JP2011178891A - Carbon fiber composite material - Google Patents

Carbon fiber composite material Download PDF

Info

Publication number
JP2011178891A
JP2011178891A JP2010044287A JP2010044287A JP2011178891A JP 2011178891 A JP2011178891 A JP 2011178891A JP 2010044287 A JP2010044287 A JP 2010044287A JP 2010044287 A JP2010044287 A JP 2010044287A JP 2011178891 A JP2011178891 A JP 2011178891A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
composite material
carbon
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044287A
Other languages
Japanese (ja)
Other versions
JP5576147B2 (en
Inventor
Yuhei Konagai
祐平 小永井
Yutaka Kondo
豊 近藤
Naoaki Sonoda
直彬 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010044287A priority Critical patent/JP5576147B2/en
Publication of JP2011178891A publication Critical patent/JP2011178891A/en
Application granted granted Critical
Publication of JP5576147B2 publication Critical patent/JP5576147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber composite material making a thermoplastic resin as a matrix. <P>SOLUTION: The composite material is constituted by a carbon fiber having a fiber length of 10-100 mm and a thermoplastic resin, and in the composite material, the carbon fibers are substantially oriented in two-dimensional random manner; and regarding a carbon fiber bundle (A) constituted by critical single yarn number or more defined by formula (1), a ratio of the bundle relative to the whole amount of fiber is ≥30 Vol% and <90 Vol%, and the average fiber number (N) in the carbon fiber bundle (A) satisfies following formula (2). Critical single yarn number=600/D (1), 6×10<SP>4</SP>/D<SP>2</SP><N<2×10<SP>5</SP>/D<SP>2</SP>(2) (wherein D is an average fiber diameter (μm) of the carbon fiber). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱可塑性樹脂をマトリクスとした繊維強化複合材料に関するものであって、機械物性に優れ、なかでも炭素繊維を複合したことによる強化機能の発現性に優れた炭素繊維複合材料を提供しようとするものである。   The present invention relates to a fiber reinforced composite material using a thermoplastic resin as a matrix, and is intended to provide a carbon fiber composite material having excellent mechanical properties and, in particular, excellent expression of a reinforcing function by combining carbon fibers. It is what.

炭素繊維やアラミド繊維、ガラス繊維などを強化繊維として用いた繊維強化複合材料として、等方性であるランダムマットが、賦形性や工程の簡便さより用いられている。このランダムマットは、カットした強化繊維単体、あるいは熱硬化性の樹脂を成形型に同時に吹き付けるスプレーアップ方式(乾式)や、バインダーを含有させたスラリーに予めカットした強化繊維を添加し、抄紙する方法(湿式)等により得る事ができる。   As a fiber-reinforced composite material using carbon fiber, aramid fiber, glass fiber, or the like as a reinforcing fiber, an isotropic random mat is used because of formability and simplicity of the process. This random mat is a method of making paper by adding a cut reinforcing fiber alone or a spray-up method (dry type) in which a thermosetting resin is simultaneously sprayed on a mold, or adding a pre-cut reinforcing fiber to a slurry containing a binder. (Wet) can be obtained.

複合材料の機械物性を向上させる手段としては、繊維体積含有率(Vf)を高くする事が知られているが、カット繊維を用いたランダムマットの場合、3次元方向の繊維が存在する、繊維の交絡が多いなどの理由により、繊維体積含有率を高くする亊が困難であった。またランダムマットを用いた場合は連続繊維を用いた場合と比較して繊維が不連続であるため、強化繊維の強度を十分に発現させる事が困難であった。そのため、従来の成形物では、成形物の引張り強度と強化繊維の強度の比である強度発現率は、5%程度に満たないものが一般的であった。   As a means for improving the mechanical properties of the composite material, it is known to increase the fiber volume content (Vf). However, in the case of a random mat using cut fibers, a fiber in which three-dimensional fibers are present It is difficult to increase the fiber volume content because of the large number of entanglements. Further, when the random mat is used, the fibers are discontinuous as compared with the case where the continuous fibers are used, and thus it is difficult to sufficiently develop the strength of the reinforcing fibers. Therefore, in the conventional molded product, the strength expression rate, which is the ratio between the tensile strength of the molded product and the strength of the reinforcing fiber, is generally less than about 5%.

非特許文献1には、熱硬化性樹脂をマトリックスとした炭素繊維のランダムマットからの複合材料が挙げられているが、かかる複合材料の強化繊維の強度発現率は、3.8%程度である。
近年、ランダムマットを用いた複合材料の機械物性を向上させる手段として、繊維束を斜めに裁断し、断面積を変化させたチョップド繊維束を用いる方法が提案された(特許文献1および2)。かかる手法によれば、従来3〜4%であった強化繊維の強度発現率を7%程度まで向上させる事が可能となったが、10%を超えるものではない。
Non-Patent Document 1 mentions a composite material from a random mat of carbon fibers using a thermosetting resin as a matrix. The strength expression rate of the reinforcing fiber of such a composite material is about 3.8%. .
In recent years, as a means for improving the mechanical properties of a composite material using a random mat, a method using a chopped fiber bundle in which a fiber bundle is cut obliquely and its cross-sectional area is changed has been proposed (Patent Documents 1 and 2). According to such a technique, it has become possible to improve the strength expression rate of the reinforcing fiber, which was 3 to 4% in the past, to about 7%, but does not exceed 10%.

このように従来は熱硬化性樹脂をマトリックスとした複合材料が提案されていた。通常、繊維強化複合材料は、予め、強化繊維基材に熱硬化性樹脂を含浸させたプリプレグと呼ばれる材料を、オートクレーブを用いて2時間以上加熱・加圧する事により得られる。近年、樹脂を含浸させていない強化繊維基材を金型内にセットした後、熱硬化性樹脂を流し入れるRTM成形方法が提案され、成形時間は大幅に短縮された。しかしながら、RTM成形方法を用いた場合でも、1つの部品を成形するまでに10分以上必要となる。   Thus, conventionally, a composite material using a thermosetting resin as a matrix has been proposed. Usually, a fiber reinforced composite material is obtained by heating and pressurizing a material called a prepreg in which a reinforcing fiber base is impregnated with a thermosetting resin in advance using an autoclave for 2 hours or more. In recent years, an RTM molding method in which a thermosetting resin is poured after a reinforcing fiber base not impregnated with resin is set in a mold has been proposed, and the molding time has been greatly reduced. However, even when the RTM molding method is used, it takes 10 minutes or more to mold one part.

そのため、従来の熱硬化性樹脂に代わり、熱可塑性樹脂をマトリックスに用いたコンポジットが注目されている。しかしながら、熱可塑性樹脂は、一般的に熱硬化性樹脂と比較して粘度が高く、そのため、繊維基材に樹脂を含浸させる時間が長く、結果として成形までのタクトが長くなるという問題があった。   Therefore, a composite using a thermoplastic resin as a matrix in place of a conventional thermosetting resin has attracted attention. However, the thermoplastic resin generally has a higher viscosity than the thermosetting resin, and therefore, there is a problem that the time for impregnating the fiber base material with the resin is long, and as a result, the tact time until molding becomes long. .

これらの問題を解決する手法として、熱可塑スタンピング成形(TP−SMC)と呼ばれる手法が提案されている(例えば特許文献3)。これは、予め熱可塑性樹脂を含浸させたチョップドファイバーを融点以上に加熱し、これを金型内の一部に投入した後、直ちに型を閉め、型内にて繊維と樹脂を流動させる事により製品形状を得、冷却・成型するという成型方法である。この手法では、予め樹脂を含浸させた繊維を用いる事により、約1分程度という短い時間で成形が可能である。これらはSMCやスタンパブルシートと呼ばれるような成形材料とする方法であって、かかる熱可塑スタンピング成形では、型内を繊維と樹脂を流動させるために、薄肉ものが作れない、繊維配向が乱れ、制御が困難である等の問題があった。   As a technique for solving these problems, a technique called thermoplastic stamping molding (TP-SMC) has been proposed (for example, Patent Document 3). This is done by heating a chopped fiber impregnated with a thermoplastic resin in advance to a melting point or higher, and then pouring it into a part of the mold, and then immediately closing the mold and allowing the fiber and resin to flow in the mold. This is a molding method in which the product shape is obtained, cooled and molded. In this method, molding can be performed in a short time of about 1 minute by using a fiber impregnated with a resin in advance. These are methods for forming a molding material called SMC or stampable sheet, and in such thermoplastic stamping molding, fibers and resin flow in the mold, so that a thin product cannot be made, fiber orientation is disturbed, There were problems such as difficulty in control.

また熱可塑性樹脂をマトリクスとする複合材料について、強化繊維含む長繊維ペレットを射出成形する技術も提案されているが(特許文献4)、長繊維ペレットとはいえペレットの長さに制限があり、さらに混練により熱可塑性樹脂中で強化繊維が切断されてしまい強化繊維の長さを保てないなどの課題があった。またこのような射出成形による成形方法では強化繊維が配向してしまい等方性のものが得られない等の課題があった。   Moreover, although the technique of injection-molding the long fiber pellet containing a reinforced fiber is also proposed about the composite material which uses a thermoplastic resin as a matrix (patent document 4), the length of the pellet is limited although it is a long fiber pellet, Furthermore, there existed a subject that the reinforcing fiber was cut in the thermoplastic resin by kneading and the length of the reinforcing fiber could not be maintained. Further, such a molding method by injection molding has a problem that the reinforcing fibers are oriented and an isotropic product cannot be obtained.

