JP2011180472A - 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板 - Google Patents

感光性樹脂組成物フィルムおよびそれを用いた多層配線基板 Download PDF

Info

Publication number
JP2011180472A
JP2011180472A JP2010046154A JP2010046154A JP2011180472A JP 2011180472 A JP2011180472 A JP 2011180472A JP 2010046154 A JP2010046154 A JP 2010046154A JP 2010046154 A JP2010046154 A JP 2010046154A JP 2011180472 A JP2011180472 A JP 2011180472A
Authority
JP
Japan
Prior art keywords
resin composition
film
photosensitive resin
group
composition film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010046154A
Other languages
English (en)
Inventor
Kazuyuki Matsumura
和行 松村
Kenichi Kasumi
健一 霞
Toshinaka Nonaka
敏央 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010046154A priority Critical patent/JP2011180472A/ja
Publication of JP2011180472A publication Critical patent/JP2011180472A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

【課題】厚膜であっても、高解像度で、順テーパーまたは矩形状のパターンを形成し、優れた耐熱性を有する膜を形成することができる感光性樹脂組成物フィルムを提供すること。
【解決手段】(a)アルカリ可溶性ポリイミド、(b)不飽和結合含有重合性化合物、(c)平均粒子径が20nm以上1μm以下である無機粒子および(d)光重合開始剤を含有する感光性樹脂組成物フィルム。
【選択図】なし

