備え、水素ガスタンク41にバルブV401を介して水素ガス販売メータS41を結合し、さらに制御装置70に通信ネットワークを介して水素燃料販売会社本社システムS400を結合して構成される。主要な設備は簡易で経済的な免震対策を施す。
(Equipment configuration)
Wind power generator 1, P, Q, V short period fluctuation smoothing device 2, water electrolysis device 10, liquid hydrogen / liquid oxygen production device 20, liquid hydrogen storage similar to the small power supply and demand leveling system 100 of the first embodiment A device 30, a liquid oxygen storage device 31, a hydrogen gasification device 40, a hydrogen gas tank 41, a power generation device 50, a power grid interconnection device 60, and a control device 70 are provided, and a hydrogen gas sales meter S 41 is connected to the hydrogen gas tank 41 via a valve V 401. And a hydrogen fuel sales company head office system S400 is connected to the control device 70 via a communication network. Major facilities will be equipped with simple and economical seismic isolation measures.

(設備運用)
水素燃料自動車用水素燃料販売スタンドシステム400の起動から停止までの操作制御は、実施例1の小型電力需給平準化システム100と同様なので、詳細な説明は省略する。
(Equipment operation)
The operation control from the start to the stop of the hydrogen fuel sales stand system 400 for the hydrogen fuel automobile is the same as that of the small power supply and demand leveling system 100 of the first embodiment, and thus detailed description thereof is omitted.

(効 果)
電気と水さえあれば水素燃料自動車用水素を製造できるのでタンクローリーで運搬する必要が無く、平常時にはタンクローリー車の液体水素輸送コストやタンクローリー車が関係した交通事故を皆無にでき、大規模地震時にも早期復旧が可能な災害に強い水素燃料販売スタンドを提供できる。しかも、販売需要に応じて水素を1〜2日分程度、自所で安価な深夜の余剰電力や風力発電・太陽光発電等の自然エネルギーを利用して製造・貯蔵するので、無駄が無く、水素を安価に供給できる。この結果、水素燃料自動車が普及することで自動車から排出されるCOの総量を減少させる効果もある。
(Effect)
If you have electricity and water, you can produce hydrogen for hydrogen-fueled vehicles, so there is no need to transport it with a tank lorry, and you can eliminate the liquid hydrogen transportation cost of tank lorries and traffic accidents related to tank lorries in normal times, even in the event of a large earthquake We can provide a hydrogen fuel sales stand that can withstand early disasters. Moreover, hydrogen is produced and stored for about 1 to 2 days according to sales demand, using natural energy such as low-cost surplus power, wind power generation, and solar power generation, which is inexpensive at home. Hydrogen can be supplied at low cost. As a result, the widespread use of hydrogen-fueled vehicles also has the effect of reducing the total amount of CO 2 emitted from the vehicles.

人工衛星打上げ頻度が多くなると、離島の人口衛星打上げ基地では、ロケット燃料である液体水素と液体酸素の供給及び基地用非常電源が不足する。
図5に示す本発明の実施例5は、そのような人口衛星打上げ基地用の液体水素・液体酸素補給システム500である。
If the frequency of satellite launches increases, the artificial satellite launch base on the remote islands will lack the supply of rocket fuel liquid hydrogen and liquid oxygen and the emergency power source for the base.
Embodiment 5 of the present invention shown in FIG. 5 is a liquid hydrogen / liquid oxygen supply system 500 for such an artificial satellite launch base.

