JP2011181608A - Photoelectric converter and manufacturing method of photoelectric converter - Google Patents

Photoelectric converter and manufacturing method of photoelectric converter Download PDF

Info

Publication number
JP2011181608A
JP2011181608A JP2010042791A JP2010042791A JP2011181608A JP 2011181608 A JP2011181608 A JP 2011181608A JP 2010042791 A JP2010042791 A JP 2010042791A JP 2010042791 A JP2010042791 A JP 2010042791A JP 2011181608 A JP2011181608 A JP 2011181608A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
transparent conductive
layer
conductive oxide
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010042791A
Other languages
Japanese (ja)
Other versions
JP5388899B2 (en
Inventor
Kyozo Kanemoto
恭三 金本
Hirofumi Konishi
博文 小西
Hidetada Tokioka
秀忠 時岡
Mikio Yamamuka
幹雄 山向
Hiroyuki Fuchigami
宏幸 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010042791A priority Critical patent/JP5388899B2/en
Publication of JP2011181608A publication Critical patent/JP2011181608A/en
Application granted granted Critical
Publication of JP5388899B2 publication Critical patent/JP5388899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter improving conductivity in an intermediate layer to improve the conversion efficiency in a laminate type Si system photoelectric converter. <P>SOLUTION: An intermediate layer 5 is formed between an amorphous Si photoelectric converter layer 4 and a fine crystalline Si photoelectric converter layer 6, and the intermediate layer 5 has an n-type transparent conductive oxide layer 5a and p-type transparent conductive oxide layer 5b where a band gap is 1.5 eV or more. The n-type transparent conductive oxide layer 5a is in contact with the n-type amorphous Si semiconductor layer 4d and the p-type transparent conductive oxide layer 5b is arranged so as to be contact with the p-type fine crystalline Si semiconductor layer 6d. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光エネルギーを電気エネルギーに変換する光電変換装置および光電変換装置の製造方法に関する。   The present invention relates to a photoelectric conversion device that converts light energy into electrical energy and a method for manufacturing the photoelectric conversion device.

光エネルギーを電気エネルギーに変換する光電変換装置では、光電変換効率を高めるために、光吸収波長特性の異なる複数の薄膜光電変換層が積層された積層型薄膜太陽電池が知られている。このような従来の積層型薄膜太陽電池では、例えば透明電極が形成された絶縁性透明基板に薄膜半導体をp型層、i型層およびn型層の順に堆積した光電変換層からなる光電変換素子が複数積層される。そして、裏面電極として反射導電膜を形成して、絶縁性透明基板側からの光入射により光起電力を発生させる。   In a photoelectric conversion device that converts light energy into electric energy, a stacked thin film solar cell in which a plurality of thin film photoelectric conversion layers having different light absorption wavelength characteristics are stacked is known in order to increase photoelectric conversion efficiency. In such a conventional laminated thin film solar cell, for example, a photoelectric conversion element comprising a photoelectric conversion layer in which a thin film semiconductor is deposited in the order of a p-type layer, an i-type layer, and an n-type layer on an insulating transparent substrate on which a transparent electrode is formed. Are stacked. Then, a reflective conductive film is formed as a back electrode, and a photovoltaic force is generated by light incidence from the insulating transparent substrate side.

積層された複数の光電変換素子間で電流を滞りなく伝えるために、光電変換素子間のそれぞれの間には導電性を有する中間層が挿入される。この中間層として、特定の波長領域の光を反射または透過させる光学特性を有した材料が用いられることがある。例えば、GaAs系化合物半導体では、特許文献1に開示されているように、中間層としてバンドギャップの広い高電子濃度n層と高ホール濃度p層によるトンネル接合を利用した低抵抗構造が知られている。   In order to transmit current between the plurality of stacked photoelectric conversion elements without any delay, an intermediate layer having conductivity is inserted between each of the photoelectric conversion elements. As the intermediate layer, a material having an optical characteristic of reflecting or transmitting light in a specific wavelength region may be used. For example, as disclosed in Patent Document 1, a GaAs compound semiconductor has a low resistance structure that uses a tunnel junction formed by a high electron concentration n layer having a wide band gap and a high hole concentration p layer as an intermediate layer. Yes.

一方、一般家庭などへの普及が最も進んでいるSi系光電変換素子においては、このような広バンドギャップのトンネル接合を用いた中間層はない。Si系光電変換素子としては、特許文献2には、中間層の材料としてn型の透明導電性酸化物(TCO)系のZnO、ITOあるいはSnOを用いることが示されている。 On the other hand, in the Si-based photoelectric conversion element that is most widely used in general homes and the like, there is no intermediate layer using such a wide band gap tunnel junction. As a Si-based photoelectric conversion element, Patent Document 2 discloses that n-type transparent conductive oxide (TCO) -based ZnO, ITO, or SnO 2 is used as an intermediate layer material.

特開平06−061513号公報Japanese Patent Application Laid-Open No. 06-061513 特開2006−120747号公報JP 2006-120747 A

しかしながら、特許文献2に開示された技術によれば、n型Siとの接合では、n型同士が接合されるため、低抵抗化が容易であるが、p型Siとの接合ではn−p接合となるため、低抵抗化が困難である。このため、これらの材料の導電膜を用いても光電変換層が発生する電流が大きい場合には、電流の導電性が中間層の抵抗によって制限されて光電変換装置の光変換効率が低下するという問題があった。   However, according to the technique disclosed in Patent Document 2, it is easy to reduce the resistance because n-types are joined to each other in the junction with n-type Si. Since it becomes a junction, it is difficult to reduce the resistance. For this reason, even when a conductive film of these materials is used, if the current generated by the photoelectric conversion layer is large, the conductivity of the current is limited by the resistance of the intermediate layer, and the light conversion efficiency of the photoelectric conversion device is reduced. There was a problem.

本発明は、上記に鑑みてなされたものであって、積層型のSi系光電変換装置において中間層の導電性を改善し、変換効率を向上させることが可能な光電変換装置および光電変換装置の製造方法を得ることを目的とする。   The present invention has been made in view of the above, and is a photoelectric conversion device and a photoelectric conversion device capable of improving the conductivity of the intermediate layer and improving the conversion efficiency in a stacked Si photoelectric conversion device. It aims at obtaining a manufacturing method.