Description

本発明は、感光性樹脂組成物フィルムに関する。さらに詳しくは、パターン加工後も絶縁材料として用いる永久レジストを形成するのに適した感光性樹脂組成物フィルムに関する。
ポリイミドは、電気特性および機械特性に優れ、かつ、300℃以上の高耐熱性を有することから、半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜としての用途に有用であるとされている。更に近年、上記のような絶縁膜を形成する際、工程の削減のために、感光性を付与した感光性ポリイミド材料の使用が多くなってきている。感光性ポリイミド材料は一般に、液状の材料とフィルム状のものがある。フィルム状の材料は液状のものと比較し、厚膜作製が可能であることや、生産効率が高いといった利点を備えており、感光性ポリイミドフィルムの実用化が期待されている。
これまでに、感光性ポリイミドフィルムは提案されており、例えば、ポリイミド前駆体からポリイミドへの閉環反応に伴う膜の硬化収縮のない既閉環ポリイミドを含有し、厚膜で高解像度のパターンと優れた耐熱性を有する膜を形成することが可能なポリイミド含有感光性樹脂組成物フィルム(例えば特許文献1参照)がある。
ポリイミド含有感光性樹脂組成物を層間絶縁膜として使用する場合、作成プロセスは、パターン形成後、配線等を形成する。その際、パターン形状が逆テーパー形状であると、導体となる金属の埋まり込みが不十分で導通不良となることがある。そこで、ポリイミド含有感光性樹脂組成物には順テーパーまたは矩形状のパターンを形成することが重要となる。
特開2008−281597号公報
しかしながら、上記のような材料を用いてパターン加工をした際、パターン加工マージンが狭く、順テーパーまたは矩形状のパターンを得ることは難しかった。
かかる状況に鑑み、本発明は厚膜であっても、高解像度で、順テーパーまたは矩形状のパターンを形成し、優れた耐熱性を有する膜を形成することができる感光性樹脂組成物フィルムを提供することを目的とする。
すなわち本発明は、(a)アルカリ可溶性ポリイミド、(b)不飽和結合含有重合性化合物、(c)平均粒子径が20nm以上1μm以下である無機粒子および(d)光重合開始剤を含有する感光性樹脂組成物フィルムである。
本発明によれば、厚膜であっても、高解像度で、順テーパーまたは矩形状のパターンを形成し、熱硬化後に優れた耐熱性を有する膜を形成することができる感光性樹脂組成物フィルムを得ることができる。本発明の感光性樹脂組成物フィルムは、半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜などの永久レジストに好適に用いることができる。更には、パターン形成後の基板、ガラス、半導体素子等と被着体とを熱圧着することで接着剤用途に好適に用いることができる。
本発明の感光性樹脂組成物を用いた多層配線基板の製造方法の一例を示す。
本発明の感光性樹脂組成物フィルムは、(a)アルカリ可溶性ポリイミド、(b)不飽和結合含有重合性化合物、(c)平均粒子径が20nm以上1μm以下である無機粒子および(d)光重合開始剤を含有する感光性樹脂組成物フィルムである。
この感光性樹脂組成物フィルムは、露光前はアルカリ現像液に容易に溶解するが、露光後はアルカリ現像液に不溶になるネガ型のパターンを形成することができる。また、この感光性樹脂組成物フィルムは、既に閉環したポリイミドを含有するため、ポリイミド前駆体を含有する樹脂組成物と比較して、加熱あるいは適当な触媒により、ポリイミド前駆体を閉環反応によりポリイミドに転換する必要がない。それ故、この感光性樹脂組成物フィルムは、高温処理が不要であり、かつ、イミド閉環反応による硬化収縮起因のストレスが小さいので、ポリイミド前駆体を含有する樹脂組成物よりも容易に厚膜を形成することができる。さらに、本発明に用いられるポリイミドは、末端を封止することによりポリマーの繰り返し単位数が小さいものであり、繰り返し単位数が大きいものと比べ、微細パターンの加工性が良好となる。
(a)成分のアルカリ可溶性ポリイミドは、主鎖末端に、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる少なくとも一つの基を有する。このポリイミドは、主鎖末端にこれらアルカリ可溶性基が存在するため、アルカリ可溶性を有する。ここで言うアルカリ可溶性とは、2.38%テトラメチルアンモニウム水溶液への溶解度が、0.1g/100mL以上となることである。上記アルカリ可溶性基の中でも、半導体業界で用いられるアルカリ現像液に対する実用性を考慮すると、フェノール性水酸基またはチオール基を有するものが好ましい。主鎖末端へのアルカリ可溶性基の導入は、末端封止剤にアルカリ可溶性基を持たせることにより行うことができる。このようなポリイミドとしては、特に限定されるものではないが、下記一般式(1)または(2)のいずれかで表される一種以上のポリイミドを含有することが好ましい。
Figure 2011180472
式中、Xはカルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する1価の有機基を表し、Yはカルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する2価の有機基を表す。XおよびYは、中でも、フェノール性水酸基またはチオール基を有することが好ましい。
また、Rは4〜14価の有機基を表し、Rは2〜12価の有機基を表し、RおよびRは、それぞれ独立にカルボキシル基、フェノール性水酸基、スルホン酸基、およびチオール基からなる群より選ばれる少なくとも一つの基を表す。また、αおよびβはそれぞれ独立に0〜10の整数を表す。
nはポリマーの構造単位の繰り返し数を示している。nは3〜200の範囲であり、好ましくは5〜100である。nが3〜200の範囲であれば、感光性樹脂組成物フィルムの厚膜での使用が可能になり、かつアルカリ現像液に対する十分な溶解性を付与し、パターン加工を行うことができる。
上記一般式(1)および(2)において、Rはテトラカルボン酸二無水物由来の構造成分を表す。なかでも芳香族基または環状脂肪族基を含有する炭素原子数5〜40の有機基であることが好ましい。
テトラカルボン酸二無水物としては具体的には、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物などの脂肪族のテトラカルボン酸二無水物、および下記に示した構造の酸二無水物などを挙げることができる。これらは単独でまたは2種以上を組み合わせて使用される。
Figure 2011180472
ここで、Rは酸素原子、C(CF、C(CHおよびSOより選ばれる基を、RおよびRは、それぞれ、水酸基およびチオール基より選ばれる基を表す。
上記一般式(1)および(2)において、Rはジアミン由来の構造成分を表しており、2〜12価の有機基である。なかでも芳香族基または環状脂肪族基を含有する炭素原子数5〜40の有機基であることが好ましい。
ジアミンの具体的な例としては、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルヒド、4,4’−ジアミノジフェニルスルヒド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、ベンジジン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(3−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジエチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジエチル−4,4’−ジアミノビフェニル、2,2’,3,3’−テトラメチル−4,4’−ジアミノビフェニル、3,3’,4,4’−テトラメチル−4,4’−ジアミノビフェニル、2,2’−ジ(トリフルオロメチル)−4,4’−ジアミノビフェニル、9,9−ビス(4−アミノフェニル)フルオレンあるいはこれらの芳香族環にアルキル基やハロゲン原子で置換した化合物や、脂肪族のシクロヘキシルジアミン、メチレンビスシクロヘキシルアミンおよび下記に示した構造のジアミンなどが挙げられる。これらは単独でまたは2種以上を組み合わせて使用される。
Figure 2011180472
ここで、Rは酸素原子、C(CF、C(CHおよびSOより選ばれる基を、R〜Rはそれぞれ、水酸基およびチオール基より選ばれる基を表す。
これらのうち、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルヒド、4,4’−ジアミノジフェニルスルヒド、m−フェニレンジアミン、p−フェニレンジアミン、1,4−ビス(4−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレンおよび下記に示した構造のジアミンなどが好ましい。