(設備構成)
実施例1の小型電力需給平準化システム100と同様の風力発電装置1、P、Q、V短周期変動平滑化装置2、水電気分解装置10、液体水素・液体酸素製造装置20、液体水素貯蔵装置30、液体酸素貯蔵装置31、水素ガス化装置40、水素ガスタンク41、発電装置50、電力系統連系装置60、制御装置70を備え、液体水素貯蔵装置30及び液体酸素貯蔵装置31をそれぞれ人工衛星打上げ基地用の液体水素貯蔵装置R30及び液体酸素貯蔵装置R31と断熱パイプで結合し、制御装置70に通信ネットワークを介してロケット点検・整備サイトR40や人工衛星打上げ基地管制センターR100を結合して構成する。
(Equipment configuration)
Wind power generator 1, P, Q, V short period fluctuation smoothing device 2, water electrolysis device 10, liquid hydrogen / liquid oxygen production device 20, liquid hydrogen storage similar to the small power supply and demand leveling system 100 of the first embodiment The apparatus 30, the liquid oxygen storage device 31, the hydrogen gasification device 40, the hydrogen gas tank 41, the power generation device 50, the power grid interconnection device 60, and the control device 70 are provided, and the liquid hydrogen storage device 30 and the liquid oxygen storage device 31 are respectively artificial. It is connected to the liquid hydrogen storage device R30 and the liquid oxygen storage device R31 for the satellite launch base by heat insulation pipes, and the control device 70 is connected to the rocket inspection / maintenance site R40 and the satellite launch base control center R100 via the communication network. Constitute.

(設備運用)
人工衛星打上げ準備期間はそれぞれ液体水素貯蔵装置30及び液体酸素貯蔵装置31から酸素及び水素を何時でも断熱パイプで輸送できる様に準備する。液体水素及び液体酸素の出荷はバルブV302及びV311を開くことで開始する。貯蔵された液体水素及び液体酸素の出荷はそれぞれのバルブを閉じることで終了する。人口衛星打上げ基地用の液体水素・液体酸素補給システム500のその他の操作制御は、実施例1の小型電力需給平準化システム100と同様なので、詳細な説明は省略する。
(Equipment operation)
In the satellite launch preparation period, oxygen and hydrogen are prepared from the liquid hydrogen storage device 30 and the liquid oxygen storage device 31, respectively, so that they can be transported at any time by an insulated pipe. Shipment of liquid hydrogen and liquid oxygen begins by opening valves V302 and V311. Shipment of the stored liquid hydrogen and liquid oxygen ends by closing the respective valves. Since other operation control of the liquid hydrogen / liquid oxygen supply system 500 for the artificial satellite launch base is the same as that of the small power supply and demand leveling system 100 of the first embodiment, detailed description thereof is omitted.

(効 果)
本発明によって、離島の人工衛星打上げ基地でも、人工衛星打上げに必要な多量の液体水素と液体酸素を確保するだけでなく、風力発電・太陽光発電との組合せで無公害の電源を確保できる。
(Effect)
According to the present invention, not only a large amount of liquid hydrogen and liquid oxygen necessary for launching an artificial satellite can be secured at a satellite launch base on a remote island, but also a pollution-free power source can be secured by a combination of wind power generation and solar power generation.