上述した課題を解決し、目的を達成するために、本発明の光電変換装置は、第1n型半導体層と第1p型半導体層とを有する第1光電変換層と、第2n型半導体層と第2p型半導体層とを有するとともに、前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、前記第1n型半導体層と前記第2p型半導体層との間の前記第1n型半導体層に接する側に配置され、バンドギャップが1.5eV以上のn型透明導電性酸化膜と、前記第1n型半導体層と前記第2p型半導体層との間の前記第2p型半導体層に接する側に前記n型透明導電性酸化膜とpn接合を形成するように配置され、バンドギャップが1.5eV以上のp型透明導電性酸化膜とを備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a photoelectric conversion device of the present invention includes a first photoelectric conversion layer having a first n-type semiconductor layer and a first p-type semiconductor layer, a second n-type semiconductor layer, and a second n-type semiconductor layer. A first p-type semiconductor layer, a second photoelectric conversion layer having a light absorption wavelength characteristic different from that of the first photoelectric conversion layer, and the first n-type between the first n-type semiconductor layer and the second p-type semiconductor layer. An n-type transparent conductive oxide film disposed on the side in contact with the semiconductor layer and having a band gap of 1.5 eV or more, and the second p-type semiconductor layer between the first n-type semiconductor layer and the second p-type semiconductor layer It is arranged to form a pn junction with the n-type transparent conductive oxide film on the contact side, and has a p-type transparent conductive oxide film having a band gap of 1.5 eV or more.

この発明によれば、積層型のSi系光電変換装置において中間層の導電性を改善し、変換効率を向上させることが可能という効果を奏する。   According to the present invention, it is possible to improve the conductivity of the intermediate layer and improve the conversion efficiency in the stacked Si photoelectric conversion device.

図1は、本発明に係る光電変換装置の実施の形態1の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a first embodiment of a photoelectric conversion device according to the present invention. 図2(a)は、図1の中間層5の近傍を拡大して示す図、図2(b)は、図2(a)の各層のエネルギーバンドを示す図である。2A is an enlarged view showing the vicinity of the intermediate layer 5 in FIG. 1, and FIG. 2B is a view showing energy bands of each layer in FIG. 2A.

以下に、本発明に係る光電変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a photoelectric conversion device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明に係る光電変換装置の実施の形態1の概略構成を示すブロック図である。図1において、光電変換装置1は、絶縁性であり透明な基板2と、その上に微細な凹凸である表面テクスチャ構造を有する透明電極3、非晶質Si光電変換層4、中間層5、微結晶Si光電変換層6、裏面電極7が順に積層されている。また、基板2上には不純物の阻止層として、必要に応じてアンダーコート層8を施してもよい。なお、アンダーコート層8の材料は、シリコン酸化膜を用いることができる。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a schematic configuration of Embodiment 1 of the photoelectric conversion device according to the present invention. In FIG. 1, a photoelectric conversion device 1 includes an insulating and transparent substrate 2, a transparent electrode 3 having a surface texture structure that is fine irregularities thereon, an amorphous Si photoelectric conversion layer 4, an intermediate layer 5, A microcrystalline Si photoelectric conversion layer 6 and a back electrode 7 are sequentially stacked. Further, an undercoat layer 8 may be provided on the substrate 2 as an impurity blocking layer, if necessary. Note that a silicon oxide film can be used as the material of the undercoat layer 8.

非晶質Si光電変換層4と微結晶Si光電変換層6とはともにSiを主成分とするが、結晶構造の違いにより異なるバンドギャップを有し、従って異なる光吸収波長特性を有する。この光電変換装置1では、非晶質Si光電変換層4の発電素子と微結晶Si光電変換層6の発電素子とが積層方向に直列に接続されている。そして、基板2側から光が入射すると、非晶質Si光電変換層4および微結晶Si光電変換層6で電流が発生し、その電流が透明電極3と裏面電極7とから取り出される。   Both the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6 are mainly composed of Si, but have different band gaps due to differences in crystal structures, and thus have different light absorption wavelength characteristics. In this photoelectric conversion device 1, the power generation element of the amorphous Si photoelectric conversion layer 4 and the power generation element of the microcrystalline Si photoelectric conversion layer 6 are connected in series in the stacking direction. When light enters from the substrate 2 side, a current is generated in the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6, and the current is extracted from the transparent electrode 3 and the back electrode 7.

この光電変換装置1はタンデム型太陽電池を構成する。そして、この光電変換装置1は、光を入射する側に主として短い波長の光を吸収して電気エネルギーに変換するバンドギャップの大きい非晶質Si光電変換層4、裏面側に非晶質Si光電変換層4よりも長い波長の光を吸収して電気エネルギーに変換するバンドギャップの小さい微結晶Si光電変換層6が配置される。   This photoelectric conversion device 1 constitutes a tandem solar cell. The photoelectric conversion device 1 includes an amorphous Si photoelectric conversion layer 4 having a large band gap that absorbs light of a short wavelength mainly on the light incident side and converts the light into electric energy, and an amorphous Si photoelectric conversion on the back side. A microcrystalline Si photoelectric conversion layer 6 having a small band gap that absorbs light having a wavelength longer than that of the conversion layer 4 and converts the light into electric energy is disposed.

なお、本実施の形態1では、積層された光電変換層の光吸収波長特性を異ならせるために、非晶質Si光電変換層4と微結晶Si光電変換層6を用い、結晶化率を互いに異ならせる方法について説明したが、光電変換層の元素組成を互いに異ならせるようにしてもよい。例えば、Si半導体層に添加するGeやCの割合を変化させ、バンドギャップを調整して積層する光電変換層で光吸収波長特性が異なるように調整してもよい。また、積層される光電変換層は3つ以上としてもよい。その場合、中間層5が各光電変換層の間にあるように2つ以上ある構成としてもよい。また、基板2からの積層順序を反対として、基板2と反対側の膜面側から光を入射する構成としてもよい。膜面側から光を入射する場合、基板2は透明でなくてよい。   In the first embodiment, the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6 are used in order to make the light absorption wavelength characteristics of the stacked photoelectric conversion layers different, and the crystallization rate is mutually changed. Although the method of making it different was demonstrated, you may make it make the elemental composition of a photoelectric converting layer mutually differ. For example, the ratio of Ge or C added to the Si semiconductor layer may be changed, and the band gap may be adjusted to adjust the light absorption wavelength characteristics of the stacked photoelectric conversion layers. In addition, three or more photoelectric conversion layers may be stacked. In that case, it is good also as a structure which has two or more so that the intermediate | middle layer 5 may exist between each photoelectric converting layer. Alternatively, the stacking order from the substrate 2 may be reversed, and light may be incident from the film surface side opposite to the substrate 2. When light is incident from the film surface side, the substrate 2 does not have to be transparent.