特開2009−114611号公報JP 2009-114611 A 特開2009−114612号公報JP 2009-114612 A 特許第4161409号公報Japanese Patent No. 4161409 特開平9−286036号公報Japanese Patent Laid-Open No. 9-286036

Composites PartA 38 (2007) 755〜770Composites Part A 38 (2007) 755-770

本発明は、炭素繊維と熱可塑性樹脂とから構成される複合材料に関するものである。本発明は、熱可塑性樹脂をマトリクスにした従来の複合材料では得られなかった機械物性に優れた複合材料を提供しようとするものである。さらに本発明は、炭素繊維を複合したことによる強化機能の発現性に優れた複合材料を提供しようとするものである。   The present invention relates to a composite material composed of carbon fibers and a thermoplastic resin. An object of the present invention is to provide a composite material having excellent mechanical properties that cannot be obtained by a conventional composite material using a thermoplastic resin as a matrix. Furthermore, the present invention intends to provide a composite material that is excellent in the expression of a reinforcing function due to the composite of carbon fibers.

本発明は、熱可塑性樹脂と特定の開繊状態を満たす炭素繊維とから構成される複合材料であり、熱可塑性のマトリックス樹脂を容易に含浸でき、機械物性に優れ薄肉化が可能な炭素繊維複合材料を提供できることを見出し本発明に至ったものである。即ち、本発明は繊維長10mm超100mm以下の炭素繊維と熱可塑性樹脂とから構成され、炭素繊維が実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される炭素繊維束(A)について、繊維全量に対する炭素繊維束(A)の割合が30Vol%以上90Vol%未満であり、かつ炭素繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする複合材料である。
臨界単糸数=600/D (1)
6×10/D<N<2×10/D (2)
(ここでDは炭素繊維の平均繊維径(μm)である)
The present invention is a composite material composed of a thermoplastic resin and carbon fibers satisfying a specific opening state, and is a carbon fiber composite that can be easily impregnated with a thermoplastic matrix resin and has excellent mechanical properties and can be thinned. The present inventors have found that a material can be provided and have arrived at the present invention. That is, the present invention is composed of carbon fibers having a fiber length of more than 10 mm and not more than 100 mm and a thermoplastic resin, and the carbon fibers are substantially two-dimensionally oriented at random, and the number of critical single yarns or more defined by the formula (1) In the carbon fiber bundle (A) composed of the carbon fiber bundle (A), the ratio of the carbon fiber bundle (A) to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the carbon fiber bundle (A) is as follows: It is a composite material characterized by satisfying the formula (2).
Critical number of single yarns = 600 / D (1)
6 × 10 4 / D 2 <N <2 × 10 5 / D 2 (2)
(Where D is the average fiber diameter (μm) of the carbon fiber)

本発明の複合材料は高い機械強度を発現し、また薄肉化や等方化が可能であるので、各種構成部材、例えば自動車の内板、外板、構成部材、また各種電気製品、機械のフレームや筐体等に用いることができる。   Since the composite material of the present invention exhibits high mechanical strength and can be made thin and isotropic, various components such as an inner plate, an outer plate, a component of an automobile, various electric products, and a frame of a machine It can be used for a casing or the like.

カット工程の概略図Schematic diagram of the cutting process ロータリー分繊カッターの正面と断面の概略図Schematic of the front and cross section of the rotary splitting cutter ナイフ角度の説明図Illustration of knife angle

[複合材料]
本発明の複合材料は、熱可塑性樹脂と繊維長10mm超100mm以下の炭素繊維とから構成され、炭素繊維は複合材料中で、実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される炭素繊維束(A)について、繊維全量に対する炭素繊維束(A)の割合が30Vol%以上90Vol%未満であり、かつ炭素繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする。
臨界単糸数=600/D (1)
6×10/D<N<2×10/D (2)
(ここでDは炭素繊維の平均繊維径(μm)である)
[Composite material]
The composite material of the present invention is composed of a thermoplastic resin and carbon fibers having a fiber length of more than 10 mm and not more than 100 mm, and the carbon fibers are oriented substantially two-dimensionally randomly in the composite material. For the carbon fiber bundle (A) composed of the defined number of critical single yarns or more, the ratio of the carbon fiber bundle (A) to the total amount of fibers is 30 Vol% or more and less than 90 Vol%, and the average in the carbon fiber bundle (A) The number of fibers (N) satisfies the following formula (2).
Critical number of single yarns = 600 / D (1)
6 × 10 4 / D 2 <N <2 × 10 5 / D 2 (2)
(Where D is the average fiber diameter (μm) of the carbon fiber)

ここで「実質的に2次元ランダム」とは、複合材料を構成する炭素繊維が、複合材料の接表面内に繊維軸の主配向方向があり、かつその面内において互いに直行する二方向に測定した引張弾性率の値のうち大きいものを小さいもので割った比が2を超えないことを言う。   Here, “substantially two-dimensional random” means that carbon fibers constituting the composite material are measured in two directions in which the main orientation direction of the fiber axis is in the contact surface of the composite material and perpendicular to each other in the plane. It means that the ratio obtained by dividing the value of the tensile modulus of elasticity divided by the smaller one does not exceed 2.

[炭素繊維]
複合材料を構成する炭素繊維は不連続であり、平均繊維長10mm超100mm以下である。本発明の複合材料は、ある程度長い炭素繊維を含んで強化機能が発現できることを特徴とし、好ましくは炭素繊維の平均繊維長が15mm以上100mm以下であり、より好ましくは15mm以上80mm以下であり、さらには20mm以上60mm以下が好ましい。マトリクス樹脂が熱可塑性樹脂であって後述する好ましい製造方法により溶融混練せずに複合材料を得ることができることから、用いた炭素繊維の長さを複合材料中で保つことが可能であり、例えば複合材料中の炭素繊維の繊維長分布がシャープなものが得ることができ、繊維長が揃った炭素繊維を存在させることで、均質な物性を有する複合材料が好ましく提供できる。
[Carbon fiber]
The carbon fibers constituting the composite material are discontinuous and have an average fiber length of more than 10 mm and not more than 100 mm. The composite material of the present invention is characterized in that a reinforcing function can be expressed by including carbon fibers that are somewhat long, preferably the average fiber length of the carbon fibers is 15 mm or more and 100 mm or less, more preferably 15 mm or more and 80 mm or less, Is preferably 20 mm or more and 60 mm or less. Since the matrix resin is a thermoplastic resin and a composite material can be obtained without being melt-kneaded by a preferable manufacturing method described later, the length of the carbon fiber used can be maintained in the composite material. A material having a sharp fiber length distribution of carbon fibers in the material can be obtained, and the presence of carbon fibers having uniform fiber lengths can preferably provide a composite material having uniform physical properties.

複合材料を構成する炭素繊維の平均繊維径は3〜12μmであり、より好ましくは5〜7μmである。
炭素繊維はサイジング剤が付着されたものを用いることが好ましく、サイジング剤は炭素繊維100重量部に対し、0〜10重量部であることが好ましい。
The average fiber diameter of the carbon fibers constituting the composite material is 3 to 12 μm, more preferably 5 to 7 μm.
It is preferable to use a carbon fiber to which a sizing agent is attached, and the sizing agent is preferably 0 to 10 parts by weight with respect to 100 parts by weight of the carbon fiber.

[開繊程度]
一般的に、炭素繊維は、数千〜数万本のフィラメントが集合した繊維束となっている。特に薄肉のコンポジットを得る場合、炭素繊維を繊維束のまま使用すると、繊維の交絡部が局部的に厚くなり、薄肉のものが得られない。そのため、炭素繊維を開繊して使用することが重要となるが、本発明の複合材料は炭素繊維の開繊程度をコントロールした複合材料とし、特定本数以上の炭素繊維からなる炭素繊維束と、それ以外の開繊された炭素繊維を特定の比率で含むことを特徴とする。
[Opening degree]
Generally, carbon fiber is a fiber bundle in which thousands to tens of thousands of filaments are gathered. In particular, when a thin-walled composite is obtained, if carbon fibers are used in the form of fiber bundles, the entangled portion of the fibers becomes locally thick, and a thin-walled one cannot be obtained. Therefore, it is important to open and use the carbon fiber, but the composite material of the present invention is a composite material in which the degree of opening of the carbon fiber is controlled, a carbon fiber bundle composed of carbon fibers of a specific number or more, Other open carbon fibers are included at a specific ratio.

本発明の複合材料は、式(1)
臨界単糸数=600/D (1)
(ここでDは炭素繊維の平均繊維径(μm)である)
で定義する臨界単糸数以上で構成される炭素繊維束(A)について、繊維全量に対する割合が30Vol%以上90Vol%未満であることを特徴とする。複合材料中には、炭素繊維束(A)以外の炭素繊維として、単糸の状態または臨界単糸数以下で構成される繊維束が存在する。
The composite material of the present invention has the formula (1)
Critical number of single yarns = 600 / D (1)
(Where D is the average fiber diameter (μm) of the carbon fiber)
The carbon fiber bundle (A) composed of the number of critical single yarns or more defined in the above is characterized in that the ratio with respect to the total amount of fibers is 30 Vol% or more and less than 90 Vol%. In the composite material, as the carbon fibers other than the carbon fiber bundle (A), there is a fiber bundle constituted by a single yarn state or a critical single yarn number or less.

