JP2011178616A - Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method - Google Patents

Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method Download PDF

Info

Publication number
JP2011178616A
JP2011178616A JP2010045110A JP2010045110A JP2011178616A JP 2011178616 A JP2011178616 A JP 2011178616A JP 2010045110 A JP2010045110 A JP 2010045110A JP 2010045110 A JP2010045110 A JP 2010045110A JP 2011178616 A JP2011178616 A JP 2011178616A
Authority
JP
Japan
Prior art keywords
carbon
oxygen
removal
diamond
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010045110A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Aizawa
龍彦 相澤
Sadao Takeuchi
貞雄 竹内
Tadao Kato
忠郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010045110A priority Critical patent/JP2011178616A/en
Publication of JP2011178616A publication Critical patent/JP2011178616A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To selectively and efficiently remove a substance on the predetermined part of a component or the like having a carbon-based base stock and a carbon-based coating film on the surface thereof to acquire the component or the like having the substance-removed area of predetermined size and shape. <P>SOLUTION: The method for removing the carbon-based substance comprises a step of simultaneously imparting one or a plurality of atomic oxygen 3, activated oxygen or an oxygen ion at the temperature that is equal to or higher than room temperature and equal to or lower than the softening point of the base stock to be treated, to the optionally-selected surface part of one of graphite, glassy carbon, amorphous carbon (including diamond-like carbon), a carbon nanotube, fullerene, sintered diamond and natural diamond, the carbon-based base stock including the selected one, or the component or a member comprising the carbon-based base stock to remove the carbon-based substance on the optionally-selected surface part to the extent that the optionally-selected surface part has predetermined size and shape. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、グラファイト、グラッシー・カーボン、ダイヤモンドなどの炭素系素材(コーティング膜を含む)及び炭素系素材を表面にもつ部品や部材の表面の炭素系物質を、選択的に,かつ所定の寸法、形状まで除去する方法及び該除去方法を備えた部品等の製造方法や部品等のリサイクル方法に関する。   In the present invention, a carbon-based material (including a coating film) such as graphite, glassy carbon, and diamond, and a carbon-based material on the surface of a part or member having a carbon-based material on the surface are selectively and have predetermined dimensions, The present invention relates to a method for removing a shape, a method for producing a part or the like provided with the removal method, and a method for recycling a part or the like.

炭素系素材の多くは、グラッシー・カーボン、焼結ダイヤモンドなどのように、脆弱あるいは高硬度の材料であり、グラファイトあるいは黒鉛のように機械的な除去方法により所定の形状、寸法を獲得できるものは少数である。又,焼結法などを介して、出発原料より粗い形状、寸法の部材の作成も可能であるが、最終形状寸法への仕上げ、選択的な表面形状・パターンの転写などは、困難あるいはほとんど不可能である。   Many carbon-based materials are brittle or high-hardness materials such as glassy carbon and sintered diamond, and those that can obtain a predetermined shape and dimensions by mechanical removal methods such as graphite or graphite. There are a few. In addition, it is possible to create a member with a rougher shape and dimensions than the starting material through a sintering method, but finishing to the final shape dimensions and selective surface shape / pattern transfer are difficult or almost impossible. Is possible.

特に最近、工具・金型・機械部品の表面処理あるいは表面改質に利用されているDLC(ダイヤモンド・ライク・カーボン)膜あるいはダイヤモンド膜などを、場所を特定して,選択的に除去したり、所定の形状寸法を付与したり、あるいは所定の形状・パターンを転写したりするには、機械的な物質除去方法や溶液による化学的な物質除去方法では難しい。尚、ここで「所定の形状寸法を付与したり、あるいは所定の形状・パターンを転写したりする」とは、深さ・幅・ピッチ長などの特性寸法を高精度に研削したり、溝パターンあるいは平面フレネルパターンのような機能的に意味のある形状パターンをDLC膜あるいはダイヤモンド膜上に形成することを意味する。   Especially, DLC (Diamond-Like Carbon) film or diamond film that has been used for surface treatment or surface modification of tools, molds and machine parts recently has been identified and selectively removed. Giving a predetermined shape dimension or transferring a predetermined shape / pattern is difficult by a mechanical material removal method or a chemical material removal method using a solution. Here, “giving a predetermined shape dimension or transferring a predetermined shape / pattern” means grinding a characteristic dimension such as depth / width / pitch length with high precision, Alternatively, it means that a functionally meaningful shape pattern such as a planar Fresnel pattern is formed on the DLC film or diamond film.

さらに,近年注目されている超硬工具基材にダイヤモンドコーティングしたダイヤモンド工具,あるいは各種金属工具基材に焼結ダイヤモンドを接合したダイヤモンド工具では、使用後に残存するダイヤモンド膜あるいは焼結ダイヤモンド部位を除去し、基材を再利用することで、ゼロエミッションに向けて、製造工程の物質循環を高効率化し、コスト低減をはかることが強く求められている。   Furthermore, diamond tools with diamond coating on carbide tool bases that have been attracting attention in recent years, or diamond tools with sintered diamond joined to various metal tool bases, remove the diamond film or sintered diamond parts remaining after use. In order to achieve zero emissions, it is strongly required to increase the efficiency of material circulation in the manufacturing process and reduce costs by reusing the base material.

この場合、工具形状寸法が多様であるため、対象とする工具形状に影響されないこと、必要に応じて選択的に物質除去ができること、さらに、超硬基材の過大な損傷を伴わないことなど、解決すべき課題が多く、ダイヤモンド工具の展開の大きな障害となっている。   In this case, since the tool shape dimensions are diverse, it is not affected by the target tool shape, it can be selectively removed as necessary, and it is not accompanied by excessive damage of the cemented carbide substrate, etc. There are many problems to be solved, which is a major obstacle to the development of diamond tools.

炭素系素材あるいは炭素系コーティング膜の除去技術に関しては、機械的除去法、化学的除去法、プラズマ加工法の3つに大別される。   The removal technique of the carbon-based material or the carbon-based coating film is roughly divided into three methods, a mechanical removal method, a chemical removal method, and a plasma processing method.

機械的除去法では、特許文献1(特開2003−200350号公開特許公報:特許3997084号特許公報)のように、空気と共に研磨剤を噴出させブラスト処理する方法、あるいは特許文献2(特開2008−30142号公開特許公報)のように、工業用ブラシで機械的研磨をする方法がある。これらの手法は、対象が切削工具被覆などの小面積膜の除去にも長時間の処理を必要とし、その除去速度はきわめて遅い。さらに研磨が、研磨剤を衝突させた部位あるいはブラッシングした部位のみで進むため、均一な研磨・研削をすることは、原理上難しい。   In the mechanical removal method, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2003-200350, Japanese Patent Laid-Open No. 3997084), an abrasive is jetted together with air to perform blasting, or Patent Document 2 (Japanese Patent Laid-Open No. 2008-2008). There is a method of performing mechanical polishing with an industrial brush as disclosed in Japanese Patent No. 30142. These methods require a long process for removing a small area film such as a cutting tool covering, and the removal speed is extremely slow. Further, since the polishing proceeds only at the site where the abrasive is collided or brushed, it is difficult in principle to perform uniform polishing and grinding.