非晶質Si光電変換層4は、基板側から順にp型非晶質Si半導体層4a、i型非晶質Si半導体層4b、n型非晶質Si半導体層4cが積層された層で構成されている。またp型非晶質Si半導体層4aとi型非晶質Si半導体層4bとの間にi型非晶質Si半導体層を挿入しても良い。微結晶Si光電変換層6は、基板側から順に、p型微結晶Si半導体層6a、i型微結晶Si半導体層6b、n型微結晶Si半導体層6cが積層された層で構成されている。   The amorphous Si photoelectric conversion layer 4 is a layer in which a p-type amorphous Si semiconductor layer 4a, an i-type amorphous Si semiconductor layer 4b, and an n-type amorphous Si semiconductor layer 4c are stacked in this order from the substrate side. Has been. Further, an i-type amorphous Si semiconductor layer may be inserted between the p-type amorphous Si semiconductor layer 4a and the i-type amorphous Si semiconductor layer 4b. The microcrystalline Si photoelectric conversion layer 6 is composed of a layer in which a p-type microcrystalline Si semiconductor layer 6a, an i-type microcrystalline Si semiconductor layer 6b, and an n-type microcrystalline Si semiconductor layer 6c are stacked in this order from the substrate side. .

なお、中間層5とn型非晶質Si半導体層4cとの間にn型非晶質Si半導体層4cよりもキャリア密度が高いn型非晶質Si半導体層4dを挿入するようにしてもよい。また、中間層5とp型微結晶Si半導体層6aとの間にp型微結晶Si半導体層6aよりもキャリア密度が高いp型微結晶Si半導体層6dを挿入するようにしてもよい。   An n-type amorphous Si semiconductor layer 4d having a carrier density higher than that of the n-type amorphous Si semiconductor layer 4c may be inserted between the intermediate layer 5 and the n-type amorphous Si semiconductor layer 4c. Good. Further, a p-type microcrystalline Si semiconductor layer 6d having a carrier density higher than that of the p-type microcrystalline Si semiconductor layer 6a may be inserted between the intermediate layer 5 and the p-type microcrystalline Si semiconductor layer 6a.

裏面電極7はたとえばAlやAl合金などの反射率の高い金属を使用する。Alの代わりにAgを用いてもよい。反射性能に優れた裏面電極7を用いると、微結晶Si光電変換層6を透過した光は裏面電極7により再び微結晶Si光電変換層6側に反射されて光電変換されるので変換効率が向上する。光電変換される波長域の光を効果的に反射するために図のように裏面電極7とn型微結晶Si半導体層6cとの間に適当な光学特性を有するZnOなどの透明導電層11を挿入してもよい。   For the back electrode 7, for example, a metal having high reflectivity such as Al or Al alloy is used. Ag may be used instead of Al. When the back electrode 7 having excellent reflection performance is used, the light transmitted through the microcrystalline Si photoelectric conversion layer 6 is reflected again by the back electrode 7 toward the microcrystalline Si photoelectric conversion layer 6 and is photoelectrically converted, thereby improving the conversion efficiency. To do. A transparent conductive layer 11 such as ZnO having appropriate optical characteristics is provided between the back electrode 7 and the n-type microcrystalline Si semiconductor layer 6c as shown in FIG. It may be inserted.

中間層5は非晶質Si光電変換層4と微結晶Si光電変換層6とに挟まれた層である。中間層5は非晶質Si光電変換層4で吸収されなかった光を微結晶Si光電変換層6側に透過する必要がある。このために、中間層5のバンドギャップは少なくとも非晶質Si光電変換層4のバンドギャップより広くしておく必要がある。このため、中間層5は、1.5eV以上のバンドギャップが必要である。   The intermediate layer 5 is a layer sandwiched between the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6. The intermediate layer 5 needs to transmit light that has not been absorbed by the amorphous Si photoelectric conversion layer 4 to the microcrystalline Si photoelectric conversion layer 6 side. For this reason, the band gap of the intermediate layer 5 needs to be at least wider than the band gap of the amorphous Si photoelectric conversion layer 4. For this reason, the intermediate layer 5 needs a band gap of 1.5 eV or more.

それと同時に、中間層5は非晶質Si光電変換層4と微結晶Si光電変換層6との間を電気的に導通させる必要がある。また、中間層5が微結晶Si光電変換層6で吸収する波長域の光を透過する一方、非晶質Si光電変換層4で吸収する波長域の光を非晶質Si光電変換層4側に反射する光学特性を備えると、非晶質Si光電変換層4を通過した光が再び非晶質Si光電変換層4を通過して光電変換されるので変換効率が向上する。   At the same time, the intermediate layer 5 needs to electrically connect the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6. The intermediate layer 5 transmits light in the wavelength region absorbed by the microcrystalline Si photoelectric conversion layer 6, while the light in the wavelength region absorbed by the amorphous Si photoelectric conversion layer 4 transmits the light in the amorphous Si photoelectric conversion layer 4 side. If the optical characteristic is reflected, the light passing through the amorphous Si photoelectric conversion layer 4 passes through the amorphous Si photoelectric conversion layer 4 again and undergoes photoelectric conversion, so that the conversion efficiency is improved.

中間層5は、その両側に接合された非晶質Si光電変換層4と微結晶Si光電変換層6との間のキャリアを滞りなく伝えなければならないため、キャリア伝導性が必須である。非晶質Si光電変換層4と微結晶Si光電変換層6との間でキャリア伝導が妨げられると、実効的な素子間接続抵抗が高くなり、太陽電池の曲線因子(Fill Factor:FF)が低下し、結果として発電効率が低下する。そのため中間層5は、透過率とキャリア導電率を両立させなければならない。   Since the intermediate layer 5 must transmit carriers between the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6 bonded on both sides thereof, carrier conductivity is essential. If carrier conduction is hindered between the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6, the effective inter-element connection resistance increases, and the fill factor (FF) of the solar cell is increased. As a result, the power generation efficiency decreases. Therefore, the intermediate layer 5 must satisfy both the transmittance and the carrier conductivity.

図2(a)は、図1の中間層5の近傍を拡大して示す図、図2(b)は、図2(a)の各層のエネルギーバンドを示す図である。   2A is an enlarged view showing the vicinity of the intermediate layer 5 in FIG. 1, and FIG. 2B is a view showing energy bands of each layer in FIG. 2A.