Figure 2011180472
ここで、Rは酸素原子、C(CF、C(CHおよびSOより選ばれる基を、R〜Rはそれぞれ、水酸基およびチオール基より選ばれる基を表す。
一般式(1)および(2)において、RおよびRは、それぞれ独立にカルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる少なくとも一つの基を表している。このRおよびRのアルカリ可溶性基の量を調整することで、ポリイミドのアルカリ水溶液に対する溶解速度が変化するので、適度な溶解速度を有したネガ型感光性樹脂組成物フィルムを得ることができる。
さらに、基板との接着性を向上させるために、耐熱性を低下させない範囲でRにシロキサン構造を有する脂肪族の基を共重合してもよい。具体的には、ジアミン成分として、ビス(3−アミノプロピル)テトラメチルジシロキサン、ビス(p−アミノ−フェニル)オクタメチルペンタシロキサンなどを1〜10モル%共重合したものなどがあげられる。
一般式(1)において、Xは末端封止剤である1級モノアミンに由来する。末端封止剤として用いられる1級モノアミンとしては、5−アミノ−8−ヒドロキシキノリン、1−ヒドロキシ−7−アミノナフタレン、1−ヒドロキシ−6−アミノナフタレン、1−ヒドロキシ−5−アミノナフタレン、1−ヒドロキシ−4−アミノナフタレン、2−ヒドロキシ−7−アミノナフタレン、2−ヒドロキシ−6−アミノナフタレン、2−ヒドロキシ−5−アミノナフタレン、1−カルボキシ−7−アミノナフタレン、1−カルボキシ−6−アミノナフタレン、1−カルボキシ−5−アミノナフタレン、2−カルボキシ−7−アミノナフタレン、2−カルボキシ−6−アミノナフタレン、2−カルボキシ−5−アミノナフタレン、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、4−アミノサリチル酸、5−アミノサリチル酸、6−アミノサリチル酸、2−アミノベンゼンスルホン酸、3−アミノベンゼンスルホン酸、4−アミノベンゼンスルホン酸、3−アミノ−4,6−ジヒドロキシピリミジン、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、2−アミノチオフェノール、3−アミノチオフェノール、4−アミノチオフェノールなどが好ましい。これらは単独でまたは2種以上を組み合わせて使用される。
また、一般式(2)において、Yは末端封止剤であるジカルボン酸無水物に由来する。末端封止剤として用いられる酸無水物としては、4−カルボキシフタル酸無水物、3−ヒドロキシフタル酸無水物、シス−アコニット酸無水物などが好ましい。これらは単独でまたは2種以上を組み合わせて使用される。
本発明に用いられる(a)成分のポリイミドは、一般式(1)または(2)で表される構造単位のみからなるものであっても良いし、他の構造単位との共重合体あるいは混合体であっても良い。その際、一般式(1)または(2)で表される構造単位をポリイミド全体の30重量%以上含有していることが好ましい。さらに、好ましくは60重量%以上である。30重量%以上であれば、熱硬化時の収縮を抑えることができ、厚膜作製に好適である。共重合あるいは混合に用いられる構造単位の種類および量は、最終加熱処理によって得られるポリイミドの耐熱性を損なわない範囲で選択することが好ましい。
(a)成分のポリイミドは、ジアミンの一部を末端封止剤であるモノアミンに置き換えて、または、テトラカルボン酸二無水物を、末端封止剤であるジカルボン酸無水物に置き換えて、公知の方法を利用して合成することができる。例えば、低温中でテトラカルボン酸二無水物とジアミン化合物とモノアミンを反応させる方法、低温中でテトラカルボン酸二無水物とジカルボン酸無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミンとモノアミンと縮合剤の存在下で反応させる方法などの方法を利用して、ポリイミド前駆体を得る。その後、得られたポリイミド前駆体を、公知のイミド化反応法を用いて完全イミド化させる方法を利用してポリイミドを合成することができる。
また、(a)成分のポリイミドのイミド化率は、例えば、以下の方法で容易に求めることができる。ここで、イミド化率とは、前記のようにポリイミド前駆体を経てポリイミドを合成するにあたって、ポリイミド前駆体のうち、何モル%がポリイミドに転換しているかを意味する。まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm−1付近、1377cm−1付近)の存在を確認する。次に、そのポリマーについて、350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、熱処理前と熱処理後の1377cm−1付近のピーク強度を比較する。熱処理後のポリマーのイミド化率を100%として、熱処理前のポリマーのイミド化率を求める。ポリマーのイミド化率は90%以上であることが好ましい。
(a)成分のポリイミドに導入された末端封止剤は、以下の方法で検出できる。例えば、末端封止剤が導入されたポリイミドを、酸性溶液に溶解して、ポリイミドの構成単位であるアミン成分とカルボン酸無水物成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定する。これとは別に、末端封止剤が導入されたポリイミドを直接、熱分解ガスクロクロマトグラフ(PGC)や赤外スペクトルおよび13CNMRスペクトルを用いて測定しても、検出可能である。
本発明の感光性樹脂組成物フィルムは、(b)不飽和結合含有重合性化合物を含有する。重合性化合物としては例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基等の不飽和二重結合官能基および/またはプロパギル基等の不飽和三重結合官能基が挙げられ、これらの中でも共役型のビニル基やアクリロイル基、メタクリロイル基が重合性の面で好ましい。また、重合反応による架橋点が多いとパターンにクラックが生じる点から、その官能基が含有される数としては、1〜6であることが好ましく、それぞれは同一の基でなくとも構わない。
(b)不飽和結合含有重合性化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、スチレン、α−メチルスチレン、1,2−ジヒドロナフタレン、1,3−ジイソプロペニルベンゼン、3−メチルスチレン、4−メチルスチレン、2−ビニルナフタレン、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、1,3−ブタンジオールジアクリレート、1,3−ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレート、1,1 0−デカンジオールジメタクリレート、ジメチロール−トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、1,3−ジアクリロイルオキシ−2−ヒドロキシプロパン、1,3−ジメタクリロイルオキシ−2−ヒドロキシプロパン、メチレンビスアクリルアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド、 2,2,6,6−テトラメチルピペリジニルメタクリレート、2,2,6,6−テトラメチルピペリジニルアクリレート、N−メチル−2,2,6,6−テトラメチルピペリジニルメタクリレート、N−メチル−2,2,6,6−テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールA ジアクリレート、エチレンオキシド変性ビスフェノールA ジメタクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジメタクリレート、N−ビニルピロリドン、N−ビニルカプロラクタム等が挙げられる。これらは単独でまたは2種類以上を組み合わせて使用される。
これらのうち、特に好ましくは、1,9−ノナンジオールジメタクリレート、1,1 0−デカンジオールジメタクリレート、ジメチロール−トリシクロデカンジアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、メチレンビスアクリルアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド、2,2,6,6−テトラメチルピペリジニルメタクリレート、2,2,6,6−テトラメチルピペリジニルアクリレート、N−メチル−2,2,6,6−テトラメチルピペリジニルメタクリレート、N−メチル−2,2,6,6−テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールA ジアクリレート、エチレンオキシド変性ビスフェノールA ジメタクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジメタクリレート、N−ビニルピロリドン、N−ビニルカプロラクタム等が挙げられる。