炭素繊維束(A)の割合が30Vol%未満になると、表面品位に優れる複合材料が得られるという利点はあるものの、機械物性に優れた複合材料が得にくくなる。炭素繊維束(A)の割合が90Vol%以上になると、繊維の交絡部が局部的に厚くなり、薄肉のものが得られず、本発明の目的にそぐわない。炭素繊維束(A)の割合はより好ましくは40Vol%以上80Vol%未満である。   When the ratio of the carbon fiber bundle (A) is less than 30 Vol%, there is an advantage that a composite material having excellent surface quality can be obtained, but it is difficult to obtain a composite material having excellent mechanical properties. When the proportion of the carbon fiber bundle (A) is 90 Vol% or more, the entangled portion of the fiber is locally thick, and a thin product cannot be obtained, which is not suitable for the purpose of the present invention. The ratio of the carbon fiber bundle (A) is more preferably 40 Vol% or more and less than 80 Vol%.

さらに本発明の複合材料は、臨界単糸数以上で構成される炭素繊維束(A)中の平均繊維数(N)が下記式(2)
6×10/D<N<2×10/D (2)
(ここでDは炭素繊維の平均繊維径(μm)である)
を満たすことを特徴とする。
Further, in the composite material of the present invention, the average number of fibers (N) in the carbon fiber bundle (A) composed of the number of critical single yarns or more is represented by the following formula (2).
6 × 10 4 / D 2 <N <2 × 10 5 / D 2 (2)
(Where D is the average fiber diameter (μm) of the carbon fiber)
It is characterized by satisfying.

炭素繊維束(A)中の平均繊維数(N)が6×10/D以下の場合、高い繊維体積含有率(Vf)を得る事が困難となる。また炭素繊維束(A)中の平均繊維数(N)が2×10/D以上の場合、局部的に厚い部分が生じ、ボイドの原因となりやすい。
このように式(1)で定義される臨界単糸以上の炭素繊維束(A)と、単糸の状態又は臨界単糸数以下の炭素繊維(B)が同時に存在する複合材料とすることで、繊維の充填効率よく、疎密のばらつきが少なく、機械強度に優れた複合材料が提供できる。
When the average number of fibers (N) in the carbon fiber bundle (A) is 6 × 10 4 / D 2 or less, it is difficult to obtain a high fiber volume content (Vf). In addition, when the average number of fibers (N) in the carbon fiber bundle (A) is 2 × 10 5 / D 2 or more, a locally thick portion is generated, which tends to cause voids.
In this way, by making a carbon fiber bundle (A) of the critical single yarn or more defined by the formula (1) and a carbon fiber (B) of the single yarn state or the critical single yarn number or less at the same time, It is possible to provide a composite material with good fiber filling efficiency, less variation in density, and excellent mechanical strength.

またこのように特定本数以上の炭素繊維からなる炭素繊維束と、それ以外の開繊された炭素繊維を特定の比率で共存させることで、複合材料中の炭素繊維の存在量、すなわち繊維体積含有率(Vf)を高めることが可能となっている。
具体的には複合材料を構成する炭素繊維の平均繊維径が5〜7μmの場合、臨界単糸数は86〜120本となり、臨界単糸数以上の炭素繊維束が繊維全量に対する割合が30Vol%以上90Vol%未満である。
In addition, the presence of carbon fibers in the composite material, that is, fiber volume content, by coexisting carbon fiber bundles composed of carbon fibers of a specific number or more in this manner and other opened carbon fibers in a specific ratio. The rate (Vf) can be increased.
Specifically, when the average fiber diameter of the carbon fibers constituting the composite material is 5 to 7 μm, the number of critical single yarns is 86 to 120, and the ratio of carbon fiber bundles of the number of critical single yarns or more to the total amount of fibers is 30 Vol% or more and 90 Vol%. %.

炭素繊維の平均繊維径が5μmの場合、繊維束中の平均繊維数は2400〜8000本の範囲となるが、なかでも2500〜6000本であることが好ましい。炭素繊維の平均繊維径が7μmの場合、繊維束中の平均繊維数は1224〜4081本の範囲となるが、なかでも1500〜4000本であることが好ましい。   When the average fiber diameter of the carbon fibers is 5 μm, the average number of fibers in the fiber bundle is in the range of 2400 to 8000, and preferably 2500 to 6000. When the average fiber diameter of the carbon fibers is 7 μm, the average number of fibers in the fiber bundle is in the range of 1224 to 4081, and it is particularly preferable that the number is 1500 to 4000.

本発明の複合材料は、各種の厚みとすることが可能であるが、厚みが0.2〜1mm程度の薄肉の成形品を好適に得ることができる。すなわち本発明により、各種目的の厚さに合わせた複合材料が提供でき、なかでも薄物の成形品が好適に得られ、サンドイッチ部材の表皮等も提供できる。   The composite material of the present invention can have various thicknesses, but a thin molded product having a thickness of about 0.2 to 1 mm can be suitably obtained. That is, according to the present invention, composite materials having various thicknesses can be provided. In particular, a thin molded article can be suitably obtained, and a skin of a sandwich member can also be provided.

[熱可塑性樹脂]
本発明の複合材料における熱可塑性樹脂の存在量は、炭素繊維100重量部に対し、50〜1000重量部であることが好ましい。より好ましくは、炭素繊維100重量部に対し、熱可塑性樹脂50〜500重量部、さらに好ましくは炭素繊維100重量部に対し、熱可塑性樹脂50〜100重量部である。
[Thermoplastic resin]
The abundance of the thermoplastic resin in the composite material of the present invention is preferably 50 to 1000 parts by weight with respect to 100 parts by weight of the carbon fibers. More preferably, it is 50 to 500 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber, and more preferably 50 to 100 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber.

熱可塑性樹脂の種類としては例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹   Examples of the thermoplastic resin include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), acrylic resin, Methacrylic resin, polyethylene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, boribylene Terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin

[他の剤]
本発明の複合材料中には、本発明の目的を損なわない範囲で、ガラス繊維や有機繊維等の各種繊維状または非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。
[Other agents]
In the composite material of the present invention, various fibrous or non-fibrous fillers such as glass fibers and organic fibers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, and the like within the range not impairing the object of the present invention. , Plasticizers and surfactant additives may be included.

[炭素繊維による強化機能の発現性]
2次元擬似等方ランダムに炭素繊維が含まれている複合材料の、強度の理論値に対して、本発明の複合材料は60〜80%の強度発現が可能となることを特徴とする。このような強度発現率の達成が可能になる理由は上記のとおり、特定本数以上の炭素繊維からなる炭素繊維束と、それ以外の開繊された炭素繊維を共存させることで複合材料中に効果的に炭素繊維を存在させていることによるものと思われる。
[Development of reinforcing function by carbon fiber]
The composite material of the present invention is characterized in that the strength can be expressed by 60 to 80% with respect to the theoretical value of the strength of the composite material containing carbon fibers randomly two-dimensionally isotropically. The reason why it is possible to achieve such a strength expression rate is that, as described above, it is effective in a composite material by coexisting a carbon fiber bundle composed of carbon fibers of a specific number or more and other opened carbon fibers. This is probably due to the presence of carbon fiber.

[製造方法]
以下本発明の複合材料を好ましく得る方法について述べる。本発明の複合材料は以下の工程1〜5より、好ましく製造することができる。
1.炭素繊維をカットする工程、
2.カットされた炭素繊維を管内に導入し、空気を炭素繊維に吹き付ける事により、繊維束をある程度バラバラに開繊させる工程、
3.開繊させた炭素繊維を拡散させると同時に、繊維状又はパウダー状の熱可塑性樹脂とともに吸引し、炭素繊維と熱可塑性樹脂を同時に散布する塗布工程、
4.塗布された炭素繊維および熱可塑性樹脂を定着させ、ランダムマットを得る工程。
5.得られたランダムマットをプレス成形する工程。
[Production method]
A method for preferably obtaining the composite material of the present invention will be described below. The composite material of the present invention can be preferably produced from the following steps 1 to 5.
1. Cutting carbon fiber,
2. A process of opening the fiber bundle to some extent by introducing the cut carbon fiber into the tube and blowing air onto the carbon fiber,
3. A spreading process of spreading the opened carbon fiber and simultaneously sucking the carbon fiber and the thermoplastic resin by sucking together with the fibrous or powdered thermoplastic resin,
4). A step of fixing a coated carbon fiber and a thermoplastic resin to obtain a random mat.
5. A step of press-molding the obtained random mat.