図2において、n型透明導電性酸化層5aとしてAlをドープしたZnO層、p型透明導電性酸化層5bとしてLiをドープしたNiO層を用いた例を示した。   FIG. 2 shows an example in which a ZnO layer doped with Al is used as the n-type transparent conductive oxide layer 5a, and a NiO layer doped with Li is used as the p-type transparent conductive oxide layer 5b.

このAlをドープしたZnO層は、原子組成比率5%の濃度でAlをドープしたZnOターゲットを用いたRFスパッタ法で成膜した。成膜時の基板温度は200℃とした。この他、プラズマCVD法や蒸着法などで形成するようにしてもよい。また、n型透明導電性酸化層5aは、ターゲットにInGaZnOを用いて、この組成のInGaZnO膜を用いるようにしてもよい。 This Al-doped ZnO layer was formed by RF sputtering using a ZnO target doped with Al at a concentration of 5% in atomic composition ratio. The substrate temperature during film formation was 200 ° C. In addition, it may be formed by plasma CVD or vapor deposition. Further, n-type transparent conductive oxide layer 5a using the InGaZnO 4 as a target, may be used InGaZnO 4 film of this composition.

LiをドープしたNiO層は、原子組成比率10%の濃度でLiをドープしたNiOターゲットを用いたRFスパッタ法で成膜した。この他、CVD法や蒸着法などで形成するようにしてもよい。   The NiO layer doped with Li was formed by RF sputtering using a NiO target doped with Li at a concentration of 10% atomic composition ratio. In addition, it may be formed by CVD or vapor deposition.

RFスパッタ膜の成膜は、Arガス45sccmに加えて濃度比10%となるように酸素ガス5sccmを供給し、圧力は0.5Paとした。成膜時の基板温度は200℃とした。成膜時の基板温度は成膜後の熱処理温度との兼ね合いで決まる。室温で形成することも可能であるが、この場合、成膜後の熱処理温度は高温で、長時間の加熱が必要になる。   The RF sputtered film was formed by supplying 5 sccm of oxygen gas so that the concentration ratio was 10% in addition to 45 sccm of Ar gas, and the pressure was 0.5 Pa. The substrate temperature during film formation was 200 ° C. The substrate temperature at the time of film formation is determined in consideration of the heat treatment temperature after film formation. Although it can be formed at room temperature, in this case, the heat treatment temperature after film formation is high, and heating for a long time is required.

中間層5では、主としてトンネル伝導とキャリア再結合とによって非晶質Si光電変換層4と微結晶Si光電変換層6との間に電流が流れる。本実施の形態1の中間層5に用いられるZnOおよびNiOは透明導電膜であるため、本来の伝導特性は膜厚にはあまり左右されない。ただし、ここに示すような高温熱処理を行わない場合には、本来のキャリア濃度および移動度が必ずしも十分に実現できるわけではないため、膜厚は薄くする方がよい。   In the intermediate layer 5, a current flows between the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6 mainly due to tunnel conduction and carrier recombination. Since ZnO and NiO used in the intermediate layer 5 of the first embodiment are transparent conductive films, the original conduction characteristics are not greatly affected by the film thickness. However, when high-temperature heat treatment as shown here is not performed, the original carrier concentration and mobility cannot always be sufficiently realized, so it is better to reduce the film thickness.

一方、この中間層5は、非晶質Si光電変換層4で吸収し切れなかった光を選択的に反射し、微結晶Si光電変換層6で利用する波長の光を透過する選択反射膜としての機能を持たせるようにしてもよい。このため、非晶質Si光電変換層4で吸収される光の中心波長をλとすると、中間層5全体の光学膜厚(実膜厚/有効屈折率)をλ/2の整数倍とすればよい。 On the other hand, the intermediate layer 5 selectively reflects light that has not been absorbed by the amorphous Si photoelectric conversion layer 4 and serves as a selective reflection film that transmits light having a wavelength used by the microcrystalline Si photoelectric conversion layer 6. You may make it give the function of. Therefore, when the center wavelength of the light absorbed by the amorphous Si photoelectric conversion layer 4 and lambda 1, the intermediate layer 5 the total optical thickness (actual thickness / effective refractive index) of lambda 1/2 integer multiple And it is sufficient.

また、中間層5を構成するn型透明導電性酸化層5aおよびp型透明導電性酸化層5bは、2次元的に連続膜となることが望ましいが、それぞれの界面の少なくとも一部を覆っていればよく、完全な連続膜とならずに一部に開口部を有するような構成であってもよい。   The n-type transparent conductive oxide layer 5a and the p-type transparent conductive oxide layer 5b constituting the intermediate layer 5 are desirably two-dimensionally continuous films, but cover at least a part of their interfaces. The configuration may be such that an opening is partly formed instead of a complete continuous film.

n型透明導電性酸化層5aおよびp型透明導電性酸化層5bは、そのままでは高抵抗を示すが、成膜後に酸素雰囲気中で300℃以下の温度でアニールすることで低抵抗化を図ることができる。n型透明導電性酸化層5aおよびp型透明導電性酸化層5bの熱処理温度をこれ以上高くすると、非晶質Si光電変換層4および微結晶Si光電変換層6の特性劣化を招くため、熱処理温度は300℃以下とすることが好ましい。   The n-type transparent conductive oxide layer 5a and the p-type transparent conductive oxide layer 5b exhibit high resistance as they are, but the resistance is reduced by annealing at a temperature of 300 ° C. or lower in an oxygen atmosphere after film formation. Can do. When the heat treatment temperature of the n-type transparent conductive oxide layer 5a and the p-type transparent conductive oxide layer 5b is further increased, the characteristics of the amorphous Si photoelectric conversion layer 4 and the microcrystalline Si photoelectric conversion layer 6 are deteriorated. The temperature is preferably 300 ° C. or lower.

次に、このような中間層5の作用について説明する。
n−Si/n−ZnOショットキー接合は伝導帯のそれぞれのポテンシャル位置(電子親和力)が近いためにショットキバリアは小さい。このため、それぞれの層のキャリア濃度が1e18cm−3以上となるようにドーピングコントロールすることでオーミック特性を示す。
Next, the operation of such an intermediate layer 5 will be described.
The n-Si / n-ZnO Schottky junction has a small Schottky barrier because each potential position (electron affinity) of the conduction band is close. For this reason, ohmic characteristics are exhibited by controlling the doping so that the carrier concentration of each layer is 1e18 cm −3 or more.