本発明の感光性樹脂組成物フィルムにおける(b)不飽和結合含有重合性化合物の含有量は、(a)のポリイミド100重量部に対して、現像後に十分な残膜が得られる点から、40重量部以上が好ましく、さらに好ましくは50重量部以上である。一方、硬化膜の耐熱性が向上する点から、この含有量は、150重量部以下が好ましく、さらに好ましくは100重量部以下である。
本発明の感光性樹脂組成物フィルムは、(c)平均粒子径が20nm以上1μm以下である無機粒子を含有する。(c)平均粒子径が20nm以上1μm以下である無機粒子を含有することによって、順テーパーまたは矩形状のパターンを形成することができる。また、感光性樹脂組成物フィルムとした時のタック性を抑制する効果がある。さらには、硬化膜の耐薬品性、耐熱性、耐湿性、機械的な強度などの特製を向上する効果がある。
感光性樹脂組成物中の無機粒子は、凝集が完全にほぐれた1次粒子の状態にあるものと、複数個の1次粒子が凝集した状態にあるものが存在する。ここで、無機粒子の粒子径とは、凝集していない1次粒子はその粒子の粒子径であり、1次粒子が凝集したものはその凝集体の粒子径である。感光性樹脂組成物中の無機粒子の平均粒子径を測定する方法としては、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)により直接粒子を観察し、粒子径の平均を計算する方法が挙げられる。(c)無機粒子の平均粒子径が20nm以上であると、粒子の体積に対する比表面積が小さくなるため、粒子の分散性が向上し、さらには、塗布後の表面の凹凸や、ピンホールを抑制し、感光性樹脂組成物フィルムを作製する際の塗布性を向上することができる。一方、平均粒子径が1μm以下であると、感光性樹脂組成物溶液での無機粒子の沈降が抑制され、さらには、塗布後の表面の凹凸や、ピンホールを抑制し、感光性樹脂組成物フィルムを作製する際の塗布性を向上することができる。また、硬化膜の耐薬品性が向上する点から、より好ましくは0.5μm以下であり、さらに好ましくは0.1μm以下である。
本発明に用いられる(c)無機粒子としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物等を挙げることができる。これらの無機粒子は複数種含有してもよいが、信頼性、コストの点から、シリカ、酸化チタンが好ましい。これら無機粒子は分散性、沈降性を改善するために、シランカップリング剤等で表面処理が施されたものがさらに好ましい。シランカップリング剤としては、感光性樹脂組成物フィルムの樹脂成分との相溶性が良いものであれば良く、好ましくは、ビニル系、メタクリル系、アクリル系、エポキシ系またはアミノ系シランカップリング剤であり、感光性樹脂組成物フィルムを加熱硬化した際に、樹脂と無機粒子が共有結合する点から、ビニル系、メタクリル系、アクリル系またはエポキシ系がさらに好ましい。
本発明の感光性樹脂組成物フィルムにおける(c)無機粒子の含有量は、目的とする耐薬品性、耐熱性、耐湿性、機械的な強度、熱線膨張率に応じ決定することができる。(c)無機粒子の含有量は、パターンがより順テーパー状となる点から、(a)〜(d)および必要に応じて混合した成分の全量(ただし溶剤を除く)に対し、5重量%以上であることが好ましい。一方、微細なパターンを形成する点から、(c)無機粒子の含有量は50重量%以下が好ましく、より好ましくは30重量%以下である。
本発明の感光性樹脂組成物フィルムは(d)光重合開始剤を含有する。(d)光重合開始剤としては、例えば、ベンゾフェノン、ミヒラーズケトン、4,4,−ビス(ジエチルアミノ)ベンゾフェノン、3,3,4,4,−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン類、3,5−ビス(ジエチルアミノベンジリデン)−N−メチル−4−ピペリドン、3,5−ビス(ジエチルアミノベンジリデン)−N−エチル−4−ピペリドンなどのベンジリデン類、7−ジエチルアミノ−3−ノニルクマリン、4,6−ジメチル−3−エチルアミノクマリン、3,3−カルボニルビス(7−ジエチルアミノクマリン)、7−ジエチルアミノ−3−(1−メチルメチルベンゾイミダゾリル)クマリン、3−(2−ベンゾチアゾリル)−7−ジエチルアミノクマリンなどのクマリン類、2−t−ブチルアントラキノン、2−エチルアントラキノン、1,2−ベンズアントラキノンなどのアントラキノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾイン類、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、2−イソプロピルチオキサントンなどのチオキサントン類、エチレングリコールジ(3−メルカプトプロピオネート)、2−メルカプトベンズチアゾール、2−メルカプトベンゾキサゾール、2−メルカプトベンズイミダゾールなどのメルカプト類、N−フェニルグリシン、N−メチル−N−フェニルグリシン、N−エチル−N−(p−クロロフェニル)グリシン、N−(4−シアノフェニル)グリシンなどのグリシン類、1−フェニル−1,2−ブタンジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−1,2−プロパンジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−1,2−プロパンジオン−2−(o−ベンゾイル)オキシム、ビス(α−イソニトロソプロピオフェノンオキシム)イソフタル、1,2−オクタンジオン−1−[4−(フェニルチオ)フェニル]−2−(o−ベンゾイルオキシム)などのオキシム類、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、2−メチル−1[4−(メチルチオ)フェニル]−2−モリフォリノプロパン−1−オンなどのα-アミノアルキルフェノン類、2,2´−ビス(o−クロロフェニル)−4,4´,5,5´−テトラフェニルビイミダゾールなどが挙げられる。
これらの中で、上記のベンゾフェノン類、グリシン類、メルカプト類、オキシム類、α-アミノアルキルフェノン類および2,2´−ビス(o−クロロフェニル)−4,4´,5,5´−テトラフェニルビイミダゾールから選択される化合物の組み合わせが光反応の点から好適である。これらの光重合開始剤は、単独でまたは二種類以上を組み合わせて使用される。オキシム類がより好ましく、特に好ましくは、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−1,2−プロパンジオン−2−(o−ベンゾイル)オキシム、ビス(α−イソニトロソプロピオフェノンオキシム)イソフタル、OXE01、OXE02(商品名、チバスペシャリティケミカルズ社製)、N−1919およびNCI−831(商品名、(株)ADEKA製)から選ばれた化合物である。
(d)光重合開始剤の好ましい含有量は、(a)のポリイミド100重量部に対して0.1〜40重量部である。光重合開始剤を二種類以上組み合わせて用いる場合は、その総量がこの範囲である。(d)光重合開始剤の含有量が0.1重量部以上であると、露光時の重合性化合物の重合反応が十分進行する。また、40重量部以下であると、厚膜でも十分な光線透過率を保つことができ、パターン形成が可能である。また、この含有量の最も好ましい量は、選択する光重合開始剤の種類によって、適宜選択される。
本発明の感光性樹脂組成物フィルムは、さらに(e)熱架橋性化合物を含有することが好ましい。(e)熱架橋性化合物を含有することで、熱処理時に熱架橋反応が起きるため、硬化膜の耐熱性が向上する。(e)熱架橋性化合物の例としては、下記に示した構造で表される熱架橋性基を有する化合物、およびベンゾオキサジン化合物があげられる。
Figure 2011180472
式中、R10は水素原子、炭素数1〜20のアルキル基、炭素数4〜20の脂環式炭化水素基またはR11CO基を表す。また、R11は炭素数1〜20のアルキル基を表す。
