JP2011179220A - Method of stabilizing slope and landslide control steel pipe pile - Google Patents

Method of stabilizing slope and landslide control steel pipe pile Download PDF

Info

Publication number
JP2011179220A
JP2011179220A JP2010044106A JP2010044106A JP2011179220A JP 2011179220 A JP2011179220 A JP 2011179220A JP 2010044106 A JP2010044106 A JP 2010044106A JP 2010044106 A JP2010044106 A JP 2010044106A JP 2011179220 A JP2011179220 A JP 2011179220A
Authority
JP
Japan
Prior art keywords
pile
steel pipe
micropile
deterrent
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044106A
Other languages
Japanese (ja)
Other versions
JP5582497B2 (en
Inventor
Tetsuo Matsuda
哲夫 松田
Masato Tonogakiuchi
正人 殿垣内
Atsushi Hamanami
敦 濱波
Kenjiro Oka
憲二郎 岡
Toru Haneuma
徹 羽馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
KFC Ltd
West Nippon Expressway Co Ltd
Japan Foundation Engineering Co Ltd
Original Assignee
Toyo Construction Co Ltd
KFC Ltd
West Nippon Expressway Co Ltd
Japan Foundation Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Construction Co Ltd, KFC Ltd, West Nippon Expressway Co Ltd, Japan Foundation Engineering Co Ltd filed Critical Toyo Construction Co Ltd
Priority to JP2010044106A priority Critical patent/JP5582497B2/en
Publication of JP2011179220A publication Critical patent/JP2011179220A/en
Application granted granted Critical
Publication of JP5582497B2 publication Critical patent/JP5582497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reinforce a landslide control measure for an existing slope. <P>SOLUTION: A reinforced landslide control steel pipe pile 200 in which an existing landslide control steel pipe pile 120 is integrated with a micro pile 11 is configured by driving the micro pile 11 into the existing landslide control steel pipe pile 120. A necessary control effect is exhibited by driving the micro pile 11 longer than the existing landslide control steel pipe pile 120 so that, even when the sliding surface of a ground is deepened due to the weathering or deterioration thereof, the micro pile reaches a layer deeper than the sliding surface. Since the reinforced landslide control steel pipe pile is formed in a multi-pipe structure in which a steel pipe 21 constituting the micro pile 11 is disposed in the steel pipe of the existing landslide control steel pipe pile 120, the strength of the reinforced landslide control steel pipe pile is remarkably increased. As a measure against the insufficient setting of depth of the existing landslide control steel pipe pile 120 into a support layer, the micro pile 11 projecting to a deep layer longer than the existing landslide control steel pipe pile 120 can secure a considerably large peripheral surface frictional force to secure a necessary bearing force. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、斜面安定工法及び地すべり鋼管抑止杭に関するものである。   The present invention relates to a slope stabilization method and a landslide steel pipe deterrent pile.

従来から、計画道路を整備するために、山地の斜面を大規模に掘削、造成するケースが多く見受けられる。この掘削作業は、山地を上部側から下部側へ向けて段階的に掘削する手法が採られ、その過程で、図6に示されるように山地100の切土法面102には、斜面104と小段106とが交互に形成されることとなる。このように人工的に造成された比較的規模の大きい切土法面102には、適宜、崩壊防止対策が施されており、例えば、ケーシングを用いて地盤に削孔した後、ケーシング内にアンカー108を挿入して、前記ケーシングを引抜き、しかる後に孔内に硬化材グラウトを注入してアンカー108を地盤に定着させるグランドアンカー工法が用いられている。 Conventionally, there are many cases of excavating and creating mountain slopes on a large scale in order to improve the planned road. In this excavation work, a method of excavating the mountain region in a stepwise manner from the upper side to the lower side is adopted. In the process, as shown in FIG. The small steps 106 are alternately formed. The cut slope 102 having a relatively large scale that is artificially constructed in this manner is appropriately provided with anti-collapse measures. For example, after drilling holes in the ground using a casing, anchors are installed in the casing. A ground anchor method is used in which 108 is inserted, the casing is pulled out, and then a hardening material grout is injected into the hole to fix the anchor 108 to the ground.

又、鋼管を打設してこれを抑止杭120とする抑止杭工法も、広く採用されている。抑止杭120は、直径400mm〜600mm程度の鋼管の内部にモルタルを充填して構成されるものであり、所定の安全率を確保することができるように、抑止杭120の抑止力(断面性能:鋼管径×肉厚、鋼管長さ、打設間隔等)が設定され、切土法面102のすべり面122よりも深い位置まで到達するように打設される。そして、抑止杭120の打設工法の1つとして、マイクロパイル工法が従来から採用されている。マイクロパイルについては追って詳述するが、直径300mm以下の場所打ち杭や埋込み杭の総称であり、セメント系グラウト材を加圧注入して、付着性能の改善された鋼管と合成させるものである(例えば、特許文献1)。 Moreover, the deterrent pile construction method which casts a steel pipe and uses this as the deterrent pile 120 is also employ | adopted widely. The deterrent pile 120 is configured by filling a steel pipe having a diameter of about 400 mm to 600 mm with mortar, and the detergency of the deterrent pile 120 (cross-sectional performance: so as to ensure a predetermined safety factor). (Steel pipe diameter × thickness, steel pipe length, placement interval, etc.) are set and are placed so as to reach a position deeper than the sliding surface 122 of the cut slope 102. And as one of the construction methods of the suppression pile 120, the micropile construction method has been conventionally adopted. Although micropile will be described in detail later, it is a generic name for cast-in-place piles and embedded piles with a diameter of 300 mm or less, and is injected with a cement-type grout material under pressure to synthesize with a steel pipe with improved adhesion performance ( For example, Patent Document 1).

特許第3769637号公報Japanese Patent No. 3769637

しかしながら、地すべり抑止対策の検討段階で推定した地すべり深さや、地盤条件、湧水条件等は、時間の経過とともに大きく変動を生じる場合がある。特に、近年の集中豪雨(時間強度の大きい雨)が多発する状況において、地盤の風化劣化や降雨による地中の間隔水圧の急激な上昇が生じ、想定したよりも大規模な地すべりが発生することも懸念される。例えば、当初想定したすべり面122よりも更に深い位置にすべり面123が生じた場合には、既設の抑止杭120による地すべり抑止対策は万全ではなく、これを強化する手法が必要となる。又、想定よりも広範囲で地すべりが発生した場合には、抑止杭120の抑止力不足から、抑止杭120の頭部(杭頭)が大きく変位して、抑止杭120を打設した小段106よりも下方の斜面104(104L)を崩壊させ、結果として所定の抑止効果を確保できなくなってしまう。又、抑止杭120を打設した小段106よりも下方の地盤が風化劣化した場合にも、抑止杭120の頭部付近の地盤変形が増大し、同様の問題を生じることとなる。   However, the landslide depth, ground conditions, spring conditions, etc. estimated at the stage of studying landslide prevention measures may vary greatly over time. In particular, in a situation where frequent torrential rains (rains with high time intensity) occur frequently in recent years, the ground water pressure deteriorated due to weathering deterioration of the ground and rain, resulting in a larger landslide than expected. Is also a concern. For example, when the slip surface 123 is generated at a position deeper than the initially assumed slip surface 122, the landslide suppression measures using the existing suppression pile 120 are not perfect, and a technique for strengthening this is required. In addition, when a landslide occurs in a wider range than expected, the head of the restraint pile 120 (pile head) is largely displaced due to insufficient restraining force of the restraint pile 120, and from the step 106 where the restraint pile 120 is placed. Also, the lower slope 104 (104L) is collapsed, and as a result, a predetermined deterrent effect cannot be ensured. In addition, even when the ground below the stage 106 on which the suppression pile 120 is placed is weathered and deteriorated, the ground deformation near the head of the suppression pile 120 increases, and the same problem occurs.