[カット工程]
炭素繊維をカットする工程について述べる。炭素繊維のカット方法は、好ましくはロータリーカッター等のナイフを用いて炭素繊維をカットする工程である。ロータリーカッターを用いたカット工程の一例を図1に示す。ロータリーカッターとしては、繊維束を1/2〜1/20程度に分繊してカットする、分繊カッターを用いる事が好ましい。ロータリー分繊カッターの好ましい例について、正面と断面の概略図を図2に、およびナイフ角度の説明図を図3に示す。ロータリー分繊カッターは本体に沿って複数の刃が等間隔かつ螺旋状に配置されているものである。従来のカッターのように、繊維束をそのままカットし、塗布する手法では、薄く、物性に優れる複合材料を得る事が難しい。繊維束をより細い束に分けながらカットする事により、工程4で得られるランダムマットの均質性が向上し、薄いランダムマットを得る事が可能となり、本発明の複合材料を好適に得ることができる。炭素繊維を連続的にカットするためのナイフ角度は特に限定されるものではなく、一般的な、繊維に対し、90度の刃を用いても、角度を持たせたものでも構わない。
[Cut process]
The process of cutting carbon fiber will be described. The carbon fiber cutting method is preferably a step of cutting carbon fiber using a knife such as a rotary cutter. An example of a cutting process using a rotary cutter is shown in FIG. As the rotary cutter, it is preferable to use a splitting cutter that splits and cuts a fiber bundle into about 1/2 to 1/20. About the preferable example of a rotary parting cutter, the schematic of a front and a cross section is shown in FIG. 2, and explanatory drawing of a knife angle is shown in FIG. The rotary splitting cutter has a plurality of blades arranged at equal intervals and spirally along the main body. It is difficult to obtain a composite material that is thin and excellent in physical properties by a method of cutting and applying a fiber bundle as it is like a conventional cutter. By cutting the fiber bundle while dividing it into thinner bundles, the homogeneity of the random mat obtained in step 4 can be improved, and a thin random mat can be obtained, and the composite material of the present invention can be suitably obtained. . The knife angle for continuously cutting the carbon fiber is not particularly limited, and a 90-degree blade or an angle with respect to a general fiber may be used.

[開繊工程]
次いでカットされた炭素繊維を管内に導入し、空気を繊維に吹き付ける事により、繊維束をバラバラに開繊させる。より具体的にはカットされた炭素繊維を連続的に管内に導入し、圧力空気を直接繊維に吹き付ける事により、繊維束をバラバラに開繊させる工程である。開繊の度合いについては、空気の圧力等により適宜コントロールする事が出来る。
[Opening process]
Next, the cut carbon fiber is introduced into the tube, and air is blown onto the fiber to open the fiber bundle apart. More specifically, it is a step of opening the fiber bundles apart by continuously introducing the cut carbon fibers into the pipe and blowing the pressure air directly onto the fibers. The degree of opening can be appropriately controlled by air pressure or the like.

好ましい炭素繊維の開繊方法は、圧縮空気を直接炭素繊維に吹き付ける方法である。具体的には圧縮空気吹き付け孔より、好ましくは風速5〜500m/secにて空気を吹き付ける事により、炭素繊維を開繊させる事ができる。好ましくは炭素繊維の通る管内にΦ1mm程度の孔を数箇所あけ、外側より0.01〜0.8MPa程度の圧力をかけ、圧縮空気を繊維束に直接吹き付けることにより、繊維束を任意の開繊度まで開繊する事ができる。   A preferred method for opening the carbon fiber is a method in which compressed air is blown directly onto the carbon fiber. Specifically, carbon fibers can be opened by blowing air from a compressed air blowing hole, preferably at a wind speed of 5 to 500 m / sec. Preferably, several openings having a diameter of about 1 mm are formed in a tube through which carbon fibers pass, pressure of about 0.01 to 0.8 MPa is applied from the outside, and compressed air is directly blown onto the fiber bundle, thereby opening the fiber bundle to an arbitrary degree of opening. Can be opened.

[塗布工程]
次いで開繊させた炭素繊維を拡散させると同時に、繊維状又はパウダー状の熱可塑性樹脂とともに吸引し、炭素繊維と熱可塑性樹脂を同時に散布する塗布工程を行う。開繊させた炭素繊維と、繊維状又はパウダー状の熱可塑性樹脂とを同時に、シート上に塗布することで、本発明の複合材料を好適に得ることができる。
[Coating process]
Next, the spread carbon fiber is diffused, and at the same time, it is sucked together with the fibrous or powdery thermoplastic resin, and the coating process is performed to simultaneously spray the carbon fiber and the thermoplastic resin. The composite material of the present invention can be suitably obtained by simultaneously applying the opened carbon fiber and the fibrous or powdery thermoplastic resin on the sheet.

塗布工程において、熱可塑性樹脂の供給量は、炭素繊維100重量部に対し、50〜1000重量部であることが好ましい。より好ましくは、炭素繊維100重量部に対し、熱可塑性樹脂50〜400重量部、更に好ましくは、炭素繊維100重量部に対し、熱可塑性樹脂50〜100重量部である。
塗布工程において、炭素繊維および熱可塑性樹脂の供給量を適宜選択することで所望の厚さのものを得ることができる。
In the coating step, the amount of the thermoplastic resin supplied is preferably 50 to 1000 parts by weight with respect to 100 parts by weight of the carbon fiber. More preferably, it is 50 to 400 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber, and further preferably 50 to 100 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber.
In the coating step, a desired thickness can be obtained by appropriately selecting the supply amounts of the carbon fiber and the thermoplastic resin.

ここで、炭素繊維と、繊維状又はパウダー状の熱可塑性樹脂は2次元配向する様に散布することが好ましい。開繊した炭素繊維を2次元配向させながら塗布するためには、塗布方法及び下記の定着方法が重要となる。炭素繊維の塗布方法には、円錐形等のテーパ管を用いることが好ましい。円錐等の管内では、空気が拡散し、管内の流速が減速し、このとき炭素繊維には回転力が与えられる。このベンチュリ効果を利用して開繊させた炭素繊維を好ましく拡散させ散布することができる。
開繊装置下部に設けた通気性シート上に塗布することが好ましい。また下記の定着工程のためにも、吸引機構を持つ可動式の通気性シート上に散布することが好ましい。
Here, it is preferable that the carbon fiber and the fibrous or powdery thermoplastic resin are dispersed so as to be two-dimensionally oriented. In order to apply the opened carbon fiber while being two-dimensionally oriented, an application method and a fixing method described below are important. In the carbon fiber coating method, it is preferable to use a tapered tube having a conical shape. In a tube such as a cone, air diffuses and the flow velocity in the tube is reduced. At this time, a rotational force is applied to the carbon fiber. The carbon fibers opened using this venturi effect can be preferably diffused and dispersed.
It is preferable to apply on a breathable sheet provided at the lower part of the opening device. Also for the following fixing step, it is preferable to spray on a movable breathable sheet having a suction mechanism.

[定着工程]
次いで塗布された炭素繊維および熱可塑性樹脂を定着させ、ランダムマットを得る。具体的には、塗布された炭素繊維および熱可塑性樹脂を通気性シート下部よりエアを吸引して炭素繊維を定着させ、ランダムマットを得る。炭素繊維と同時に散布された熱可塑性樹脂は混合されつつ、繊維状であればエア吸引により、パウダー状であっても炭素繊維に伴って定着される。
[Fixing process]
Next, the applied carbon fiber and the thermoplastic resin are fixed to obtain a random mat. Specifically, the applied carbon fiber and thermoplastic resin are sucked from the lower part of the breathable sheet to fix the carbon fiber to obtain a random mat. The thermoplastic resin sprayed simultaneously with the carbon fiber is mixed, and if it is in the form of a fiber, it is fixed with the carbon fiber even if it is in powder form by air suction.

具体的には通気性のシートを通して、下部より吸引する事により、2次元配向の高いランダムマットを得る事ができる。又、発生する負圧を用いてパウダー状、又は短繊維状の熱可塑性樹脂を吸引し、更に、管内で発生する拡散流により、炭素繊維と容易に混合する事ができる。得られるランダムマットは、炭素繊維の近傍に熱可塑性樹脂が存在する事により、下記の熱プレス工程において、樹脂の移動距離が短く、比較的短時間で樹脂の含浸が可能となる。   Specifically, a random mat with a high two-dimensional orientation can be obtained by suction from the lower part through a breathable sheet. Also, the powdered or short fiber thermoplastic resin is sucked using the generated negative pressure, and can be easily mixed with the carbon fiber by the diffusion flow generated in the tube. In the obtained random mat, the presence of the thermoplastic resin in the vicinity of the carbon fiber enables the resin to be impregnated in a relatively short time because the resin moving distance is short in the following hot pressing step.

[プレス]
次いで得られたランダムマットをプレス成形することにより、本発明の複合材料を得ることができる。このときランダムマットは複数枚重ねて、所望の厚さとすることもできる。プレス成形の方法および条件にはとくに制限はないが、マトリックスの熱可塑性樹脂の融点以上融点プラス80℃または分解温度以下の条件にて熱プレスすることが好ましい。プレスの圧力およびプレス時間も適宜選択できる。
[press]
Subsequently, the composite material of the present invention can be obtained by press-molding the obtained random mat. At this time, a plurality of random mats can be stacked to have a desired thickness. There are no particular restrictions on the method and conditions for press molding, but it is preferable to perform hot pressing under the conditions of not lower than the melting point of the matrix thermoplastic resin and not lower than the melting point plus 80 ° C. or the decomposition temperature. The press pressure and press time can also be appropriately selected.

[成形体]
複合材料は、上記のようなプレス成形により、所望の厚さの成形体を得ることができる。また型の形状等を選択することにより、三次元形状等の所望形状の成形体を得ることも可能である。本発明の複合材料は、プレス工程における、樹脂の移動距離が短く、比較的短時間で樹脂の含浸が可能となり、肉薄で、物性に優れかつ表面品位に優れた成形品が提供できる。また炭素繊維が成形体中に等方的に存在するので均質性が確保できる。
[Molded body]
The composite material can obtain a molded body having a desired thickness by press molding as described above. It is also possible to obtain a molded body having a desired shape such as a three-dimensional shape by selecting the shape of the mold. The composite material of the present invention has a short resin moving distance in the pressing process and can be impregnated with the resin in a relatively short time, and can provide a molded product that is thin, excellent in physical properties, and excellent in surface quality. In addition, since the carbon fibers are isotropically present in the molded body, homogeneity can be ensured.