同様に、p−NiO/p−Siショットキー接合は価電子帯のそれぞれのポテンシャル位置(イオン化ポテンシャル)が近いためにショットキーバリアは小さい。このため、それぞれの層のキャリア濃度が1E18cm−3以上となるようにドーピングコントロールすることでオーミック特性を示す。 Similarly, the p-NiO / p-Si Schottky junction has a small Schottky barrier because each potential position (ionization potential) in the valence band is close. For this reason, ohmic characteristics are exhibited by controlling the doping so that the carrier concentration of each layer is 1E18 cm −3 or more.

一方、n型透明導電性酸化層5aとp型透明導電性酸化層5bはトンネル接合を形成する。それぞれのキャリア濃度が1E19cm−3のレベルになるようドーピングして縮退した状態(フェルミレベルが、伝導帯または価電子帯の中にある状態)を実現すると、殆どエネルギーを消費することなしに、n−p間のトンネリング再結合によるn側からp側への電流の流れを容易に実現できる。このため、接合抵抗、従って素子抵抗が低減でき、高集光発電時における高電流の状況でも効率の低下を抑えることが可能になる。 On the other hand, the n-type transparent conductive oxide layer 5a and the p-type transparent conductive oxide layer 5b form a tunnel junction. When a state in which each carrier concentration is degenerated by doping so that the carrier concentration becomes a level of 1E19 cm −3 (a state in which the Fermi level is in the conduction band or the valence band) is realized, the energy is hardly consumed. It is possible to easily realize a current flow from the n side to the p side by tunneling recombination between −p. For this reason, the junction resistance, and hence the element resistance, can be reduced, and it is possible to suppress a decrease in efficiency even in a high current situation during high concentration power generation.

実施の形態2.
p型透明導電性酸化層5bとしてZnM(M=Co,Rh,Ir)系の膜のうちZnIr膜を用いる。そして、同様のプロセスで、n型透明導電性酸化層5aとしてAlをドープしたZnOを成膜後、ZnIrターゲットを用いてAr+O雰囲気中でスパッタによりZnIr膜を成膜する。成膜時の基板温度は200℃とすることができる。
Embodiment 2. FIG.
p-type transparent electrically ZnM 2 O 4 as a conductive oxide layer 5b (M = Co, Rh, Ir) system using ZnIr 2 O 4 film out of the film. Then, a similar process, after forming a ZnO doped with Al as an n-type transparent conductive oxide layer 5a, forming the ZnIr 2 O 4 film by sputtering in an Ar + O 2 atmosphere using ZnIr 2 O 4 target . The substrate temperature during film formation can be 200 ° C.

ZnIrはアモルファス状態でp型伝導を得ることができる透明導電膜となる。成膜後に200℃で2時間の酸素雰囲気中アニールを行うことで高いホール濃度を得ることができる。 ZnIr 2 O 4 becomes a transparent conductive film capable of obtaining p-type conduction in an amorphous state. A high hole concentration can be obtained by annealing in an oxygen atmosphere at 200 ° C. for 2 hours after film formation.

この結果、殆どエネルギーを消費することなしに、n−p間のトンネリング再結合を容易に実現することができる。このため、接合抵抗、従って素子抵抗を低減でき、高集光発電時における高電流の状況でも効率の低下を抑えることが可能になる。なお、金属元素としてIrに変えてRh、Coでも同様の効果が得られる。   As a result, tunneling recombination between n-p can be easily realized with little energy consumption. For this reason, it is possible to reduce the junction resistance and hence the element resistance, and it is possible to suppress a decrease in efficiency even in a high current situation during high concentration power generation. Similar effects can be obtained by using Rh and Co instead of Ir as the metal element.

実施の形態3.
n型透明導電性酸化層5aとしてn−ZnO/p−ZnMg(1−x)Oを用いる。p−型キャリアを生成するためにLiドープを用いる。他は同じプロセスとする。ここでは、n型透明導電性酸化層5のAlをドープしたZnOを成膜後、Liを0.5原子%ドープしたZn0.7Mg0.3Oターゲットを用いてAr+O雰囲気中でスパッタにより成膜する。成膜時の基板温度は200℃とすることができる。
Embodiment 3 FIG.
n-type transparent conductive oxide layer 5a as n-ZnO / p-Zn x Mg (1-x) using O. Li doping is used to generate p-type carriers. Others are the same process. Here, after forming the Zn doped ZnO of the n-type transparent conductive oxide layer 5, sputtering is performed in an Ar + O 2 atmosphere using a Zn 0.7 Mg 0.3 O target doped with 0.5 atomic% of Li. The film is formed by The substrate temperature during film formation can be 200 ° C.

LiドープのZn0.7Mg0.3Oはアモルファス状態でp型伝導を得ることができる透明導電膜となる。成膜後に200℃2時間の酸素雰囲気中アニールを行うことで高いホール濃度を得ることができる。 Li-doped Zn 0.7 Mg 0.3 O becomes a transparent conductive film capable of obtaining p-type conduction in an amorphous state. A high hole concentration can be obtained by annealing in an oxygen atmosphere at 200 ° C. for 2 hours after film formation.

この結果、殆どエネルギーを消費することなしに、n−p間のトンネリング再結合を容易に実現することができる。このため、接合抵抗、従って素子抵抗が低減でき、高集光発電時における高電流の状況でも効率の低下を抑えることが可能になる。   As a result, tunneling recombination between n-p can be easily realized with little energy consumption. For this reason, the junction resistance, and hence the element resistance, can be reduced, and it is possible to suppress a decrease in efficiency even in a high current situation during high concentration power generation.

以上説明したように、本発明の実施の形態では、それぞれn型半導体層とp型半導体層とを有するとともに互いに光吸収波長特性の異なる第1光電変換層および第2光電変換層が積層され、第1光電変換層のn型半導体層と第2光電変換層のp型半導体層との間に透光性の中間層を有する。   As described above, in the embodiment of the present invention, the first photoelectric conversion layer and the second photoelectric conversion layer each having an n-type semiconductor layer and a p-type semiconductor layer and having different light absorption wavelength characteristics are laminated, A translucent intermediate layer is provided between the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer.