従って、既存の切土法面102に対する地すべり抑止対策を強化することが必要となるが、切土法面102に既設の抑止杭120と同等かそれ以上の抑止杭を施工することが可能な、大型の施工機械を乗り入れることは困難であり、施工時と異なる手法によって既存の斜面の更なる安定化を行う技術が望まれていたところである。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、既存の斜面に対する地すべり抑止対策の強化を行うことにある。
Therefore, it is necessary to strengthen landslide suppression measures for the existing cut slope 102, but it is possible to construct a suppression pile equal to or higher than the existing suppression pile 120 on the cut slope 102. It is difficult to enter a large construction machine, and a technique for further stabilizing existing slopes by a method different from that at the time of construction has been desired.
This invention is made | formed in view of the said subject, The place made into the objective is to strengthen the landslide prevention countermeasure with respect to the existing slope.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)切土法面の途中の小段に対して斜面安定工として鉛直に施工されている既設鋼管抑止杭の内部にマイクロパイルを打設することにより、既設鋼管抑止杭とマイクロパイルとが一体化した、強化鋼管抑止杭を構成する斜面安定工法(請求項1)。
本項に記載の斜面安定工法は、比較的小型の機械で、狭隘個所や傾斜地にも施工可能なマイクロパイルを、既設鋼管抑止杭の内部に打設することにより、既設鋼管抑止杭とマイクロパイルとが一体化し、強化鋼管抑止杭を構成するものである。この、強化鋼管抑止杭は、地盤の風化・劣化等により、すべり面が深くなった場合でも、そのすべり面よりも更に深層に到達するように、既設鋼管抑止杭よりも長くマイクロパイルを打設することで、必要な抑止効果を発揮するものとなる。又、既設鋼管抑止杭の内部にマイクロパイルを構成する鋼管が配置された多重管構造となり、耐力が大幅に向上することとなる。又、既設鋼管抑止杭の支持層(不動層)への根入れ不足(支持力不足)対策としても、既設鋼管抑止杭よりも長く深層へと突出するマイクロパイルが、比較的大きな周面摩擦力を確保することにより、必要な支持力を確保するものとなる。
(1) The existing steel pipe deterrent pile and the micropile are integrated by placing a micropile inside the existing steel pipe deterrent pile that is constructed vertically as a slope stabilizer for the small step in the cut slope. A slope stabilization method for forming a reinforced steel pipe deterrent pile (Claim 1).
The slope stabilization method described in this section is a relatively small machine that can be installed on narrow steel pipes and sloping ground, by placing a micropile inside an existing steel pipe restraint pile. And form a reinforced steel pipe deterrent pile. This reinforced steel pipe deterrent pile is placed with a micropile longer than the existing steel pipe deterrent pile so that even if the slip surface becomes deep due to weathering or deterioration of the ground, it reaches deeper than the slip surface. By doing so, the necessary deterrent effect will be exhibited. Moreover, it becomes a multiple pipe structure by which the steel pipe which comprises a micropile is arrange | positioned inside the existing steel pipe suppression pile, and proof stress will improve significantly. In addition, as a countermeasure against insufficient penetration (insufficient bearing capacity) of the existing steel pipe deterrent pile to the support layer (immobility layer), the micropile that protrudes deeper than the existing steel pipe deterrent pile has a relatively large peripheral frictional force. By securing this, the necessary supporting force is ensured.

(2)上記(1)項において、前記強化鋼管抑止杭に隣接して、前記小段の直上部分の斜面に対して斜杭状にマイクロパイルを打設し、前記強化鋼管抑止杭頭部と前記斜杭状のマイクロパイル頭部とを、基礎梁により剛結する斜面安定工法(請求項2)。
本項に記載の斜面安定工法は、斜杭状にマイクロパイルを打設して、強化鋼管抑止杭頭部と斜杭状のマイクロパイル頭部とを、基礎梁により剛結することで、地すべり力(ほぼ水平な力)に対するトラス構造を構成するものである。この際、斜杭状のマイクロパイルについても、すべり面よりも更に深層に到達するように打設する。かかるトラス構造において、強化鋼管抑止杭には、主として曲げと押し込み力(杭軸抵抗)が作用し、斜杭状のマイクロパイルには、主として曲げと引抜き力(杭抵抗力)が作用し、地すべり力(水平力)に対して、曲げ抵抗、せん断抵抗及び新たに付加された杭軸抵抗を発揮させ、当初(既設鋼管抑止杭)よりも大きな抑止効果を確保するものである。従って、地盤条件の劣化、降雨等の影響により、当初の想定以上の規模の地すべりが発生する懸念が生じるような場合にも、地すべり抑止対策を強化することとなる。
(2) In the above item (1), adjacent to the strengthened steel pipe deterrent pile, a micropile is placed in a slant pile shape against the slope of the portion directly above the small step, and the strengthened steel pipe deterrent pile head and the A slope stabilization method in which a slant pile-shaped micropile head is rigidly connected by a foundation beam (claim 2).
The slope stabilization method described in this section is to install a micropile in the shape of a slanted pile and rigidly connect the reinforced steel pipe restraint pile head and the slanted pile-shaped micropile head with a foundation beam. It constitutes a truss structure against force (almost horizontal force). At this time, the slant pile-shaped micropile is also placed so as to reach a deeper layer than the slip surface. In such a truss structure, bending and pushing force (pile shaft resistance) acts mainly on reinforced steel pipe deterrent piles, and bending and pulling force (pile resistance force) acts mainly on slant pile-like micropile. It exerts bending resistance, shear resistance and newly added pile shaft resistance against force (horizontal force), and ensures a greater deterrent effect than initially (existing steel pipe deterrent piles). Therefore, landslide prevention measures will be strengthened even when there is a concern that a landslide with a scale larger than the initial assumption may occur due to deterioration of ground conditions, rainfall, or the like.

(3)上記(2)項において、前記強化鋼管抑止杭に隣接して、前記小段の直上部分の斜面に対して斜杭状にマイクロパイルを二本以上打設し、前記強化鋼管抑止杭頭部と前記斜杭状のマイクロパイル頭部とを、基礎梁により剛結する斜面安定工法。
本項に記載の斜面安定工法は、マイクロパイルの上記機能をより大きく発揮させるものである。
(3) In the above item (2), adjacent to the reinforced steel pipe deterrent pile, two or more micro piles are placed in a slant pile shape on the slope of the portion directly above the small step, and the reinforced steel pipe deterrent pile head Slope stabilization method that rigidly joins the part and the oblique pile-shaped micropile head with a foundation beam.
The slope stabilization method described in this section allows the above functions of the micropile to be exhibited more greatly.

(4)上記(2)、(3)項において、前記斜杭状のマイクロパイルの杭頭を、隣接する強化鋼管抑止杭の杭頭を結ぶ線上に配置する斜面安定工法(請求項3)。
本項に記載の斜面安定工法は、斜杭状のマイクロパイルの杭頭を、隣接する強化鋼管抑止杭の杭頭を結ぶ線上に配置することで、既存の切土法面の施工スペース・傾斜地形等の制約を受けることなく、マイクロパイルを打設するものである。又、地中の既設構造物等との干渉を回避する上でも、強化鋼管抑止杭の杭頭を結ぶ線上に配置することが望ましい。更に、強化鋼管抑止杭と斜杭状のマイクロパイルとの荷重分担の相違に起因して、杭頭部の基礎梁に生ずるねじりモーメントの影響を、上記配置によって軽減すると共に、杭頭部を剛結する基礎梁の構造の単純化、軽量化を図るものでもある。
(4) The slope stabilization method according to (2) and (3) above, wherein the pile head of the oblique pile-like micropile is arranged on a line connecting the pile heads of adjacent reinforced steel pipe deterrent piles (Claim 3).
The slope stabilization method described in this section is to install the pile heads of slant pile-shaped micro piles on the line connecting the pile heads of adjacent reinforced steel pipe restraint piles. A micropile is placed without being restricted by shape or the like. Moreover, it is desirable to arrange | position on the line | wire which connects the pile head of a reinforced steel pipe suppression pile also in avoiding interference with the existing structure etc. in the ground. Furthermore, due to the difference in load sharing between the reinforced steel pipe restraint pile and the slant pile-shaped micropile, the influence of the torsion moment generated on the foundation beam of the pile head is reduced by the above arrangement, and the pile head is rigid. It is also intended to simplify and lighten the structure of the foundation beam to be connected.

(5)上記(4)項において、前記斜杭状のマイクロパイルと前記強化鋼管抑止杭との設置間隔を、前記斜杭状のマイクロパイルの外径の2.5倍〜8倍確保する斜面安定工法。
本項に記載の斜面安定工法は、斜杭状のマイクロパイルと前記強化鋼管抑止杭との設置間隔を、斜杭状のマイクロパイルの外径の2.5倍〜8倍確保することで、マイクロパイルの上記機能をより大きく発揮させるものである。なお、斜杭状のマイクロパイルと前記強化鋼管抑止杭との設置間隔を、斜杭状のマイクロパイルの外径の2.5倍よりも近接させて施工した場合には、既設鋼管抑止杭と追加施工したマイクロパイルが干渉して、設計外力に対する諸検討の段階で、各々独立した杭としての設計検討が出来なくなるといった不具合が生じる。一方、上記設置間隔を斜杭状のマイクロパイルの外径の8倍よりも大きく施工した場合には、既設鋼管抑止杭と追加施工のマイクロパイルの間隔が2.5m以上となり、 土砂の中抜け(杭の間から土砂が押し出され、所定の抑止効果を発揮できなくなる)の恐れがある。
(5) In the above item (4), the slope that secures the installation interval between the inclined pile-shaped micropile and the strengthened steel pipe restraining pile 2.5 times to 8 times the outer diameter of the inclined pile-shaped micropile Stable construction method.
The slope stabilization method described in this section is to secure the installation interval between the inclined pile-shaped micropile and the reinforced steel pipe restraining pile by 2.5 to 8 times the outer diameter of the inclined pile-shaped micropile, The function of the micropile is exhibited more greatly. In addition, when the installation interval between the inclined pile-shaped micropile and the strengthened steel pipe deterrent pile is set closer than 2.5 times the outer diameter of the inclined pile-shaped micropile, The micropile that was additionally constructed interferes with each other, and at the stage of various studies on the design external force, there arises a problem that it becomes impossible to study the design as independent piles. On the other hand, if the installation interval is larger than 8 times the outer diameter of the slant pile-shaped micropile, the distance between the existing steel pipe deterrent pile and the additional micropile is 2.5 m or more, (Sediment is pushed out from between the piles, and the predetermined deterrent effect cannot be exhibited).