成形体は積層構造とすることも可能である。このような積層構造とするときの好ましい製造方法としては、例えば定着工程において、通気性シート上に、予めガラス繊維や有機繊維を用いたランダムマットや不織布等、通気性のあるシートを配置し、その上に炭素繊維を塗布する方法が挙げられる。   The molded body may have a laminated structure. As a preferable production method when such a laminated structure is used, for example, in the fixing step, a breathable sheet such as a random mat or nonwoven fabric using glass fibers or organic fibers in advance is disposed on the breathable sheet, The method of apply | coating carbon fiber on it is mentioned.

また薄肉のものが得られるので、サンドイッチ部材の表皮としても好ましく用いることができる。サンドイッチ部材とするときのコア材にとくに限定はないが、樹脂の発泡体や、ガラス繊維や有機繊維の不織布等が好ましく挙げられる。本発明の複合材料からなる成形体をコア部材とともに積層して、例えばプレス成形することによりサンドイッチ部材とすることができる。上記のようにガラス繊維や有機繊維の不織布との積層構造とした場合、これらの不織布層はサンドイッチ部材のコア部材とすることができる。   Moreover, since a thin thing is obtained, it can be preferably used also as a skin of a sandwich member. The core material for the sandwich member is not particularly limited, and preferred examples include resin foam, glass fiber, and organic fiber nonwoven fabric. The molded body made of the composite material of the present invention can be laminated together with the core member, and can be made into a sandwich member by press molding, for example. When it is set as the laminated structure with the nonwoven fabric of glass fiber or organic fiber as mentioned above, these nonwoven fabric layers can be used as the core member of a sandwich member.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
[複合材料における炭素繊維束(A)の繊維全量に対する割合の求め方]
1)複合材料を100mm×100mmに切り出し、厚み(Ta)を測定後、500℃×1時間程度、炉内にて樹脂を除去する。
2)樹脂を除去した複合材料より、繊維束をピンセットで全て取り出す。
3)全ての繊維束について、個々の繊維束の長さ(Li)と重量(Wi)を測定し、繊維束数(I)を記録する。ピンセットにて取り出す事ができない程度に繊維束が小さいものについては、まとめて最後に重量を測定する(Wk)。このとき、1/1000gまで測定可能な天秤を用いる。なお、繊維長が短い場合には、繊維束の重量が小さく、測定が困難になる。こういった場合には、繊維を0.2mm程度の間隔で分類し、分類した繊維束を複数本まとめて重量を測定し、平均値を用いても良い。
4)全ての分類について測定後、以下の計算を行う。使用している炭素繊維の繊度(F)より、分類した繊維束群の繊維本数(Ni)は次式により求められる。
Ni=Wi/(Li×F)。
炭素繊維束(A)中の平均繊維数(N)は以下の式により求める。
Nj=ΣNi/I
また、個々の繊維束の体積(Vi)及び、炭素繊維束(A)の繊維全体に対する割合(VR)は、使用した炭素繊維の繊維比重(ρ)を用いて次式により求められる。
Vi=Wi/ρ
VR=ΣVi/Va×100
ここで、Vaは切り出したシートの体積であり、Va=100×100×Ta
[繊維強度発現率の求め方]
繊維強度発現率は、得られた複合材料の試験片についてJISK7164に従い引張強度を測定した結果と、炭素繊維の引張強度との比より求めた。
Examples are shown below, but the present invention is not limited thereto.
[How to find the ratio of the carbon fiber bundle (A) in the composite material to the total amount of fibers]
1) The composite material is cut into 100 mm × 100 mm, and after measuring the thickness (Ta), the resin is removed in a furnace for about 500 ° C. × 1 hour.
2) Remove all fiber bundles with tweezers from the composite material from which the resin has been removed.
3) For all fiber bundles, the length (Li) and weight (Wi) of each fiber bundle are measured, and the number of fiber bundles (I) is recorded. When the fiber bundle is so small that it cannot be taken out with tweezers, the weight is finally measured (Wk). At this time, a balance capable of measuring up to 1/1000 g is used. When the fiber length is short, the weight of the fiber bundle is small and measurement becomes difficult. In such a case, the fibers may be classified at intervals of about 0.2 mm, a plurality of the classified fiber bundles may be collectively measured, and the average value may be used.
4) After measurement for all classifications, perform the following calculations. From the fineness (F) of the carbon fiber used, the number of fibers (Ni) of the classified fiber bundle group is obtained by the following equation.
Ni = Wi / (Li × F).
The average number of fibers (N) in the carbon fiber bundle (A) is obtained by the following formula.
Nj = ΣNi / I
Further, the volume (Vi) of each fiber bundle and the ratio (VR) of the carbon fiber bundle (A) to the whole fiber can be obtained by the following formula using the fiber specific gravity (ρ) of the carbon fiber used.
Vi = Wi / ρ
VR = ΣVi / Va × 100
Here, Va is the volume of the cut sheet, Va = 100 × 100 × Ta
[How to determine fiber strength]
The fiber strength expression rate was obtained from the ratio between the result of measuring the tensile strength of the obtained composite specimen according to JIS K7164 and the tensile strength of the carbon fiber.

[実施例1]
炭素繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(繊維径7μm、引張強度4000MPa)を使用した。カット装置には、超硬合金を用いてナイフを形成するロータリーカッターを用いた。なお、ナイフの角度は周方向と90度であり、ナイフは刃幅を1mmのものを用いた。このナイフを周方向に16mmピッチで配置し、更に、隣り合うナイフは周方向に互いに1mmオフセットさせるように配置した。開繊装置として、小孔を有した管を用意し、コンプレッサーを用いて圧縮空気を送気した。この時、小孔からの風速は、100m/secであった。この管をロータリーカッターの直下に配置し、さらに、その下部にはテーパ管を溶接した。テーパ管の側面より、マトリックス樹脂を供給し、このマトリックス樹脂として、帝人化成社製のポリカーボネート“パンライト”(登録商標)L−1225Lペレットを冷凍粉砕し、更に、20メッシュ、及び30メッシュにて分級したパウダーを用いた。このとき、平均粒径は約1mmであった。次に、テーパ管出口の下部に、XY方向に移動可能なテーブルを設置し、テーブル下部よりブロワにて吸引を行った。そして、炭素繊維の供給量を600g/min、マトリックス樹脂の供給量を500g/min、にセットし、装置を稼動したところ、平均繊維長16mmの炭素繊維とポリカーボネートが混合された、厚み2mm程度のランダムマットを得た。このランダムマットを300℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=0.8mmの成形板を得た。
[Example 1]
As the carbon fiber, carbon fiber “Tenax” (registered trademark) STS40-24KS (fiber diameter 7 μm, tensile strength 4000 MPa) manufactured by Toho Tenax Co., Ltd. was used. A rotary cutter that forms a knife using cemented carbide was used as the cutting device. The angle of the knife was 90 degrees with the circumferential direction, and a knife with a blade width of 1 mm was used. The knives were arranged at a pitch of 16 mm in the circumferential direction, and adjacent knives were arranged so as to be offset from each other by 1 mm in the circumferential direction. A tube having small holes was prepared as a fiber opening device, and compressed air was supplied using a compressor. At this time, the wind speed from the small hole was 100 m / sec. This pipe was placed directly under the rotary cutter, and a tapered pipe was welded to the lower part thereof. A matrix resin is supplied from the side surface of the taper tube, and as this matrix resin, polycarbonate “Panlite” (registered trademark) L-1225L pellets made by Teijin Chemicals Ltd. are frozen and pulverized, and further at 20 mesh and 30 mesh. Classified powder was used. At this time, the average particle diameter was about 1 mm. Next, a table movable in the XY directions was installed at the lower part of the taper tube outlet, and suction was performed from the lower part of the table with a blower. And when the supply amount of carbon fiber was set to 600 g / min, the supply amount of matrix resin was set to 500 g / min, and the apparatus was operated, carbon fiber having an average fiber length of 16 mm and polycarbonate were mixed, and the thickness was about 2 mm. A random mat was obtained. This random mat was heated at 2.0 MPa for 5 minutes with a press apparatus heated to 300 ° C. to obtain a molded plate of t = 0.8 mm.

得られた複合材料について、式(1)で定義される臨界単糸数は86、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は1600であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は53Vol%であった。得られた複合材料の繊維体積含有率は44Vol%であった。
成形板の引張強度は0度と90度方向からn=5ずつ250×25mmの試験片を切り出しJISK7164に準拠し測定した結果、410MPaであり、強化繊維の強度発現率は10.3%であった。
With respect to the obtained composite material, the critical single yarn number defined by the formula (1) is 86, the average single yarn number (N) in the carbon fiber bundle (A) composed of the critical single yarn number or more is 1600, and the critical single yarn number is 1600. The ratio of the carbon fiber bundle (A) composed of the number of yarns or more was 53 Vol%. The fiber volume content of the obtained composite material was 44 Vol%.
The tensile strength of the molded plate was determined to be 410 MPa as a result of cutting out 250 × 25 mm test pieces of n = 5 from 0 ° and 90 ° directions in accordance with JISK7164, and the reinforcing fiber strength expression rate was 10.3%. It was.