ダイヤモンド相などのように化学的に安定な炭素系素材を化学的に除去することは、本質的に困難を伴う。特許文献3(特開2006−247751号公開特許公報)のように、真空焼結炉内の熱処理により直接的に除去する方法、特許文献4(特開2001−295044号公開特許公報)あるいは特許文献5(特開2003−171785号公開特許公報)のように、酸素プラズマ加熱あるいは水素プラズマ加熱で除去すべき被覆工具を温度上昇させ、膜と基材との熱膨張差により生じる熱応力で除去する方法がある。これらの方法では、基材を900°C以上に加熱するため、基材の加熱損傷は避けられず、又加熱−冷却サイクルに必要なエネルギー、処理時間も大となる。   It is inherently difficult to remove chemically stable carbon-based materials such as diamond phases. A method of removing directly by heat treatment in a vacuum sintering furnace as disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2006-247751), Patent Document 4 (Japanese Patent Laid-Open No. 2001-295044), or Patent Document 5 (Japanese Patent Laid-Open No. 2003-171785), the temperature of the coated tool to be removed by oxygen plasma heating or hydrogen plasma heating is increased and removed by thermal stress caused by the difference in thermal expansion between the film and the substrate. There is a way. In these methods, since the substrate is heated to 900 ° C. or more, the substrate is inevitably damaged by heating, and the energy and processing time required for the heating-cooling cycle are increased.

他の方法としては、特許文献6(特開平6−48716号公開特許公報)のように、酸素又は水素雰囲気下で紫外領域のエキシマレーザーを用いて欠陥を除去する方法もあるが、すべての被覆を除去することは困難であることに加え、その適用は半導体上のダイヤモンド膜のような平面的なものに限定される。   As another method, there is a method of removing defects using an excimer laser in an ultraviolet region under an oxygen or hydrogen atmosphere as disclosed in Patent Document 6 (Japanese Patent Laid-Open No. Hei 6-48716). In addition to being difficult to remove, the application is limited to planar ones such as diamond films on semiconductors.

プラズマを用いる方法の代表例が、特許文献7(特開平5−339758号公開特許公報)のように、エッチング処理あるいはアッシング処理による除去である。この場合、被覆工具が受けるエッチング速度にむらが生じ、均一な被覆除去が難しい。特にダイヤモンド結晶膜のように、結晶間がエッチングされやすい場合には、不均一な除去を生じるのみならず、除去すべきダイヤモンド相内にクラックを導入することにもなりかねず、再生すべき基材を損傷させる危険性もはらんでいる。   A representative example of a method using plasma is removal by etching or ashing as disclosed in Patent Document 7 (Japanese Patent Laid-Open No. 5-339758). In this case, the etching rate received by the coating tool becomes uneven, and uniform coating removal is difficult. In particular, when the space between crystals is easily etched, as in a diamond crystal film, not only non-uniform removal occurs, but also cracks may be introduced into the diamond phase to be removed. There is also a risk of damaging the material.

特開2003−200350号公開特許公報(特許3997084号)Japanese Patent Laid-Open No. 2003-200350 (Patent No. 3997084) 特開2008−30142号公開特許公報Japanese Patent Laid-Open No. 2008-30142 特開2006−247751号公開特許公報Japanese Patent Laid-Open No. 2006-247751 特開2001−295044号公開特許公報Japanese Patent Laid-Open No. 2001-295044 特開2003−171785号公開特許公報Japanese Patent Laid-Open No. 2003-171785 特開平6−48716号公開特許公報Japanese Patent Laid-Open No. 6-48716 特開平5−339758号公開特許公報Japanese Patent Laid-Open No. 5-339758

本発明は、上記従来技術(背景技術)のもつ問題点や危険性を解決して、機械的な物質除去処理が困難な脆弱な炭素系素材及び炭素系コーティング膜を表面にもつ部品等の所定部位を選択的にかつ効率的に物質除去し、所定の寸法、形状の除去範囲を獲得することを課題としている。具体的には、原子状酸素あるいは活性化酸素あるいは酸素イオンを活用し、それらを炭素系素材及び炭素系コーティング膜を表面にもつ部品等の所定部位に選択的に付与することにより、それらの構成元素である炭素と酸素との反応を促進させ、化学的に効率よく物質除去する方法及びその方法を備えた部品等の製造方法や部品等のリサイクル方法を提供する。   The present invention solves the problems and dangers of the prior art (background art) described above, and is used for predetermined parts such as parts having a fragile carbon-based material and a carbon-based coating film on the surface that are difficult to remove mechanically. An object is to selectively and efficiently remove a part and acquire a removal range of a predetermined size and shape. Specifically, by utilizing atomic oxygen, activated oxygen, or oxygen ions, and selectively applying them to a predetermined part such as a part having a carbon-based material and a carbon-based coating film on the surface, the structure thereof The present invention provides a method for chemically and efficiently removing a substance by promoting the reaction between carbon, which is an element, and a method for producing a component and the like, and a method for recycling the component, etc., including the method.

前記問題点を解決するため、第1の発明は、グラファイト、グラッシー・カーボン、アモルファス・カーボン(ダイヤモンド・ライク・カーボンを含む)、カーボン・ナノ・チューブ、フラーレン、焼結ダイヤモンド、天然ダイヤモンドのいずれか又はそれを含む炭素系素材又はそれらの炭素系素材からなる部品若しくは部材において、任意に選択した表面部位に、原子状酸素あるいは活性化酸素あるいは酸素系イオンのいずれか一つ又は複数を同時に、室温以上で処理対象素材の軟化点以下の温度のもとで付与することにより、所定の寸法、形状にまで,上記任意に選択した表面部位の上記炭素系物質を除去する炭素系物質除去方法とする。   In order to solve the above problem, the first invention is any one of graphite, glassy carbon, amorphous carbon (including diamond-like carbon), carbon nanotube, fullerene, sintered diamond, and natural diamond. Alternatively, in a carbon-based material containing the same or a part or member made of such a carbon-based material, any one or more of atomic oxygen, activated oxygen, and oxygen-based ions are simultaneously applied to a surface portion arbitrarily selected at room temperature. The carbon-based material removal method for removing the carbon-based material on the surface portion arbitrarily selected up to a predetermined size and shape by applying the material at a temperature below the softening point of the material to be treated. .

第2の発明は、第1の発明である炭素系物質除去方法を備えた炭素系素材又はそれらの炭素系素材からなる部品若しくは部材の製造方法とする。   The second invention is a carbon-based material provided with the carbon-based material removing method according to the first invention, or a method of manufacturing a part or member made of these carbon-based materials.

第3の発明は、グラファイト、グラッシー・カーボン、アモルファス・カーボン(ダイヤモンド・ライク・カーボンを含む)、カーボン・ナノ・チューブ、フラーレン、焼結ダイヤモンド、天然ダイヤモンドのいずれか又はそれを含む炭素系コーティング膜又は該コーティング膜を表面にもつ部品若しくは部材において、任意に選択した表面部位に,原子状酸素あるいは活性化酸素あるいは酸素系イオンのいずれか一つ又は複数を同時に、室温以上で処理対象素材の軟化点以下の温度のもとで付与することにより、所定の寸法、形状にまで,上記任意に選択した表面部位の上記炭素系物質を除去する炭素系物質除去方法とする。   According to a third aspect of the present invention, any one of graphite, glassy carbon, amorphous carbon (including diamond-like carbon), carbon nanotube, fullerene, sintered diamond, natural diamond, or a carbon-based coating film containing the same Alternatively, in a part or member having the coating film on the surface, any one or more of atomic oxygen, activated oxygen, and oxygen-based ions are simultaneously softened at a room temperature or higher at an arbitrarily selected surface site. A carbon-based material removing method is provided in which the carbon-based material is removed from the arbitrarily selected surface portion to a predetermined size and shape by applying under a temperature below a point.