(6)上記(2)から(5)前記斜杭状のマイクロパイルの打設に先行して、地盤中に高圧噴射攪拌工法により改良柱を造成し、該改良柱内に前記マイクロパイルを打設することを特徴とする請求項2又は3記載の斜面安定工法(請求項4)。
本項に記載の斜面安定工法は、追って詳述するように、小型の機械で対応でき、斜杭状マイクロパイルも施工可能な高圧噴射攪拌工法により、予め大きな改良柱(600mm〜1000mm)を造成した上で、斜杭状マイクロパイルを施工することで、より大きな抑止力を確保するものである。そして、盛土砂面や自然斜面等の土砂地山において、降雨等による劣化が生じ、地盤半力の確保が困難な場合であっても、必要な抑止力を確保するものである。
(6) (2) to (5) Prior to placing the slant pile-shaped micropile, an improved column is created in the ground by a high-pressure jet stirring method, and the micropile is driven into the improved column. The slope stabilization method according to claim 2 or 3, characterized in that it is provided (claim 4).
As described in detail later, the slope stabilization method described in this section can be handled with a small machine, and a large improved column (600 mm to 1000 mm) is created in advance by a high-pressure jet agitation method capable of constructing slant pile-like micropile. In addition, by constructing slanted pile-like micropile, a greater deterrent is ensured. And, in the earth and sand mountain such as embankment sand surface and natural slope, even if it is deteriorated due to rain or the like and it is difficult to secure the ground half force, the necessary deterrent is ensured.

(7)切土法面の途中の小段に対して斜面安定工として鉛直に施工されている既設鋼管抑止杭の内部にマイクロパイルが打設され、既設鋼管抑止杭とマイクロパイルとが一体化されてなる地すべり鋼管抑止杭(請求項5)。
本項に記載の地すべり鋼管抑止杭は、比較的小型の機械で、狭隘個所や傾斜地にも施工可能なマイクロパイルを、既設鋼管抑止杭の内部に打設することにより、既設鋼管抑止杭とマイクロパイルとを一体化したものである。この、強化鋼管抑止杭は、地盤の風化・劣化等により、すべり面が深くなった場合でも、そのすべり面よりも更に深層に到達するように、既設鋼管抑止杭よりも長くマイクロパイルを打設することで、必要な抑止効果を発揮するものとなる。又、既設鋼管抑止杭の内部にマイクロパイルを構成する鋼管が配置された多重管構造となり、耐力が大幅に向上することとなる。又、既設鋼管抑止杭の支持層(不動層)への根入れ不足(支持力不足)対策としても、既設鋼管抑止杭よりも長く深層へと突出するマイクロパイルが、比較的大きな周面摩擦力を確保することにより、必要な支持力を確保するものとなる。
(7) A micropile is placed inside an existing steel pipe deterrent pile that is installed vertically as a slope stabilizer for a small step in the middle of the cut slope, and the existing steel pipe deterrent pile and the micropile are integrated. A landslide steel pipe deterrent pile (Claim 5).
The landslide steel pipe deterrent pile described in this section is a relatively small machine, and a micropile that can be installed in narrow places and sloping grounds is placed inside the existing steel pipe deterrent pile, so that It is an integrated pile. This reinforced steel pipe deterrent pile is placed with a micropile longer than the existing steel pipe deterrent pile so that even if the slip surface becomes deep due to weathering or deterioration of the ground, it reaches deeper than the slip surface. By doing so, the necessary deterrent effect will be exhibited. Moreover, it becomes a multiple pipe structure by which the steel pipe which comprises a micropile is arrange | positioned inside the existing steel pipe suppression pile, and proof stress will improve significantly. In addition, as a countermeasure against insufficient penetration (insufficient bearing capacity) of the existing steel pipe deterrent pile to the support layer (immobility layer), the micropile that protrudes deeper than the existing steel pipe deterrent pile has a relatively large peripheral frictional force. By securing this, the necessary supporting force is ensured.

(8)上記(7)項において、前記既設鋼管抑止杭の頭部と、前記既設鋼管抑止杭に隣接して、前記小段の直上部分の斜面に対して斜杭状に打設されたマイクロパイルの頭部とが、基礎梁により剛結されてなる地すべり鋼管抑止杭(請求項6)。
本項に記載の斜面の地すべり鋼管抑止杭は、斜杭状にマイクロパイルを打設して、強化鋼管抑止杭頭部と斜杭状のマイクロパイル頭部とを、基礎梁により剛結することで、地すべり力(ほぼ水平な力)に対するトラス構造を構成するものである。この際、斜杭状のマイクロパイルについても、すべり面よりも更に深層に到達するように打設する。かかるトラス構造において、強化鋼管抑止杭には、主として曲げと押し込み力(杭軸抵抗)が作用し、斜杭状のマイクロパイルには、主として曲げと引抜き力(杭抵抗力)が作用し、地すべり力(水平力)に対して、曲げ抵抗、せん断抵抗及び新たに付加された杭軸抵抗を発揮させ、当初(既設鋼管抑止杭)よりも大きな抑止効果を確保するものである。従って、地盤条件の劣化、降雨等の影響により、当初の想定以上の規模の地すべりが発生する懸念が生じるような場合にも、地すべり抑止対策を強化することとなる。
(8) In the above item (7), a micropile that is driven in a slanted pile shape on the head of the existing steel pipe deterrent pile and the slope immediately above the small step adjacent to the existing steel pipe deterrent pile A landslide steel pipe deterrent pile that is rigidly connected to the head of the foundation beam by a foundation beam (Claim 6).
The slope landslide steel pipe deterrent pile described in this section is to place a micropile in the shape of a diagonal pile, and rigidly connect the reinforced steel pipe deterrent pile head and the oblique pile-shaped micropile head with a foundation beam. Thus, a truss structure for landslide force (almost horizontal force) is formed. At this time, the slant pile-shaped micropile is also placed so as to reach a deeper layer than the slip surface. In such a truss structure, bending and pushing force (pile shaft resistance) acts mainly on reinforced steel pipe deterrent piles, and bending and pulling force (pile resistance force) acts mainly on slant pile-like micropile. It exerts bending resistance, shear resistance and newly added pile shaft resistance against force (horizontal force), and ensures a greater deterrent effect than initially (existing steel pipe deterrent piles). Therefore, landslide prevention measures will be strengthened even when there is a concern that a landslide with a scale larger than the initial assumption may occur due to deterioration of ground conditions, rainfall, or the like.

(9)上記(8)項において、前記斜杭状のマイクロパイルの杭頭が、隣接する既設鋼管抑止杭の杭頭を結ぶ線上に配置されてなる請求項6記載の地すべり鋼管抑止杭(請求項7)。
本項に記載の斜面の地すべり鋼管抑止杭は、斜杭状のマイクロパイルの杭頭を、隣接する強化鋼管抑止杭の杭頭を結ぶ線上に配置することで、既存の切土法面の施工スペース・傾斜地形等の制約を受けることなく、マイクロパイルを打設するものである。又、地中の既設構造物等との干渉を回避する上でも、強化鋼管抑止杭の杭頭を結ぶ線上に配置することが望ましい。更に、強化鋼管抑止杭と斜杭状のマイクロパイルとの荷重分担の相違に起因して、杭頭部の基礎梁に生ずるねじりモーメントの影響を、上記配置によって軽減すると共に、杭頭部を剛結する基礎梁の構造の単純化、軽量化を図るものでもある。
(9) The landslide steel pipe deterrent pile according to claim 6, wherein the pile head of the oblique pile-like micropile is arranged on a line connecting the pile heads of adjacent existing steel pipe deterrent piles (claim) Item 7).
The sloped landslide steel pipe deterrent pile described in this section is a method of constructing the existing cut slope by placing the pile head of the slant pile-like micropile on the line connecting the pile heads of adjacent reinforced steel pipe detained piles. A micropile is placed without any restrictions such as space and sloping terrain. Moreover, it is desirable to arrange | position on the line | wire which connects the pile head of a reinforced steel pipe suppression pile also in avoiding interference with the existing structure etc. in the ground. Furthermore, due to the difference in load sharing between the reinforced steel pipe restraint pile and the slant pile-shaped micropile, the influence of the torsion moment generated on the foundation beam of the pile head is reduced by the above arrangement, and the pile head is rigid. It is also intended to simplify and lighten the structure of the foundation beam to be connected.