そして、中間層との界面における第1光電変換層のn型半導体層はn型透明導電性酸化層に接することでn型半導体層からn型透明導電性酸化層への電子の移動が容易に行われ、且つ第2光電変換層のp型半導体層はp型透明導電性酸化層に接することでp型半導体層からp型透明導電性酸化層への正孔の移動が容易に行われる。   The n-type semiconductor layer of the first photoelectric conversion layer at the interface with the intermediate layer is in contact with the n-type transparent conductive oxide layer, so that electrons can be easily transferred from the n-type semiconductor layer to the n-type transparent conductive oxide layer. In addition, the p-type semiconductor layer of the second photoelectric conversion layer is in contact with the p-type transparent conductive oxide layer, so that holes can be easily transferred from the p-type semiconductor layer to the p-type transparent conductive oxide layer.

さらに、n型透明導電性酸化層とp型透明導電性酸化層の接する界面では、両者のキャリア濃度を十分に高くすることで、電子と正孔のトンネル再結合を起こすことができる。そして、トンネル再結合が増進される結果、第1光電変換層と第2光電変換層の間の導電性が改善され、高効率な光電変換装置を実現することができる。   Furthermore, at the interface where the n-type transparent conductive oxide layer and the p-type transparent conductive oxide layer are in contact, tunnel recombination of electrons and holes can be caused by sufficiently increasing the carrier concentration of both. As a result of the enhancement of tunnel recombination, the conductivity between the first photoelectric conversion layer and the second photoelectric conversion layer is improved, and a highly efficient photoelectric conversion device can be realized.

中間層を形成するp型透明導電性酸化層の材料として平衡系での結晶成長において単純な立方構造やスピネル構造などの基本構造の比較的小さな結晶を持つ材料を選ぶことでアモルファスあるいは微結晶の状態で本来の結晶の伝導特性を得るのが容易になる。このため、中間層の伝導特性を向上させるために、成膜後の熱処理を不要としたり、300℃以下の熱処理で済ませることができ、300℃を越える高温熱処理を行う必要がなくなることから、積層型薄膜太陽電池に用いられる膜の特性の劣化を防止することができる。   By selecting a material with a relatively small crystal of basic structure such as a simple cubic structure or spinel structure for crystal growth in an equilibrium system as a material for the p-type transparent conductive oxide layer forming the intermediate layer It becomes easy to obtain the conduction characteristics of the original crystal in the state. For this reason, in order to improve the conductive properties of the intermediate layer, it is possible to eliminate the need for heat treatment after film formation or to perform heat treatment at 300 ° C. or lower, and it is not necessary to perform high temperature heat treatment exceeding 300 ° C. The deterioration of the characteristics of the film used for the type thin film solar cell can be prevented.

このように本発明の実施の形態によれば、比較的低温プロセスにより接続抵抗の低い積層型光電変換装置を実現することができ、高電流が流れる集光型の作動状況においても高効率な特性を維持できる光電変換装置を実現することができる。さらに、中間層によって第1光電変換層と第2光電変換層への光の配分を調整できることから、高効率化設計の自由度を増やすことができ、高効率な光電変換装置を実現することができる。   As described above, according to the embodiment of the present invention, a stacked photoelectric conversion device having a low connection resistance can be realized by a relatively low temperature process, and a highly efficient characteristic can be obtained even in a condensing type operation situation in which a high current flows. Can be realized. Furthermore, since the distribution of light to the first photoelectric conversion layer and the second photoelectric conversion layer can be adjusted by the intermediate layer, the degree of freedom in high efficiency design can be increased, and a highly efficient photoelectric conversion device can be realized. it can.

以上の実施の形態では、特に、Siを主成分とする半導体層からなる光電変換層の変換効率向上に適するが、Si系以外の化合物半導体系または有機物系などの材料にも適用可能である。   In the above embodiment, it is particularly suitable for improving the conversion efficiency of a photoelectric conversion layer composed of a semiconductor layer containing Si as a main component, but it can also be applied to a compound semiconductor system other than a Si system or an organic material.

以上のように本発明に係る光電変換装置は、中間層の両側に位置する光電変換層間の導通性を改善し、エネルギーロスの少ない高効率な光電変換装置を提供することができるようになる。特に、光を集光して発電するような電流密度の高い発電時において、エネルギーロスによる発熱および効率低下を抑え、高効率発電を実現する方法に適している。   As described above, the photoelectric conversion device according to the present invention can improve the conductivity between the photoelectric conversion layers located on both sides of the intermediate layer, and can provide a highly efficient photoelectric conversion device with little energy loss. In particular, it is suitable for a method for suppressing heat generation and efficiency reduction due to energy loss and realizing high-efficiency power generation at the time of power generation with high current density such as collecting light and generating power.

1 光電変換装置
2 基板
3 透明電極
4 非晶質Si光電変換層
4a p型非晶質Si半導体層
4b i型非晶質Si半導体層
4c n型非晶質Si半導体層
4d n型非晶質Si半導体層
5 中間層
5a n型透明導電性酸化層
5b p型透明導電性酸化層
6 微結晶Si光電変換層
6a p型微結晶Si半導体層
6b i型微結晶Si半導体層
6c n型微結晶Si半導体層
6d p型微結晶Si半導体層
7 裏面電極
8 アンダーコート層
11 透明導電層
1 photoelectric conversion device 2 substrate 3 transparent electrode 4 amorphous Si photoelectric conversion layer 4a p-type amorphous Si semiconductor layer 4b i-type amorphous Si semiconductor layer 4c n-type amorphous Si semiconductor layer 4d n-type amorphous Si semiconductor layer 5 Intermediate layer 5a n-type transparent conductive oxide layer 5b p-type transparent conductive oxide layer 6 microcrystalline Si photoelectric conversion layer 6a p-type microcrystalline Si semiconductor layer 6b i-type microcrystalline Si semiconductor layer 6c n-type microcrystal Si semiconductor layer 6d p-type microcrystalline Si semiconductor layer 7 Back electrode 8 Undercoat layer 11 Transparent conductive layer

Claims (12)