第4の発明は、第3の発明である炭素系物質除去方法を備えた炭素系コーティング膜又は該コーティング膜を表面にもつ部品若しくは部材のリサイクル方法とする。   A fourth invention is a carbon-based coating film provided with the carbon-based material removing method according to the third invention, or a method for recycling parts or members having the coating film on the surface.

本発明は、機械的な操作を全く含まないことから、脆弱な炭素系素材などの物質除去が可能となった。又、原子状酸素あるいは活性化酸素あるいは酸素イオンのみを、除去対象とする炭素系素材などに付与するため、物質除去の反応場の形状や寸法に制限はなく、小部品から中大型部材まで、物質除去の対象とすることが可能となった。   Since the present invention does not include any mechanical operation, substances such as fragile carbon-based materials can be removed. In addition, since only atomic oxygen or activated oxygen or oxygen ions are imparted to the carbon-based material to be removed, there are no restrictions on the shape and dimensions of the reaction field for substance removal, from small parts to medium and large parts, It became possible to make it a target of substance removal.

特に、原子状酸素あるいは活性化酸素を用いることで、酸素イオンのエッチングに脆弱な超硬基材でも、ほとんど損傷を与えることなく物質除去ができるものとなった。   In particular, by using atomic oxygen or activated oxygen, even a cemented carbide substrate that is fragile to oxygen ion etching can be removed with little damage.

さらに、付与する原子状酸素あるいは活性化酸素あるいは酸素イオンのプロセス条件ならびに処理プロセスの温度を制御することにより、物質除去速度を選択的に変化させることも可能となった。   Furthermore, it has become possible to selectively change the material removal rate by controlling the process conditions of the atomic oxygen or activated oxygen or oxygen ions to be applied and the temperature of the treatment process.

本発明は、物質除去において、原子状酸素あるいは活性化酸素あるいは酸素イオンが、炭素系素材あるいは炭素系コーティング膜の表面へ流体力学的に付与され、対象とする素材あるいは部品の形状、寸法によらず除去が化学的に進行するため、一定の速度での均一除去が達成できるものとなった。尚、除去速度は、プロセス条件・プロセス温度などで制御されるため、対象とする炭素系素材などに応じた除去環境を設定できる。   In the present invention, atomic oxygen, activated oxygen, or oxygen ions are hydrodynamically applied to the surface of a carbon-based material or a carbon-based coating film in substance removal, and depending on the shape or size of the target material or component. Since removal proceeds chemically, uniform removal at a constant rate can be achieved. Since the removal rate is controlled by process conditions, process temperature, etc., a removal environment can be set according to the target carbon-based material.

マスキング技法を用いて、除去の必要がない部位あるいは除去しない部位を保護することで、炭素系素材などに、所定の形状・パターンでの物質除去ができるものとなった。加えて、原子状酸素あるいは活性化酸素あるいは酸素イオンの付与条件を制御することで、比較的深い物質除去も可能となる。   By using masking techniques to protect parts that do not need to be removed or parts that are not removed, carbon-based materials can be removed in a predetermined shape and pattern. In addition, by controlling the application conditions of atomic oxygen, activated oxygen, or oxygen ions, relatively deep material removal can be achieved.

特にグラッシー・カーボンあるいは焼結ダイヤモンドのように、機械的な除去処理が困難な脆弱な材料表面への所定の形状・所定の寸法・パターン転写が可能となった。   In particular, it has become possible to transfer a predetermined shape, a predetermined dimension, and a pattern onto a fragile material surface that is difficult to remove mechanically, such as glassy carbon or sintered diamond.

炭素系素材は、グラファイト、ダイヤモンドなど結晶構造の異なる物質あるいはグラッシー・カーボン、DLC膜などのアモルファスの物質まで多様であるが、本発明では、炭素と原子状酸素あるいは活性化酸素あるいは酸素イオンの構成元素である酸素との反応を促進させ、化学的に効率よく物質除去を行うため、除去速度は変化するものの、原理的にすべての炭素系素材などの物質除去が可能となる。   There are various carbon-based materials, such as graphite, diamond and other materials having different crystal structures, and amorphous materials such as glassy carbon and DLC film. In the present invention, the structure of carbon and atomic oxygen, activated oxygen, or oxygen ions is used. Since the reaction with oxygen, which is an element, is promoted and the material is chemically removed efficiently, in principle, all carbon-based materials can be removed, although the removal rate changes.

特に原子状酸素あるいは活性化酸素を用いることで、酸素イオンでは局所的なエッチング効果の懸念のある超硬基材上の炭素系コーティング膜の物質除去を行う。加工時に発生するのは微量な2酸化炭素ガスのみであり、製造時の物質エミッションを最小にしつつ、超硬を基材とする各種ダイヤモンド工具などの効率的なリサイクルを可能とする。   In particular, by using atomic oxygen or activated oxygen, the oxygen ion removes the carbon-based coating film on the cemented carbide substrate, which has a local etching effect. Only a small amount of carbon dioxide gas is generated during processing, and it is possible to efficiently recycle various diamond tools based on cemented carbide while minimizing material emission during production.

原子状酸素あるいは活性化酸素あるいは酸素イオンを用いた物質除去装置を示す説明図。Explanatory drawing which shows the substance removal apparatus using atomic oxygen, activated oxygen, or oxygen ion. マスキングを用いて選択的に物質除去したグラッシー・カーボン材料表面の外観を示す図。The figure which shows the external appearance of the glassy carbon material surface which removed the substance selectively using masking. グラッシー・カーボン材料の除去深さの変化を示す図。The figure which shows the change of the removal depth of a glassy carbon material. グラッシー・カーボン材料における除去速度の変化を示す図。The figure which shows the change of the removal rate in a glassy carbon material. マスキングを用いて選択的に物質除去したCVDダイヤモンド膜材料表面の外観を示す図。The figure which shows the external appearance of the CVD diamond film | membrane material surface which removed the substance selectively using masking. CVDダイヤモンド膜材料の除去深さを示す図。The figure which shows the removal depth of CVD diamond film | membrane material. CVDダイヤモンド膜材料における除去速度の変化を示す図。The figure which shows the change of the removal rate in CVD diamond film material. 超硬基材上のマスキングを用いて選択的に物質除去したCVDダイヤモンド膜材料表面の外観を示す図。The figure which shows the external appearance of the CVD diamond film | membrane material surface which selectively removed the substance using the masking on a cemented carbide substrate. 超硬基材上の選択的に物質除去したCVDダイヤモンド膜材料の表面形状を示す図。The figure which shows the surface shape of the CVD diamond film | membrane material from which the substance was selectively removed on the carbide substrate. マスキングを用いて選択的に物質除去したダイヤモンド工具表面の外観を示す図。The figure which shows the external appearance of the diamond tool surface which selectively removed the substance using the masking. 選択的に物質除去したダイヤモンド工具の表面形状を示す図。The figure which shows the surface shape of the diamond tool which selectively removed the substance. 選択的に物質除去したCVDダイヤモンド膜材料の処理前(0s)と処理後(3000s)との表面性状の比較図。The comparison figure of the surface property of before processing (0 s) and after processing (3000 s) of CVD diamond film material which removed the substance selectively. 選択的に物質除去したCVDダイヤモンド膜材料の処理前(0s)と処理後(3000s)との微細組織の比較図であって、(a)は処理前を示し、(b)は処理後を示す図。It is a comparison figure of the fine structure before processing (0 s) and after processing (3000 s) of the CVD diamond film material selectively removed, wherein (a) shows before processing and (b) shows after processing. Figure. 選択的に物質除去したCVDダイヤモンド膜材料の処理前(0s)と処理後(3000s)との残留ダイヤモンド相の比較図。The comparison figure of the residual diamond phase before processing (0 s) and after processing (3000 s) of the CVD diamond film material which selectively removed the substance.