(10)上記(8)、(9)項において、前記斜杭状のマイクロパイルが、その打設に先行して地盤中に高圧噴射攪拌工法により造成された改良柱内に、打設されてなる地すべり鋼管抑止杭(請求項8)。
本項に記載の斜面の地すべり鋼管抑止杭は、小型の機械で対応でき、斜杭状マイクロパイルも施工可能な高圧噴射攪拌工法により、予め大きな改良柱(600mm〜1000mm)を造成した上で、斜杭状マイクロパイルを施工することで、より大きな抑止力を確保するものである。そして、盛土砂面や自然斜面等の土砂地山において、降雨等による劣化が生じ、地盤半力の確保が困難な場合であっても、必要な抑止力を確保するものである。
(10) In the above items (8) and (9), the slant pile-shaped micropile is placed in an improved column created by a high-pressure jet stirring method in the ground prior to the placement. A landslide steel pipe deterrent pile (Claim 8).
The slope landslide steel pipe deterrent pile described in this section can be handled with a small machine, and after creating a large improved column (600 mm to 1000 mm) in advance by a high-pressure jet agitation method capable of constructing a slant pile-like micropile, By constructing slant pile-shaped micropile, a greater deterrent is secured. And, in the earth and sand mountain such as embankment sand surface and natural slope, even if it is deteriorated due to rain or the like and it is difficult to secure the ground half force, the necessary deterrent is ensured.

本発明はこのように構成したので、既存の斜面に対する地すべり抑止対策の強化を行うことが可能となる。   Since this invention was comprised in this way, it becomes possible to strengthen the landslide prevention countermeasure with respect to the existing slope.

本発明の実施の形態に係る、地すべり鋼管抑止杭及びそれを用いた斜面安定工法の第1工程に関する説明図である。It is explanatory drawing regarding the 1st process of the landslide steel pipe suppression pile which concerns on embodiment of this invention, and the slope stabilization method using the same. 図1に続く第2工程に関する説明図である。It is explanatory drawing regarding the 2nd process following FIG. 本発明の実施の形態に係る、マイクロパイル打設における削孔工程とグラウト注入工程とを示す断面図である。It is sectional drawing which shows the hole making process and grout injection | pouring process in micropile placement based on embodiment of this invention. 本発明の実施の形態に係る、斜杭状のマイクロパイルの打設工程を順を追って示す断面図である。It is sectional drawing which shows sequentially the placing process of the slant pile-shaped micropile based on embodiment of this invention. 本発明の実施の形態に係る、改良柱造成工程とマイクロパイル打設工程とを順を追って示す断面図である。It is sectional drawing which shows order for an improved pillar preparation process and a micropile placement process based on embodiment of this invention later on. 従来の崩壊防止対策工が施された、山地の切土法面の断面図である。It is sectional drawing of the cut slope of a mountainous area where the conventional collapse prevention countermeasure work was performed.

以下、本発明を実施するための最良の形態を、添付図面に基づいて説明する。なお、従来技術と同一部分、若しくは相当する部分については、同一の符号を付して詳しい説明を省略する。
本発明の実施の形態に係る、斜面安定工法は次の通りである。まず、第1工程として、図1に示されるように、切土法面102の途中の小段106に対して斜面安定工として鉛直に施工されている既設鋼管抑止杭120の内部にマイクロパイル11を打設することにより、既設鋼管抑止杭120とマイクロパイル11とが一体化した、強化鋼管抑止杭200を構成する。又、強化鋼管抑止杭200の挿通孔210a及び後述する斜杭状のマイクロパイルの挿通孔210bが形成されたプレキャスト杭頭結合部材を製作する。そして、このプレキャスト杭頭結合部材の挿通孔210aを強化鋼管抑止杭200の杭頭に一致させ、基礎梁210として設置する。そして、強化鋼管抑止杭200の頭部と基礎梁210とを剛結する。強化鋼管抑止杭200の頭部と基礎梁210との剛結は、貫通210aにコンクリートを打設することにより行うことができる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. In addition, about the same part as a prior art, or a part corresponding, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
The slope stabilization method according to the embodiment of the present invention is as follows. First, as shown in FIG. 1, as shown in FIG. 1, the micropile 11 is placed inside an existing steel pipe deterrent pile 120 that is vertically constructed as a slope stabilizer for a small step 106 in the middle of the cut slope 102. The reinforced steel pipe deterrent pile 200 in which the existing steel pipe deterrent pile 120 and the micropile 11 are integrated is configured by driving. Moreover, the precast pile head coupling member in which the insertion hole 210a of the reinforcement | strengthening steel pipe suppression pile 200 and the insertion hole 210b of the oblique pile-shaped micropile mentioned later are formed is manufactured. And the penetration hole 210a of this precast pile head coupling member is made to correspond with the pile head of the reinforced steel pipe suppression pile 200, and it installs as the foundation beam 210. FIG. And the head of the reinforced steel pipe suppression pile 200 and the foundation beam 210 are rigidly connected. Rigid connection between the head of the reinforced steel pipe deterrent pile 200 and the foundation beam 210 can be performed by placing concrete in the penetration 210a.

続いて、必要に応じ第2工程として、図2に示されるように、挿通孔210bの傾斜角度θに合わせて、斜杭状にマイクロパイル12を打設し、強化鋼管抑止杭200の杭頭と、斜杭状のマイクロパイル12の杭頭とを、基礎梁200により剛結する。マイクロパイル12の杭頭と、基礎梁210との固定は、挿通孔210bにコンクリートを打設することにより行うことができる。なお、挿通孔210b及び斜杭状のマイクロパイル12の傾斜角度θは、小段106の直上部分の斜面104Hの傾斜角度を考慮して、15°〜45°程度の間に設定される。
なお、図示の例では、既設鋼管抑止杭120は直径500mmであり、この内部に打設されるマイクロパイル11、及び、斜杭状のマイクロパイル12は、直径216.3mm及び直径165.2mmの二重鋼管マイクロパイルが用いられる。又、強化鋼管抑止杭200(既設鋼管抑止杭120)の杭頭は一列に設置され、隣接する強化鋼管抑止杭200の設置間隔Aは3000mmである。又、隣接する強化鋼管抑止杭200の杭頭を結ぶ線上に、強化鋼管抑止杭200の両側に斜杭状のマイクロパイル12が配置され、強化鋼管抑止杭200と斜杭状のマイクロパイル12との設置間隔及び隣接する斜杭状のマイクロパイルの設置間隔Bは、1000mmとなっている。
Subsequently, as shown in FIG. 2, the micropile 12 is driven in a slant pile shape in accordance with the inclination angle θ of the insertion hole 210 b as a second step as necessary, and the pile head of the reinforced steel pipe deterrent pile 200. The pile head of the oblique pile-like micropile 12 is rigidly connected by the foundation beam 200. The pile head of the micropile 12 and the foundation beam 210 can be fixed by placing concrete in the insertion hole 210b. Note that the inclination angle θ of the insertion hole 210b and the oblique pile-shaped micropile 12 is set between about 15 ° and 45 ° in consideration of the inclination angle of the slope 104H immediately above the small step 106.
In the illustrated example, the existing steel pipe restraining pile 120 has a diameter of 500 mm, and the micropile 11 and the slant pile-shaped micropile 12 placed therein have a diameter of 216.3 mm and a diameter of 165.2 mm. Double steel pipe micropile is used. Moreover, the pile heads of the reinforced steel pipe deterrent pile 200 (existing steel pipe deterrent pile 120) are installed in a row, and the installation interval A of the adjacent reinforced steel pipe deterrent piles 200 is 3000 mm. Also, oblique pile-like micropiles 12 are arranged on both sides of the reinforced steel pipe deterrent pile 200 on the line connecting the pile heads of the adjacent reinforced steel pipe deterrent piles 200, and the reinforced steel pipe deterrent pile 200, the oblique pile-like micropile 12 and The installation interval B and the installation interval B of the adjacent oblique pile-shaped micropile are 1000 mm.