1 風力発電装置
2 P、Q、V短周期変動平滑化装置
10 水電気分解装置
20 液体水素・液体酸素製造装置
30 液体水素貯蔵装置
31 液体酸素貯蔵装置
32 液体水素出荷装置
33 液体酸素出荷装置
40 水素ガス化装置
41 水素ガスタンク
50 発電装置
51 水素ガス・ロータリー・エンジン
52 三相交流同期発電機
53 支持基礎
54 フライホイール
60 電力系統連繋装置
70 制御装置
80 一般商用電力送配電網
90 電力系統運用自動化システム
91 地区遠隔監視自動制御システム
100 小型電力需給平準化システム
200 大型電力需給平準化システム
300 製鉄所に隣接又は近接したコンビナート立地型小型電力需給平準化システム
400 水素燃料自動車用水素燃料販売スタンドシステム
500 人口衛星打上げ基地用液体水素・液体酸素補給システム
L10 水素ガス・LNGガス混合装置
L20 LNGガス受入装置
L50 LNG基地
F10 コークス製造炉
F20 水素ガス冷却装置
F30 水素ガスタンク
F31 液体酸素貯蔵装置
F40 酸素ガス化装置
F41 酸素ガスタンク
F42 鉄精錬工程
FV101、FV201、FV311、FV312、FV400、FV401、FV411 製鉄所構内のバルブ
R40 ロケット点検・整備サイト
R100 人工衛星打上げ基地管制センター
RV312、RV303 ロケット点検・整備サイトのバルブ
S41 水素ガス販売メータ
S400 水素燃料販売会社本社システム
LV500、LV511、LV521、V101、V102、V201、V202、V301、V302、V311、V401、V411、V412 電力供給平準化システムのバルブ
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 P, Q, V short period fluctuation smoothing apparatus 10 Water electrolysis apparatus 20 Liquid hydrogen / liquid oxygen production apparatus 30 Liquid hydrogen storage apparatus 31 Liquid oxygen storage apparatus 32 Liquid hydrogen shipping apparatus 33 Liquid oxygen shipping apparatus 40 Hydrogen gas generator 41 Hydrogen gas tank 50 Power generator 51 Hydrogen gas rotary engine 52 Three-phase AC synchronous generator 53 Support foundation 54 Flywheel 60 Electric power grid connection device 70 Controller 80 General commercial power transmission / distribution network 90 Automatic power grid operation System 91 District remote monitoring automatic control system 100 Small power supply and demand leveling system 200 Large power supply and demand leveling system 300 Compact power supply type supply and demand leveling system adjacent to or close to steelworks 400 Hydrogen fuel sales stand system for hydrogen fuel vehicles 500 Launch of artificial satellite Liquid hydrogen / liquid oxygen supply system for base L10 Hydrogen gas / LNG gas mixing device L20 LNG gas receiving device L50 LNG base F10 Coke production furnace F20 Hydrogen gas cooling device F30 Hydrogen gas tank F31 Liquid oxygen storage device F40 Oxygen gas generator F41 Oxygen gas tank F42 Iron refining process FV101, FV201, FV311, FV312, FV400, FV401, FV411 Valves in steelworks R40 Rocket inspection and maintenance site R100 Satellite launch base control center RV312, RV303 Rocket inspection and maintenance site valves S41 Hydrogen gas sales meter S400 Hydrogen fuel sales company head office system LV500, LV511, LV521, V101, V102, V201, V202, V301, V302, V311, V40 , V411, V412 valve power supply leveling system

Claims (8)