[実施例2]
炭素繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)UMS40−12K(繊維径5μm、引張強度4600MPa)を使用した。カット装置には、刃幅を0.5mm、ナイフ間隔を32mmとした実施例1に使用したロータリーカッターを用いた。開繊装置として、小孔を有した管を用意し、コンプレッサーを用いて圧縮空気を送気した。この時、小孔からの風速は、300m/secであった。この管をロータリーカッターの直下に配置し、さらに、その下部にはテーパ管を溶接した。テーパ管の側面より、マトリックス樹脂を供給し、このマトリックス樹脂として、2mmにドライカットしたPA66繊維(旭化成せんい製 T5ナイロン 1400dtex)を用いた。次に、テーパ管出口の下部に、XY方向に移動可能なテーブルを設置し、テーブル下部よりブロワにて吸引を行った。そして、炭素繊維の供給量を1600g/min、マトリックス樹脂の供給量を1000g/minにセットし、装置を稼動し、平均繊維長32mmの炭素繊維とPA66が混合された、厚み4mm程度のランダムマットを得た。このランダムマットを280℃に加熱したプレス装置にて、2.5MPaにて3分間加熱し、t=1.8mmの成形板を得た。得られた複合材料について、式(1)で定義される臨界単糸数は120、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は2800であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は66Vol%であった。得られた複合材料の繊維体積含有率は51Vol%であった。成形板の引張強度は0度と90度方向からn=5ずつ250×25mmの試験片を切り出しJISK7164に従い測定した結果、引張強度の平均値は490MPaであり、強化繊維の強度発現率は10.6%であった。
[Example 2]
As the carbon fiber, carbon fiber “Tenax” (registered trademark) UMS40-12K (fiber diameter 5 μm, tensile strength 4600 MPa) manufactured by Toho Tenax Co., Ltd. was used. As the cutting device, the rotary cutter used in Example 1 with a blade width of 0.5 mm and a knife interval of 32 mm was used. A tube having small holes was prepared as a fiber opening device, and compressed air was supplied using a compressor. At this time, the wind speed from the small hole was 300 m / sec. This pipe was placed directly under the rotary cutter, and a tapered pipe was welded to the lower part thereof. Matrix resin was supplied from the side surface of the tapered tube, and PA66 fiber (T5 nylon 1400 dtex manufactured by Asahi Kasei Fiber) dry-cut to 2 mm was used as the matrix resin. Next, a table movable in the XY directions was installed at the lower part of the taper tube outlet, and suction was performed from the lower part of the table with a blower. Then, the carbon fiber supply rate is set to 1600 g / min, the matrix resin supply rate is set to 1000 g / min, the apparatus is operated, and a random mat having a thickness of about 4 mm is mixed with carbon fiber having an average fiber length of 32 mm and PA66. Got. This random mat was heated at 2.5 MPa for 3 minutes with a press apparatus heated to 280 ° C. to obtain a molded plate of t = 1.8 mm. For the obtained composite material, the critical single yarn number defined by the formula (1) is 120, the average single yarn number (N) in the carbon fiber bundle (A) composed of the critical single yarn number or more is 2800, and the critical single yarn number is 2800. The ratio of the carbon fiber bundle (A) composed of the number of yarns or more was 66 Vol%. The fiber volume content of the obtained composite material was 51 Vol%. The tensile strength of the molded plate was determined by cutting out 250 × 25 mm test pieces of n = 5 from 0 ° and 90 ° directions according to JISK7164. As a result, the average value of tensile strength was 490 MPa, and the strength expression rate of the reinforcing fiber was 10. It was 6%.

[実施例3]
炭素繊維の供給量を380g/min、マトリックス樹脂の供給量を300g/min、にセットし、実施例1と同様の作成方法にてランダムマットを2枚作成した。このマットをJSP社のPC発泡体“ミラポリカフォーム(登録商標)”t=0.8の上下に1枚ずつ配置し、300℃に加熱したプレス装置にて、1.5MPaにて10分間加熱し、t=1.7mmのサンドイッチ部材を得た。得られたサンドイッチ部材の重量は1.5kg/mであり、厚さ0.9mmのスチール鋼板と比較し、等価剛性でありながら、重量が約30%である非常に軽量なパネルを得た。
[Example 3]
The carbon fiber supply rate was set to 380 g / min, the matrix resin supply rate was set to 300 g / min, and two random mats were prepared by the same production method as in Example 1. This mat is placed one by one above and below JSP foam “Mirapolifoam (registered trademark)” t = 0.8, and heated at 1.5 MPa for 10 minutes by a press apparatus heated to 300 ° C. As a result, a sandwich member having t = 1.7 mm was obtained. The weight of the obtained sandwich member was 1.5 kg / m 2 , and an extremely lightweight panel having a weight of about 30% was obtained while having equivalent rigidity as compared with a steel plate having a thickness of 0.9 mm. .

[実施例4]
炭素繊維の供給量を380g/min、マトリックス樹脂であるナイロンの供給量を530g/min、にセットし、コア材として、ガラスマット(セントラル硝子社製 チョップドストランドマット 300g/m)を予め定着装置上に設置し、実施例1と同様の作成方法にてランダムマットを2枚作成した。このマットを、ガラスマットが内側になる様、面対象に1枚ずつ積層し、270℃に加熱したプレス装置にて、1.5MPaにて3分間加熱し、t=1.7mmのサンドイッチ部材を得た。得られたサンドイッチ部材の重量は2.4kg/mであり、厚さ0.9mmのスチール鋼板と比較し、等価剛性でありながら、重量が約34%である非常に軽量なパネルを得た。
[Example 4]
The carbon fiber supply rate is set to 380 g / min, the matrix resin nylon supply rate is set to 530 g / min, and a glass mat (chopped strand mat 300 g / m 2 manufactured by Central Glass Co., Ltd.) is used as a core material in advance. Two random mats were prepared by the same production method as in Example 1 after being installed on top. The mats are laminated one by one on the surface so that the glass mat is on the inside, and heated at 1.5 MPa for 3 minutes in a press apparatus heated to 270 ° C., and a sandwich member with t = 1.7 mm is obtained. Obtained. The weight of the obtained sandwich member was 2.4 kg / m 2 , and an extremely lightweight panel having a weight of about 34% was obtained while having equivalent rigidity compared to a steel plate having a thickness of 0.9 mm. .

[比較例1]
実施例1において、分繊機構の無いロータリーカッターを用い、開繊装置での圧縮空気の圧力を0MPaとし、同様にランダムマットを作成した。得られたランダムマットは、すべて原糸の繊維束(24000本)のままの短冊状の繊維束からなり、若干裏が透けて見える状態のものであった。このランダムマットを用いて実施例1と同様に成形板を作成したところ、繊維束の重なりが多い部分においては樹脂の未含浸部が確認され、繊維の疎な部分においては、裏側が透けて見えるといったものとなった。
[Comparative Example 1]
In Example 1, using a rotary cutter without a separation mechanism, the pressure of compressed air in the fiber opening device was set to 0 MPa, and a random mat was similarly produced. All of the obtained random mats were composed of strip-like fiber bundles with the original fiber bundles (24000), and the back was slightly transparent. Using this random mat, a molded plate was prepared in the same manner as in Example 1. As a result, an unimpregnated portion of the resin was confirmed in the portion where the fiber bundles were largely overlapped, and the back side was seen through in the sparse portion of the fibers. It became something like that.

1.炭素繊維
2.ピンチローラー
3.ゴムローラー
4.ロータリーカッター本体
5.刃
6.カットされた炭素繊維
7.周方向と刃の配列のなす角
1. 1. Carbon fiber 2. Pinch roller Rubber roller4. 4. Rotary cutter body Blade 6 6. Cut carbon fiber Angle between circumferential direction and blade arrangement

Claims (3)

繊維長10mm超100mm以下の炭素繊維と熱可塑性樹脂とから構成され、炭素繊維が実質的に2次元ランダムに配向しており、式(1)で定義される臨界単糸数以上で構成される炭素繊維束(A)について、繊維全量に対する炭素繊維束(A)の割合が30Vol%以上90Vol%未満であり、かつ炭素繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことを特徴とする複合材料。
臨界単糸数=600/D (1)
6×10/D<N<2×10/D (2)
(ここでDは炭素繊維の平均繊維径(μm)である)
Carbon composed of carbon fibers having a fiber length of more than 10 mm and not more than 100 mm and a thermoplastic resin, wherein the carbon fibers are substantially two-dimensionally randomly oriented, and are composed of more than the critical number of single yarns defined by the formula (1) Regarding the fiber bundle (A), the ratio of the carbon fiber bundle (A) to the total amount of the fibers is 30 Vol% or more and less than 90 Vol%, and the average number of fibers (N) in the carbon fiber bundle (A) is expressed by the following formula (2). A composite material characterized by filling.
Critical number of single yarns = 600 / D (1)
6 × 10 4 / D 2 <N <2 × 10 5 / D 2 (2)
(Where D is the average fiber diameter (μm) of the carbon fiber)
複合材料における熱可塑性樹脂の存在量が、炭素繊維100重量部に対し、50〜1000重量部である事を特徴とする請求項1に記載の複合材料。   2. The composite material according to claim 1, wherein the abundance of the thermoplastic resin in the composite material is 50 to 1000 parts by weight with respect to 100 parts by weight of the carbon fiber. 複合材料における熱可塑性樹脂の存在量が、炭素繊維100重量部に対し、50〜100重量部である事を特徴とする請求項2に記載の複合材料。   The composite material according to claim 2, wherein the amount of the thermoplastic resin in the composite material is 50 to 100 parts by weight with respect to 100 parts by weight of the carbon fiber.
JP2010044287A 2010-03-01 2010-03-01 Carbon fiber composite material Active JP5576147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044287A JP5576147B2 (en) 2010-03-01 2010-03-01 Carbon fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044287A JP5576147B2 (en) 2010-03-01 2010-03-01 Carbon fiber composite material