ここで、図3、図4を参照しながら、マイクロパイル11、12を打設するための施工手順を具体的に説明する。先ず、図3(a)及び図4(a)に示すように、管壁に複数の逆止弁20を有する鋼管21を用意し、この鋼管21内に、偏心拡径ビット22とダウンザホールハンマー23とを連設してなる削孔ツール24を先端に有する削孔ロッド25を挿入する。そして、これら鋼管21と削孔ロッド25とを、図示を略す施工機械(削孔機械)に一体的に支持させ、鋼管21をケーシングとして用いて削孔ロッド25を回転させながら、小段106に対して傾斜角度θとなるように、又は小段106の既設鋼管抑止杭120の中心部をそれと平行に削孔を行い、鋼管(ケーシング)21を、地盤又は既設鋼管抑止杭120の鋼管120aの内部に充填されたモルタル120bに貫入させる。ダウンザホールハンマー23は空気圧によりハンマー部を作動させて偏心拡径ビット22に衝撃荷重を加える機能を有するもので、このダウンザホールハンマー23と偏心拡径ビット22との併用により地盤又は既設鋼管抑止杭120の鋼管120aの内部に充填されたモルタル120bには、鋼管21よりも大径の孔26が高能率に削孔されるようになる。この時、削孔により生じた掘削ずりは、偏心拡径ビット22に貫設された流通孔(図示略)からケーシング21と削孔ロッド25との間の環状通路27を経て外部へ排出される。なお、鋼管21としては、一例として外径200〜300mm程度のものが用いられる。上記削孔は、鋼管21を継足しながら予定深度まで行い、削孔終了後、上記削孔ロッド25を削孔ツール24と一緒に鋼管21から引抜き、鋼管21のみを孔26内に残す。   Here, the construction procedure for placing the micropiles 11 and 12 will be specifically described with reference to FIGS. 3 and 4. First, as shown in FIGS. 3A and 4A, a steel pipe 21 having a plurality of check valves 20 is prepared on a pipe wall, and an eccentric diameter expanding bit 22 and a down-the-hole hammer 23 are provided in the steel pipe 21. Are inserted into a drilling rod 25 having a drilling tool 24 at the tip. Then, the steel pipe 21 and the drilling rod 25 are integrally supported by a construction machine (hole drilling machine) (not shown), and the steel pipe 21 is used as a casing to rotate the drilling rod 25 with respect to the small steps 106. Then, the central portion of the existing steel pipe restraining pile 120 of the small stage 106 is drilled so as to have an inclination angle θ, and the steel pipe (casing) 21 is placed inside the steel pipe 120a of the ground or the existing steel pipe restraining pile 120. Penetration into the filled mortar 120b. The down-the-hole hammer 23 has a function of applying an impact load to the eccentric diameter-expanding bit 22 by operating the hammer portion by air pressure. By using the down-the-hole hammer 23 and the eccentric diameter-expanding bit 22 in combination, the down-the-hole hammer 23 In the mortar 120b filled in the steel pipe 120a, a hole 26 having a diameter larger than that of the steel pipe 21 is drilled with high efficiency. At this time, the excavated shear generated by the drilling is discharged to the outside through a circular hole 27 between the casing 21 and the drilling rod 25 from a flow hole (not shown) penetrating the eccentric diameter expanding bit 22. . As the steel pipe 21, one having an outer diameter of about 200 to 300 mm is used as an example. The drilling is performed to a predetermined depth while the steel pipe 21 is connected. After the drilling is completed, the drilling rod 25 is pulled out from the steel pipe 21 together with the drilling tool 24, and only the steel pipe 21 is left in the hole 26.

次に、図3(b)及び図4(b)に示すように、鋼管21内に注入機30を挿入する。この注入機30は、シングルパッカーと呼称されるもので、空気圧により膨出する1つの膨出体31と吐出ノズル32とを備えており、膨出体31には地上の圧縮空気源から延ばしたエアホース33が、吐出ノズル32には地上のグラウト供給源から延ばしたグラウト管34がそれぞれ接続されている。注入機30は、最初、鋼管21の最深位置まで挿入し、その位置でエアホース33を通じて膨出体31に圧縮空気を送ってこれを膨出させ、鋼管21に対してその位置を固定する。続いて、グラウト管34を通じて吐出ノズル32にグラウトセメントミルク、セメントモルタル等の硬化材グラウトを圧送する。すると、この硬化材グラウトは、吐出ノズル32から吐出して鋼管21の先端開口から前方の地盤内に加圧注入され、その一部は鋼管21の先端部の外側にも回り、さらに鋼管21内の、膨出体31より前方域にフィルアップする。そして、鋼管21内へのフィルアップにより内圧が高まると、逆止弁20が開いて硬化材グラウトが鋼管21の周辺へ放射状に噴出し、鋼管21の周りの地盤内に加圧注入される。吐出ノズル32からの硬化材グラウトの吐出圧力は、一例として、1〜2MPa(10〜20kgf/cm2)程度とかなりの高圧に設定されており、これにより、硬化材グラウトは地盤中に浸透し、特に、地盤が玉石混じり礫や崖錘性堆積層あるいは崩壊し易い岩盤などからなっている場合は、これらの中に十分に浸透する。又、既設鋼管抑止杭120の鋼管120aの内部に充填されたモルタル120bにも十分に密着する。 Next, as shown in FIGS. 3B and 4B, the injector 30 is inserted into the steel pipe 21. The injector 30 is called a single packer, and includes a bulging body 31 that bulges by air pressure and a discharge nozzle 32. The bulging body 31 extends from a compressed air source on the ground. An air hose 33 and a grout pipe 34 extending from a ground grout supply source are connected to the discharge nozzle 32, respectively. The injector 30 is first inserted to the deepest position of the steel pipe 21, and at that position, compressed air is sent to the bulging body 31 through the air hose 33 to bulge it, and the position is fixed to the steel pipe 21. Subsequently, a grout cement grout such as grout cement milk or cement mortar is pumped through the grout tube 34 to the discharge nozzle 32. Then, this hardened material grout is discharged from the discharge nozzle 32 and pressurized and injected into the ground in front from the front end opening of the steel pipe 21, a part of which also goes outside the front end portion of the steel pipe 21, and further inside the steel pipe 21. Fill up to the front area of the bulging body 31. When the internal pressure is increased by filling up the steel pipe 21, the check valve 20 is opened, and the hardened material grout is ejected radially to the periphery of the steel pipe 21 and is injected under pressure into the ground around the steel pipe 21. As an example, the discharge pressure of the hardened material grout from the discharge nozzle 32 is set to a high pressure of about 1 to 2 MPa (10 to 20 kgf / cm 2 ), so that the hardened material grout penetrates into the ground. In particular, if the ground is composed of cobbles, gravels, cliff-like sedimentary layers, or rocks that are easily collapsed, they will penetrate into these. Moreover, it adheres sufficiently to the mortar 120b filled in the steel pipe 120a of the existing steel pipe deterrent pile 120.

このようにして、鋼管21の前方領域及び周辺領域には、土砂を含む厚肉のグラウト層35が形成され、このグラウト層35は、注入機30を、逆止弁20の配列ピッチに相当するピッチで引上げながら、前記硬化材グラウトの吐出を繰返すことで、図4(c)に示すように次第に上方へ拡大する。そして、このグラウト層35が小段106又は斜面104の近傍まで拡大したら、注入機30からの硬化材グラウトの吐出を停止し、これと同時に膨出体31に接続するエアホース33を大気側に切換えて、膨出体31を縮径させ、鋼管21から注入機30を引抜く。グラウト層35は、所定時間経過することで硬化して、図4(d)に示すように定着層36に変質し、鋼管21と定着層36とが一体となったマイクロパイル11、12(図2)が打設される。なお、注入機30としては、上記したシングルパッカーに代えて、一対の膨出体を備えたダブルパッカーを用いてもよいことはもちろんである。ただし、この場合は、鋼管21の内部が空洞となるので、鋼管21内に鉄筋、H形鋼、小口径鋼管等の補強用心材を装入するのが望ましい。又、鋼管21の貫入深さを既設鋼管抑止杭120の長さよりも深くすることで、既設鋼管抑止杭120よりも長くマイクロパイル11を打設することも可能である。 In this way, a thick grout layer 35 containing earth and sand is formed in the front region and the peripheral region of the steel pipe 21, and this grout layer 35 corresponds to the arrangement pitch of the check valves 20 with the injector 30. By repeating the discharge of the hardener grout while pulling up at a pitch, it gradually expands upward as shown in FIG. And when this grout layer 35 expands to the vicinity of the small stage 106 or the slope 104, the discharge of the hardening material grout from the injection machine 30 is stopped, and at the same time, the air hose 33 connected to the bulging body 31 is switched to the atmosphere side. Then, the diameter of the bulging body 31 is reduced, and the injection machine 30 is pulled out from the steel pipe 21. The grout layer 35 is cured after a predetermined time, and is transformed into a fixing layer 36 as shown in FIG. 4D, and the micropile 11 and 12 (FIG. 4) in which the steel pipe 21 and the fixing layer 36 are integrated. 2) is placed. Of course, as the injector 30, a double packer having a pair of bulging bodies may be used instead of the single packer described above. However, in this case, since the inside of the steel pipe 21 becomes a cavity, it is desirable to insert a reinforcing core material such as a reinforcing bar, an H-shaped steel, or a small-diameter steel pipe into the steel pipe 21. Further, the micropile 11 can be driven longer than the existing steel pipe deterrent pile 120 by making the penetration depth of the steel pipe 21 deeper than the length of the existing steel pipe deterrent pile 120.