熱架橋性基を有する化合物としては、熱架橋性基を少なくとも2つ含有するものが好ましい。特に好ましくは、熱架橋性基を2つ有するものとして、46DMOC、46DMOEP(商品名、旭有機材工業(株)製)、DML−MBPC、DML−MBOC、DML−OCHP、DML−PC、DML−PCHP、DML−PTBP、DML−34X、DML−EP、DML−POP、ジメチロール−BisOC−P、DML−PFP、DML−PSBP、DML−MTrisPC、DMOM−PTBP(商品名、本州化学工業(株)製)、“ニカラック”(登録商標)MX−290(商品名、(株)三和ケミカル製)、B−a型ベンゾオキサジン、B−m型ベンゾオキサジン(商品名、四国化成工業(株)製)、2,6−ジメトキシメチル−4−t−ブチルフェノール、2,6−ジメトキシメチル−p−クレゾール、2,6−ジアセトキシメチル−p−クレゾールなど、3つ有するものとしてTriML−P、TriML−35XL(商品名、本州化学工業(株)製)など、4つ有するものとしてTM−BIP−A(商品名、旭有機材工業(株)製)、TML−BP、TML−HQ、TML−pp−BPF、TML−BPA、TMOM−BP(商品名、本州化学工業(株)製)、ニカラックMX−280、ニカラックMX−270(商品名、(株)三和ケミカル製)など、6つ有するものとしてHML−TPPHBA、HML−TPHAP、HMOM−TPPHBA、HMOM−TPHAP(商品名、本州化学工業(株)製)などが挙げられる。
下記に本発明で使用するのに特に好ましい代表的な熱架橋性化合物の構造を示した。
Figure 2011180472
Figure 2011180472
このような熱架橋性化合物の含有量としては、硬化膜の耐熱性が向上する点から、(a)成分のポリイミド100重量部に対して、好ましくは1重量部以上であり、さらに好ましくは5重量部以上である。また、現像後の残膜率の点から、この含有量は、70重量部以下が好ましく、さらに好ましくは50重量部以下である。
また、本発明の感光性樹脂組成物フィルムは着色剤をさらに含有することもできる。着色剤を含有することで、有機電界発光素子の絶縁層に用いた場合は、発光エリアからの迷光を防止する作用があり、回路基板用のソルダーレジストに用いた場合は、基板上の回路配線を隠す目隠しの作用がある。本発明に用いられる着色剤としては、染料、熱発色性染料、無機顔料、有機顔料などがあげられる。また、着色剤としては、前記(a)成分を溶解する有機溶剤に可溶で、かつ、(a)成分と相溶するものが好ましい。
さらに、必要に応じて、感光性樹脂組成物フィルムと基板との密着性を向上させる目的で界面活性剤を含有しても良い。
また、シリコンウェハーなどの下地基板との接着性を高めるために、シランカップリング剤、チタンキレート剤などを感光性樹脂組成物フィルムに添加することもできる。
さらに、本発明の感光性樹脂組成物フィルムは必要に応じて、架橋剤、架橋促進剤、増感剤、溶解調整剤、安定剤、消泡剤などの添加剤を含有することもできる。
次に、本発明の感光性樹脂組成物フィルムを作製する方法について説明する。本発明の感光性樹脂組成物フィルムは感光性樹脂組成物溶液(ワニス)を支持体上に塗布し、次いでこれを必要により乾燥することにより得られる。
感光性樹脂組成物ワニスは、感光性樹脂組成物に有機溶剤を添加することで得られる。ここで使用される有機溶剤としては、感光性樹脂組成物を溶解するものであればよい。
有機溶剤としては、具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエール、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテルなどのエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類、アセトン、メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2−ヘプタノンなどのケトン類、ブチルアルコール、イソブチルアルコール、ペンタノ−ル、4−メチル−2−ペンタノール、3−メチル−2−ブタノール、3−メチル−3−メトキシブタノール、ジアセトンアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、その他、N−メチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトンなどが挙げられる。
また、感光性樹脂組成物ワニスを濾紙やフィルターを用いて濾過しても良い。濾過方法は特に限定されないが、保留粒子径0.4μm〜10μmのフィルターを用いて加圧濾過により濾過する方法が好ましい。
本発明の感光性樹脂組成フィルムは支持体上に形成される。その際用いられる支持体は特に限定されないが、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。支持体と感光性樹脂組成物フィルムとの接合面には、密着性と剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理を施してもよい。また、支持体の厚みは特に限定されないが、作業性の観点から、10〜100μmの範囲であることが好ましい。
また、本発明の感光性樹脂組成物フィルムは、感光性樹脂組成物フィルムを保護するために、膜上に保護フィルムを有してもよい。これにより、大気中のゴミやチリ等の汚染物質から感光性樹脂組成物フィルム表面を保護することができる。
保護フィルムとしては、ポリエチレンフィルム、ポリプロピレン(PP)フィルム、ポリエステルフィルム、ポリビニルアルコールフィルム等が挙げられる。保護フィルムは、感光性樹脂組成物フィルムと保護フィルムが容易に剥離しない程度となるものが好ましい。
感光性樹脂組成物ワニスを支持体に塗布する方法としては、スピンナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、0.5μm以上100μm以下であることが好ましい。
乾燥には、オーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、感光性樹脂組成物フィルムが未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、40℃から120℃の範囲で1分から数十分行うことが好ましい。また、これらの温度を組み合わせて段階的に昇温してもよく、例えば、50℃、60℃、70℃で各1分ずつ熱処理してもよい。
次に、本発明の感光性樹脂組成物フィルムをパターン加工し、永久レジストを形成する方法について、例を挙げて説明する。
まず、本発明の感光性樹脂組成物フィルムを用いて、基板上に感光性樹脂組成物被膜を形成する方法について説明する。感光性樹脂組成物フィルムは、保護フィルムを有する場合にはこれを剥離し、感光性樹脂組成物フィルムと基板が対向するように、熱圧着により貼り合わせる。熱圧着は、熱プレス処理、熱ラミネート処理、熱真空ラミネート処理等によって行うことができる。熱圧着温度は、基板への密着性、埋め込み性の点から40℃以上が好ましい。また、熱圧着時に感光性フィルムが硬化し、露光・現像工程におけるパターン形成の解像度が悪くなることを防ぐために、熱圧着温度は150℃以下が好ましい。
基板としては、例えば、シリコンウェハー、セラミックス類、ガリウムヒ素、有機系回路基板、無機系回路基板、およびこれらの基板に回路の構成材料が配置されたものが挙げられるが、これらに限定されない。有機系回路基板の例としては、ガラス布・エポキシ銅張積層板などのガラス基材銅張積層板、ガラス不織布・エポキシ銅張積層板などのコンポジット銅張積層板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板などの耐熱・熱可塑性基板、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板などのフレキシブル基板が挙げられる。また、無機系回路基板の例は、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板などのセラミック基板、アルミニウムベース基板、鉄ベース基板などの金属系基板が挙げられる。回路の構成材料の例は、銀、金、銅などの金属を含有する導体、無機系酸化物などを含有する抵抗体、ガラス系材料および/または樹脂などを含有する低誘電体、樹脂や高誘電率無機粒子などを含有する高誘電体、ガラス系材料などを含有する絶縁体などが挙げられる。
次に、上記方法によって形成された感光性樹脂組成物被膜上に、所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いるのが好ましい。感光性樹脂組成物フィルムにおいて、支持体がこれらの光線に対して透明な材質である場合は、感光性樹脂組成物フィルムから支持体を剥離せずに露光を行ってもよい。
パターンを形成するには、露光後、現像液を用いて未露光部を除去する。現像液としては、テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを含有してもよい。
現像は上記の現像液を被膜面にスプレーする、現像液中に浸漬する、あるいは浸漬しながら超音波をかける、基板を回転させながら現像液をスプレーするなどの方法によって行うことができる。現像時間や現像ステップ現像液の温度といった、現像時の条件は、未露光部が除去される条件であればよく、微細なパターンを加工するためや、パターン間の残渣を除去するために、未露光部が除去されてからもさらに現像を行うことが好ましい。