複数の電気所に分散配置し、運用する電力需給平準化システムであって、
風力発電装置(1)と、
P、Q、V短周期変動平滑化装置(2)と、
水を電気分解して水素ガスと酸素ガスを発生する水電気分解装置(10)と、
前記水電気分解装置(10)が発生する水素ガスと酸素ガスを液化する液体水素・液体酸素製造装置(20)と、
前記液体水素・液体酸素製造装置(20)で製造された液体水素を貯蔵する液体水素貯蔵装置(30)と、
前記液体水素・液体酸素製造装置(20)で製造された液体酸素を貯蔵する液体酸素貯蔵装置(31)と、
液体水素をガス化する水素ガス化装置(40)と、
その水素ガスを貯蔵する水素ガスタンク(41)と、
その水素ガスを用いて発電する発電装置(50)と、
一般商用電力送配電網(80)から電力を受電する電力系統連繋装置(60)と、
上位の電力系統運用自動化システム(90)及び地区遠隔監視自動制御システム装置(91)とデータリンクし、上記の一連の機器を備えた電気所内の全装置の運転状況を的確に監視制御する制御装置(70)と、
から構成され、
前記水電気分解装置(10)は、風力発電装置(1)及び電力系統連繋装置(60)からのP、Q、V短周期変動が激しい電力をP、Q、V短周期変動平滑化装置2によって平滑化した電力で水を電気分解して水素ガスと酸素ガスを発生し、
電力需要ピーク時に、前記液体水素貯蔵装置(30)に貯蔵された液体水素を前記水素ガス化装置(40)でガス化し、その水素ガスを水素ガスタンク(41)に貯蔵し、前記発電装置(50)がその水素ガスを用いて発電する電力需給平準化システム。
An electric power supply and demand leveling system that is distributed and operated in a plurality of electric power stations,
A wind power generator (1);
P, Q, V short period fluctuation smoothing device (2);
A water electrolyzer (10) for electrolyzing water to generate hydrogen gas and oxygen gas;
A liquid hydrogen / liquid oxygen production device (20) for liquefying hydrogen gas and oxygen gas generated by the water electrolysis device (10);
A liquid hydrogen storage device (30) for storing liquid hydrogen produced by the liquid hydrogen / liquid oxygen production device (20);
A liquid oxygen storage device (31) for storing liquid oxygen produced by the liquid hydrogen / liquid oxygen production device (20);
A hydrogen gasifier (40) for gasifying liquid hydrogen;
A hydrogen gas tank (41) for storing the hydrogen gas;
A power generation device (50) for generating electricity using the hydrogen gas;
A power system linking device (60) that receives power from the general commercial power transmission and distribution network (80);
A control device that performs data monitoring with the host power system operation automation system (90) and the district remote monitoring automatic control system device (91), and accurately monitors and controls the operating status of all the devices in the electric station equipped with the above-described series of devices. (70),
Consisting of
The water electrolyzer (10) uses P, Q, and V short-cycle fluctuation smoothing device 2 that generates strong P, Q, and V short-cycle fluctuations from the wind power generator (1) and the power grid interconnection device (60). Water is electrolyzed with electric power smoothed by generating hydrogen gas and oxygen gas,
At the time of peak power demand, the liquid hydrogen stored in the liquid hydrogen storage device (30) is gasified by the hydrogen gasifier (40), the hydrogen gas is stored in a hydrogen gas tank (41), and the power generator (50 ) Is a power supply and demand leveling system that uses the hydrogen gas to generate electricity.
請求項1に記載された電力需給平準化システムにおいて、
さらに、LNG基地(L50)からLNGガスと前記水素ガスタンク(41)に貯蔵された水素ガスとを混合する混合装置(L10)を備え、前記発電装置(50)でこの混合ガスを用いて発電する電力需給平準化システム。
In the power supply and demand leveling system according to claim 1,
Furthermore, a mixing device (L10) for mixing the LNG gas from the LNG base (L50) with the hydrogen gas stored in the hydrogen gas tank (41) is provided, and the power generation device (50) generates electric power using the mixed gas. Electricity supply and demand leveling system.
請求項1に記載の電力需給平準化システムにおいて、
製鉄所に隣接又は近接した前記電気所に配置され、
製鉄所で生成される水素ガスを取り入れ、酸素ガスを製鉄所に供給する電力需給平準化システム。
In the electric power supply and demand leveling system according to claim 1,
Located in the electrical plant adjacent or close to the steelworks,
Electricity supply and demand leveling system that takes in hydrogen gas generated at steelworks and supplies oxygen gas to steelworks.
請求項1に記載の電力需給平準化システムにおいて、
コンビナートに立地する前記電気所に設置され、隣接する他企業と水素、酸素、熱(高熱及び冷熱)等を相互に供給する電力需給平準化システム。
In the electric power supply and demand leveling system according to claim 1,