又、図5はマイクロパイル11、12の打設に先行して、地盤中に高圧噴射攪拌工法により改良柱40を造成し、この改良柱40内に斜杭状のマイクロパイル12を打設する応用例について示している。
高圧噴射攪拌工法により改良柱40を造成するには、予め図4(a)に示したように、鋼管(ここでは逆止弁20付きでなくてもよい)21及び削孔ロッド25を用いて削孔を行った後、この削孔により形成された孔26内に、図5(a)に示すように、先端に噴射ノズル41を有する注入ロッド(単管又は二重管)42を挿入する。そして、この注入ロッド42を回転及び斜めに下降させ、その先端の噴射ノズル41が所定深さに達したら、注入ロッド42内に超高圧(30〜40MPa 程度)の水を供給し(圧縮空気を併用する場合もある)、その噴射ノズル41から水平方向へ超高圧水を噴射させる。この超高圧水の噴射により地盤が広範囲に切削攪拌(プレカッティング)され、地盤内には大径の切削攪拌層43が形成され、この切削攪拌層43は、注入ロッド42の回転及び下降に応じて下方へ拡大する。なお、この時発生する余剰スライムは注入ロッド42の周りの空隙を通して地上へ排出される。
Further, in FIG. 5, prior to the placement of the micropile 11 and 12, the improved pillar 40 is formed in the ground by the high-pressure jet stirring method, and the slant pile-shaped micropile 12 is placed in the improved pillar 40. An application example is shown.
In order to create the improved column 40 by the high-pressure jet stirring method, as shown in FIG. 4 (a) in advance, a steel pipe (not necessarily equipped with the check valve 20) 21 and the drilling rod 25 are used. After drilling, an injection rod (single tube or double tube) 42 having an injection nozzle 41 at the tip is inserted into the hole 26 formed by the drilling, as shown in FIG. . Then, the injection rod 42 is rotated and lowered obliquely, and when the injection nozzle 41 at the tip reaches a predetermined depth, ultrahigh pressure (about 30-40 MPa) water is supplied into the injection rod 42 (compressed air is supplied). In some cases, ultrahigh pressure water is jetted from the jet nozzle 41 in the horizontal direction. The ground is cut and agitated (pre-cutting) in a wide range by the injection of the ultra-high pressure water, and a large-diameter cutting agitation layer 43 is formed in the ground. And expand downward. The excess slime generated at this time is discharged to the ground through the gap around the injection rod 42.

そして、斜杭状のマイクロパイル12の打設深度よりもわずか深い位置までのプレカッティングを終えたら、超高圧水をグラウト(セメントミルク:水セメント比W/C =60〜70程度)に切替え、噴射ノズル41から超高圧(40MPa 程度)のグラウトを水平方向へ噴射させながら(圧縮空気を併用する場合もある)、図5(b)に示すように注入ロッド42を回転及び上昇させる。このグラウトの高圧噴射により、切削攪拌層43内の土砂はグラウトと攪拌混合されてグラウト混合層44に変質し、このグラウト混合層44は注入ロッド42の回転及び上昇に応じて上方へ拡大する。この時、余剰スライムは地上へ誘導排出されるが、この段階では水の噴射が停止されているので、その誘導排出の程度はわずかであり、グラウトの無駄な消費が抑えられる。このようにしてグラウト混合層44の形成が計画改良域の上限に達したら、注入ロッド42に対するグラウトの供給を停止し、注入ロッド42を地盤から引抜き、そのまま養生させる。この養生によりグラウト混合層44が硬化し、地盤内には、図5(c)に示すように前記した大径の改良柱40が造成される。 And, after finishing the pre-cutting to a position slightly deeper than the depth of the pile pile-like micropile 12, switch the ultra-high pressure water to grout (cement milk: water cement ratio W / C = about 60-70), While injecting a super high pressure (about 40 MPa) grout from the injection nozzle 41 in the horizontal direction (sometimes using compressed air together), the injection rod 42 is rotated and raised as shown in FIG. By this high-pressure injection of the grout, the earth and sand in the cutting stirring layer 43 is stirred and mixed with the grout and transformed into the grout mixed layer 44, and the grout mixed layer 44 expands upward in accordance with the rotation and rise of the injection rod 42. At this time, surplus slime is guided and discharged to the ground, but at this stage, since the injection of water is stopped, the degree of the guided discharge is small and wasteful consumption of grout can be suppressed. When the formation of the grout mixed layer 44 reaches the upper limit of the planned improvement region in this way, the supply of the grout to the injection rod 42 is stopped, the injection rod 42 is pulled out from the ground, and is cured as it is. As a result of this curing, the grout mixed layer 44 is hardened, and the large-diameter improved pillar 40 is formed in the ground as shown in FIG.

次に、図5(c)に示すように、上記のように造成された改良柱40に、例えばアースオーガー45を用いて前記斜穴46を掘削する。この斜穴46の掘削は、改良柱40の底面近傍まで行い、掘削終了後、アースオーガー45を改良柱40から引抜く。その後、図5(d)に示すように、この斜穴46内に、上記した逆止弁20を備えた鋼管21を挿入し、さらにこの鋼管21内に注入機30(図3、図4)を挿入して、図4(c)に示したように逆止弁20を通して鋼管21の周りに硬化材グラウトを加圧注入し、これにより鋼管21と定着層36とが一体となった斜杭状のマイクロパイル12が打設される。なお、上記鋼管21としては、図5(d)に示したように軸方向に多数の節47を有する節付き鋼管を用いるようにしてもよく、これによりマイクロパイル11、12の支持力はより一層向上する。 Next, as shown in FIG. 5C, the oblique hole 46 is excavated in the improved pillar 40 constructed as described above using, for example, an earth auger 45. The oblique hole 46 is excavated to the vicinity of the bottom surface of the improved column 40. After the excavation is completed, the earth auger 45 is pulled out from the improved column 40. Thereafter, as shown in FIG. 5 (d), the steel pipe 21 provided with the check valve 20 is inserted into the inclined hole 46, and the injector 30 (FIGS. 3 and 4) is further inserted into the steel pipe 21. As shown in FIG. 4 (c), the hardened material grout is pressurized and injected around the steel pipe 21 through the check valve 20, so that the steel pipe 21 and the fixing layer 36 are integrated with each other. A shaped micropile 12 is cast. As the steel pipe 21, a steel pipe with a node having a large number of nodes 47 in the axial direction as shown in FIG. 5 (d) may be used, so that the supporting force of the micropiles 11 and 12 is further increased. Further improvement.

上記構成をなす、本発明の実施の形態によれば、次のような作用効果を得ることが可能である。
すなわち、本発明の実施の形態に係る斜面安定工法は、比較的小型の機械で、狭隘個所や傾斜地にも施工可能なマイクロパイル11を、既設鋼管抑止杭120の内部に打設することにより、既設鋼管抑止杭120とマイクロパイル11とが一体化し、強化鋼管抑止杭200を構成することが可能となる。この、強化鋼管抑止杭200は、地盤の風化・劣化等により、すべり面が深くなった場合でも、そのすべり面よりも更に深層に到達するように、既設鋼管抑止杭120よりも長くマイクロパイル11を打設することで、必要な抑止効果を発揮するものとなる。又、既設鋼管抑止杭120の鋼管120aの内部にマイクロパイル11を構成する鋼管21が配置された多重管構造となり、耐力が大幅に向上することとなる。又、既設鋼管抑止杭120の支持層(不動層)への根入れ不足(支持力不足)対策としても、既設鋼管抑止杭120よりも長く深層へと突出するマイクロパイル11が、比較的大きな周面摩擦力を確保することにより、必要な支持力を確保するものとなる。
According to the embodiment of the present invention configured as described above, the following operational effects can be obtained.
That is, the slope stabilization method according to the embodiment of the present invention is a relatively small machine, and by driving the micropile 11 that can be constructed even in a narrow part or an inclined place into the existing steel pipe deterrent pile 120, The existing steel pipe deterrent pile 120 and the micropile 11 are integrated, and the reinforced steel pipe deterrent pile 200 can be configured. The reinforced steel pipe deterrent pile 200 is longer than the existing steel pipe deterrent pile 120 so as to reach deeper than the slip surface even when the slip surface becomes deep due to weathering or deterioration of the ground. The necessary deterrent effect will be exhibited by setting up. Moreover, it becomes a multiple pipe structure by which the steel pipe 21 which comprises the micropile 11 is arrange | positioned inside the steel pipe 120a of the existing steel pipe suppression pile 120, and proof stress will improve significantly. In addition, as a countermeasure against insufficient penetration (insufficient supporting force) of the existing steel pipe deterrent pile 120 to the support layer (non-moving layer), the micropile 11 that protrudes deeper than the existing steel pipe deterrent pile 120 has a relatively large circumference. By securing the surface friction force, the necessary support force is ensured.