現像後は水にてリンス処理をしてもよい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしても良い。
現像時のパターンの解像度が向上するなど、現像条件の許容幅が増大する場合には、現像前にベーク処理をする工程を取り入れても差し支えない。この温度としては50〜180℃の範囲が好ましく、特に60〜120℃の範囲がより好ましい。時間は5秒〜数時間が好ましい。
現像後、120℃から400℃の温度を加えて硬化膜にする。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分から5時間実施する。一例としては、130℃、200℃で各30分ずつ熱処理する。あるいは室温より250℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。この際、加熱温度は150℃以上、300℃以下の温度が好ましく、180℃以上、250℃以下であることがさらに好ましい。また、加熱処理によって得られる硬化膜は耐熱性に優れていることが重要である。ここで言う耐熱性とは、熱重量測定装置により熱重量減少を測定し、測定開始時重量に対し、重量減少が5%となった時の温度のことであり、硬化膜の耐熱性が300℃以上であることが好ましく、330℃以上であることがより好ましく、350℃以上であることがさらに好ましい。
次に、本発明の感光性樹脂組成物フィルムをパターン加工し、他部材に熱圧着する方法について、例を挙げて説明する。
まず、上記と同様の方法でパターン加工まで実施する。パターン形成後、感光性樹脂組成物被膜中に残存する溶媒、揮発分、水を低減する観点から、60〜200℃の範囲で加熱乾燥することが好ましい。時間は1分〜数時間が好ましい。
このようにして得られたパターン加工された感光性樹脂組成物被膜が形成された基板を基板や他部材に熱圧着する。熱圧着温度は樹脂のガラス転移温度以上であればよく、100〜400℃の温度範囲が好ましい。また圧着時の圧力は0.01〜10MPaの範囲が好ましい。時間は1秒〜数分が好ましい。
熱圧着後、120℃から400℃の温度を加えて硬化膜にする。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分から5時間実施する。一例としては、130℃、200℃で各30分ずつ熱処理する。あるいは室温より250℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。この際、加熱温度は150℃以上、300℃以下の温度が好ましく、180℃以上、250℃以下であることがさらに好ましい。
このように熱圧着して得られた接着体はその接着強度は、接着信頼性の観点から40MPa以上であることが望ましい。より望ましいのは50MPa以上である。
本発明の硬化膜の形態は特に限定されず、膜状、棒状、球状など、用途に合わせて選択することができるが、特に膜状であることが好ましい。ここでいう膜とは、フィルム、シート、板、ペレットなども含まれる。もちろん、導通のためのビアホール形成、インピーダンスや静電容量あるいは内部応力の調整、または、放熱機能付与など、用途にあわせたパターン形成を行うこともできる。
硬化膜の膜厚は、任意に設定することができるが、0.5μm以上100μm以下であることが好ましい。
次に、本発明の感光性樹脂組成物フィルムを用いた多層配線基板の製造方法の例について説明する。
まず、絶縁基材、もしくは絶縁層の上に回路を形成するが、その形成方法としては、パネルメッキ法、サブトラクティブ法、アディティブ法等、公知の方法が利用できる。この際、本発明の感光性樹脂組成物フィルムを用いて、公知のダマシン法を利用しても良い。その後、配線が形成された基板に、本発明の感光性樹脂組成物フィルムを用いて、公知のダマシンまたはデュアルダマシン法を利用して、ビア穴層/配線層を形成する。その後、必要な配線層の層数に対応するサイクル数を行うことにより、所望の多層配線基板を作製することができる。
本発明の感光性樹脂組成物フィルムは、順テーパーまたは矩形状のパターンが得られるため、導体の埋まり込みが十分であり、導体間の接続が十分にとれ、多層配線基板の最外部層と最下層との導通が確認できる。
本発明の感光性樹脂組成物フィルムおよびそれらから得られる硬化膜の用途は特に限定されないが、例えば、実装基板やウェハレベルパッケージなどの半導体を用いるシステム用の基板やパッケージに内蔵する表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜などのレジスト、多種の電子部品、装置への適用が可能である。また、その優れた耐熱性から、特に永久レジスト、すなわち、パターン形成された層間絶縁膜として好ましく用いられる。更には、パターン形成後の基板、ガラス、半導体素子等と被着体とを熱圧着することで接着剤用途に好適に用いることができる。
以下、本発明の感光性樹脂組成物フィルムについて実施例1〜11にて説明し、実施例12において、本発明の感光性樹脂組成物フィルムを用いて絶縁膜を形成する方法について説明し、実施例13において、本発明の感光性樹脂組成物フィルムを用いて製造された多層配線基板について説明する。しかしながら、本発明はこれらによって限定されるものではない。まず、評価方法について説明する。
<合成したポリイミドのイミド化率>
まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm−1付近、1377cm−1付近)の存在を確認した。次に、そのポリマーについて、350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、熱処理前と熱処理後の1377cm−1付近のピーク強度を比較した。熱処理後のポリマーのイミド化率を100%として、熱処理前のポリマーのイミド化率を求めた。
<塗布性の評価>
各実施例および比較例で作製した感光性樹脂組成物フィルムに無機粒子によるハジキやピンホールがない場合を○とし、無機粒子によるハジキやピンホールがある場合を×とした。また、ハジキやピンホールが発生した場合は、以下の解像度、パターン形状、残膜率の評価は行わなかった。
<解像度の評価>
各実施例および比較例で作製した感光性樹脂組成物フィルムの保護フィルムを剥離し、該剥離面を、シリコンウェハー上に、ラミネート装置((株)タカトリ製、VTM−200M)を用いて、ステージ温度80℃、ロール温度80℃、真空度150Pa、貼付速度5mm/秒、貼付圧力0.2Mpaの条件でラミネートした。そして、支持体フィルムを剥離した後、露光装置にL/S=50/50、40/40、30/30μmのパターンを有するマスクをセットし、マスクと感光性樹脂組成物フィルムの露光ギャップ100μmの条件下で、超高圧水銀灯のL39フィルター透過光を、露光量400mJ/cm(h線換算)で露光を行った。露光後、ディップ現像にて、水酸化テトラメチルアンモニウムの2.38%水溶液を用いて未露光部を除去し、水にてリンス処理をした。現像時間は、未露光部が完全に溶解した時間の2倍の時間とした。この様にして得られたパターンを、光学顕微鏡で観察し、パターンのラインにツマリ等の異常のない場合の最小のサイズを解像度の評価とした。また、パターンのラインのL/S=50/50μmが現像できていないもの、または、現像時にパターンが基板上に残らなかったものを×とした。
<パターン形状の評価>
上記方法でパターンが形成された基板を、パターンと垂直になるように、シリコンウェハーをカットし、パターン断面を露出させた。その後、光学顕微鏡で、L/S=50/50のパターン断面の底端部を観察し、パターン形状の評価を行った。結果は、パターン断面形状が順テーパーであるもの(テーパー角<90度)を◎とし、矩形であるもの(テーパー角=90度)を○とし、逆テーパーであるもの(テーパー角>90度)を×とした。また、L/S=50/50μmが現像できていないもの、または、パターンが残らなかったものについては、アンダーカットの評価は行わなかった。
<残膜率の評価>
上記のようにして、露光、現像を行った後の露光部の残膜率を以下の式によって算出した。
残膜率(%)=現像後の膜厚÷感光性樹脂組成物フィルムの膜厚×100
<耐熱性の評価>
上記のようにして、シリコンウェハー上にラミネートし、支持体フィルムを剥離した感光性樹脂組成物フィルム付きシリコンウェハーに、超高圧水銀灯を用いて、露光量1000mJ/cm(i線換算)で露光処理を行った後、イナートオーブン(光洋サーモシステム(株)製、INL−60)を用いて、N雰囲気下、200℃で60分間熱処理し、硬化膜を得た。得られたシリコンウェハー上の硬化膜を47%フッ化水素酸に室温で7分間浸した後、水道水で洗浄し、硬化膜をシリコンウェハーから剥離した。このようにして剥離した硬化膜を、熱重量測定装置(エスアイアイ・ナノテクノロジー(株)製、TG/DTA6200)を用い、窒素雰囲気下、昇温速度10℃/分の条件で熱重量減少を測定し、測定開始時重量に対し重量減少5%の時の温度を耐熱性とした。