Publications (2)

Publication Number Publication Date
JP2011178891A true JP2011178891A (en) 2011-09-15
JP5576147B2 JP5576147B2 (en) 2014-08-20

Family

ID=44690749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044287A Active JP5576147B2 (en) 2010-03-01 2010-03-01 Carbon fiber composite material

Country Status (1)

Country Link
JP (1) JP5576147B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178890A (en) * 2010-03-01 2011-09-15 Teijin Ltd Carbon fiber composite material
WO2012105080A1 (en) * 2011-02-01 2012-08-09 帝人株式会社 Random mat and fiber reinforced composite material
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
WO2012140793A1 (en) * 2011-04-14 2012-10-18 帝人株式会社 Reinforcing fiber composite material
WO2012165418A1 (en) * 2011-05-31 2012-12-06 帝人株式会社 Method for manufacturing compact with sustained isotropy
WO2013018920A1 (en) * 2011-08-03 2013-02-07 帝人株式会社 Method for manufacturing molded article by low-pressure molding
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
WO2013094702A1 (en) * 2011-12-22 2013-06-27 帝人株式会社 Method for producing molded article and molded article
WO2013105340A1 (en) * 2012-01-10 2013-07-18 東レ株式会社 Carbon fiber-reinforced polypropylene sheet and molded article thereof
WO2013115337A1 (en) * 2012-01-31 2013-08-08 帝人株式会社 Random mat and fibre-reinforced composite material
WO2013118689A1 (en) 2012-02-09 2013-08-15 東レ株式会社 Carbon fiber composite material
WO2014007389A1 (en) * 2012-07-05 2014-01-09 帝人株式会社 Composite base
WO2014017612A1 (en) * 2012-07-26 2014-01-30 帝人株式会社 Random mat and molding of fiber-reinforced composite material
WO2014021315A1 (en) * 2012-08-01 2014-02-06 帝人株式会社 Random mat, and compact of fibre-reinforced composite material
JP2014030913A (en) * 2012-08-01 2014-02-20 Teijin Ltd Manufacturing method of random mat
WO2014065161A1 (en) 2012-10-25 2014-05-01 東レ株式会社 Stampable sheet
WO2014208626A1 (en) * 2013-06-26 2014-12-31 帝人株式会社 Random mat, fiber-reinforced composite material molded article, and carbon fiber mat
KR101529850B1 (en) * 2012-07-31 2015-06-17 데이진 가부시키가이샤 Random mat, and compact of fibre-reinforced composite material
JPWO2013129169A1 (en) * 2012-03-02 2015-07-30 東レ株式会社 Carbon fiber composite material
WO2015111536A1 (en) 2014-01-22 2015-07-30 帝人株式会社 Molding material for injection molding, extrusion molding, or pultrusion molding, carbon-fiber-reinforced thermoplastic resin pellets, molded article, method for producing injection molded article, and injection molded article
WO2015122366A1 (en) * 2014-02-14 2015-08-20 帝人株式会社 Carbon fiber reinforced molding material and molded body

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611229A (en) * 1979-07-11 1981-02-04 Nippon Petrochem Co Ltd Manufacture of glass fiber reinforced thermoplastic synthetic resin sheet
JPS57117661A (en) * 1981-01-16 1982-07-22 Nippon Petrochemicals Co Ltd Sheet for stamping molding and production thereof
JPS62212110A (en) * 1986-03-03 1987-09-18 モンテヂソン・エス・ピイ・エイ Continuous manufacture of thermoplastic composite material for thermoforming
JPH0347740A (en) * 1989-04-27 1991-02-28 Nkk Corp Fiber reinforced plastic sheet and manufacture thereof
JPH04163109A (en) * 1990-10-29 1992-06-08 Nippon Steel Corp Manufacture of fiber-reinforced thermoplastic resin molding material
JPH05132568A (en) * 1991-11-14 1993-05-28 Nkk Corp Fiber-reinforced thermoplastic resin sheet and its production
JPH0699431A (en) * 1992-09-22 1994-04-12 Sumitomo Chem Co Ltd Manufacture of web and molded product
JP2001192466A (en) * 1993-07-21 2001-07-17 Toray Ind Inc Fiber-reinforced thermoplastic resin structure
JP2002212311A (en) * 2001-01-15 2002-07-31 Japan Vilene Co Ltd Carbon fiber-reinforced stampable sheet, method for producing the same and molded product thereof
JP2004043985A (en) * 2002-07-09 2004-02-12 Yuuhou:Kk Method for producing nonwoven fabric and sheetlike forming material
JP2004231910A (en) * 2003-02-03 2004-08-19 Toyo Ink Mfg Co Ltd Fiber-containing thermoplastic resin composition and use of the same
JP2006077343A (en) * 2004-09-08 2006-03-23 Toray Ind Inc Carbon fiber mat, method for producing the same, substrate for forming by using the same
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2010037358A (en) * 2008-07-31 2010-02-18 Toray Ind Inc Method for manufacturing fiber-reinforced molded substrate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611229A (en) * 1979-07-11 1981-02-04 Nippon Petrochem Co Ltd Manufacture of glass fiber reinforced thermoplastic synthetic resin sheet
JPS57117661A (en) * 1981-01-16 1982-07-22 Nippon Petrochemicals Co Ltd Sheet for stamping molding and production thereof
JPS62212110A (en) * 1986-03-03 1987-09-18 モンテヂソン・エス・ピイ・エイ Continuous manufacture of thermoplastic composite material for thermoforming
JPH0347740A (en) * 1989-04-27 1991-02-28 Nkk Corp Fiber reinforced plastic sheet and manufacture thereof
JPH04163109A (en) * 1990-10-29 1992-06-08 Nippon Steel Corp Manufacture of fiber-reinforced thermoplastic resin molding material
JPH05132568A (en) * 1991-11-14 1993-05-28 Nkk Corp Fiber-reinforced thermoplastic resin sheet and its production
JPH0699431A (en) * 1992-09-22 1994-04-12 Sumitomo Chem Co Ltd Manufacture of web and molded product
JP2001192466A (en) * 1993-07-21 2001-07-17 Toray Ind Inc Fiber-reinforced thermoplastic resin structure
JP2002212311A (en) * 2001-01-15 2002-07-31 Japan Vilene Co Ltd Carbon fiber-reinforced stampable sheet, method for producing the same and molded product thereof
JP2004043985A (en) * 2002-07-09 2004-02-12 Yuuhou:Kk Method for producing nonwoven fabric and sheetlike forming material
JP2004231910A (en) * 2003-02-03 2004-08-19 Toyo Ink Mfg Co Ltd Fiber-containing thermoplastic resin composition and use of the same
JP2006077343A (en) * 2004-09-08 2006-03-23 Toray Ind Inc Carbon fiber mat, method for producing the same, substrate for forming by using the same
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2010037358A (en) * 2008-07-31 2010-02-18 Toray Ind Inc Method for manufacturing fiber-reinforced molded substrate