Electricity supply and demand leveling system installed at the electric power station located in the complex and supplying hydrogen, oxygen, heat (high heat and cold), etc., to other adjacent companies.
請求項1に記載の電力需給平準化システムの前記水素ガスタンク(41)に水素ガス販売メータ(S41)を結合して構成した水素燃料自動車用水素燃料販売スタンドシステム。   A hydrogen fuel sales stand system for a hydrogen fuel vehicle, comprising a hydrogen gas sales meter (S41) coupled to the hydrogen gas tank (41) of the power supply and demand leveling system according to claim 1. 請求項1に記載の電力需給平準化システムの前記液体水素貯蔵装置(30)及び液体酸素貯蔵装置(31)を、それぞれ人工衛星打上げ基地用の液体水素貯蔵装置(R30)及び液体酸素貯蔵装置(R31)と断熱パイプで結合して構成した人口衛星打上げ基地用液体水素・液体酸素補給システム。   The liquid hydrogen storage device (30) and the liquid oxygen storage device (31) of the electric power supply and demand leveling system according to claim 1 are respectively connected to the liquid hydrogen storage device (R30) and the liquid oxygen storage device for an artificial satellite launch base ( A liquid hydrogen / liquid oxygen replenishment system for an artificial satellite launch base constructed by connecting R31) with a heat insulating pipe. 請求項1ないし請求項6のいずれかに記載の電力需給平準化システムにおいて、
前記発電装置(50)は、水素ガス燃焼原動機(51)と発電機(52)とを備え、発電機軸と水素ガス燃焼原動機軸を自動的に連結/切り離し可能な水素ガス燃焼エンジン発電機装置であって、
前記発電装置(50)は、前記水素ガス燃焼原動機(51)で駆動し、自動並列装置を使って発電機を電力系統に並列後、水素ガス燃焼原動機軸を切り離し、前記水素ガス燃焼原動機(51)を停止させることにより、同期調相機として電圧を平滑化させる電力需給平準化システム。
The power supply and demand leveling system according to any one of claims 1 to 6,
The power generation device (50) is a hydrogen gas combustion engine generator device that includes a hydrogen gas combustion prime mover (51) and a power generator (52), and can automatically connect / disconnect the generator shaft and the hydrogen gas combustion prime mover shaft. There,
The power generator (50) is driven by the hydrogen gas combustion prime mover (51), and after paralleling the generator with the power system using an automatic parallel device, the hydrogen gas combustion prime mover shaft is disconnected, and the hydrogen gas combustion prime mover (51 ), The power supply and demand leveling system that smoothes the voltage as a synchronous phase adjuster.
請求項1ないし請求項6のいずれかに記載の電力需給平準化システムにおいて、
前記発電装置(50)は、水素ガス燃焼原動機(51)と発電機(52)とを備え、発電機軸と水素ガス燃焼原動機軸を自動的に連結/切り離し可能な水素ガス燃焼エンジン発電機装置であって、
前記発電装置(50)は、前記水素ガス燃焼原動機(51)で駆動し、この発電機を電力系統に並列後、水素ガス燃焼原動機軸との結合を切り離し、前記水素ガス燃焼原動機(51)を停止させることにより、前記発電装置(50)は、フェランチ現象の発生防止対策が必要な時に電力系統に並列された同期調相機として電力系統の電圧を平滑化させる電力需給平準化システム。
The power supply and demand leveling system according to any one of claims 1 to 6,
The power generation device (50) is a hydrogen gas combustion engine generator device that includes a hydrogen gas combustion prime mover (51) and a power generator (52), and can automatically connect / disconnect the generator shaft and the hydrogen gas combustion prime mover shaft. There,
The power generator (50) is driven by the hydrogen gas combustion prime mover (51), and after the generator is paralleled to the power system, the coupling with the hydrogen gas combustion prime mover shaft is disconnected, and the hydrogen gas combustion prime mover (51) is When stopped, the power generator (50) is a power supply and demand leveling system that smoothes the voltage of the power system as a synchronous phase adjuster that is parallel to the power system when measures to prevent the occurrence of the ferrant phenomenon are required.
JP2010042605A 2010-02-26 2010-02-26 Electric power supply and demand leveling system Pending JP2011182516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042605A JP2011182516A (en) 2010-02-26 2010-02-26 Electric power supply and demand leveling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042605A JP2011182516A (en) 2010-02-26 2010-02-26 Electric power supply and demand leveling system