又、本発明の実施の形態に係る斜面安定工法は、必要に応じ、斜杭状にマイクロパイル12を打設して、強化鋼管抑止杭200の杭頭と斜杭状のマイクロパイル12の杭頭とを、基礎梁210により剛結することで、地すべり力(ほぼ水平な力)に対するトラス構造を構成するものである。この際、斜杭状のマイクロパイル12についても、すべり面よりも更に深層に到達するように打設する。かかるトラス構造において、強化鋼管抑止杭200には、主として曲げと押し込み力(杭軸抵抗)が作用し、斜杭状のマイクロパイル12には、主として曲げと引抜き力(杭抵抗力)が作用し、地すべり力(水平力)に対して、曲げ抵抗、せん断抵抗及び新たに付加された杭軸抵抗を発揮させ、当初(既設鋼管抑止杭)よりも大きな抑止効果を確保するものである。従って、地盤条件の劣化、降雨等の影響により、当初の想定以上の規模の地すべりが発生する懸念が生じるような場合にも、地すべり抑止対策を強化することが可能となる。   In addition, the slope stabilization method according to the embodiment of the present invention is configured such that, if necessary, the micropile 12 is placed in a diagonal pile shape, and the pile head of the reinforced steel pipe restraining pile 200 and the pile of the diagonal pile-shaped micropile 12 are provided. A truss structure against a landslide force (substantially horizontal force) is formed by rigidly connecting the head to the foundation beam 210. At this time, the slant pile-like micropile 12 is also placed so as to reach a deeper layer than the sliding surface. In such a truss structure, bending and pushing force (pile shaft resistance) mainly acts on the reinforced steel pipe deterrent pile 200, and bending and pulling force (pile resistance force) mainly acts on the oblique pile-shaped micropile 12. In addition, it exerts bending resistance, shear resistance, and newly added pile shaft resistance against landslide force (horizontal force), and ensures a greater deterrent effect than the original (existing steel pipe deterrent pile). Therefore, even when there is a concern that a landslide with a scale larger than the initial assumption may occur due to deterioration of ground conditions, rainfall, or the like, it is possible to strengthen landslide prevention measures.

しかも、図2に示されるように、小段106の直上部分の斜面104Hに対して、強化鋼管抑止杭200一本あたり斜杭状のマイクロパイル12を二本打設し、強化鋼管抑止杭200の杭頭と斜杭状のマイクロパイル12の杭頭とを、基礎梁210により剛結することで、斜杭状のマイクロパイル12の上記機能をより大きく発揮させるものである。   In addition, as shown in FIG. 2, two slant pile-shaped micro piles 12 are placed per one reinforced steel pipe deterrent pile 200 on the slope 104H immediately above the small step 106, and the reinforced steel pipe deterrent pile 200 The pile head and the pile head of the oblique pile-like micropile 12 are rigidly connected by the foundation beam 210, so that the above functions of the oblique pile-like micropile 12 are exhibited more greatly.

又、斜杭状のマイクロパイル12の杭頭を、隣接する強化鋼管抑止杭200の杭頭を結ぶ線上に配置することで、既存の切土法面102の施工スペース・傾斜地形等の制約を受けることなく、マイクロパイル12を打設することができる。又、地中の既設構造物等との干渉を回避する上でも、強化鋼管抑止杭200の杭頭を結ぶ線上に斜杭状のマイクロパイル12の杭頭を配置することが望ましい。更に、強化鋼管抑止杭200と斜杭状のマイクロパイル12との荷重分担の相違に起因して、杭頭部の基礎梁に生ずるねじりモーメントの影響を、上記配置によって軽減すると共に、杭頭部を剛結する基礎梁210の構造の単純化、軽量化を図ることにもなる。
なお、斜杭状のマイクロパイル12と強化鋼管抑止杭200との設置間隔を、斜杭状のマイクロパイル22の外径の2.5倍〜8倍だけ確保することで、マイクロパイル12の上記機能をより大きく発揮させることができる。
In addition, by placing the pile heads of the inclined pile-shaped micropile 12 on the line connecting the pile heads of the adjacent reinforced steel pipe restraining piles 200, there are restrictions on the construction space, sloped terrain, etc. of the existing cut slope 102. The micropile 12 can be driven without receiving. In order to avoid interference with existing underground structures and the like, it is desirable to arrange the pile heads of the oblique pile-shaped micropile 12 on the line connecting the pile heads of the reinforced steel pipe deterrent piles 200. Further, the influence of the torsional moment generated on the foundation beam of the pile head due to the difference in load sharing between the reinforced steel pipe restraining pile 200 and the oblique pile-shaped micropile 12 is reduced by the above arrangement, and the pile head This also simplifies the structure of the foundation beam 210 that rigidly connects the two and reduces the weight.
In addition, the above-mentioned micropile 12 is secured by securing the installation interval between the inclined pile-shaped micropile 12 and the reinforced steel pipe restraining pile 200 by 2.5 to 8 times the outer diameter of the inclined pile-shaped micropile 22. The function can be exhibited more greatly.

更に、本発明の実施の形態では、必要に応じて高圧噴射攪拌工法により予め大きな改良柱40を造成した上で、斜杭状マイクロパイル12を施工することで、より大きな抑止力を確保するものである。そして、盛土砂面や自然斜面等の土砂地山において、降雨等による劣化が生じ、地盤半力の確保が困難な場合であっても、必要な抑止力を確保することが可能となる。   Furthermore, in the embodiment of the present invention, a large improvement pillar 40 is created in advance by a high-pressure jet agitation method as needed, and a greater deterrent is secured by constructing the slant pile-like micropile 12. It is. And even if it is difficult to secure the ground half force in the earth and sand mountain such as the embankment sand surface and natural slope, it is possible to ensure the necessary deterrent.

11:マイクロパイル、12:斜杭状のマイクロパイル、21:鋼管、40:改良柱、100:山地、102:切土法面、104:斜面、106:小段、120:既設鋼管抑止杭、120a:鋼管、120b:モルタル、 122、123:すべり面、200:強化鋼管抑止杭、210:基礎梁   11: Micropile, 12: Oblique pile-shaped micropile, 21: Steel pipe, 40: Improved column, 100: Mountain area, 102: Cut slope, 104: Slope, 106: Small step, 120: Existing steel pipe restraint pile, 120a : Steel pipe, 120b: mortar, 122, 123: slip surface, 200: reinforced steel pipe deterrent pile, 210: foundation beam

Claims (8)