本発明は、炭素系物質除去方法を主たる構成とする。本発明における炭素系物質は、グラファイト、グラッシー・カーボン、アモルファス・カーボン(ダイヤモンド・ライク・カーボンを含む)、カーボン・ナノ・チューブ、フラーレン、焼結ダイヤモンド、天然ダイヤモンドのいずれか又はそれを含むものである。   The main structure of the present invention is a carbon-based material removal method. The carbon-based material in the present invention includes any one of graphite, glassy carbon, amorphous carbon (including diamond-like carbon), carbon nanotube, fullerene, sintered diamond, and natural diamond.

炭素系物質除去方法が適用されるものは、炭素系物質単体からなる炭素系素材、炭素系物質を含む炭素系素材、それらの炭素系素材からなる部品若しくは部材、上記炭素系物質からなる炭素系コーティング膜又は炭素系コーティング膜を表面にもつ部品若しくは部材などである。   The carbon-based material removal method is applied to a carbon-based material composed of a single carbon-based material, a carbon-based material containing the carbon-based material, a component or member composed of the carbon-based material, and a carbon-based material composed of the carbon-based material A part or member having a coating film or a carbon-based coating film on its surface.

本発明の炭素系物質除去方法では、原子状酸素あるいは活性化酸素あるいは酸素イオンなどを、図1に示すようにチャンバー1内において、所定の流速で、処理する対象の炭素系素材あるいは炭素系膜をコーティングした部材(金型4や工具5)に付与する。原子状酸素あるいは活性化酸素あるいは酸素イオンは、複数を同時に付与してもよい。またキャリアガスとして、アルゴン、ヘリウムを併用してもよい。図1では、チャンバー1内で原子状酸素発生装置2より発生させた原子状酸素3を炭素系素材あるいは炭素系膜をコーティングした金型4や工具5に付与している。   In the carbon-based material removal method of the present invention, the carbon-based material or carbon-based film to be processed at a predetermined flow rate in the chamber 1 as shown in FIG. 1 with atomic oxygen, activated oxygen, oxygen ions, or the like. Is applied to the coated member (die 4 or tool 5). A plurality of atomic oxygen, activated oxygen, or oxygen ions may be provided simultaneously. Further, argon or helium may be used in combination as the carrier gas. In FIG. 1, atomic oxygen 3 generated from an atomic oxygen generator 2 in a chamber 1 is applied to a mold 4 or a tool 5 coated with a carbon-based material or a carbon-based film.

原子状酸素あるいは活性化酸素あるいは酸素イオンなどの付与は、任意に選択した表面部位に対して行う。炭素系物質除去の必要のない部位はマスキング技法を用いて保護し、必要部位のみを所定の形状、所定の寸法で除去する。   Application of atomic oxygen, activated oxygen, oxygen ions, or the like is performed on an arbitrarily selected surface portion. Sites that do not require removal of the carbon-based material are protected using a masking technique, and only the necessary sites are removed with a predetermined shape and predetermined dimensions.

炭素系素材表面あるいは炭素系コーティング膜表面などの炭素系物質除去は、室温で行える。好ましくは、50℃以上処理対象素材の軟化点以下に、処理対象物を加熱して物質除去するとよい。より好ましくは、200℃以上処理対象素材の軟化点以下に、処理対象物を加熱して物質除去するとよい。すなわち、有効温度範囲は室温以上で処理対象素材の軟化点以下である。尚、上記炭素系物質(項目0026で示した物質)の軟化点は、概ね600°C以下である。   Removal of carbon-based substances such as the surface of the carbon-based material or the surface of the carbon-based coating film can be performed at room temperature. Preferably, the substance to be treated is removed by heating the object to be treated at 50 ° C. or more and below the softening point of the material to be treated. More preferably, the material to be treated is heated to 200 ° C. or higher and below the softening point of the material to be treated. That is, the effective temperature range is above room temperature and below the softening point of the material to be treated. The softening point of the carbon-based material (the material indicated by item 0026) is approximately 600 ° C. or less.

炭素系素材表面あるいは炭素系コーティング膜表面の物質除去は、原子状酸素あるいは活性化酸素あるいは酸素イオンなどの発生源である酸素を含むキャリアガスで行う。好ましくは純度80%以上の酸素を含むキャリアガス、より好ましくは純度95%以上の酸素を含むキャリアガスを使用する。   The material removal on the surface of the carbon-based material or the surface of the carbon-based coating film is performed with a carrier gas containing oxygen which is a source of atomic oxygen, activated oxygen, oxygen ions, or the like. Preferably, a carrier gas containing oxygen having a purity of 80% or more, more preferably a carrier gas containing oxygen having a purity of 95% or more is used.

炭素系物質除去プロセス時のキャリアガス流量は、10mL(ミリリットル)/min(毎分)程度の低い条件でも炭素系物質除去ができる。好ましくは、10mL/min以上、より好ましくは50mL/minの流量を用いる方がよい。   The carrier gas flow rate during the carbonaceous material removal process can remove the carbonaceous material even under a low condition of about 10 mL (milliliter) / min (per minute). It is preferable to use a flow rate of 10 mL / min or more, more preferably 50 mL / min.

炭素系物質除去プロセス時のチャンバー内の圧力は、1Pa(パスカル)以下の低圧でも物質除去できる。好ましくは1Pa以上、より好ましくは3Pa以上にする方がよい。   The pressure in the chamber during the carbon-based material removal process can be removed even at a low pressure of 1 Pa (pascal) or less. The pressure is preferably 1 Pa or higher, more preferably 3 Pa or higher.

炭素系物質除去速度は、上記項目0030で示したプロセス温度、上記項目0031〜0033で示したキャリアガス条件に加え、原子状酸素あるいは活性化酸素あるいは酸素イオンなどを発生する出力条件にも依存する。50W以上の低出力でも炭素系物質除去はできるが、好ましくは200W以上、より好ましくは500W以上の出力で炭素系物質除去を行う方がよい。   The carbon-based material removal rate depends on the process conditions indicated by the above item 0030 and the carrier gas conditions indicated by the above items 0031 to 0033 as well as the output conditions for generating atomic oxygen, activated oxygen, oxygen ions, or the like. . Although the carbon-based material can be removed even at a low output of 50 W or higher, it is preferable to remove the carbon-based material at an output of 200 W or higher, more preferably 500 W or higher.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるも
のではない。
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.