Publications (1)

Publication Number Publication Date
JP2011182516A true JP2011182516A (en) 2011-09-15

Family

ID=44693445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042605A Pending JP2011182516A (en) 2010-02-26 2010-02-26 Electric power supply and demand leveling system

Country Status (1)

Country Link
JP (1) JP2011182516A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2595266A1 (en) * 2011-11-18 2013-05-22 GE Energy Products France SNC Electric power-facility provided with a means for storing power and method for controlling such a facility
WO2013128968A1 (en) * 2012-02-29 2013-09-06 三菱重工業株式会社 Control device for wind power generation device, wind power generation device, wind farm, and method for controlling wind power generation device
US8536722B1 (en) 2012-02-29 2013-09-17 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator control system, wind turbine generator, wind farm, and wind-turbine-generator control method
CN103580044A (en) * 2013-10-17 2014-02-12 华中科技大学 Capacity allocation method of multi-wind power plant energy storage device for dealing with wind power fluctuation
JP2014122399A (en) * 2012-12-21 2014-07-03 Toshiba Corp Hydrogen electric power supply system
CN104376378A (en) * 2014-11-14 2015-02-25 浙江工商大学 Distributed-power-source-contained power distribution network reactive power optimization method based on mixed integer cone optimization
JP2015528851A (en) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション Electrolysis device and energy system
CN105071422A (en) * 2015-08-28 2015-11-18 袁铁江 Wind-hydrogen energy storage coupling system control method of distributed access wind farm
CN105305506A (en) * 2015-09-29 2016-02-03 四川师范大学 Multi-source compound superconductive micro electrical network system and energy management method thereof
WO2016125717A1 (en) * 2015-02-06 2016-08-11 株式会社日立製作所 Power supply system
JP2017076611A (en) * 2016-09-30 2017-04-20 株式会社東芝 Power supply system and method for controlling the same
CN108591822A (en) * 2018-05-02 2018-09-28 赫普科技发展(北京)有限公司 A kind of distributed electrolysis hydrogen producing hydrogenation station
KR101948991B1 (en) * 2016-12-21 2019-02-15 주식회사 포스코 A complex system comprising steelmaking process, SOEC and SOFC
CN109787273A (en) * 2017-11-14 2019-05-21 宁波拜特测控技术股份有限公司 Wind light mutual complementing hydrogen energy storage hybrid power system
WO2019230603A1 (en) * 2018-06-01 2019-12-05 株式会社神戸製鋼所 Gas supply unit and co-combustion power generation device
WO2020013085A1 (en) * 2018-07-11 2020-01-16 株式会社神戸製鋼所 Liquid air energy storage device, power generation device and mixed combustion power generation system
CN111049197A (en) * 2019-11-22 2020-04-21 广东电网有限责任公司 Low-voltage distribution network energy storage device configuration method, device and equipment
CN111242511A (en) * 2020-02-27 2020-06-05 云南电网有限责任公司电力科学研究院 Hydrogen oil production control method
WO2020121441A1 (en) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method for hydrogen energy control system
CN111463826A (en) * 2020-04-13 2020-07-28 同济大学 Wind power hydrogen production alkaline electrolytic cell array configuration and optimal control method and system
CN113159986A (en) * 2021-03-31 2021-07-23 国网浙江省电力有限公司温州供电公司 Intelligent self-healing method for power grid after typhoon disaster
WO2021172224A1 (en) * 2020-02-27 2021-09-02 Eneos株式会社 Hydrogen supply system, hydrogen station, and hydrogen supply/demand management method
KR20210147606A (en) * 2020-05-29 2021-12-07 광주과학기술원 A system for upgrading by-product gases in steel mills by using hydrogen produced via electrolysis and the method thereof
EP4020741A1 (en) * 2020-12-23 2022-06-29 ANSALDO ENERGIA S.p.A. A system for stabilizing a distribution electric grid
CN114990601A (en) * 2022-06-13 2022-09-02 潍柴动力股份有限公司 Electric energy storage method and device
EP3939145A4 (en) * 2019-03-15 2023-03-22 Power Management Holdings (U.S.), Inc. Moving and storing energy between utility's energy delivery networks
EP4191091A1 (en) * 2021-12-06 2023-06-07 Abb Schweiz Ag Flywheel device for a synchronous condenser