切土法面の途中の小段に対して斜面安定工として鉛直に施工されている既設鋼管抑止杭の内部にマイクロパイルを打設することにより、既設鋼管抑止杭とマイクロパイルとが一体化した、強化鋼管抑止杭を構成することを特徴とする斜面安定工法。 By placing the micropile inside the existing steel pipe deterrent pile that is constructed vertically as a slope stabilizer for the small step in the middle of the cut slope, the existing steel pipe deterrent pile and the micropile are integrated, A slope stabilization method characterized by constructing reinforced steel pipe deterrent piles. 前記強化鋼管抑止杭に隣接して、前記小段の直上部分の斜面に対して斜杭状にマイクロパイルを打設し、前記強化鋼管抑止杭頭部と前記斜杭状のマイクロパイル頭部とを、基礎梁により剛結することを特徴とする斜面安定工法。 Adjacent to the strengthened steel pipe deterrent pile, a micropile is placed in a slanted pile shape against the slope of the portion directly above the small step, and the strengthened steel pipe detained pile head and the oblique pile-shaped micropile head are Slope stabilization method characterized by rigid connection with foundation beams. 前記斜杭状のマイクロパイルの杭頭を、隣接する強化鋼管抑止杭の杭頭を結ぶ線上に配置することを特徴とする請求項2記載の斜面安定工法。 3. The slope stabilization method according to claim 2, wherein the pile heads of the oblique pile-like micropile are arranged on a line connecting the pile heads of adjacent reinforced steel pipe deterrent piles. 前記斜杭状のマイクロパイルの打設に先行して、地盤中に高圧噴射攪拌工法により改良柱を造成し、該改良柱内に前記マイクロパイルを打設することを特徴とする請求項2又は3記載の斜面安定工法。 Prior to placing the slant pile-shaped micropile, an improved column is created in the ground by a high-pressure jet stirring method, and the micropile is placed in the improved column. 3. The slope stabilization method described in 3. 切土法面の途中の小段に対して斜面安定工として鉛直に施工されている既設鋼管抑止杭の内部にマイクロパイルが打設され、既設鋼管抑止杭とマイクロパイルとが一体化されてなることを特徴とする地すべり鋼管抑止杭。 A micropile is placed inside an existing steel pipe deterrent pile that is installed vertically as a slope stabilizer for a small step in the cut slope, and the existing steel pipe deterrent pile and the micropile are integrated. Landslide steel pipe deterrent pile characterized by. 前記既設鋼管抑止杭の頭部と、前記既設鋼管抑止杭に隣接して、前記小段の直上部分の斜面に対して斜杭状に打設されたマイクロパイルの頭部とが、基礎梁により剛結されてなることを特徴とする請求項5記載の地すべり鋼管抑止杭。 The head of the existing steel pipe deterrent pile and the head of a micropile placed in a slant pile shape against the slope of the portion directly above the small stage adjacent to the existing steel pipe deterrent pile are rigidly supported by the foundation beam. The landslide steel pipe deterrent pile according to claim 5, wherein the pile is connected. 前記斜杭状のマイクロパイルの杭頭が、隣接する既設鋼管抑止杭の杭頭を結ぶ線上に配置されてなることを特徴とする請求項6記載の地すべり鋼管抑止杭。 The landslide steel pipe deterrent pile according to claim 6, wherein the pile head of the oblique pile-like micropile is arranged on a line connecting the pile heads of adjacent existing steel pipe deterrent piles. 前記斜杭状のマイクロパイルが、その打設に先行して地盤中に高圧噴射攪拌工法により造成された改良柱内に、打設されてなることを特徴とする請求項6又は7記載の地すべり鋼管抑止杭。 The landslide according to claim 6 or 7, wherein the oblique pile-like micropile is placed in an improved column created by a high-pressure jet stirring method in the ground prior to the placement. Steel pipe deterrent pile.
JP2010044106A 2010-03-01 2010-03-01 Slope stabilization method and landslide steel pipe restraint pile Active JP5582497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044106A JP5582497B2 (en) 2010-03-01 2010-03-01 Slope stabilization method and landslide steel pipe restraint pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044106A JP5582497B2 (en) 2010-03-01 2010-03-01 Slope stabilization method and landslide steel pipe restraint pile

Publications (2)

Publication Number Publication Date
JP2011179220A true JP2011179220A (en) 2011-09-15
JP5582497B2 JP5582497B2 (en) 2014-09-03

Family

ID=44691013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044106A Active JP5582497B2 (en) 2010-03-01 2010-03-01 Slope stabilization method and landslide steel pipe restraint pile

Country Status (1)

Country Link
JP (1) JP5582497B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132142A (en) * 2013-01-07 2014-07-17 Takenaka Komuten Co Ltd Construction method for pile
CN103993607A (en) * 2013-09-23 2014-08-20 张玉芳 Steel flower tube control grouting and skid resistance composite structure and quick construction method thereof
JP2015055083A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for oblique angle bridge abutment by earth pressure reduction
JP2015055082A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for bridge abutment by earth pressure reduction
JP2019522129A (en) * 2016-08-10 2019-08-08 コリア インスティチュート オブ シビル エンジニアリング アンド ビルディング テクノロジーKorea Institute Of Civil Engineering And Building Technology Micropile corrugated grout bulb and method of forming the same
CN110439011A (en) * 2019-09-04 2019-11-12 中国电建集团中南勘测设计研究院有限公司 A kind of side slope antiskid supporting construction and its construction method
CN113322982A (en) * 2021-04-28 2021-08-31 西安工业大学 Method for managing landslide of accumulation layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290906A (en) * 1999-04-09 2000-10-17 Toyo Constr Co Ltd Road widening construction method
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
JP2002294653A (en) * 2001-04-02 2002-10-09 Taisei Corp Member and method for constructing of structure on the water
JP2004068446A (en) * 2002-08-07 2004-03-04 Arai Gumi Ltd Existing pile investigating method and existing pile reinforcing method
JP2010031568A (en) * 2008-07-30 2010-02-12 Shimizu Corp Aseismatic reinforcing construction method for existing foundation and aseismatic reinforcing structure of existing foundation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290906A (en) * 1999-04-09 2000-10-17 Toyo Constr Co Ltd Road widening construction method
JP2002275907A (en) * 2001-03-16 2002-09-25 Toyo Constr Co Ltd Stabilization construction method for slope
JP2002294653A (en) * 2001-04-02 2002-10-09 Taisei Corp Member and method for constructing of structure on the water
JP2004068446A (en) * 2002-08-07 2004-03-04 Arai Gumi Ltd Existing pile investigating method and existing pile reinforcing method
JP2010031568A (en) * 2008-07-30 2010-02-12 Shimizu Corp Aseismatic reinforcing construction method for existing foundation and aseismatic reinforcing structure of existing foundation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132142A (en) * 2013-01-07 2014-07-17 Takenaka Komuten Co Ltd Construction method for pile
JP2015055083A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for oblique angle bridge abutment by earth pressure reduction
JP2015055082A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for bridge abutment by earth pressure reduction
CN103993607A (en) * 2013-09-23 2014-08-20 张玉芳 Steel flower tube control grouting and skid resistance composite structure and quick construction method thereof
CN103993607B (en) * 2013-09-23 2015-11-25 张玉芳 Steel floral tube controls slip casting antiskid composite construction and rapid constructing method thereof
JP2019522129A (en) * 2016-08-10 2019-08-08 コリア インスティチュート オブ シビル エンジニアリング アンド ビルディング テクノロジーKorea Institute Of Civil Engineering And Building Technology Micropile corrugated grout bulb and method of forming the same
CN110439011A (en) * 2019-09-04 2019-11-12 中国电建集团中南勘测设计研究院有限公司 A kind of side slope antiskid supporting construction and its construction method
CN110439011B (en) * 2019-09-04 2024-01-30 中国电建集团中南勘测设计研究院有限公司 Side slope anti-slip supporting structure and construction method thereof
CN113322982A (en) * 2021-04-28 2021-08-31 西安工业大学 Method for managing landslide of accumulation layer

Also Published As

Publication number Publication date
JP5582497B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
KR100866162B1 (en) Chair-type self-supported earth retaining wall constructing method
KR101014796B1 (en) Top-down underground construction method using prefabricated concrete column member as temporary bridge column
JP5582497B2 (en) Slope stabilization method and landslide steel pipe restraint pile
JP3769637B2 (en) Slope stabilization method
KR101147510B1 (en) Complex pile with improved end bearing capacity and piling method of complex pile using the same
JP5274145B2 (en) Cast-in-place pile and its construction method
US7600948B2 (en) Micropile retaining wall
JP4663541B2 (en) Seismic reinforcement method for existing concrete pier
JP4712456B2 (en) Foundation reinforcement method
KR101195235B1 (en) Underground structure construction method using composite pile
US8690478B2 (en) Tunnel reinforcement structure and tunnel construction method capable of controlling ground displacement using pressurization
JP2014227729A (en) Banking reinforcement structure and banking reinforcement method
KR20120102480A (en) Phc pile with improved end bearing capacity and piling method of phc pile using the same
JP4811176B2 (en) Construction method of ready-made piles
KR101005193B1 (en) Pile for cofferdam
JP3448629B2 (en) Seismic retrofitting method for existing structure foundation
KR102113291B1 (en) Soil retaining wall using phc pile and construction method thererof
JP4872561B2 (en) Construction method of ready-made piles
JP4269301B2 (en) Cross-section expansion method for existing tunnels
AU2015349623A1 (en) Construction screw pile
KR102407964B1 (en) Construction method of cast-in-place concrete piles with improved bearing capacity by constructing shear keys in rock mass
CN104153356B (en) The constructing device of concrete-pile and construction method thereof
JP2017197910A (en) Construction method of earth retaining wall structure, and earth retaining wall structure
KR101072215B1 (en) pile constructing method for reinforcing ends and the pile constructed by this
JP6943633B2 (en) Ring-shaped tip hardware and middle digging pile method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5582497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250