(実施例1:グラッシー・カーボン材料の物質除去)
神港精機製・RIE600を利用し、酸素イオンならびに原子状酸素を発生させ、出力600W、酸素流量100mL/min、5Paの条件で、グラッシー・カーボン材料の物質除去を行った。酸素フローに直交するようにグラッシー・カーボン材を設置し、マスキングにより選択的に物質除去し、4つの段差をもつ試料を作成した。具体的には、グラッシー・カーボン材料をマスキングにより、物質除去時間0s(秒)、500s(秒)、1000s(秒)、2000s(秒)とした場合の4つの表面状態が観察できる試料を作成した。
(Example 1: Material removal of glassy carbon material)
Using RIE600 manufactured by Shinko Seiki, oxygen ions and atomic oxygen were generated, and the glassy carbon material was removed under conditions of an output of 600 W, an oxygen flow rate of 100 mL / min, and 5 Pa. A glassy carbon material was installed so as to be orthogonal to the oxygen flow, and the material was selectively removed by masking to prepare a sample having four steps. Specifically, samples were prepared by observing four surface states when the material removal time was 0 s (seconds), 500 s (seconds), 1000 s (seconds), and 2000 s (seconds) by masking the glassy carbon material. .

図2は物質除去を2000s(秒)行った後のグラッシー・ガーボン材料表面の外観を示す図である。除去前は、平滑面でガラス光沢を示した表面性状であったものが、除去後は消失し、除去による典型的な粗い面が形成されていることがわかる。   FIG. 2 is a view showing the appearance of the glassy / garbon material surface after the substance removal is performed for 2000 s (seconds). It can be seen that the surface properties that exhibited a glass gloss on the smooth surface before the removal disappeared after the removal, and a typical rough surface was formed by the removal.

所定の4段階設定に対応した4つの段差がマスキングにより創出された試料を、実際、高精度微細形状測定機(SURFCORDER/ET4000L、小坂研究所製)で測定した。図3は、4段階の設定に対応した試料の各表面位置の差より求めたデータを示す棒グラフであって、図3中左の棒は、処理時間0s(秒)での表面位置と処理時間500s(秒)後の表面位置の差から処理時間500s(秒)後の除去深さを示すものであり、図3中真中の棒は、処理時間500s(秒)での表面位置と処理時間1000s(秒)後の表面位置の差から処理時間500s(秒)より処理時間1000s(秒)後までの除去深さを示すものであり、図3中右の棒は、処理時間1000s(秒)での表面位置と処理時間2000s(秒)後の表面位置の差から処理時間1000s(秒)より処理時間2000s(秒)後までの除去深さを示すものである。   A sample in which four steps corresponding to a predetermined four-step setting were created by masking was actually measured with a high-precision fine shape measuring instrument (SURFCORDER / ET4000L, manufactured by Kosaka Laboratory). FIG. 3 is a bar graph showing data obtained from the difference between the surface positions of the samples corresponding to the four steps. The left bar in FIG. 3 shows the surface position and the processing time at a processing time of 0 s (seconds). The removal depth after the processing time of 500 s (seconds) is shown from the difference in the surface position after 500 s (seconds). The middle bar in FIG. 3 indicates the surface position at the processing time of 500 s (seconds) and the processing time of 1000 s. 3 shows the removal depth from the difference in surface position after (seconds) from the processing time of 500 s (seconds) to the processing time of 1000 s (seconds). The right bar in FIG. 3 indicates the processing time of 1000 s (seconds). The removal depth from the processing time 1000 s (seconds) to the processing time 2000 s (seconds) is shown from the difference between the surface position and the surface position after processing time 2000 s (seconds).

この段差から求めた、所定の時間範囲ごとの物質除去速度の変化を図4に示す。削除時間によらずほぼ一定の物質除去速度が達成されていることがわかる。すなわち、本方法は、除去したグラッシー・カーボンの深さにほぼ無関係に、一定の速度で、炭素系物質除去ができることがわかる。尚、平均の除去速度は、毎分0.22μmであり、0.1mm厚のグラッシー・カーボン・シートでも、7時間程度で、選択的に完全除去できると考えられる。   FIG. 4 shows the change in the material removal rate for each predetermined time range obtained from this step. It can be seen that a substantially constant material removal rate is achieved regardless of the deletion time. That is, it can be seen that the present method can remove the carbon-based material at a constant rate almost independently of the depth of the removed glassy carbon. The average removal rate is 0.22 μm per minute, and even with a glassy carbon sheet having a thickness of 0.1 mm, it is considered that selective removal can be selectively performed in about 7 hours.

(実施例2:Si基材上にコーティングされたCVDダイヤモンド膜材料の物質除去)
実施例1において使用した同一の装置を用いて、酸素イオンならびに原子状酸素を発生させ、出力600W、酸素流量100mL/min、5Paの条件で、Si基材上にコーティングされたCVDダイヤモンド膜材料の物質除去を行った。酸素フローに直交するようにCVDダイヤモンド膜材料を設置し、マスキングにより選択的に物質除去し、4つの段差をもつ試料を作成した。具体的には、CVDダイヤモンド膜材料をマスキングにより、物質除去時間0s(秒)、1000s(秒)、2000s(秒)、3000s(秒)とした場合の4つの表面状態が観察できる試料を作成した。
(Example 2: Material removal of CVD diamond film material coated on Si substrate)
Using the same apparatus used in Example 1, oxygen ions and atomic oxygen were generated, and the CVD diamond film material coated on the Si substrate under the conditions of an output of 600 W, an oxygen flow rate of 100 mL / min, and 5 Pa was used. Material removal was performed. A CVD diamond film material was placed so as to be orthogonal to the oxygen flow, and the material was selectively removed by masking to prepare a sample having four steps. Specifically, samples were prepared by observing four surface states when the material removal time was 0 s (seconds), 1000 s (seconds), 2000 s (seconds), and 3000 s (seconds) by masking the CVD diamond film material. .

図5に物質除去を3000s(秒)行った後のCVDダイヤモンド膜材料表面の外観を示す。除去前には灰色光沢のあった面は、段階的に黒色に変化し、光沢を喪失した面となった。   FIG. 5 shows the appearance of the surface of the CVD diamond film material after substance removal is performed for 3000 s (seconds). The surface that had been gray glossy before removal changed to black gradually and became a surface that lost gloss.

所定の4段階設定に対応した4つの段差がマスキングにより創出された試料を、 実際、高精度微細形状測定機(SURFCORDER/ET4000L、小坂研究所製)で測定した。図6は、4段階の設定に対応した試料の各表面位置の差より求めたデータを示す棒グラフであって、図6中左の棒は、処理時間0s(秒)での表面位置と処理時間1000s(秒)後の表面位置の差から1000s(秒)後の除去深さを示すものであり、図6中真中の棒は、処理時間1000s(秒)での表面位置と処理時間2000s(秒)後の表面位置の差から処理時間1000s(秒)より処理時間2000s(秒)後までの除去深さを示すものであり、図6中右の棒は、処理時間2000s(秒)での表面位置と処理時間3000s(秒)後の表面位置の差から処理時間2000s(秒)より処理時間3000s(秒)後までの除去深さを示すものである。   A sample in which four steps corresponding to a predetermined four-step setting were created by masking was actually measured with a high-precision fine shape measuring instrument (SURFCORDER / ET4000L, manufactured by Kosaka Laboratory). FIG. 6 is a bar graph showing data obtained from the difference between the surface positions of the samples corresponding to the four steps. The left bar in FIG. 6 shows the surface position and the processing time at a processing time of 0 s (seconds). The removal depth after 1000 s (seconds) is shown from the difference in surface position after 1000 s (seconds). The middle bar in FIG. 6 shows the surface position at the processing time of 1000 s (seconds) and the processing time of 2000 s (seconds). ) Shows the removal depth from the difference in the surface position after the treatment time from 1000 s (seconds) to the treatment time after 2000 s (seconds). The right bar in FIG. 6 shows the surface at the treatment time of 2000 s (seconds). The removal depth from the processing time 2000 s (seconds) to the processing time 3000 s (seconds) from the difference between the position and the surface position after the processing time 3000 s (seconds) is shown.