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006927B2 (en) 2011-11-18 2015-04-14 General Electric Company Installation for producing electrical energy provided with means of energy storage and control method of such an installation
EP2595266A1 (en) * 2011-11-18 2013-05-22 GE Energy Products France SNC Electric power-facility provided with a means for storing power and method for controlling such a facility
US8971064B2 (en) 2011-11-18 2015-03-03 Ge Energy Products France Snc Electricity generating installation provided with means for storage of energy and control process for an installation of this type
WO2013072771A3 (en) * 2011-11-18 2014-03-27 Ge Energy Products France Snc Installation for producing electrical energy provided with means of energy storage and control method of such an installation
WO2013128968A1 (en) * 2012-02-29 2013-09-06 三菱重工業株式会社 Control device for wind power generation device, wind power generation device, wind farm, and method for controlling wind power generation device
US8536722B1 (en) 2012-02-29 2013-09-17 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator control system, wind turbine generator, wind farm, and wind-turbine-generator control method
US11761103B2 (en) 2012-05-28 2023-09-19 Hydrogenics Corporation Electrolyser and energy system
JP2015528851A (en) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション Electrolysis device and energy system
US10214821B2 (en) 2012-05-28 2019-02-26 Hydrogenics Corporation Electrolyser and energy system
US11268201B2 (en) 2012-05-28 2022-03-08 Hydrogenics Corporation Electrolyser and energy system
JP2019198221A (en) * 2012-05-28 2019-11-14 ハイドロジェニクス コーポレイション Electrolyzer and energy system
US10435800B2 (en) 2012-05-28 2019-10-08 Hydrogenics Corporation Electrolyser and energy system
JP2014122399A (en) * 2012-12-21 2014-07-03 Toshiba Corp Hydrogen electric power supply system
CN103580044A (en) * 2013-10-17 2014-02-12 华中科技大学 Capacity allocation method of multi-wind power plant energy storage device for dealing with wind power fluctuation
CN104376378A (en) * 2014-11-14 2015-02-25 浙江工商大学 Distributed-power-source-contained power distribution network reactive power optimization method based on mixed integer cone optimization
CN104376378B (en) * 2014-11-14 2017-10-20 浙江工商大学 The idle work optimization method containing distributed power distribution network of optimization is bored based on MIXED INTEGER
WO2016125717A1 (en) * 2015-02-06 2016-08-11 株式会社日立製作所 Power supply system
CN105071422A (en) * 2015-08-28 2015-11-18 袁铁江 Wind-hydrogen energy storage coupling system control method of distributed access wind farm
CN105305506A (en) * 2015-09-29 2016-02-03 四川师范大学 Multi-source compound superconductive micro electrical network system and energy management method thereof
JP2017076611A (en) * 2016-09-30 2017-04-20 株式会社東芝 Power supply system and method for controlling the same
KR101948991B1 (en) * 2016-12-21 2019-02-15 주식회사 포스코 A complex system comprising steelmaking process, SOEC and SOFC
CN109787273A (en) * 2017-11-14 2019-05-21 宁波拜特测控技术股份有限公司 Wind light mutual complementing hydrogen energy storage hybrid power system
CN108591822A (en) * 2018-05-02 2018-09-28 赫普科技发展(北京)有限公司 A kind of distributed electrolysis hydrogen producing hydrogenation station
WO2019230603A1 (en) * 2018-06-01 2019-12-05 株式会社神戸製鋼所 Gas supply unit and co-combustion power generation device
WO2020013085A1 (en) * 2018-07-11 2020-01-16 株式会社神戸製鋼所 Liquid air energy storage device, power generation device and mixed combustion power generation system
JPWO2020121441A1 (en) * 2018-12-12 2021-10-07 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method of hydrogen energy control system
US11784335B2 (en) 2018-12-12 2023-10-10 Toshiba Energy Systems & Solutions Corporation Hydrogen-energy control system and control method for hydrogen-energy control system
JP7177854B2 (en) 2018-12-12 2022-11-24 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method for hydrogen energy control system
WO2020121441A1 (en) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 Hydrogen energy control system and control method for hydrogen energy control system
EP3939145A4 (en) * 2019-03-15 2023-03-22 Power Management Holdings (U.S.), Inc. Moving and storing energy between utility's energy delivery networks
CN111049197B (en) * 2019-11-22 2021-09-24 广东电网有限责任公司 Low-voltage distribution network energy storage device configuration method, device and equipment
CN111049197A (en) * 2019-11-22 2020-04-21 广东电网有限责任公司 Low-voltage distribution network energy storage device configuration method, device and equipment
CN111242511B (en) * 2020-02-27 2023-06-30 云南电网有限责任公司电力科学研究院 Hydrogen oil production control method
CN111242511A (en) * 2020-02-27 2020-06-05 云南电网有限责任公司电力科学研究院 Hydrogen oil production control method
JP7409903B2 (en) 2020-02-27 2024-01-09 Eneos株式会社 Hydrogen supply system, hydrogen station and hydrogen supply and demand management method
WO2021172224A1 (en) * 2020-02-27 2021-09-02 Eneos株式会社 Hydrogen supply system, hydrogen station, and hydrogen supply/demand management method
CN111463826A (en) * 2020-04-13 2020-07-28 同济大学 Wind power hydrogen production alkaline electrolytic cell array configuration and optimal control method and system
KR102427593B1 (en) * 2020-05-29 2022-08-02 서울대학교산학협력단 A system for upgrading by-product gases in steel mills by using hydrogen produced via electrolysis and the method thereof
KR20210147606A (en) * 2020-05-29 2021-12-07 광주과학기술원 A system for upgrading by-product gases in steel mills by using hydrogen produced via electrolysis and the method thereof
EP4020741A1 (en) * 2020-12-23 2022-06-29 ANSALDO ENERGIA S.p.A. A system for stabilizing a distribution electric grid
CN113159986A (en) * 2021-03-31 2021-07-23 国网浙江省电力有限公司温州供电公司 Intelligent self-healing method for power grid after typhoon disaster
EP4191091A1 (en) * 2021-12-06 2023-06-07 Abb Schweiz Ag Flywheel device for a synchronous condenser
WO2023104722A1 (en) * 2021-12-06 2023-06-15 Abb Schweiz Ag Flywheel device for a syncronous condenser
CN114990601A (en) * 2022-06-13 2022-09-02 潍柴动力股份有限公司 Electric energy storage method and device