第1n型半導体層と第1p型半導体層とを有する第1光電変換層と、
第2n型半導体層と第2p型半導体層とを有するとともに、前記第1光電変換層と光吸収波長特性が異なる第2光電変換層と、
前記第1n型半導体層と前記第2p型半導体層との間の前記第1n型半導体層に接する側に配置され、バンドギャップが1.5eV以上のn型透明導電性酸化膜と、
前記第1n型半導体層と前記第2p型半導体層との間の前記第2p型半導体層に接する側に前記n型透明導電性酸化膜とpn接合を形成するように配置され、バンドギャップが1.5eV以上のp型透明導電性酸化膜とを備えることを特徴とする光電変換装置。
A first photoelectric conversion layer having a first n-type semiconductor layer and a first p-type semiconductor layer;
A second photoelectric conversion layer having a second n-type semiconductor layer and a second p-type semiconductor layer and having a light absorption wavelength characteristic different from that of the first photoelectric conversion layer;
An n-type transparent conductive oxide film disposed on a side in contact with the first n-type semiconductor layer between the first n-type semiconductor layer and the second p-type semiconductor layer and having a band gap of 1.5 eV or more;
The n-type transparent conductive oxide film and the pn junction are formed on the side in contact with the second p-type semiconductor layer between the first n-type semiconductor layer and the second p-type semiconductor layer, and the band gap is 1 And a p-type transparent conductive oxide film of 5 eV or more.
前記n型透明導電性酸化膜および前記p型透明導電性酸化膜のキャリア濃度は、両者とも1E19cm−3以上であることを特徴とする請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein carrier concentrations of the n-type transparent conductive oxide film and the p-type transparent conductive oxide film are both 1E19 cm −3 or more. 前記n型透明導電性酸化膜および前記p型透明導電性酸化膜は、アモルファスまたは微結晶またはアモルファスと微結晶の混在した結晶層であることを特徴とする請求項1または2に記載の光電変換装置。   3. The photoelectric conversion according to claim 1, wherein the n-type transparent conductive oxide film and the p-type transparent conductive oxide film are amorphous, microcrystalline, or a crystal layer in which amorphous and microcrystalline are mixed. apparatus. 前記n型透明導電性酸化膜は、真空準位から測った伝導帯下端のエネルギーが直下に接する前記第1n型半導体層の伝導帯下端のエネルギーよりも小さく、且つ前記p型透明導電性酸化膜は真空準位から測った価電子帯上端のエネルギーが直上に接する前記第2p型半導体層の価電子帯上端のエネルギーよりも大きいことを特徴とする請求項1から3のいずれか1項に記載の光電変換装置。   The n-type transparent conductive oxide film has an energy at the lower end of the conduction band measured from a vacuum level smaller than an energy at the lower end of the conduction band of the first n-type semiconductor layer, and the p-type transparent conductive oxide film 4. The energy according to claim 1, wherein the energy at the upper end of the valence band measured from the vacuum level is larger than the energy at the upper end of the valence band of the second p-type semiconductor layer in contact therewith. 5. Photoelectric conversion device. 前記n型透明導電性酸化膜および前記p型透明導電性酸化膜を合わせた光学膜厚は、前記第1光電変換層で吸収される光の中心波長の1/2の整数倍であることを特徴とする請求項1から4のいずれか1項に記載の光電変換装置。   The total optical film thickness of the n-type transparent conductive oxide film and the p-type transparent conductive oxide film is an integral multiple of 1/2 of the center wavelength of light absorbed by the first photoelectric conversion layer. The photoelectric conversion device according to any one of claims 1 to 4, wherein the photoelectric conversion device is characterized. 前記n型透明導電性酸化膜および前記p型透明導電性酸化膜の等価的な光学膜厚は、前記第1光電変換層で吸収される光の中心波長の光に対する反射率が最大になるように設定されていることを特徴とする請求項1から4のいずれか1項に記載の光電変換装置。   The equivalent optical film thickness of the n-type transparent conductive oxide film and the p-type transparent conductive oxide film is such that the reflectance with respect to light having the center wavelength of light absorbed by the first photoelectric conversion layer is maximized. 5. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device is set as follows. 前記n型透明導電性酸化膜の基材はZnOであることを特徴とする請求項1から6のいずれか1項に記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein a base material of the n-type transparent conductive oxide film is ZnO. 前記n型透明導電性酸化膜の基材はInGaZnOであることを特徴とする請求項1から6のいずれか1項に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein a base material of the n-type transparent conductive oxide film is InGaZnO 4 . 前記p型透明導電性酸化膜の基材はNiOであることを特徴とする請求項1から6のいずれか1項に記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein the base material of the p-type transparent conductive oxide film is NiO. 前記p型透明導電性酸化膜の基材はZnM(M=Co,Rh,Ir)であることを特徴とする請求項1から6のいずれか1項に記載の光電変換装置。 7. The photoelectric conversion device according to claim 1, wherein the base material of the p-type transparent conductive oxide film is ZnM 2 O 4 (M = Co, Rh, Ir). 前記p型透明導電性酸化膜の基材はZnMgOであることを特徴とする請求項1から6のいずれか1項に記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein a base material of the p-type transparent conductive oxide film is ZnMgO. 第1n型半導体層と第1p型半導体層とを有する第1光電変換層を形成する工程と、
アモルファスまたは微結晶またはアモルファスと微結晶の混在した結晶層となるように成膜時及び成膜後の基板温度を300℃以下に設定し、バンドギャップが1.5eV以上のn型透明導電性酸化膜を前記第1n型半導体層に接する側に形成する工程と、
アモルファスまたは微結晶またはアモルファスと微結晶の混在した結晶層となるように成膜時及び成膜後の基板温度を300℃以下に設定し、バンドギャップが1.5eV以上のp型透明導電性酸化膜を前記n型透明導電性酸化膜に接するように形成する工程と、
第2n型半導体層と第2p型半導体層とを有する第2光電変換層を前記第2p型半導体層が前記p型透明導電性酸化膜に接するように形成する工程とを備えることを特徴とする光電変換装置の製造方法。
Forming a first photoelectric conversion layer having a first n-type semiconductor layer and a first p-type semiconductor layer;
N-type transparent conductive oxidation with a band gap of 1.5 eV or more, with the substrate temperature set to 300 ° C. or lower during film formation and after film formation so as to be amorphous or microcrystal or a crystal layer in which amorphous and microcrystals are mixed Forming a film on a side in contact with the first n-type semiconductor layer;
A p-type transparent conductive oxide with a band gap of 1.5 eV or more, with the substrate temperature set to 300 ° C. or lower during film formation and after film formation so as to be amorphous or microcrystal or a crystal layer in which amorphous and microcrystals are mixed Forming a film in contact with the n-type transparent conductive oxide film;
Forming a second photoelectric conversion layer having a second n-type semiconductor layer and a second p-type semiconductor layer so that the second p-type semiconductor layer is in contact with the p-type transparent conductive oxide film. A method for manufacturing a photoelectric conversion device.
JP2010042791A 2010-02-26 2010-02-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device Expired - Fee Related JP5388899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042791A JP5388899B2 (en) 2010-02-26 2010-02-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042791A JP5388899B2 (en) 2010-02-26 2010-02-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2011181608A true JP2011181608A (en) 2011-09-15
JP5388899B2 JP5388899B2 (en) 2014-01-15