この段差から求めた、所定の時間範囲ごとの物質除去速度変化を図7に示す。削除時間によらずほぼ一定の物質除去速度が達成されていることがわかる。すなわち、本方法は、除去したCVDダイヤモンド膜材料の深さにほぼ無関係に、一定の速度で、CVDダイヤモンド膜材料を物質除去できることがわかる。尚、平均の除去速度は、毎分0.075μmであり、通常の10μm厚のCVDダイヤモンド膜材料でも、2時間程度で、選択的に完全除去できると考えられる。   FIG. 7 shows a change in the material removal rate for each predetermined time range obtained from this step. It can be seen that a substantially constant material removal rate is achieved regardless of the deletion time. That is, it can be seen that the present method can remove the material of the CVD diamond film material at a constant rate almost independently of the depth of the removed CVD diamond film material. The average removal rate is 0.075 μm per minute, and it is thought that even a normal 10 μm thick CVD diamond film material can be selectively removed completely in about 2 hours.

(実施例3:超硬基材上にコーティングされたCVDダイヤモンド膜材料の物質除去)
実施例1及び実施例2において使用した同一の装置を用いて、酸素イオンならびに原子状酸素を発生させ、出力600W、酸素流量100mL/min、5Paの条件で、超硬基材上にコーティングされたCVDダイヤモンド膜材料の物質除去を行った。酸素フローに直交するようにCVDダイヤモンド膜材料を設置し、マスキングにより試料表面の半分を保護し、本方法による物質除去の進行を測定した。
(Example 3: Material removal of CVD diamond film material coated on carbide substrate)
Using the same apparatus used in Example 1 and Example 2, oxygen ions and atomic oxygen were generated and coated on a carbide substrate under conditions of an output of 600 W, an oxygen flow rate of 100 mL / min, and 5 Pa. The material of the CVD diamond film material was removed. A CVD diamond film material was placed so as to be orthogonal to the oxygen flow, half of the sample surface was protected by masking, and the progress of substance removal by this method was measured.

図8に物質除去を3000s(秒)行った後の試料表面の外観を示す。マスキングした面(図8中右側の面)は、除去前と同様に光沢面を維持しているが、非マスキング面(図8中左側の面)、すなわち物質除去したCVDダイヤモンド膜材料は黒色化し、光沢が全く喪失していることがわかる。   FIG. 8 shows the appearance of the sample surface after the substance removal is performed for 3000 s (seconds). The masked surface (right side in FIG. 8) maintains the glossy surface as before removal, but the non-masking surface (left side in FIG. 8), that is, the CVD diamond film material from which the material has been removed is blackened. It can be seen that the gloss is completely lost.

実際、高精度微細形状測定機(SURFCORDER/ET4000L、小坂研究所製)で測定すると、図9に示すように、除去面は一様に物質除去されていることがわかる。マスキング面と非マスキング面との段差を測定し、物質除去速度を求めると、平均で毎分0.063μm、最大で毎分0.15μmとなり、実施例2で行ったSi基材上にコーティングしたCVDダイヤモンド膜材料の物質除去速度と同等であることがわかった。これより本方法では、基材の材質に関係なく、CVDダイヤモンド膜材料の物質除去を高速で行うことができる。   Actually, when measured with a high-precision fine shape measuring instrument (SURFCORDER / ET4000L, manufactured by Kosaka Laboratory), it can be seen that the removal surface is uniformly removed as shown in FIG. When the level difference between the masking surface and the non-masking surface was measured and the substance removal rate was determined, the average was 0.063 μm per minute, and the maximum was 0.15 μm per minute, which was coated on the Si substrate performed in Example 2. It was found to be equivalent to the material removal rate of CVD diamond film material. Thus, in this method, the substance removal of the CVD diamond film material can be performed at a high speed regardless of the material of the base material.

(実施例4:ダイヤモンドバイトを装着した工具での物質除去)
本方法の実用性を評価するため、市販されているダイヤモンドバイトを装着した超硬工具を用いて、実施例1〜実施例3において使用した同一の装置を用いて、酸素イオンならびに原子状酸素を発生させ、出力600W、酸素流量100mL/min、5Paの条件で、物質除去を行った。酸素フローに直交するように、ダイヤモンドバイトを装着した工具試料を設置し、マスキングにより試料表面の半分を保護し、本方法による物質除去の進行を測定した。
(Example 4: Material removal with a tool equipped with a diamond tool)
In order to evaluate the practicality of this method, using a cemented carbide tool equipped with a commercially available diamond tool, using the same apparatus used in Examples 1 to 3, oxygen ions and atomic oxygen were used. The material was removed under the conditions of an output of 600 W, an oxygen flow rate of 100 mL / min, and 5 Pa. A tool sample equipped with a diamond bite was placed so as to be orthogonal to the oxygen flow, half of the sample surface was protected by masking, and the progress of material removal by this method was measured.

図10に物質除去を3000s(秒)行った後の試料(ダイヤモンド工具)表面の外観を示す。マスキングした面(図10中下部)は、除去前と同様にダイヤモンドバイトは光沢面を維持しているが、非マスキング面(図10中上部3角形部分)、すなわち物質除去したダイヤモンドバイトは黒色化し、光沢が全く喪失していることがわかる。   FIG. 10 shows the appearance of the surface of the sample (diamond tool) after removing the substance for 3000 s (seconds). As for the masked surface (lower part in FIG. 10), the diamond tool maintains the glossy surface as before removal, but the non-masked surface (upper triangular part in FIG. 10), that is, the diamond tool from which the material has been removed is blackened. It can be seen that the gloss is completely lost.

実際、高精度微細形状測定機(SURFCORDER/ET4000L、小坂研究所製)で測定すると、図11に示すように、除去面は一様に物質除去されていることがわかる。マスキング面と非マスキング面との段差を測定し、物質除去速度を求めると、毎分0.009μm(毎時0.53μm)となった。図11において、マスキング面と非マスキング面との境界では、除去深さが深いことから、原子状酸素あるいは酸素イオンのフラックスを高めると急速に除去速度が向上することも明らかになった。   Actually, when measured with a high-precision fine shape measuring machine (SURFCORDER / ET4000L, manufactured by Kosaka Laboratory), it can be seen that the removal surface is uniformly removed as shown in FIG. When the level difference between the masking surface and the non-masking surface was measured and the substance removal rate was determined, it was 0.009 μm per minute (0.53 μm per hour). In FIG. 11, since the removal depth is deep at the boundary between the masking surface and the non-masking surface, it has also been clarified that the removal rate increases rapidly when the flux of atomic oxygen or oxygen ions is increased.