Similar Documents

Publication Publication Date Title
JP2011182516A (en) Electric power supply and demand leveling system
Tong et al. A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization
Boudellal Power-to-gas: Renewable hydrogen economy for the energy transition
Van der Linden Bulk energy storage potential in the USA, current developments and future prospects
Moseley Electrochemical energy storage for renewable sources and grid balancing
Robyns et al. Energy storage in electric power grids
CN106099986A (en) A kind of isolated island comprehensive energy supply and safeguards system
CA3136721A1 (en) Nuclear thermal plant with load-following power generation
Kojima et al. A demonstration project in hachinohe: Microgrid with private distribution line
L’Abbate et al. Distributed Power Generation in Europe: technical issues for further integration
Stoppato et al. The importance of energy storage
Michaelson et al. Integration of small modular reactors into renewable energy-based standalone microgrids: An energy management perspective
CN109412228A (en) Far-reaching island reef core stores up power supply system
van der Linden Wind Power: Integrating Wind Turbine Generators (WTG’s) with Energy Storage
Gammon et al. Hydrogen and renewables integration (HARI)
Solutions MAN Energy Solutions
Infield et al. Literature Review: Electrical Energy Storage for Scotland
UA143548U (en) METHOD OF BALANCE OF THE ENERGY SYSTEM WITH THE USE OF HYDROGEN
Breuhaus et al. An integrated energy system to decarbonise islands–gas turbine roles and requirements
Panigrahi et al. A simulink based microgrid modelling & operational analysis using distributed generators
Tee Development and analysis of hybrid renewable energy system for offshore oil and gas rigs
Shi et al. Research of hybrid integrated energy station based on gas turbine
Meißner et al. Upgrade of the conventional generation plant models within a grid simulator
Joseph et al. Energy security: Investigating natural gas for energy generation at airports in South Africa–A technoeconomic assessment
Bansal et al. Recent Advancement In Electricity Transmission And Distribution Technologies.