各実施例および比較例で用いたポリイミドは以下の方法により合成した。
合成例1
乾燥窒素気流下、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(以下、BAHFとする)30.95g(0.0845モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)をNMP100gに溶解させた。ここにビス(3,4−ジカルボキシフェニル)エーテル二無水物31.02g(0.1モル)をNMP30gとともに加えて、20℃で1時間攪拌し、次いで50℃で4時間攪拌した。ここに、3−アミノフェノール2.5g(0.02モル)を加え、50℃で2時間攪拌後、180℃で5時間攪拌して樹脂溶液を得た。次に、樹脂溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で5時間乾燥した。得られた樹脂粉体のイミド化率は94%であった。
合成例2
乾燥窒素気流下、BAHF30.03g(0.082モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、4−アミノチオフェノール3.13g(0.025モル)をNMP100gに溶解させた。ここに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物29.42g(0.1モル)をNMP30gとともに加えて、20℃で1時間攪拌し、次いで50℃で4時間攪拌した。その後、180℃で5時間攪拌して樹脂溶液を得た。次に、樹脂溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で5時間乾燥した。得られた樹脂粉体のイミド化率は94%であった。
合成例3
乾燥窒素気流下、4,4’−ジアミノジフェニルエーテル11.41g(0.057モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)および末端封止剤として、アニリン6.98g(0.075モル)をNMP80gに溶解した。ここに、ビス(3,4−ジカルボキシフェニル)エーテル二無水物31.02g(0.1モル)をNMP20gとともに加えて、20℃で1時間攪拌し、次いで50℃で4時間攪拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸しながら、180℃で5時間攪拌した。攪拌終了後、溶液を水3Lに投入して白色沈殿を得た。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で20時間乾燥した。得られたポリマー粉体のイミド化率は94%であった。
その他に実施例、比較例で用いた各材料は以下のとおりである。
(b)不飽和結合含有重合性化合物
BP−6EM(商品名、共栄社化学(株)製、エチレンオキシド変性ビスフェノールAジメタクリレート)
(c)無機粒子
(c−1)SO−E2(商品名、(株)アドマテックス製、シリカ、メタクリルシラン処理、平均粒子径0.5μm、70重量%乳酸エチルスラリー)
(c−2)アドマナノ(商品名、(株)アドマテックス製、シリカ、メタクリルシラン処理、平均粒子径50nm、40重量%乳酸エチルスラリー)
(c−3)アドマナノ(商品名、(株)アドマテックス製、シリカ、メタクリルシラン処理、平均粒子径25nm、30重量%乳酸エチルスラリー)
(c−4)SO−E6(商品名、(株)アドマテックス製、シリカ、メタクリルシラン処理、平均粒子径2μm、70重量%乳酸エチルスラリー)
(c−5)アドマナノ(商品名、(株)アドマテックス製、シリカ、メタクリルシラン処理、平均粒子径15nm、25重量%乳酸エチルスラリー)
(d)NCI−831(商品名、(株)ADEKA製)
(e)HMOM−TPHAP(商品名、本州化学工業(株)製) 。
実施例1
(a)合成例1で得られたポリイミド:100g、(b)BP−6EM:60g(d)NCI−831:8g、(e)HMOM−TPHAP:15gをジアセトンアルコール/乳酸エチル=40/60の比率である溶媒に溶解した。溶媒の添加量は、溶媒以外の添加物を固形分とし、固形分濃度が45%となるように調整した。そして、更に(c)c−1:65g(無機粒子は46g)を添加した後、保留粒子径2μmのフィルターを用いて加圧濾過し、感光性樹脂組成物ワニスを得た(表1)。
得られたワニスを、コンマロールコーターを用いて、厚さ38μmのPETフィルム上に塗布し、75℃で6分間乾燥を行った後、保護フィルムとして、厚さ10μmのPPフィルムをラミネートし、感光性樹脂組成物フィルムを得た。感光性樹脂組成物フィルムの膜厚は25μmとなるように塗工を行った。得られた感光性樹脂組成物フィルムを用いて、前記のように、塗布性、解像度、パターン形状、残膜率および耐熱性の評価を行った。結果を表3に示す。
実施例2〜10、比較例1〜4
実施例1と同様にして、表1、表2に示す混合比で感光性樹脂組成物フィルムを作製し、前記のように、塗布性、解像度、パターン形状、残膜率および耐熱性の評価を行った。結果を表3に示す。
Figure 2011180472
Figure 2011180472
Figure 2011180472
実施例11
感光性樹脂組成物フィルムの膜厚を40μmとした以外は、実施例1と同様に感光性樹脂組成物フィルムを作製し、前記のように、感光性樹脂組成物フィルムの解像度、パターン形状の評価を行った。解像度の評価結果は、L/S=50/50であった。また、パターン形状の評価結果は◎であった。
実施例12
L/S=10μm/10μmの銅櫛歯電極上に、実施例1で得た感光性樹脂組成物フィルムを真空ラミネートにより貼り合せた。その後、電極部の被膜をアセトンで拭き取った。次いで、超高圧水銀灯のL39フィルター透過光を、露光量400mJ/cm(h線換算)で露光を行った後、イナートオーブンを用いて、N雰囲気下、200℃で60分間熱処理し、評価用サンプルを作製した。得られた評価用サンプルの電極間に、温度85℃、相対湿度85%の雰囲気下で、電圧20Vを印加し続け1000時間の絶縁信頼性試験を行った。抵抗値は、1000時間まで1010Ω以上を保持し続けたため、絶縁信頼性は合格であった。銅櫛歯電極には、厚さ0.4μmの熱酸化膜とその上に厚さ0.8μmの窒化珪素膜が形成されたシリコンウェハー上に、厚さ0.08μmのクロム下地電極とその上に厚さ10μmの銅電極がパターン加工されたものを用いた。
実施例13
図1を用いて説明する。まず、シリコンウェハー100上に、スパッタリングにより密着層としてのNi層(10nm)とその上に導体層101としての無電解銅めっき層(10μm)を形成した。
その後、該基板上に、実施例1で得た感光性樹脂組成物フィルムを真空ラミネートにより貼り合せた。その後、露光、現像によりビア穴を形成し、イナートオーブンで加熱処理を行うことにより、ビア穴層102の硬化を行い、ビア穴層102を有する基板を得た(図1(a))。
次いで、該基板に実施例2で得た感光性樹脂組成物フィルムを真空ラミネートにより貼り合せを行い、露光、現像により配線穴層103となるパターン(スペース部)を形成し、イナートオーブンで加熱処理を行い配線穴層103の硬化を行い、ビア穴/配線穴を有する基板を得た(図1(b))。
次いで、該基板にスッパタリングにより、密着層としてのNi層(厚さ10nm)を形成した後、電解銅めっきを行い、ビア穴、配線穴を銅めっきで充填させた。その後、化学機械研磨(CMP)により不要な部分の銅めっきの除去、ならびに、絶縁膜表面の平坦化を行い、ビア層/配線層を有する基板を得た(図1(c))。
その後、上記方法のビア層/配線層の形成を1サイクルとして、3回繰り返し、ビア層、配線層がそれぞれ4層ずつ積層した合計8層の多層配線基板を作製した。作製した多層配線基板の任意の最外部配線層と最下層の導体層間の抵抗値を、テスターを用いて確認したところ、どの配線間においても導通していることが確認できた。
比較例5
比較例3で得た感光性樹脂組成物ワニスを用いた以外は、実施例12と同様の方法で、合計8層の多層配線基板を作製した。作製した多層配線基板の任意の最外部配線層と最下層の導体層間の抵抗値を、テスターを用いて確認したところ、導通していない箇所があった。
100:シリコンウェハー
101:導体層(銅)
102:感光性樹脂組成物フィルムから形成した層間絶縁ビア穴層
103:感光性樹脂組成物フィルムから形成した層間絶縁配線穴層
104:導体(銅)