(実施例5:除去処理前後のCVDダイヤモンドコーティング膜材料の表面性状比較)
前記項目0044〜0046記載の実施例3の物質除去方法において、マスキング部位(除去効果なし:0秒)と非マスキング部位(3000秒)における表面性状について、高精度表面粗さ測定装置で評価した。
(Example 5: Comparison of surface properties of CVD diamond coating film material before and after removal treatment)
In the substance removal method of Example 3 described in the above items 0044 to 0046, the surface properties at the masking site (no removal effect: 0 seconds) and the non-masking site (3000 seconds) were evaluated with a high-precision surface roughness measuring device.

図12に、非マスキング部位(3000秒)とマスキング部位(0秒)との表面性状を比較する。除去処理により均一にダイヤモンド相が除去されており、その除去深さは約5μm見積もられる。これを前記項目0044〜0046記載の実施例3の物質除去方法の平均除去速度(毎分0.063μm)、最大除去速度(毎分0.15μm)と比較すると、良好に一致する。このことから、比較的広い面積でほぼ均一にダイヤモンド相が除去されていることがわかる。   FIG. 12 compares the surface properties of the non-masking site (3000 seconds) and the masking site (0 seconds). The diamond phase is uniformly removed by the removal treatment, and the removal depth is estimated to be about 5 μm. When this is compared with the average removal rate (0.063 μm / min) and the maximum removal rate (0.15 μm / min) of the substance removal method of Example 3 described in the above items 0044 to 0046, the results agree well. This shows that the diamond phase is removed almost uniformly in a relatively wide area.

(実施例6:除去処理前後のCVDダイヤモンドコーティング膜材料の微細組織比較)
前記項目0044〜0046記載の実施例3の物質除去方法において、マスキング部位(除去効果なし:0秒)と非マスキング部位(3000秒)における微細組織についてSEMで評価した。
(Example 6: Comparison of microstructures of CVD diamond coating film materials before and after removal treatment)
In the substance removal method of Example 3 described in the above items 0044 to 0046, the microstructures at the masking site (no removal effect: 0 sec) and the non-masking site (3000 sec) were evaluated by SEM.

図13に、非マスキング部位(3000秒)とマスキング部位(0秒)との微細組織を比較する。処理前には、ダイヤモンド膜成長特有の凸凹の結晶相が観察されるが、これらが除去処理により平坦化され、ダイヤモンド結晶レベルでも均一に物質除去が進んでいることがわかる。さらに処理後においてダイヤモンド粒界に優先的にエッチングされた痕跡も見えないことから、超硬素材への損傷も少ないと想定される。   FIG. 13 compares the microstructures of the non-masking site (3000 seconds) and the masking site (0 seconds). Before the treatment, uneven crystal phases peculiar to the diamond film growth are observed, but these are flattened by the removal treatment, and it can be seen that the material removal is progressing uniformly even at the diamond crystal level. Furthermore, since no trace of etching preferentially at the diamond grain boundary is visible after processing, it is assumed that there is little damage to the carbide material.

(実施例7:除去処理前後のCVDダイヤモンドコーティング膜材料のダイヤモンド相の比較)
ダイヤモンド相のみが除去され、基材の超硬が健全性を保持しているのであれば、膜厚減少によりダイヤモンド固有のラマンスペクトルピークは単調に減少のみが生じ、他の波数域には全く変化はないと考えられる。前記項目0044〜0046記載の実施例3の物質除去方法において、マスキング部位(除去効果なし:0秒)と非マスキング部位(3000秒)におけるラマンスペクトルを測定すると、図14において除去処理に変化しているのは、ダイヤモンド相固有のピーク位置(1320cm−1近傍)でのピーク高の減少のみである。このことからも、本発明の物質除去法によるダイヤモンド相の均一除去能が実証された。
(Example 7: Comparison of diamond phase of CVD diamond coating film material before and after removal treatment)
If only the diamond phase is removed and the cemented carbide of the substrate retains its soundness, the Raman spectrum peak inherent to diamond only monotonously decreases due to the decrease in film thickness, and changes completely in other wavenumber regions. It is not considered. In the substance removal method of Example 3 described in the above items 0044 to 0046, when the Raman spectra at the masking site (no removal effect: 0 seconds) and the non-masking site (3000 seconds) are measured, the removal process is changed in FIG. It is only a decrease in the peak height at the peak position unique to the diamond phase (near 1320 cm −1 ). This also demonstrates the ability to uniformly remove the diamond phase by the material removal method of the present invention.

1・・・チャンバー
2・・・原子状酸素発生装置
3・・・原子状酸素
4・・・金型
5・・・工具
DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Atomic oxygen generator 3 ... Atomic oxygen 4 ... Mold 5 ... Tool

Claims (4)

グラファイト、グラッシー・カーボン、アモルファス・カーボン(ダイヤモンド・ライク・カーボンを含む)、カーボン・ナノ・チューブ、フラーレン、焼結ダイヤモンド、天然ダイヤモンドのいずれか又はそれを含む
炭素系素材又はそれらの炭素系素材からなる部品若しくは部材において、
任意に選択した表面部位に、
原子状酸素あるいは活性化酸素あるいは酸素系イオンのいずれか一つ又は複数を同時に、室温以上で処理対象素材の軟化点以下の温度のもとで付与することにより、
所定の寸法、形状にまで,上記任意に選択した表面部位の上記炭素系物質を除去する炭素系物質除去方法。
From graphite, glassy carbon, amorphous carbon (including diamond-like carbon), carbon nanotubes, fullerene, sintered diamond, natural diamond, or carbon-based materials containing them, or those carbon-based materials In a component or member
On the arbitrarily selected surface site,
By applying one or more of atomic oxygen, activated oxygen or oxygen-based ions at the same time at a temperature above room temperature and below the softening point of the material to be treated,
A carbon-based material removal method for removing the carbon-based material on the arbitrarily selected surface portion up to a predetermined size and shape.
請求項1に記載の炭素系物質除去方法を備えた炭素系素材又はそれらの炭素系素材からなる部品若しくは部材の製造方法。   A carbon-based material provided with the carbon-based material removing method according to claim 1, or a method for producing a part or member made of the carbon-based material. グラファイト、グラッシー・カーボン、アモルファス・カーボン(ダイヤモンド・ライク・カーボンを含む)、カーボン・ナノ・チューブ、フラーレン、焼結ダイヤモンド、天然ダイヤモンドのいずれか又はそれを含む
炭素系コーティング膜又は該コーティング膜を表面にもつ部品若しくは部材において、
任意に選択した表面部位に,
原子状酸素あるいは活性化酸素あるいは酸素系イオンのいずれか一つ又は複数を同時に、室温以上で処理対象素材の軟化点以下の温度のもとで付与することにより、
所定の寸法、形状にまで,上記任意に選択した表面部位の上記炭素系物質を除去する炭素系物質除去方法。
Graphite, glassy carbon, amorphous carbon (including diamond-like carbon), carbon nano-tube, fullerene, sintered diamond, natural diamond or a carbon-based coating film containing the same or the surface of the coating film In parts or components
At the arbitrarily selected surface site,
By applying one or more of atomic oxygen, activated oxygen or oxygen-based ions at the same time at a temperature above room temperature and below the softening point of the material to be treated,
A carbon-based material removal method for removing the carbon-based material on the arbitrarily selected surface portion up to a predetermined size and shape.
請求項3に記載の炭素系物質除去方法を備えた炭素系コーティング膜又は該コーティング膜を表面にもつ部品若しくは部材のリサイクル方法。   A carbon-based coating film comprising the carbon-based material removal method according to claim 3 or a method for recycling a part or member having the coating film on the surface.
JP2010045110A 2010-03-02 2010-03-02 Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method Pending JP2011178616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045110A JP2011178616A (en) 2010-03-02 2010-03-02 Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045110A JP2011178616A (en) 2010-03-02 2010-03-02 Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method

