JP2011181448A - Disposing method of sodium-sulfur battery - Google Patents

Disposing method of sodium-sulfur battery Download PDF

Info

Publication number
JP2011181448A
JP2011181448A JP2010046788A JP2010046788A JP2011181448A JP 2011181448 A JP2011181448 A JP 2011181448A JP 2010046788 A JP2010046788 A JP 2010046788A JP 2010046788 A JP2010046788 A JP 2010046788A JP 2011181448 A JP2011181448 A JP 2011181448A
Authority
JP
Japan
Prior art keywords
sodium
battery
sulfur
discharge
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010046788A
Other languages
Japanese (ja)
Inventor
Akiyasu Okuno
晃康 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010046788A priority Critical patent/JP2011181448A/en
Publication of JP2011181448A publication Critical patent/JP2011181448A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pre-disposing method capable of treating a large number of used sodium-sulfur batteries (NaS batteries) at once efficiently by a simple operation without bringing about a failure to a disposing device. <P>SOLUTION: In the disposing method, the used sodium sulfur batteries are brought into discharge-ended states, metal sodium 5 remaining in a negative electrode is reduced, and a positive electrode is brought into a one-phase region composed of a sodium polysulfide Na<SB>2</SB>S<SB>x</SB>(x=3-5) 6 in which sulfur does not exist, and then, cut at 1/2 or higher in the height direction of the battery. Thereby, it becomes possible to dispose efficiently the used sodium-sulfur batteries by a well-known method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、使用済みのナトリウム−硫黄電池を安全かつ大量に廃棄処理することが可能な処理方法に関する。   The present invention relates to a treatment method capable of safely and massively disposing used sodium-sulfur batteries.

ナトリウム−硫黄電池(以下、NaS電池と称することがある。)は、アルミニウム合金製の外周容器の内部にβ−アルミナからなる固体電解質管を設け、固体電解質管の内側に負極活物質である金属ナトリウムを配置し、固体電解質管の外側と外周容器との間に正極活物質である硫黄を配置した構造の高温作動型の二次電池である。   A sodium-sulfur battery (hereinafter sometimes referred to as a NaS battery) has a solid electrolyte tube made of β-alumina inside an outer peripheral container made of an aluminum alloy, and a metal that is a negative electrode active material inside the solid electrolyte tube. This is a high temperature operation type secondary battery having a structure in which sodium is disposed and sulfur as a positive electrode active material is disposed between the outside of the solid electrolyte tube and the outer peripheral container.

NaS電池は、放電時にはナトリウムイオン(Na)が固体電解質管中を移動して正極側に達し、正極の硫黄と反応して多硫化ナトリウム(Na)を生成する反応が起こり、充電時にはこの逆の反応が起こることで作動する。図5は、充電末状態のNaS電池の断面概略図であり、1は外周容器、2は固体電解質(β−アルミナ)管、3は負極蓋、4は電極棒、5は負極活物質(金属ナトリウム)、7は正極活物質(多硫化ナトリウムと硫黄の混合物)である。正極活物質7である硫黄には電子伝導性がないため、電子の授受を効率的に行うには電子伝導補助材料が必要であり、多硫化ナトリウムに対する耐食性および良好な電子伝導性を有し、正極中のイオン移動を妨げない材料として、カーボンフェルトなどが使用されており、硫黄はカーボンフェルトなどに含浸された状態で正極室内に収容される。また、図示していないが、固体電解質管2と金属ナトリウム5との間には、固体電解質管の破損時に金属ナトリウムと硫黄が直接多量に反応しないようにする目的で、金属材料よりなる有底筒状の安全管が設けられている。 In a NaS battery, during discharge, sodium ions (Na + ) move through the solid electrolyte tube and reach the positive electrode side, and react with the sulfur of the positive electrode to generate sodium polysulfide (Na 2 S x ). Sometimes it works by the reverse reaction. FIG. 5 is a schematic cross-sectional view of a charged NaS battery, in which 1 is an outer peripheral container, 2 is a solid electrolyte (β-alumina) tube, 3 is a negative electrode lid, 4 is an electrode rod, and 5 is a negative electrode active material (metal). Sodium), 7 is a positive electrode active material (a mixture of sodium polysulfide and sulfur). Since sulfur as the positive electrode active material 7 does not have electronic conductivity, an electron conduction auxiliary material is necessary to efficiently transfer and receive electrons, and it has corrosion resistance against sodium polysulfide and good electronic conductivity. Carbon felt or the like is used as a material that does not hinder ion movement in the positive electrode, and sulfur is accommodated in the positive electrode chamber in a state of being impregnated with carbon felt or the like. Although not shown, a bottom made of a metal material is provided between the solid electrolyte tube 2 and the metal sodium 5 in order to prevent a large amount of metal sodium and sulfur from directly reacting when the solid electrolyte tube is broken. A cylindrical safety tube is provided.

NaS電池は、電力の大量貯蔵用電池として開発され、商用機器として実用化されているが、その使用寿命は約10〜15年と推定されるため、近い将来に多量の使用済みNaS電池が発生することが想定される。   The NaS battery has been developed as a battery for mass storage of electric power and has been put into practical use as a commercial device. However, since its service life is estimated to be about 10 to 15 years, a large amount of used NaS battery will be generated in the near future. It is assumed that

使用済みNaS電池の処理方法として、既に幾つかの方法が提案されている。特許文献1には、電極キャップを切断したうえ外周容器と固体電解質管を破壊し、切断部を下にした状態で乾燥砂を敷いた炉内に置き、過剰の空気存在下で700〜1000℃で焼却することで、ナトリウムと硫黄を反応させて硫酸ナトリウムに変え、焼却灰として処分する方法が開示されている。   Several methods have already been proposed for treating used NaS batteries. In Patent Document 1, the electrode cap is cut, the outer container and the solid electrolyte tube are destroyed, and the cut portion is placed in a furnace laid with dry sand, and 700 to 1000 ° C. in the presence of excess air. A method is disclosed in which sodium and sulfur are reacted to change to sodium sulfate and then disposed as incinerated ash.

特許文献1の方法は、その図1に示されているように、使用済みNaS電池は充電状態で処理されており固体電解質管の中には多量の金属ナトリウムが存在する状況となっている。したがって、この方法では、使用済みNaS電池内部で金属ナトリウムと硫黄が直接反応することで発生する反応熱を活用でき、燃焼効率を上げられるという利点はあるが、金属ナトリウムの酸化燃焼によって、焼却炉の炉壁材が損傷を受けるほか、硫黄の酸化燃焼によって大量の亜硫酸ガスが発生するという問題がある。そのため、一度に処理できる使用済みNaS電池の量に制約が生じ、短期間に大量に処理することができない。   In the method of Patent Document 1, as shown in FIG. 1, the used NaS battery is processed in a charged state, and a large amount of metallic sodium is present in the solid electrolyte tube. Therefore, in this method, there is an advantage that the reaction heat generated by the direct reaction between metallic sodium and sulfur inside the used NaS battery can be utilized and the combustion efficiency can be improved. In addition to damage to the furnace wall material, there is a problem that a large amount of sulfurous acid gas is generated by oxidation combustion of sulfur. Therefore, the amount of used NaS battery that can be processed at one time is limited, and a large amount cannot be processed in a short time.

また、特許文献2〜4には、NaS電池中に含まれる金属ナトリウムを回収して再利用する方法が開示されており、電極キャップ部を開口した使用済みNaS電池を、加熱された油を充填した加温槽の内部で倒立させ、開口部から金属ナトリウムを流し出して回収している。   Patent Documents 2 to 4 disclose a method of collecting and reusing metallic sodium contained in a NaS battery, and filling a used NaS battery with an open electrode cap part with heated oil. Inverted inside the heated tank, metal sodium is poured out from the opening and collected.

特許文献5には、特許文献2〜4と同様の方法で金属ナトリウムを回収した後、外周容器を剥ぎ取り、この外周容器を加熱炉内で加熱してアルミニウムを溶融させて分離し、外周容器を剥ぎ取った後の残部を加熱炉にて、不活性ガス雰囲気中で加熱して硫黄を蒸発させることにより、硫黄と多硫化ナトリウムを分離回収する方法が開示されている。   In Patent Document 5, after collecting metallic sodium by the same method as Patent Documents 2 to 4, the outer peripheral container is peeled off, and the outer peripheral container is heated in a heating furnace to melt and separate the aluminum. A method for separating and recovering sulfur and sodium polysulfide is disclosed by heating the remaining portion after stripping off in an inert gas atmosphere in a heating furnace to evaporate sulfur.

上記の特許文献2〜5の処理方法は、金属ナトリウムを回収するために、使用済みNaS電池中にできるだけ多くの金属ナトリウムを残した状態で処理する必要があり、使用済みNaS電池は充電状態で処理される。   In the treatment methods described in Patent Documents 2 to 5, in order to recover metallic sodium, it is necessary to perform treatment while leaving as much metallic sodium as possible in the used NaS battery, and the used NaS battery is in a charged state. It is processed.

しかしながら、金属ナトリウムは反応性の高い物質で、空気中の水分と反応して水素を発生し発火する危険があることから、特許文献2〜5の処理方法では、使用済みNaS電池を、金属ナトリウムが溶融する温度に加熱した油の中で処理するなど、空気との接触を避けながら操作する必要があり、処理作業上大きな制約を受ける。そのため、安全に大量の使用済みNaS電池を処理するには極めて非効率であるという問題がある。   However, since metallic sodium is a highly reactive substance, there is a danger of generating hydrogen by reacting with moisture in the air and igniting it. Therefore, in the treatment methods of Patent Documents 2 to 5, a used NaS battery is replaced with metallic sodium. It is necessary to operate while avoiding contact with air, such as processing in oil heated to a temperature at which it melts. Therefore, there is a problem that it is extremely inefficient to safely process a large amount of used NaS battery.

また、使用済みNaS電池中に含まれる金属ナトリウムや硫黄は、消防法で危険物に指定されており、一箇所で保管できる量に制限を受けるという管理上の制約もあるため、使用済みのNaS電池を一度に大量に処理できる効率的な処理方法が求められている。   In addition, metallic sodium and sulfur contained in used NaS batteries are designated as dangerous goods by the Fire Service Act, and there is a management restriction that limits the amount that can be stored in one place. There is a need for an efficient processing method that can process a large amount of batteries at once.

特開平6−060915号公報JP-A-6-060915 特開平6−196209号公報JP-A-6-196209 特開平9−289043号公報Japanese Patent Laid-Open No. 9-289043 特開平9−330744号公報JP-A-9-330744 特開平7−085898号公報JP 7-085898 A

本発明は、上記の問題点を解決し、処理装置に不具合を引き起こすことなく、しかも簡便な操作で効率的に一度に大量の使用済みNaS電池を廃棄処理することが可能な処理方法を提供することを課題とする。   The present invention provides a processing method that solves the above-described problems and can efficiently dispose of a large amount of used NaS batteries at a time without causing any trouble in the processing apparatus and with a simple operation. This is the issue.

上記課題を解決するため、本発明者等は鋭意検討し、使用済みのNaS電池を放電末状態にすることにより、簡易かつ安全に前処理できることを見出し本発明に到達した。   In order to solve the above-mentioned problems, the present inventors diligently studied and found that the used NaS battery can be pretreated easily and safely by putting it in a discharged state, and reached the present invention.

すなわち、本発明は、使用済みのナトリウム−硫黄電池を放電末状態にし、負極に残存する金属ナトリウムを減少させるとともに、正極を硫黄が存在しない多硫化ナトリウムNa(x=3〜5)からなる一相領域にした後、電池の高さ方向1/2以上で切断することを特徴とする使用済みナトリウム−硫黄電池の処理方法を提供する。これにより、電池内部に残存する金属Naや多硫化ナトリウム外気中の酸素と接しやすくなるため、燃焼効率を高めることが可能となる。 That is, according to the present invention, a used sodium-sulfur battery is put into a discharged state, metallic sodium remaining in the negative electrode is reduced, and the positive electrode is sodium polysulfide Na 2 S x (x = 3 to 5) in which no sulfur exists. A method for treating a used sodium-sulfur battery, characterized in that, after making into a one-phase region consisting of: Thereby, since it becomes easy to contact with metal Na remaining inside the battery or oxygen in the sodium polysulfide outside air, it becomes possible to increase the combustion efficiency.

また、本発明は、使用済みのナトリウム−硫黄電池を放電末状態にし、負極に残存する金属ナトリウムを減少させるとともに、正極を硫黄が存在しない多硫化ナトリウムNa(x=3〜5)からなる一相領域にした後、電池の高さ方向1/2より深くならないように制御しながら負極蓋より穴あけすることを特徴とする使用済みナトリウム−硫黄電池の処理方法を提供する。これにより、電池内部に残存する金属Naが酸素と接しやすくなるため、燃焼効率を高めることが可能となる。また多硫化ナトリウムを酸素と接しやすくするため、さらに、電池の外周容器に孔や切り込みを設けることが好ましく、前記の孔や切り込みを外周容器と固体電解質管の間の多硫化ナトリウムが存在しない空間部分に設けることがより好ましい。 In addition, the present invention puts a used sodium-sulfur battery into a discharged state, reduces metallic sodium remaining in the negative electrode, and makes the positive electrode sodium polysulfide Na 2 S x (x = 3 to 5) free of sulfur. A method for treating a used sodium-sulfur battery, characterized in that after forming into a one-phase region consisting of the above, a hole is drilled from the negative electrode lid while being controlled so as not to be deeper than 1/2 the height direction of the battery. As a result, the metal Na remaining inside the battery can easily come into contact with oxygen, so that the combustion efficiency can be increased. Further, in order to make sodium polysulfide easy to come into contact with oxygen, it is preferable to further provide a hole or notch in the outer peripheral container of the battery, and the hole or notch is a space where there is no sodium polysulfide between the outer peripheral container and the solid electrolyte tube. It is more preferable to provide the portion.

本発明によれば、使用済みNaS電池を放電末状態にすることにより、負極に残存する金属ナトリウムを充電状態の少なくとも1/2に減らせるので、高炉または焼却炉に投入するなどして廃棄処理する際の前処理を、簡便かつ安全に行うことができ、処理後の使用済みNaS電池を高炉または焼却炉に投入した場合は、外部エネルギーとの接触機会を増やすことができるので、廃電池の燃焼処理を効率的に行うことができる。   According to the present invention, by setting the used NaS battery to the end-of-discharge state, the metallic sodium remaining in the negative electrode can be reduced to at least half of the charged state, so that it is disposed of by putting it in a blast furnace or an incinerator. The pretreatment can be performed easily and safely, and when the used NaS battery after treatment is put into a blast furnace or incinerator, the chance of contact with external energy can be increased. A combustion process can be performed efficiently.

NaS電池の開路電圧と放電深度の関係を示す図である。It is a figure which shows the relationship between the open circuit voltage of a NaS battery, and the depth of discharge. 放電末状態にした使用済みNaS電池の断面を示す概略図である。It is the schematic which shows the cross section of the used NaS battery made into the end-of-discharge state. 放電末状態にした使用済みNaS電池の胴体部分で切断した状態を示す断面概略図である。It is the cross-sectional schematic which shows the state cut | disconnected by the trunk | drum part of the used NaS battery made into the end-of-discharge state. 放電末状態にした使用済みNaS電池の負極蓋より穴あけした状態を示す断面概略図である。It is the cross-sectional schematic which shows the state drilled from the negative electrode cover of the used NaS battery made into the end-of-discharge state. 充電末状態のNaS電池の断面を示す概略図である。It is the schematic which shows the cross section of the NaS battery of a charge end state.

図1に、NaS電池の開路電圧と放電深度の関係、ならびに、放電深度と正極および負極の活物質量(計算値)との関係を示す。NaS電池は、ナトリウムイオン(Na)が固体電解質管中を移動して正極に達し、多硫化ナトリウム(Na)を生成する反応が放電反応であり、その逆が充電反応である(式1参照)。放電の進行とともに、ナトリウムと硫黄が反応して多硫化ナトリウムが生成し、放電が進むにつれて、五硫化ナトリウム(Na)と硫黄が共存する二相領域から、五硫化ナトリウム(Na)の一相領域、さらに四硫化ナトリウム(Na)、三硫化ナトリウム(Na)の一相領域へと変化する。 FIG. 1 shows the relationship between the open circuit voltage of the NaS battery and the depth of discharge, and the relationship between the depth of discharge and the amount of active material (calculated values) of the positive electrode and the negative electrode. In the NaS battery, a reaction in which sodium ions (Na + ) move through the solid electrolyte tube and reach the positive electrode to generate sodium polysulfide (Na 2 S X ) is a discharge reaction, and the reverse is a charge reaction ( (See Formula 1). With the progress of discharge, and the sodium and sulfur react sodium polysulfide is generated, as the discharge progresses, the two phase region coexisting sulfur and pentasodium sulfide (Na 2 S 5), pentasodium sulfide (Na 2 S 5 ) to a single phase region, and further to a single phase region of sodium tetrasulfide (Na 2 S 4 ) and sodium trisulfide (Na 2 S 3 ).

(式1)

Figure 2011181448
(Formula 1)
Figure 2011181448

NaS電池において、放電深度の浅い領域(図1で示す放電深度約60%までの領域)では、正極に硫黄が存在しており、開路電圧はほぼ一定(2.075V)で推移するが、さらに放電深度が深くなり正極に硫黄が存在しなくなると開路電圧は低下し、正極の活物質は、放電深度に応じてNaからNaまでのNa(x=3〜5)のいずれかの組成からなる多硫化ナトリウムの一相領域に変化する。そして、開路電圧が放電終止電圧(図1の例では約1.82V)まで低下すると、もはや放電はできなくなり、放電深度100%となる。放電深度が深くなるにつれて、負極の金属ナトリウムは正極に移動し、減少する。
本発明では、正極が硫黄の存在しない多硫化ナトリウムNa(x=3〜5)からなる一相領域の状態を「放電末状態」という。
In the NaS battery, in the region where the discharge depth is shallow (the region where the discharge depth is up to about 60% shown in FIG. 1), sulfur is present in the positive electrode, and the open circuit voltage is almost constant (2.075 V). When the depth of discharge is no longer present sulfur deep becomes positive open circuit voltage decreases, the active material of the positive electrode, Na 2 S x (x = 3~ from Na 2 S 5 in accordance with the depth of discharge until Na 2 S 3 It changes to a single phase region of sodium polysulfide having the composition of 5). When the open circuit voltage decreases to the discharge end voltage (about 1.82 V in the example of FIG. 1), the discharge can no longer be performed and the depth of discharge becomes 100%. As the depth of discharge increases, the metallic sodium in the negative electrode moves to the positive electrode and decreases.
In the present invention, the state of the one-phase region in which the positive electrode is made of sodium polysulfide Na 2 S x (x = 3 to 5) free from sulfur is referred to as “end-of-discharge state”.

使用済みNaS電池を放電末状態にすると、負極の金属ナトリウムの量は、充電末状態(放電深度0%)の時の約1/2以下に減少し、放電深度100%の状態では、充電末状態(放電深度0%)の時の約1/5以下に減少する。したがって、予め放電末状態に調整しておけば、金属ナトリウムの量を充電末状態の少なくとも1/2以下に減らすことができる。   When the used NaS battery is put into the end-of-discharge state, the amount of metallic sodium in the negative electrode is reduced to about ½ or less of that in the end-of-charge state (discharge depth 0%). It decreases to about 1/5 or less of the state (discharge depth 0%). Therefore, if the discharge end state is adjusted in advance, the amount of metallic sodium can be reduced to at least ½ or less of the charge end state.

使用済みNaS電池を放電末状態にするには、NaS電池を開路電圧が2.075V以下に低下するまで運転する。あるいは放電深度60%以上まで放電する。放電量は、放電電気量Ah(放電電流×放電時間)もしくは放電電力量Wh(放電電力×放電時間)の計測値で知ることができるため、一般的には、放電時間を管理すれば電池容量のどれだけを放電したかを知ることができることから、放電量を測定することで放電深度を求めることができる。   In order to put the used NaS battery into a discharged state, the NaS battery is operated until the open circuit voltage drops to 2.075 V or less. Or it discharges to 60% or more of the depth of discharge. Since the discharge amount can be known from the measured value of the discharge electricity amount Ah (discharge current × discharge time) or the discharge power amount Wh (discharge power × discharge time), in general, the battery capacity can be determined by managing the discharge time. Since it is possible to know how much of the battery has been discharged, the depth of discharge can be obtained by measuring the discharge amount.

図2に、放電末状態にした使用済みNaS電池の断面概略図を示す。放電末状態では、活物質の殆どが固体電解質管2と外周容器1の間の正極部分に多硫化ナトリウム6として存在し、固体電解質管2の内側に存在する金属ナトリウム5は、図3の充電末状態と比べて、大幅に減少する。また、正極部分は多硫化ナトリウムからなり、硫黄は存在しない。   FIG. 2 shows a schematic cross-sectional view of a used NaS battery in a discharged state. In the final state of discharge, most of the active material is present as sodium polysulfide 6 in the positive electrode portion between the solid electrolyte tube 2 and the outer peripheral container 1, and the metallic sodium 5 existing inside the solid electrolyte tube 2 is charged as shown in FIG. Compared to the end state, it is greatly reduced. Further, the positive electrode portion is made of sodium polysulfide and there is no sulfur.

本発明においては、放電末状態にした使用済みNaS電池を、電池の高さ方向1/2以上の任意の高さで、横方向に切断する。図3には、放電末状態に調整した後、その胴体部分を切断した使用済みNaS電池の断面の概略を示す。この場合、NaS電池には、電池の外周容器1と固体電解質(β−アルミナ)管2の間に、多硫化ナトリウムが存在しない空間8が存在するので、この空間部分8で切断すると、より切断作業が容易である。切断した使用済みNaS電池は、電池内部が開放された状態となっているため、高炉または焼却炉などに投入して溶解もしくは焼却処理する際に、負極活物質の金属Naや正極活物質の多硫化ナトリウムが外気中の酸素と接しやすくなることで、電池の燃焼効率を上げることができる。   In the present invention, a used NaS battery in a discharged state is cut in the lateral direction at an arbitrary height of 1/2 or more in the height direction of the battery. FIG. 3 shows an outline of a cross section of a used NaS battery in which the body portion is cut after adjusting to the end of discharge state. In this case, in the NaS battery, there is a space 8 in which no sodium polysulfide exists between the outer peripheral container 1 of the battery and the solid electrolyte (β-alumina) tube 2. Work is easy. Since the cut used NaS battery is in a state in which the inside of the battery is opened, when it is put into a blast furnace or an incinerator or the like to be melted or incinerated, a large amount of metal Na or a positive electrode active material is used as the negative electrode active material. The sodium sulfide can easily come into contact with oxygen in the outside air, so that the combustion efficiency of the battery can be increased.

本発明においては、放電末状態にした使用済みNaS電池を、その負極蓋3の中央もしくは電極棒4の周辺に穴をあけ、電池の高さ方向1/2より深くならないように制御しながら負極蓋より穴あけすることも有効である。図4には、放電末状態に調整した後、その負極蓋より電極棒4の周辺に穴をあけ、切り取った負極蓋を電極棒4とともに取り出すことで、電池上部に開口を設けた使用済みNaS電池の断面の概略を示す。使用済みNaS電池を放電末状態にしておけば、負極活物質である金属ナトリウムの量は、充電状態の1/2以下に減少しているので、穴あけする際に電池の高さ方向(すなわち、電池の全長)の1/2より深くならないように制御しながら作業を行えば、どの箇所で穴あけしても、金属ナトリウムに接触することなく安全に作業を実施することができる。負極蓋に穴(孔)を開ける際には、先端が電池の全長の1/2より深い部分まで届かない構造の孔あけ器を用いることなどで、金属ナトリウムに接触することなく安全に作業することができる。   In the present invention, a used NaS battery in a discharged state is formed with a hole in the center of the negative electrode lid 3 or the periphery of the electrode rod 4, and controlled so as not to be deeper than 1/2 the height direction of the battery. It is also effective to make a hole from the lid. In FIG. 4, after adjusting to the end of the discharge state, a hole is formed in the periphery of the electrode rod 4 from the negative electrode lid, and the used negative electrode lid is taken out together with the electrode rod 4, so The outline of the section of a battery is shown. If the used NaS battery is in a discharged state, the amount of metallic sodium as the negative electrode active material is reduced to ½ or less of the charged state, so when drilling, the battery height direction (ie, If the work is performed while controlling so that it does not become deeper than 1/2 of the total length of the battery, the work can be performed safely without touching the metallic sodium, regardless of where the holes are made. When opening a hole (hole) in the negative electrode lid, use a punch with a structure where the tip does not reach deeper than half of the total length of the battery. be able to.

負極蓋に穴あけした使用済みNaS電池は、そのまま高炉または焼却炉などに投入して溶解もしくは焼却処理してもよいが、さらに、外周容器に孔や切込みを設け固体電解質(β−アルミナ)管2の内部を開放してから高炉または焼却炉に投入することが好ましく、これにより、正極の多硫化ナトリウムが外気中の酸素と接触しやすくなることで、電池の燃焼効率を上げることができる。この場合、空間8部分に孔あるいは切り込みを設ければ、作業時に活物質(金属ナトリウムおよび多硫化ナトリウム)と接触する恐れがないので、作業性もよく安全である。焼却炉などに投入した際に正極側の蒸気圧が高まって、炉内で電池が破裂して炉壁を傷める恐れもない。   The used NaS battery having a hole in the negative electrode lid may be put into a blast furnace or an incinerator as it is to be melted or incinerated. It is preferable that the inside of the battery is opened and then introduced into a blast furnace or an incinerator, whereby the sodium polysulfide of the positive electrode can easily come into contact with oxygen in the outside air, thereby increasing the combustion efficiency of the battery. In this case, if a hole or notch is provided in the space 8 portion, there is no fear of coming into contact with the active material (metal sodium and sodium polysulfide) at the time of work, so workability is good and safe. When put into an incinerator or the like, the vapor pressure on the positive electrode side increases, and there is no risk of the battery bursting and damaging the furnace wall in the furnace.

本発明の処理方法により処理した使用済みのNaS電池を廃棄処理する場合は、従来公知の方法で行えばよい。放電末状態に調整することにより金属ナトリウムの量が減少するため、金属ナトリウムが硫黄や多硫化ナトリウムと反応することで電池内部から発生する反応熱を焼却処理に活用することはできないが、電池を切断することにより、固体電解質管2の内部および外周容器との間の正極部分が開放された状態となるため、外部から加えた熱を効果的に供給することができ、処理速度を落とすことなく燃焼処理を行うことができる。また、放電末状態に調整した使用済みNaS電池の負極蓋3に穴をあけてから、高炉または焼却炉に投入した場合も、負極蓋に穴をあけ、さらに外周容器に孔や切り込みを設けることにより、同様の焼却効果を得ることができる。   When the used NaS battery treated by the treatment method of the present invention is disposed of, a conventionally known method may be used. Since the amount of metallic sodium is reduced by adjusting to the end of the discharge, the reaction heat generated from the inside of the battery due to the reaction of metallic sodium with sulfur or sodium polysulfide cannot be used for incineration, but the battery By cutting, the positive electrode portion between the inside of the solid electrolyte tube 2 and the outer peripheral container is opened, so that the heat applied from the outside can be effectively supplied without reducing the processing speed. A combustion process can be performed. Also, when a hole is made in the negative electrode lid 3 of a used NaS battery adjusted to the end of the discharge and then put into a blast furnace or incinerator, a hole is made in the negative electrode lid, and a hole or notch is provided in the outer peripheral container. Thus, the same incineration effect can be obtained.

本発明の処理方法により処理した使用済みのNaS電池の正極には多硫化ナトリウムが存在するが、これを回収した後に廃棄処理してもよく、回収することなく解体した電池部材をそのまま、高炉または焼却炉などに投入して廃棄処理してもよい。   Although sodium polysulfide is present in the positive electrode of a used NaS battery treated by the treatment method of the present invention, it may be discarded after being recovered, and the battery member disassembled without being recovered may be used as it is in the blast furnace or It may be thrown into an incinerator and disposed of.

以上のように、使用済みNaS電池を廃棄処理するに当たり、使用済みNaS電池を予め放電末状態にすることで、負極に残存する金属ナトリウムの量を充電末状態の少なくとも1/2以下に減らすことができるので、切断や穴あけ作業を安全に行うことができる。さらに、切断や穴あけ後の使用済みNaS電池は、高炉または焼却炉に投入するなどして廃棄処理することができるが、その際にも効率的に燃焼処理を行うことができ、また、残存する金属ナトリウムの量が少ないため炉壁の損傷を大幅に軽減することもできる   As described above, when disposing of the used NaS battery, the amount of metallic sodium remaining in the negative electrode is reduced to at least 1/2 or less of the charged state by previously placing the used NaS battery in the discharged state. Can be cut and drilled safely. Further, the used NaS battery after cutting or drilling can be disposed of by being put into a blast furnace or an incinerator, but the combustion process can also be efficiently performed at that time, and it remains. Because the amount of metallic sodium is small, damage to the furnace wall can be greatly reduced.

使用済みNaS電池を放電末状態に調整した後、電池の全長の1/2より上の部分で切断もしくは穴あけするという簡便な操作で、使用済みNaS電池を効率的に前処理することが可能となるため、今後廃棄処理量の増大が想定される使用済みNaS電池の処理方法として、極めて有効な方法である。   After adjusting the used NaS battery to the end-of-discharge state, it is possible to efficiently pre-process the used NaS battery by a simple operation of cutting or punching at a portion above 1/2 of the total length of the battery. Therefore, it is an extremely effective method as a method for treating a used NaS battery, which is expected to increase in the amount of disposal processing in the future.

1 外周容器
2 固体電解質(β−アルミナ)管
3 負極蓋
4 電極棒
5 金属ナトリウム
6 多硫化ナトリウム
7 多硫化ナトリウム+硫黄
8 空間
DESCRIPTION OF SYMBOLS 1 Outer container 2 Solid electrolyte ((beta) -alumina) tube 3 Negative electrode cover 4 Electrode rod 5 Metal sodium 6 Sodium polysulfide 7 Sodium polysulfide + sulfur 8 Space

Claims (4)

使用済みのナトリウム−硫黄電池を放電末状態にし、負極に残存する金属ナトリウムを減少させるとともに、正極を硫黄が存在しない多硫化ナトリウムNa(x=3〜5)からなる一相領域にした後、電池の高さ方向1/2以上で切断することを特徴とする使用済みナトリウム−硫黄電池の処理方法。 A used sodium-sulfur battery is put into a discharged state to reduce metallic sodium remaining in the negative electrode, and the positive electrode is made into a one-phase region composed of sodium polysulfide Na 2 S x (x = 3 to 5) containing no sulfur. After that, the used sodium-sulfur battery treatment method is characterized in that the battery is cut at 1/2 or more in the height direction of the battery. 使用済みのナトリウム−硫黄電池を放電末状態にし、負極に残存する金属ナトリウムを減少させるとともに、正極を硫黄が存在しない多硫化ナトリウムNa(x=3〜5)からなる一相領域にした後、電池の高さ方向1/2より深くならないように制御しながら負極蓋より穴あけすることを特徴とする使用済みナトリウム−硫黄電池の処理方法。 A used sodium-sulfur battery is put into a discharged state to reduce metallic sodium remaining in the negative electrode, and the positive electrode is made into a one-phase region composed of sodium polysulfide Na 2 S x (x = 3 to 5) containing no sulfur. And then processing the used sodium-sulfur battery, wherein the negative electrode lid is drilled while being controlled so as not to become deeper than 1/2 the height direction of the battery. さらに、外周容器に孔もしくは切込みを設ける請求項2に記載の使用済みナトリウム−硫黄電池の処理方法。   Furthermore, the processing method of the used sodium-sulfur battery of Claim 2 which provides a hole or a notch in an outer peripheral container. 外周容器と固体電解質管の間の多硫化ナトリウムが存在しない空間部分に孔または切り込みを設ける請求項3に記載の使用済みナトリウム−硫黄電池の処理方法。
4. The method for treating a used sodium-sulfur battery according to claim 3, wherein a hole or a notch is provided in a space where no sodium polysulfide exists between the outer peripheral container and the solid electrolyte tube.
JP2010046788A 2010-03-03 2010-03-03 Disposing method of sodium-sulfur battery Pending JP2011181448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046788A JP2011181448A (en) 2010-03-03 2010-03-03 Disposing method of sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046788A JP2011181448A (en) 2010-03-03 2010-03-03 Disposing method of sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JP2011181448A true JP2011181448A (en) 2011-09-15

Family

ID=44692738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046788A Pending JP2011181448A (en) 2010-03-03 2010-03-03 Disposing method of sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2011181448A (en)

Similar Documents

Publication Publication Date Title
Sonoc et al. Opportunities to improve recycling of automotive lithium ion batteries
WO2021201055A1 (en) Heat treatment method for battery-waste and lithium recovery method
WO2011079409A1 (en) Method of recycling and reusing spent lithium iron phosphate power battery
CA3075424C (en) Method for treating lithium ion battery waste
KR101368216B1 (en) Method for recovering valuable metals from Lithium Battery Waste
WO2022019172A1 (en) Method for recovering valuable metal
KR100358528B1 (en) recycling method of lithium ion secondary battery
JP2021091940A (en) Valuable metal recovery method from waste battery
US11851728B2 (en) Method for the treatment of accumulators, batteries and the like
JP7306277B2 (en) Valuable metal recovery method from waste batteries
JP2011181448A (en) Disposing method of sodium-sulfur battery
JP2021015795A (en) Stabilization processing method of used lithium ion battery
JP2011181446A (en) Disposing method of sodium-sulfur battery
JP2011181447A (en) Disposing method of sodium-sulfur battery
WO2016199840A1 (en) Carbonaceous material for electronic materials
JP2021180184A (en) Processing method for lithium ion battery scrap
JP5533319B2 (en) NaS battery processing equipment and NaS battery pre-processing apparatus
JP5446990B2 (en) NaS battery processing method
CN105811039B (en) A kind of sodium-sulphur battery recovery method
JP7234485B2 (en) How to recycle lithium ion batteries
WO2024070500A1 (en) Valuable metal production method
WO2023026854A1 (en) Electric furnace and method for producing valuable metal
KR20240068591A (en) Method for recovering lithium
KR20230122645A (en) Disposal method of waste lithium ion battery
JP2024098840A (en) How to dispose of secondary batteries