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178890A (en) * 2010-03-01 2011-09-15 Teijin Ltd Carbon fiber composite material
WO2012105080A1 (en) * 2011-02-01 2012-08-09 帝人株式会社 Random mat and fiber reinforced composite material
US8946342B2 (en) 2011-02-01 2015-02-03 Teijin Limited Random mat and fiber-reinforced composite material
JP5735631B2 (en) * 2011-02-28 2015-06-17 帝人株式会社 Molded body made of fiber reinforced composite material
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
WO2012140793A1 (en) * 2011-04-14 2012-10-18 帝人株式会社 Reinforcing fiber composite material
US9580568B2 (en) 2011-04-14 2017-02-28 Teijin Limited Fiber-reinforced composite material
JP5702854B2 (en) * 2011-04-14 2015-04-15 帝人株式会社 Reinforced fiber composite material
JPWO2012140793A1 (en) * 2011-04-14 2014-07-28 帝人株式会社 Reinforced fiber composite material
US10006677B2 (en) 2011-05-31 2018-06-26 Teijin Limited Method for manufacturing shaped product with maintained isotrophy
WO2012165418A1 (en) * 2011-05-31 2012-12-06 帝人株式会社 Method for manufacturing compact with sustained isotropy
US20140077412A1 (en) * 2011-05-31 2014-03-20 Teijin Limited Method for Manufacturing Shaped Product with Maintained Isotropy
JPWO2012165418A1 (en) * 2011-05-31 2015-02-23 帝人株式会社 Method for producing molded body maintaining isotropic property
US8900502B2 (en) 2011-05-31 2014-12-02 Teijin Limited Method for manufacturing shaped product with maintained isotropy
JP5606622B2 (en) * 2011-05-31 2014-10-15 帝人株式会社 Method for producing molded body maintaining isotropic property
JP5583277B2 (en) * 2011-08-03 2014-09-03 帝人株式会社 Manufacturing method of molded body by low pressure molding
US8992811B2 (en) 2011-08-03 2015-03-31 Teijin Limited Method for manufacturing shaped product by low-pressure molding
WO2013018920A1 (en) * 2011-08-03 2013-02-07 帝人株式会社 Method for manufacturing molded article by low-pressure molding
EP2740578A4 (en) * 2011-08-03 2014-06-11 Teijin Ltd Method for manufacturing molded article by low-pressure molding
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
US9855689B2 (en) 2011-09-06 2018-01-02 Teijin Limited Shaped product made of fiber-reinforced composite material and having excellent surface appearance
CN104010797A (en) * 2011-12-22 2014-08-27 帝人株式会社 Method for producing molded article and molded article
JPWO2013094702A1 (en) * 2011-12-22 2015-04-27 帝人株式会社 Method for producing molded body and molded body
WO2013094702A1 (en) * 2011-12-22 2013-06-27 帝人株式会社 Method for producing molded article and molded article
EP2796276A4 (en) * 2011-12-22 2015-05-27 Teijin Ltd Method for producing molded article and molded article
WO2013105340A1 (en) * 2012-01-10 2013-07-18 東レ株式会社 Carbon fiber-reinforced polypropylene sheet and molded article thereof
KR101925822B1 (en) * 2012-01-10 2018-12-06 도레이 카부시키가이샤 Carbon fiber-reinforced polypropylene sheet and molded article thereof
WO2013115337A1 (en) * 2012-01-31 2013-08-08 帝人株式会社 Random mat and fibre-reinforced composite material
JP5627803B2 (en) * 2012-01-31 2014-11-19 帝人株式会社 Random mats and fiber reinforced composites
EP2810979A1 (en) 2012-01-31 2014-12-10 Teijin Limited Random mat and fibre-reinforced composite material
JPWO2013115337A1 (en) * 2012-01-31 2015-05-11 帝人株式会社 Random mats and fiber reinforced composites
US11021583B2 (en) 2012-01-31 2021-06-01 Teijin Limited Random mat and fiber-reinforced composite material
WO2013118689A1 (en) 2012-02-09 2013-08-15 東レ株式会社 Carbon fiber composite material
EP2813532A4 (en) * 2012-02-09 2015-11-25 Toray Industries Carbon fiber composite material
EP2813532A1 (en) 2012-02-09 2014-12-17 Toray Industries, Inc. Carbon fiber composite material
US9850368B2 (en) 2012-02-09 2017-12-26 Toray Industries, Inc. Carbon fiber composite material
KR20140126307A (en) 2012-02-09 2014-10-30 도레이 카부시키가이샤 Carbon fiber composite material
KR102023790B1 (en) * 2012-02-09 2019-09-20 도레이 카부시키가이샤 Carbon fiber composite material
JPWO2013118689A1 (en) * 2012-02-09 2015-05-11 東レ株式会社 Carbon fiber composite material
JPWO2013129169A1 (en) * 2012-03-02 2015-07-30 東レ株式会社 Carbon fiber composite material
US9353231B2 (en) 2012-07-05 2016-05-31 Teijin Limited Composite base material
WO2014007389A1 (en) * 2012-07-05 2014-01-09 帝人株式会社 Composite base
US20150152231A1 (en) * 2012-07-05 2015-06-04 Teijin Limited Composite Base Material
KR20150037883A (en) * 2012-07-26 2015-04-08 데이진 가부시키가이샤 Random mat and molding of fiber-reinforced composite material
JPWO2014017612A1 (en) * 2012-07-26 2016-07-11 帝人株式会社 Random mat and fiber reinforced composite material molded body
EP2878615A1 (en) 2012-07-26 2015-06-03 Teijin Limited Random mat and molding of fiber-reinforced composite material
CN104520358A (en) * 2012-07-26 2015-04-15 帝人株式会社 Random mat and molding of fiber-reinforced composite material
WO2014017612A1 (en) * 2012-07-26 2014-01-30 帝人株式会社 Random mat and molding of fiber-reinforced composite material
KR102044261B1 (en) * 2012-07-26 2019-11-13 데이진 가부시키가이샤 Random mat and molding of fiber-reinforced composite material
JP2018167588A (en) * 2012-07-26 2018-11-01 帝人株式会社 Reinforcing fiber mat
US9884954B2 (en) 2012-07-26 2018-02-06 Teijin Limited Random mat and fiber-reinforced composite material shaped product
EP2808433B1 (en) * 2012-07-31 2019-03-06 Teijin Limited Random mat, and compact of fibre-reinforced composite material
US10208174B2 (en) 2012-07-31 2019-02-19 Teijin Limited Random mat and fiber-reinforced composite material shaped product
KR101529850B1 (en) * 2012-07-31 2015-06-17 데이진 가부시키가이샤 Random mat, and compact of fibre-reinforced composite material
JP2014030913A (en) * 2012-08-01 2014-02-20 Teijin Ltd Manufacturing method of random mat
US10738168B2 (en) 2012-08-01 2020-08-11 Teijin Limited Random mat and fiber-reinforced composite material shaped product
EP2808432A1 (en) 2012-08-01 2014-12-03 Teijin Limited Random mat, and compact of fibre-reinforced composite material
US11168186B2 (en) 2012-08-01 2021-11-09 Teijin Limited Random mat and fiber-reinforced composite material shaped product
CN104136674A (en) * 2012-08-01 2014-11-05 帝人株式会社 Random mat, and compact of fibre-reinforced composite material
JP5512908B1 (en) * 2012-08-01 2014-06-04 帝人株式会社 Random mat and fiber reinforced composite material molded body
RU2558904C1 (en) * 2012-08-01 2015-08-10 Тейдзин Лимитед Mat with arbitrary orientation of fibres and moulded product of fibre-reinforced composite material
WO2014021315A1 (en) * 2012-08-01 2014-02-06 帝人株式会社 Random mat, and compact of fibre-reinforced composite material
WO2014065161A1 (en) 2012-10-25 2014-05-01 東レ株式会社 Stampable sheet
JPWO2014065161A1 (en) * 2012-10-25 2016-09-08 東レ株式会社 Stampable seat
US9909253B2 (en) 2013-06-26 2018-03-06 Teijin Limited Random mat, shaped product of fiber reinforced composite material, and carbon fiber mat
JP5687812B1 (en) * 2013-06-26 2015-03-25 帝人株式会社 Random mat, fiber reinforced composite material molded body, and carbon fiber mat
WO2014208626A1 (en) * 2013-06-26 2014-12-31 帝人株式会社 Random mat, fiber-reinforced composite material molded article, and carbon fiber mat
WO2015111536A1 (en) 2014-01-22 2015-07-30 帝人株式会社 Molding material for injection molding, extrusion molding, or pultrusion molding, carbon-fiber-reinforced thermoplastic resin pellets, molded article, method for producing injection molded article, and injection molded article
EP3348370A1 (en) 2014-02-14 2018-07-18 Teijin Limited Carbon fiber reinforced molding material and shaped product
US10428192B2 (en) 2014-02-14 2019-10-01 Teijin Limited Carbon fiber reinforced molding material and shaped product
WO2015122366A1 (en) * 2014-02-14 2015-08-20 帝人株式会社 Carbon fiber reinforced molding material and molded body
CN105579211A (en) * 2014-02-14 2016-05-11 帝人株式会社 Carbon fiber reinforced molding material and molded body
JP5919451B2 (en) * 2014-02-14 2016-05-18 帝人株式会社 Carbon fiber reinforced molding material and molded body
JPWO2015122366A1 (en) * 2014-02-14 2017-03-30 帝人株式会社 Carbon fiber reinforced molding material and molded body

Also Published As

Publication number Publication date
JP5576147B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5576147B2 (en) Carbon fiber composite material
JP2011178890A (en) Carbon fiber composite material
JP5436700B2 (en) Random mats and fiber reinforced composite materials
JP5512908B1 (en) Random mat and fiber reinforced composite material molded body
JP5627803B2 (en) Random mats and fiber reinforced composites
JP5722732B2 (en) Method for producing isotropic random mat for forming thermoplastic composite material
JP2011241338A (en) Carbon fiber composite material
JP5702854B2 (en) Reinforced fiber composite material
US9193840B2 (en) Carbon fiber composite material
JP5687812B1 (en) Random mat, fiber reinforced composite material molded body, and carbon fiber mat
US8829103B2 (en) Carbon fiber composite material
JP6379035B2 (en) Random mat and fiber reinforced composite material molded body
JP5851767B2 (en) Fiber reinforced substrate
JP5531170B1 (en) Random mat and fiber reinforced composite material molded body
JPWO2013094706A1 (en) Random mats and reinforced fiber composites
WO2014007389A1 (en) Composite base
JP2012246428A (en) Thermoplastic isotropic prepreg
JP2014210991A (en) Reinforcing fiber mat and method for producing reinforcing fiber mat
JP2012158846A (en) Random mat having superior design
JP2013049751A (en) Fiber reinforcement substrate
JP2012158847A (en) Random mat
JP6092923B2 (en) Carbon fiber composite material
JP2013203836A (en) Carbon fiber composite molded article, carbon fiber sandwich material, and automotive floor pan containing the carbon fiber composite molded article

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5576147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150