Publications (1)

Publication Number Publication Date
JP2011178616A true JP2011178616A (en) 2011-09-15

Family

ID=44690545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045110A Pending JP2011178616A (en) 2010-03-02 2010-03-02 Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method

Country Status (1)

Country Link
JP (1) JP2011178616A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002603A (en) * 2014-06-13 2016-01-12 学校法人 芝浦工業大学 Film removing method and film removing device
KR20170013308A (en) * 2015-04-08 2017-02-06 신메이와 고교 가부시키가이샤 Covering material stripping method and stripping device using ion irradiation
CN106517154A (en) * 2016-10-09 2017-03-22 无锡格菲电子薄膜科技有限公司 Method for removing impurity after growing graphene by CVD method and method for preparing graphene film
JP2017521339A (en) * 2014-05-05 2017-08-03 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Substrate pretreatment for consistent graphene growth by chemical deposition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162580A (en) * 1989-11-17 1991-07-12 Matsushita Electric Ind Co Ltd Device for synthesizing thin film
JPH05339758A (en) * 1992-06-08 1993-12-21 Nachi Fujikoshi Corp Method for repolishing and recoating of diamond-coated tool
JPH0648716A (en) * 1992-07-24 1994-02-22 Matsushita Electric Ind Co Ltd Method for removing defect of diamond
JP2001295044A (en) * 2000-04-11 2001-10-26 Osg Corp Method for removing diamond film and method for producing diamond-coated member
JP2002255527A (en) * 2001-02-28 2002-09-11 Institute Of Tsukuba Liaison Co Ltd Carbon nanotube and method of processing for generating carbon nanotube
JP2003171785A (en) * 2001-12-04 2003-06-20 Osg Corp Method of removing hard surface film
JP2004179014A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Plasma processing method and device
JP2006036594A (en) * 2004-07-28 2006-02-09 Namiki Precision Jewel Co Ltd Pore machining method of diamond
JP2006247751A (en) * 2005-03-08 2006-09-21 Allied Material Corp Diamond film removing method and manufacturing method of diamond film coated member
JP2007026839A (en) * 2005-07-15 2007-02-01 Sumitomo Metal Mining Co Ltd Electrolyte membrane for fuel cell and manufacturing method for electrolyte membrane for fuel cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162580A (en) * 1989-11-17 1991-07-12 Matsushita Electric Ind Co Ltd Device for synthesizing thin film
JPH05339758A (en) * 1992-06-08 1993-12-21 Nachi Fujikoshi Corp Method for repolishing and recoating of diamond-coated tool
JPH0648716A (en) * 1992-07-24 1994-02-22 Matsushita Electric Ind Co Ltd Method for removing defect of diamond
JP2001295044A (en) * 2000-04-11 2001-10-26 Osg Corp Method for removing diamond film and method for producing diamond-coated member
JP2002255527A (en) * 2001-02-28 2002-09-11 Institute Of Tsukuba Liaison Co Ltd Carbon nanotube and method of processing for generating carbon nanotube
JP2003171785A (en) * 2001-12-04 2003-06-20 Osg Corp Method of removing hard surface film
JP2004179014A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Plasma processing method and device
JP2006036594A (en) * 2004-07-28 2006-02-09 Namiki Precision Jewel Co Ltd Pore machining method of diamond
JP2006247751A (en) * 2005-03-08 2006-09-21 Allied Material Corp Diamond film removing method and manufacturing method of diamond film coated member
JP2007026839A (en) * 2005-07-15 2007-02-01 Sumitomo Metal Mining Co Ltd Electrolyte membrane for fuel cell and manufacturing method for electrolyte membrane for fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521339A (en) * 2014-05-05 2017-08-03 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Substrate pretreatment for consistent graphene growth by chemical deposition
JP2016002603A (en) * 2014-06-13 2016-01-12 学校法人 芝浦工業大学 Film removing method and film removing device
KR20170013308A (en) * 2015-04-08 2017-02-06 신메이와 고교 가부시키가이샤 Covering material stripping method and stripping device using ion irradiation
CN106796863A (en) * 2015-04-08 2017-05-31 新明和工业株式会社 The coating member carried out by ion exposure except film method and film removing device
EP3168857A4 (en) * 2015-04-08 2017-07-12 Shinmaywa Industries, Ltd. Covering material stripping method and stripping device using ion irradiation
US9824858B2 (en) 2015-04-08 2017-11-21 Shinmaywa Industries, Ltd. Covering material stripping method and stripping device using ion irradiation
KR101864877B1 (en) * 2015-04-08 2018-06-07 신메이와 고교 가부시키가이샤 Covering material stripping method and stripping device using ion irradiation
TWI697026B (en) * 2015-04-08 2020-06-21 日商新明和工業股份有限公司 Membrane stripping method and film stripping device by ion irradiation
CN106517154A (en) * 2016-10-09 2017-03-22 无锡格菲电子薄膜科技有限公司 Method for removing impurity after growing graphene by CVD method and method for preparing graphene film

Similar Documents

Publication Publication Date Title
TW583733B (en) Production method of SiC monitor wafer
TWI321337B (en) Methods of making silicon carbide articles capable of reducing wafer contamination
Schuelke et al. Diamond polishing
KR101264395B1 (en) Semiconductor processing
JP2005050468A5 (en)
Katahira et al. Effect of atmospheric-pressure plasma jet on polycrystalline diamond micro-milling of silicon carbide
Cvetković et al. Ultra-precision dicing and wire sawing of silicon carbide (SiC)
JP5015419B2 (en) Surface treatment method of metal carbide substrate used in semiconductor manufacturing process, and metal carbide substrate
JP2005064392A (en) METHOD OF MANUFACTURING SiC SINGLE-CRYSTAL SUBSTRATE
JP2011178616A (en) Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method
JP2008503066A (en) System and method for increasing the emissivity of a material
CN108220915B (en) Micro-additive and micro-additive composite manufacturing method for preparation of graphical diamond film
Cho et al. Fabrication methods for microscale 3D structures on silicon carbide
RU2389109C2 (en) Method for preparation of surface in binary and multicomponent materials
Heinke et al. Dry etching of monocrystalline silicon using a laser-induced reactive micro plasma
JP3439423B2 (en) Method for removing diamond film and method for producing diamond-coated member
EP1193327B1 (en) Silica glass apparatus for semiconductor industry and method for producing the same
JP4192112B2 (en) Method for planarizing SiC substrate surface
JP4161046B2 (en) Surface microstructure and manufacturing method thereof
JPH08301692A (en) Method for ablation for synthetic diamond and diamond obtained
JPH07232981A (en) Method for machining ceramics
JP3936215B2 (en) Carbon monitor wafer
WO2004051724A1 (en) Silica glass jig used in process for manufacturing semiconductor and method of manufacturing silica glass jig
JP5026816B2 (en) Quartz glass jig and manufacturing method thereof
JP5692497B2 (en) Surface processing method and surface processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422