Claims (5)

  1. (a)アルカリ可溶性ポリイミド、(b)不飽和結合含有重合性化合物、(c)平均粒子径が20nm以上1μm以下である無機粒子および(d)光重合開始剤を含有する感光性樹脂組成物フィルム。
  2. (a)のポリイミドが、主鎖末端に、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる少なくとも一つの基を有することを特徴とする請求項1に記載の感光性樹脂組成物フィルム。
  3. さらに、(e)熱架橋性化合物を含有する請求項1または2に記載の感光性樹脂組成物フィルム。
  4. 請求項1〜3のいずれかに記載の感光性樹脂組成物フィルムを加熱硬化して形成された絶縁膜。
  5. 請求項4に記載の絶縁膜を層間絶縁膜として有する多層配線基板。
JP2010046154A 2010-03-03 2010-03-03 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板 Pending JP2011180472A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046154A JP2011180472A (ja) 2010-03-03 2010-03-03 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046154A JP2011180472A (ja) 2010-03-03 2010-03-03 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板

Publications (1)

Publication Number Publication Date
JP2011180472A true JP2011180472A (ja) 2011-09-15

Family

ID=44691994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046154A Pending JP2011180472A (ja) 2010-03-03 2010-03-03 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板

Country Status (1)

Country Link
JP (1) JP2011180472A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108127A (ko) 2013-02-28 2014-09-05 도쿄 오카 고교 가부시키가이샤 층간 절연막용 감광성 수지 조성물
JP2015179153A (ja) * 2014-03-19 2015-10-08 東レ株式会社 感光性樹脂組成物
KR20170045221A (ko) 2014-08-27 2017-04-26 도오꾜오까고오교 가부시끼가이샤 층간 절연막 형성용 감광성 수지 조성물, 층간 절연막 및 층간 절연막의 형성 방법
KR20170113287A (ko) 2016-03-31 2017-10-12 도오꾜오까고오교 가부시끼가이샤 층간 절연막 형성용 조성물, 층간 절연막 및 층간 절연막 패턴의 형성 방법, 그리고 디바이스
KR20170113292A (ko) 2016-03-31 2017-10-12 도오꾜오까고오교 가부시끼가이샤 층간 절연막 형성용 조성물, 층간 절연막 및 층간 절연막 패턴의 형성 방법, 그리고 디바이스
JP2018141976A (ja) * 2017-02-28 2018-09-13 東レ株式会社 感光性樹脂組成物、感光性樹脂積層体、および感光性樹脂印刷版原版
WO2019146611A1 (ja) * 2018-01-29 2019-08-01 富士フイルム株式会社 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108127A (ko) 2013-02-28 2014-09-05 도쿄 오카 고교 가부시키가이샤 층간 절연막용 감광성 수지 조성물
JP2015179153A (ja) * 2014-03-19 2015-10-08 東レ株式会社 感光性樹脂組成物
KR20170045221A (ko) 2014-08-27 2017-04-26 도오꾜오까고오교 가부시끼가이샤 층간 절연막 형성용 감광성 수지 조성물, 층간 절연막 및 층간 절연막의 형성 방법
US10067422B2 (en) 2014-08-27 2018-09-04 Tokyo Ohka Kogyo Co. Ltd. Photosensitive resin composition for forming interlayer insulating film, interlayer insulating film, and method for forming interlayer insulating film
KR20170113287A (ko) 2016-03-31 2017-10-12 도오꾜오까고오교 가부시끼가이샤 층간 절연막 형성용 조성물, 층간 절연막 및 층간 절연막 패턴의 형성 방법, 그리고 디바이스
KR20170113292A (ko) 2016-03-31 2017-10-12 도오꾜오까고오교 가부시끼가이샤 층간 절연막 형성용 조성물, 층간 절연막 및 층간 절연막 패턴의 형성 방법, 그리고 디바이스
US10156787B2 (en) 2016-03-31 2018-12-18 Tokyo Ohka Kogyo Co., Ltd. Composition for forming interlayer insulating film, interlayer insulating film, method for forming interlayer insulating film pattern, and device
US10168617B2 (en) 2016-03-31 2019-01-01 Tokyo Ohka Kogyo Co., Ltd. Composition for forming interlayer insulating film, interlayer insulating film, method for forming interlayer insulating film pattern, and device
JP2018141976A (ja) * 2017-02-28 2018-09-13 東レ株式会社 感光性樹脂組成物、感光性樹脂積層体、および感光性樹脂印刷版原版
WO2019146611A1 (ja) * 2018-01-29 2019-08-01 富士フイルム株式会社 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス
KR20200093077A (ko) * 2018-01-29 2020-08-04 후지필름 가부시키가이샤 감광성 수지 조성물, 수지, 경화막, 적층체, 경화막의 제조 방법, 반도체 디바이스
KR102313182B1 (ko) 2018-01-29 2021-10-15 후지필름 가부시키가이샤 감광성 수지 조성물, 수지, 경화막, 적층체, 경화막의 제조 방법, 반도체 디바이스

Similar Documents

Publication Publication Date Title
JP5935323B2 (ja) 感光性接着剤組成物、感光性接着剤フィルムおよびこれらを用いた半導体装置
JP5402332B2 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルムおよびそれを用いた多層配線基板
JP5740915B2 (ja) フィルム積層体
WO2012002134A1 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルムおよびこれらを用いた半導体装置
JP2009258471A (ja) 感光性樹脂組成物フィルムおよびそれを用いたレジスト形成方法
WO2017169574A1 (ja) 感光性接着剤組成物、硬化物、感光性接着剤シート、積層基板および接着剤パターン付積層基板の製造方法
JP7088004B2 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルム、絶縁膜および電子部品
JP5990965B2 (ja) 感光性樹脂組成物およびそれからなるフィルム積層体
JP5887693B2 (ja) 感光性接着剤組成物、感光性接着剤シートおよびこれらを用いた半導体装置
JP6232997B2 (ja) 感光性樹脂組成物、それからなる感光性樹脂フィルム、それから形成された絶縁膜およびそれを有する多層配線基板
JP2011180472A (ja) 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板
WO2020196139A1 (ja) 感光性樹脂組成物、感光性樹脂シート、中空構造の製造方法および電子部品
JP2008281597A (ja) 感光性樹脂組成物シート
JP6740899B2 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルム、硬化物、絶縁膜および多層配線基板
JP2018173469A (ja) 感光性樹脂組成物フィルム、絶縁膜および配線基板
WO2021193091A1 (ja) 感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法
JP2024013301A (ja) 感光性樹脂組成物、感光性樹脂組成物フィルム、硬化物、電子部品、及び積層部材の製造方法
KR20230141762A (ko) 감광성 수지 조성물, 감광성 수지 시트, 경화물, 중공구조체, 전자 부품 및 탄성파 필터
JP2014122948A (ja) 感光性樹脂組成物および該感光性組成物より形成された感光性樹脂組成物フィルムならびにそれらを用いたマスクレジスト層付き基板の製造方法およびハンダ突起付き基板の製造方法