Family

ID=44692841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042791A Expired - Fee Related JP5388899B2 (en) 2010-02-26 2010-02-26 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP5388899B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238829A (en) * 2010-12-24 2012-12-06 Mitsubishi Electric Corp Photoelectric conversion device, method for manufacturing the same and photoelectric conversion module
JP2013183012A (en) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp Photoelectric conversion device and manufacturing method thereof and photoelectric conversion module
WO2017057646A1 (en) * 2015-09-30 2017-04-06 株式会社カネカ Multi-junction photoelectric conversion device and photoelectric conversion module

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218174A (en) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp Photoelectric converting semiconductor device
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell
JPH0964386A (en) * 1995-08-18 1997-03-07 Japan Energy Corp Multijunction solar cell
JPH11322413A (en) * 1998-02-16 1999-11-24 Japan Energy Corp Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
JP2004119525A (en) * 2002-09-24 2004-04-15 Japan Science & Technology Corp Oxide semiconductor pn junction device
JP2004363290A (en) * 2003-06-04 2004-12-24 Seiko Epson Corp Solar battery, display device, and personal digital assistant
JP2005005421A (en) * 2003-06-11 2005-01-06 Sharp Corp Oxide semiconductor light emitting element
JP2005123631A (en) * 2003-10-16 2005-05-12 Samsung Electronics Co Ltd Nitride system light-emitting device and manufacturing method therefor
JP2007084935A (en) * 2005-09-22 2007-04-05 Samsung Electronics Co Ltd Method of manufacturing amorphous nio thin films by ald process and nonvolatile memory device using the same
JP2007273455A (en) * 2006-03-09 2007-10-18 National Institute Of Advanced Industrial & Technology Oxide film transparent conductive film, and transparent conductive base material, thin film transistor substrate, photoelectric conversion element and photo detector using the same
JP2008060561A (en) * 2006-08-04 2008-03-13 Nanoteco Corp Light emitting element, and method for manufacturing same
WO2009144944A1 (en) * 2008-05-30 2009-12-03 三菱電機株式会社 Photoelectric converter
JP2010003901A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Photoelectric converting element and solid-state imaging element

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218174A (en) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp Photoelectric converting semiconductor device
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell
JPH0964386A (en) * 1995-08-18 1997-03-07 Japan Energy Corp Multijunction solar cell
JPH11322413A (en) * 1998-02-16 1999-11-24 Japan Energy Corp Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
JP2004119525A (en) * 2002-09-24 2004-04-15 Japan Science & Technology Corp Oxide semiconductor pn junction device
JP2004363290A (en) * 2003-06-04 2004-12-24 Seiko Epson Corp Solar battery, display device, and personal digital assistant
JP2005005421A (en) * 2003-06-11 2005-01-06 Sharp Corp Oxide semiconductor light emitting element
JP2005123631A (en) * 2003-10-16 2005-05-12 Samsung Electronics Co Ltd Nitride system light-emitting device and manufacturing method therefor
JP2007084935A (en) * 2005-09-22 2007-04-05 Samsung Electronics Co Ltd Method of manufacturing amorphous nio thin films by ald process and nonvolatile memory device using the same
JP2007273455A (en) * 2006-03-09 2007-10-18 National Institute Of Advanced Industrial & Technology Oxide film transparent conductive film, and transparent conductive base material, thin film transistor substrate, photoelectric conversion element and photo detector using the same
JP2008060561A (en) * 2006-08-04 2008-03-13 Nanoteco Corp Light emitting element, and method for manufacturing same
WO2009144944A1 (en) * 2008-05-30 2009-12-03 三菱電機株式会社 Photoelectric converter
JP2010003901A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Photoelectric converting element and solid-state imaging element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238829A (en) * 2010-12-24 2012-12-06 Mitsubishi Electric Corp Photoelectric conversion device, method for manufacturing the same and photoelectric conversion module
JP2013183012A (en) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp Photoelectric conversion device and manufacturing method thereof and photoelectric conversion module
WO2017057646A1 (en) * 2015-09-30 2017-04-06 株式会社カネカ Multi-junction photoelectric conversion device and photoelectric conversion module
JPWO2017057646A1 (en) * 2015-09-30 2018-06-28 株式会社カネカ Multi-junction photoelectric conversion device and photoelectric conversion module
US10333016B2 (en) 2015-09-30 2019-06-25 Kaneka Corporation Multi-junction photoelectric conversion device and photoelectric conversion module

Also Published As

Publication number Publication date
JP5388899B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5550624B2 (en) Photoelectric conversion device, manufacturing method thereof, and photoelectric conversion module
JP6522684B2 (en) Solar cell
JP4671002B2 (en) Photoelectric conversion device
KR101103770B1 (en) Compound Semiconductor Solar Cells and Methods of Fabricating the Same
KR20130117136A (en) Solar cell
JP2012530378A (en) Solar cell and manufacturing method thereof
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
JP5677341B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION MODULE
JP5388899B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
WO2009110409A1 (en) Solar cell
KR100992483B1 (en) Solar cell and fabrication method thereof
JP2014503125A (en) Solar cell and manufacturing method thereof
JP2012244065A (en) Thin film photoelectric conversion device, manufacturing method thereof, and thin film photoelectric conversion module
GB2466496A (en) Photovoltaic cell based on transition metal oxides of varied band gaps and p/n types
JP5295059B2 (en) Photoelectric conversion device and manufacturing method thereof
KR101039993B1 (en) Solar cell and method of fabricating the same
KR101474487B1 (en) Thin film solar cell and Method of fabricating the same
KR20110001814A (en) Solar cell and method of fabricating the same
TWI488322B (en) Manufacturing method of thin film solar cells and thin film solar cells thereof
JP5188487B2 (en) Photoelectric conversion device
KR101134730B1 (en) Solar cell apparatus and method of fabricating the same
JP7457311B1 (en) Solar cells and solar cell manufacturing methods
JP2010010347A (en) Thin-film solar cell
KR20110001819A (en) Solar cell and method of fabricating the same
US20130160853A1 (en) Solar cell having a pn hetero-junction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees