JP2011178590A - Component-adjustment member and single crystal growth device provided therewith - Google Patents

Component-adjustment member and single crystal growth device provided therewith Download PDF

Info

Publication number
JP2011178590A
JP2011178590A JP2010043309A JP2010043309A JP2011178590A JP 2011178590 A JP2011178590 A JP 2011178590A JP 2010043309 A JP2010043309 A JP 2010043309A JP 2010043309 A JP2010043309 A JP 2010043309A JP 2011178590 A JP2011178590 A JP 2011178590A
Authority
JP
Japan
Prior art keywords
crystal growth
component
raw material
single crystal
adjustment member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010043309A
Other languages
Japanese (ja)
Inventor
Hisao Kokoi
久雄 小古井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010043309A priority Critical patent/JP2011178590A/en
Priority to PCT/JP2011/050339 priority patent/WO2011105122A1/en
Publication of JP2011178590A publication Critical patent/JP2011178590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component-adjustment member which allows high quality by stably producing high-quality silicon carbide single crystals, and to provide a single crystal growth device provided with the component-adjustment member. <P>SOLUTION: The single crystal growth device is provided with: a crystal growth container; a feedstock storage section positioned in the lower part in the crystal growth chamber; and a substrate support section that is disposed above the feedstock storage section, coaxial therewith, and that supports a substrate by means of a substrate support surface that is smaller in diameter than the feedstock storage section, and grows a compound semiconductor single crystal on the substrate by sublimating the raw material. In the single crystal growth device, the component-adjustment member is disposed between the feedstock storage section and the substrate support section, and partitions the space inside the crystal growth container. The component-adjustment member has a plurality of permeation pores through which the sublimated gas from the feedstock permeates. In the component-adjustment member, the opening ratio (the total opening area of the permeation pores/the total surface area of parts other than permeation pores) of the central side is higher than that of the peripheral end side. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、単結晶成長装置に関し、特に昇華再結晶法で用いる成分調整部材及びそれを備えた単結晶成長装置に関する。   The present invention relates to a single crystal growth apparatus, and more particularly to a component adjusting member used in a sublimation recrystallization method and a single crystal growth apparatus including the same.

炭化珪素は耐熱性に優れ、絶縁破壊電圧が大きく、エネルギーバンドギャップが広く、また、熱伝導度が高いなどの優れた性能を有するため、大電力パワーデバイス、耐高温半導体素子、耐放射線半導体素子、高周波半導体素子等への応用が可能である。シリコンが材料自体の物性限界から性能向上も限界に近づきつつあるため、シリコンよりも物性限界を大きくとれる炭化珪素が注目されている。近年は地球温暖化問題への対策となる、電力変換時のエネルギーロスを低減する省エネルギー技術として、炭化珪素材料を使ったパワーエレクトロニクス技術が期待を集めている。
その基盤技術として炭化珪素単結晶の成長技術の研究開発が精力的に進められ、実用化の促進に向けて製造コスト低減の観点から大口径化技術の確立が急務となっている。
Silicon carbide has excellent performance such as excellent heat resistance, large dielectric breakdown voltage, wide energy band gap, high thermal conductivity, etc., so high power power devices, high temperature resistant semiconductor elements, radiation resistant semiconductor elements Application to a high-frequency semiconductor element or the like is possible. Since silicon is approaching the limit of performance improvement from the physical property limit of the material itself, silicon carbide that can take a physical property limit larger than silicon has attracted attention. In recent years, power electronics technology using silicon carbide materials has been expected as an energy-saving technology for reducing energy loss during power conversion, which is a measure against global warming.
Research and development of silicon carbide single crystal growth technology has been vigorously promoted as the basic technology, and it is urgently necessary to establish a large-diameter technology from the viewpoint of reducing manufacturing costs in order to promote practical application.

炭化珪素単結晶の成長法として、珪素蒸気と炭素の反応を利用し、炭化珪素の種結晶上に炭化珪素単結晶を成長させる方法が知られている。例えば、特許文献1には、珪素原料からの蒸発ガスを上昇せしめて、珪素原料の温度より高く、また炭化珪素種結晶基板の温度より高く、かつ、1600℃以上に加熱された、珪素原料の上方に配置された多孔質炭素材又は貫通孔穿設炭素材中を通過させ、さらに、炭素材と反応したガスを上昇させて、炭素材の上方に配置された種結晶基板に到達させて種結晶基板上に炭化珪素単結晶を成長させる方法が開示されている。
特許文献1の方法は、原料と種結晶基板との間に孔を有する炭素材を配置して、その炭素材を炭化珪素単結晶の炭素原料供給に用いるものである。
As a method for growing a silicon carbide single crystal, a method of growing a silicon carbide single crystal on a silicon carbide seed crystal using a reaction between silicon vapor and carbon is known. For example, Patent Document 1 discloses an example of a silicon raw material that is heated to 1600 ° C. or higher by raising the evaporation gas from the silicon raw material to be higher than the temperature of the silicon raw material and higher than the temperature of the silicon carbide seed crystal substrate. The gas passed through the porous carbon material or the through-hole-perforated carbon material disposed above is further raised, and the gas reacted with the carbon material is raised to reach the seed crystal substrate disposed above the carbon material. A method for growing a silicon carbide single crystal on a crystal substrate is disclosed.
In the method of Patent Document 1, a carbon material having holes is disposed between a raw material and a seed crystal substrate, and the carbon material is used for supplying a carbon raw material of a silicon carbide single crystal.

また、他の成長法として昇華再結晶法が知られている。この方法では、結晶成長用容器内で原料炭化珪素を昇華させ、低温の種結晶基板上に炭化珪素を再結晶させて炭化珪素単結晶を成長させる(例えば、特許文献2、3)。   As another growth method, a sublimation recrystallization method is known. In this method, raw material silicon carbide is sublimated in a crystal growth vessel, and silicon carbide is recrystallized on a low-temperature seed crystal substrate to grow a silicon carbide single crystal (for example, Patent Documents 2 and 3).

特許第4199921号公報Japanese Patent No. 4199921 国際公開第2O00/39372号International Publication No. 2 00/39372 特開2010−13296号公報JP 2010-13296 A 特開平8−295595号公報JP-A-8-295595 特許第4089073号公報Japanese Patent No. 4089073

しかしながら、珪素蒸気と炭素の反応を利用する方法では、珪素と炭素の成分比率を一定にして反応を進める条件制御が容易でなく、そのため、珪素と炭素の成分比率が安定した炭化珪素単結晶を成長させるのが困難であった。   However, in the method using the reaction between silicon vapor and carbon, it is not easy to control the conditions for advancing the reaction while keeping the component ratio of silicon and carbon constant. It was difficult to grow.

また、昇華再結晶法では以下の問題があった。この方法においては、炭化珪素は2000℃以上で昇華する物質であるので、結晶成長用容器の内部を2000℃以上の高温にする必要がある。このような高温環境においては、炭化珪素原料粉末からの分解昇華ガスとしてSi、Si2C、SiC2などが生成するが、昇華ガス中の珪素成分の量は炭素成分に対し全体として等モル以上であるため、原料粉末の組成は昇華過程で次第に炭素過剰へと変化する。従って、これらの昇華ガスの分圧は昇華過程で経時的に変化する。単結晶成長過程での昇華ガス成分の変動は結晶欠陥、多型混入などの結晶性低下の要因となり、また、相対的に過剰となった炭素に起因して微小パーティクルが発生し、これが種結晶の成長面に運ばれて付着すると、炭化珪素単結晶インゴットの内部にインクルージョンと呼ばれる不純物となって、結晶欠陥を発生させる。
特に、結晶成長用容器に充填した原料炭化珪素をすべて用いるような長時間にわたる結晶成長を行う場合、結晶成長工程の最初と最後において昇華ガスの珪素と炭素の成分比率が大きく異なったものとなり、珪素と炭素の成分比率を一定にした炭化珪素単結晶を成長させることは困難だった。
また、インクルージョンの問題については、結晶成長用容器が炭素材料からなる場合、昇華ガスによって坩堝(結晶成長用容器)内壁が腐食され、インクルージョンの原因となる物質が発生したり、昇華ガスが容器の壁側近傍を通って基板に到達できる構成では原料内が不均一に昇華するため、原料の昇華残渣がインクルージョンとして結晶に混入しやすいという問題もあった。
The sublimation recrystallization method has the following problems. In this method, since silicon carbide is a substance that sublimes at 2000 ° C. or higher, the inside of the crystal growth container needs to be heated to 2000 ° C. or higher. In such a high-temperature environment, Si, Si 2 C, SiC 2 and the like are generated as decomposition sublimation gas from the silicon carbide raw material powder, but the amount of silicon component in the sublimation gas as a whole is equal to or greater than the carbon component. Therefore, the composition of the raw material powder gradually changes to carbon excess during the sublimation process. Therefore, the partial pressure of these sublimation gases changes with time during the sublimation process. Fluctuations in sublimation gas components during single crystal growth cause crystallinity deterioration such as crystal defects and polymorphs, and microparticles are generated due to relatively excessive carbon, which is the seed crystal. If it is transported to and attached to the growth surface, an impurity called inclusion is formed inside the silicon carbide single crystal ingot, and crystal defects are generated.
In particular, when performing crystal growth over a long period of time using all of the raw material silicon carbide filled in the crystal growth vessel, the component ratio of silicon and carbon in the sublimation gas at the beginning and end of the crystal growth process is greatly different. It was difficult to grow a silicon carbide single crystal with a constant component ratio of silicon and carbon.
In addition, regarding the problem of inclusion, when the crystal growth vessel is made of a carbon material, the inner wall of the crucible (crystal growth vessel) is corroded by the sublimation gas, and a substance causing the inclusion is generated, or the sublimation gas is contained in the vessel. In the configuration in which the substrate can be reached through the vicinity of the wall side, the inside of the raw material is sublimated non-uniformly, so that there is a problem that the sublimation residue of the raw material is easily mixed into the crystal as inclusions.

図5は、従来の炭化珪素単結晶成長装置の一例を説明する図であって、所定の厚さの炭化珪素単結晶(インゴット)を形成した時点の概略図である。
図5に示すように、従来の炭化珪素単結晶成長装置は、結晶成長用容器200と、原料収納部202と、原料収納部蓋203とから概略構成されており、その周囲に加熱手段(例えば、インダクターコイル)201が配置されている。
FIG. 5 is a diagram for explaining an example of a conventional silicon carbide single crystal growth apparatus, and is a schematic view when a silicon carbide single crystal (ingot) having a predetermined thickness is formed.
As shown in FIG. 5, the conventional silicon carbide single crystal growth apparatus is roughly constituted by a crystal growth vessel 200, a raw material storage portion 202, and a raw material storage portion lid 203, and a heating means (for example, , Inductor coil) 201 is disposed.

原料収納部202の内部には、原料用炭化珪素206が充填されている。また、原料収納部蓋203の原料用炭化珪素206側には、突出部231が設けられており、前記突出部231の下面231aには、種結晶204が貼り付けられている。さらに、種結晶204の一面(成長面)204aには、結晶成長された炭化珪素単結晶205が形成されている。結晶成長用容器200の周囲には、電流を流して高周波誘導させることにより発熱させることができるインダクターコイル201が配置されている。このインダクターコイル201によって、結晶成長用容器200を加熱することができる。   The raw material storage portion 202 is filled with raw material silicon carbide 206. Further, a protruding portion 231 is provided on the raw material storage portion lid 203 on the raw material silicon carbide 206 side, and a seed crystal 204 is attached to the lower surface 231 a of the protruding portion 231. Furthermore, a crystal-grown silicon carbide single crystal 205 is formed on one surface (growth surface) 204 a of seed crystal 204. Around the crystal growth vessel 200, an inductor coil 201 is disposed that can generate heat by flowing a current to induce high frequency. By this inductor coil 201, the crystal growth vessel 200 can be heated.

インダクターコイルによって結晶成長用容器200が2000℃以上に加熱されると、結晶成長用容器200の内部に収納した原料炭化珪素206が昇華され、上述の通り、原料炭化珪素206の各所からSiC、SiC、SiCなどの混成ガス(昇華ガス)を発生する。この昇華ガスは、結晶成長用容器200に充填された原料用炭化珪素206と平衡を保っている。 When the crystal growth vessel 200 is heated to 2000 ° C. or more by the inductor coil, the raw silicon carbide 206 stored in the crystal growth vessel 200 is sublimated, and Si 2 is introduced from various locations of the raw silicon carbide 206 as described above. Hybrid gas (sublimation gas) such as C, SiC, SiC 2 is generated. This sublimation gas is kept in equilibrium with the raw material silicon carbide 206 filled in the crystal growth vessel 200.

図6は、図5に示した従来の炭化珪素単結晶成長装置における昇華ガスの流れを説明する概略図である。
図6に示すように、原料炭化珪素206の中央部261からだけでなく、周辺部262からも昇華ガスが発生して成長空間221へ排出される。結晶成長用容器200を取り囲むようにインダクターコイル201が配置されているので、結晶成長用容器200に充填されている原料の壁面近傍が原料中心部よりも高温となりやすく、壁面近傍の原料用炭化珪素206の昇華(気化)量が大きくなる。周辺部262から発生した昇華ガスは、種結晶204の成長面204aの中央部241よりも周辺部242に集まりやすい。これにより、種結晶204の成長面204aの中央部241よりも周辺部242で炭化珪素ガスのガス密度が高くなり、より活発に結晶成長が始まる。その結果、中央部よりも周辺部の方が結晶成長が進んで凹んだ成長面が形成されやすくなり、平坦な成長面で高品質の単結晶を成長させるということが困難であった。成長面は平坦か又はわずかに凸状になっていることが好ましいと認識されており、凹状の成長面は品質的、あるいはインゴットの熱応力低減という観点からは好ましくないとされている。そのため、従来の結晶成長装置では、種結晶204の成長面204a上で、高品質かつ長尺の炭化珪素単結晶を均一かつ安定的に成長させることができず、大口径化への大きな障害となっていた。
FIG. 6 is a schematic diagram illustrating the flow of sublimation gas in the conventional silicon carbide single crystal growth apparatus shown in FIG.
As shown in FIG. 6, sublimation gas is generated not only from the central part 261 of the raw silicon carbide 206 but also from the peripheral part 262 and is discharged into the growth space 221. Since the inductor coil 201 is disposed so as to surround the crystal growth vessel 200, the vicinity of the wall surface of the raw material filled in the crystal growth vessel 200 is likely to be hotter than the central portion of the raw material, and the carbonization for the raw material in the vicinity of the wall surface. The amount of sublimation (vaporization) of silicon 206 increases. The sublimation gas generated from the peripheral portion 262 is more likely to gather at the peripheral portion 242 than at the central portion 241 of the growth surface 204 a of the seed crystal 204. Thereby, the gas density of the silicon carbide gas becomes higher in the peripheral portion 242 than in the central portion 241 of the growth surface 204a of the seed crystal 204, and crystal growth starts more actively. As a result, the crystal growth progressed more in the peripheral portion than in the central portion, and a concave growth surface was easily formed, and it was difficult to grow a high-quality single crystal on the flat growth surface. It is recognized that the growth surface is preferably flat or slightly convex, and the concave growth surface is not preferable from the viewpoint of quality or reduction of thermal stress of the ingot. Therefore, in the conventional crystal growth apparatus, a high-quality and long silicon carbide single crystal cannot be grown uniformly and stably on the growth surface 204a of the seed crystal 204, which is a major obstacle to the increase in diameter. It was.

一方、種結晶204の成長面204aの温度勾配は良好な結晶成長を妨げることが知られている。そのため、その温度勾配を低減するための提案がなされている。
例えば、図7に示すように、従来の炭化珪素単結晶成長装置において、種結晶204と原料収納部202との温度差をつけるために、種結晶204と原料収納部202との間に厚さ10mm程度の遮蔽板207を配置する構成が知られている(例えば、特許文献4)。
このような遮蔽板は結晶成長用容器200内の温度分布を変えるので、この遮蔽板について径方向の上面温度が均一化する構成とすることによって、結晶成長面の温度勾配を低減しようとする提案がなされた(特許文献5)。
遮蔽板は結晶成長用容器内の昇華ガスの流れを変えるものであるから、インクルージョンの混入や単結晶構成元素の成分比のずれに影響を与えるが、それらの問題の解決を目的とするものではなかった。
On the other hand, it is known that the temperature gradient of the growth surface 204a of the seed crystal 204 prevents good crystal growth. For this reason, proposals have been made to reduce the temperature gradient.
For example, as shown in FIG. 7, in a conventional silicon carbide single crystal growth apparatus, the thickness between the seed crystal 204 and the raw material storage unit 202 is set in order to provide a temperature difference between the seed crystal 204 and the raw material storage unit 202. The structure which arrange | positions the shielding board 207 about 10 mm is known (for example, patent document 4).
Since such a shielding plate changes the temperature distribution in the crystal growth vessel 200, a proposal to reduce the temperature gradient of the crystal growth surface by adopting a configuration in which the upper surface temperature in the radial direction of the shielding plate is made uniform. (Patent Document 5).
Since the shielding plate changes the flow of sublimation gas in the crystal growth vessel, it affects the mixing of inclusions and deviations in the component ratio of single-crystal constituent elements, but is not intended to solve these problems. There wasn't.

本発明は、上記事情を鑑みてなされたものであり、高品質の炭化珪素単結晶を安定的に製造し、高品質化を可能とする成分調整部材及びそれを備えた単結晶成長装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a component adjusting member that stably manufactures a high-quality silicon carbide single crystal and enables high quality, and a single crystal growth apparatus including the same. The purpose is to do.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、昇華再結晶法による化合物半導体単結晶の成長において、単結晶構成元素の成分比のずれを補正すると共に、単結晶中のインクルージョンの混入を抑制し、さらには、基板(又は種結晶)の成長面が平坦な状態で結晶成長が進むように基板へ向かう昇華ガスの流れを整流・調整する構成に想到し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor has corrected the component ratio deviation of the single crystal constituent elements in the growth of the compound semiconductor single crystal by the sublimation recrystallization method, and in the single crystal. The present invention contemplates a configuration that suppresses inclusion inclusion and further rectifies and adjusts the flow of sublimation gas toward the substrate so that crystal growth proceeds with the growth surface of the substrate (or seed crystal) being flat. completed.

本発明は、上記課題を解決するため、以下の手段を提供する。
(1)結晶成長用容器と、該結晶成長用容器内の下部に位置する原料収容部と、該原料収容部の上方に同軸に配置して該原料収容部より小径の基板支持面で基板を支持する基板支持部とを備え、前記原料を昇華させて前記基板上に前記原料の化合物半導体単結晶を成長させる単結晶成長装置において、前記原料収容部と前記基板支持部との間に配置して前記結晶成長用容器内の空間を分離し、前記原料表面に接触せずに配置される成分調整部材であって、前記原料の昇華ガスが透過する複数の透過孔を有すると共に、中央側の開口率(前記透過孔の総開口面積/前記透過孔以外の部分の総面積)が周端側の開口率より高いことを特徴とする成分調整部材。
(2)前記透過孔が、前記基板支持面に対向する領域を含む第1領域にのみ形成されていることを特徴とする前項(1)に記載の成分調整部材。
(3)前記透過孔が、前記基板支持面に対向する領域を含む第1領域の開口率が、該第1領域の外側に位置する該第1領域以外の領域の開口率より高くなるように形成されていることを特徴とする前項(1)に記載の成分調整部材。
(4)前記開口率の差が透過孔の孔径の差によることを特徴とする前項(3)に記載の成分調整部材。
(5)前記開口率の差が透過孔の孔数密度の差によることを特徴とする前項(3)に記載の成分調整部材。
(6)前記第1領域の孔径が0.5〜3mmであることを特徴とする前項(2)から(5)のいずれか一つに記載の成分調整部材。
(7)前記透過孔が、前記基板支持面に対向する領域より狭い第1領域にのみ形成されていることを特徴とする前項(1)に記載の成分調整部材。
(8)前記透過孔が、前記基板支持面に対向する領域より狭い第1領域の開口率が、該第1領域の外側に位置する該第1領域以外の領域の開口率より高くなるように形成されていることを特徴とする前項(1)に記載の成分調整部材。
(9)前記開口率の差が透過孔の孔径の差によることを特徴とする前項(8)に記載の成分調整部材。
(10)前記開口率の差が透過孔の孔数密度の差によることを特徴とする前項(8)に記載の成分調整部材。
(11)前記第1領域の孔径が0.5〜3mmであることを特徴とする前項(7)から(10)のいずれか一つに記載の成分調整部材。
(12)厚さが3mm以上20mm以下であることを特徴とする前項(1)から(11)のいずれか一項に記載の成分調整部材。
(13)前記成分調整部材は複数の層状部材が重ね合わされてなることを特徴とする前項(1)から(12)のいずれか一つに記載の成分調整部材。
(14)前記成分調整部材は複数の層状部材が重ね合わされてなり、互いに隣接する層状部材に形成された透過孔が互いにずれていることを特徴とする前項(1)から(12)のいずれか一つに記載の成分調整部材。
(15)前記複数の層状部材のうち少なくとも一は多孔性材料であることを特徴とする前項(13)又は(14)のいずれかに記載の成分調整部材。
(16)前記成分調整部材は炭素材料からなることを特徴とする前項(1)から(15)のいずれか一つに記載の成分調整部材。
(17)結晶成長用容器と、該結晶成長用容器内の下部に位置する原料収容部と、該原料収容部の上方に配置して該原料収容部より小径の基板支持面で基板を支持する基板支持部とを備え、前記原料を昇華させて前記基板上に前記原料の化合物半導体単結晶を成長させる単結晶成長装置において、前記原料収容部と前記基板支持部との間に配置して前記結晶成長用容器内の空間を分離する成分調整部材であって、前項(1)から(16)のいずれか一つに記載の成分調整部材を備えたことを特徴とする単結晶成長装置。
(18)前記成分調整部材は、その上面が前記基板支持面から40〜120mm離間して配置されていることを特徴とする前項(17)に記載の単結晶成長装置。
(19)前記成分調整部材は、その下面が前記原料収容部の最上面から10〜50mm離間して配置されていることを特徴とする前項(17)又は(18)のいずれかに記載の単結晶成長装置。
(20)前記成分調整部材の外周部が前記結晶成長用容器の内壁で支持されていることを特徴とする前項(17)から(19)のいずれか一つに記載の単結晶成長装置。
(21)前記成分調整部材が前記結晶成長用容器の底部から延在する支持部材よって支持されていることを特徴とする前項(17)から(19)のいずれか一つに記載の単結晶成長装置。
(22)前記単結晶は炭化珪素の単結晶であることを特徴とする前項(17)から(21)のいずれか一項に記載の単結晶成長装置。
The present invention provides the following means in order to solve the above problems.
(1) A crystal growth container, a raw material container located in the lower part of the crystal growth container, and a substrate supported on a substrate support surface having a smaller diameter than the raw material container in a coaxial arrangement above the raw material container. A single-crystal growth apparatus comprising: a substrate support portion for supporting; and sublimating the raw material to grow the compound semiconductor single crystal of the raw material on the substrate; disposed between the raw material storage portion and the substrate support portion. A component adjusting member that separates the space in the crystal growth vessel and is not in contact with the raw material surface, and has a plurality of permeation holes through which the sublimation gas of the raw material passes, A component adjusting member having an aperture ratio (total aperture area of the transmission holes / total area of portions other than the transmission holes) higher than the aperture ratio on the peripheral end side.
(2) The component adjustment member according to (1), wherein the transmission hole is formed only in a first region including a region facing the substrate support surface.
(3) The aperture ratio of the first area including the area where the transmission hole faces the substrate support surface is higher than the aperture ratio of the area other than the first area located outside the first area. The component adjusting member according to item (1), wherein the component adjusting member is formed.
(4) The component adjusting member as described in (3) above, wherein the difference in the aperture ratio is due to the difference in the hole diameters of the transmission holes.
(5) The component adjusting member as described in (3) above, wherein the difference in the aperture ratio is due to the difference in the hole number density of the transmission holes.
(6) The component adjusting member according to any one of (2) to (5) above, wherein the hole diameter of the first region is 0.5 to 3 mm.
(7) The component adjustment member according to item (1), wherein the transmission hole is formed only in a first region narrower than a region facing the substrate support surface.
(8) The aperture ratio of the first region in which the transmission hole is narrower than the region facing the substrate support surface is higher than the aperture ratio of the region other than the first region located outside the first region. The component adjusting member according to item (1), wherein the component adjusting member is formed.
(9) The component adjustment member as described in (8) above, wherein the difference in the aperture ratio is due to the difference in the hole diameters of the transmission holes.
(10) The component adjusting member as described in (8) above, wherein the difference in the aperture ratio is due to the difference in the number density of the transmission holes.
(11) The component adjusting member according to any one of (7) to (10), wherein the hole diameter of the first region is 0.5 to 3 mm.
(12) The component adjusting member according to any one of (1) to (11), wherein the thickness is 3 mm or more and 20 mm or less.
(13) The component adjustment member according to any one of (1) to (12), wherein the component adjustment member is formed by superimposing a plurality of layered members.
(14) Any one of (1) to (12) above, wherein the component adjusting member is formed by superimposing a plurality of layered members, and transmission holes formed in adjacent layered members are shifted from each other. The component adjustment member as described in one.
(15) The component adjusting member according to any one of (13) and (14) above, wherein at least one of the plurality of layered members is a porous material.
(16) The component adjusting member according to any one of (1) to (15), wherein the component adjusting member is made of a carbon material.
(17) A crystal growth container, a raw material container located in a lower part of the crystal growth container, and a substrate support surface disposed above the raw material container and supported by a substrate support surface having a smaller diameter than the raw material container. In a single crystal growth apparatus comprising a substrate support portion and sublimating the raw material to grow the compound semiconductor single crystal of the raw material on the substrate, the substrate support portion is disposed between the raw material storage portion and the substrate support portion. A single crystal growth apparatus comprising a component adjusting member according to any one of (1) to (16) above, which is a component adjusting member for separating a space in a crystal growth container.
(18) The single crystal growth apparatus as described in (17) above, wherein the component adjusting member has an upper surface disposed at a distance of 40 to 120 mm from the substrate support surface.
(19) The unit according to any one of (17) and (18) above, wherein the component adjusting member has a lower surface disposed 10 to 50 mm away from an uppermost surface of the raw material container. Crystal growth equipment.
(20) The single crystal growth apparatus according to any one of (17) to (19), wherein an outer peripheral portion of the component adjusting member is supported by an inner wall of the crystal growth vessel.
(21) The single crystal growth according to any one of (17) to (19) above, wherein the component adjusting member is supported by a support member extending from the bottom of the crystal growth vessel. apparatus.
(22) The single crystal growth apparatus according to any one of (17) to (21), wherein the single crystal is a single crystal of silicon carbide.

本発明の成分調整部材において、「第1領域」とは、成分調整部材における透過孔の位置を説明するための表現であって、(2)及び(3)並びにそれらを引用する項の「第1領域」とは、成分調整部材において基板支持面に対向する領域(基板支持面の直下の領域)を含む領域(すなわち、基板支持面の直下の領域だけの領域、又は、その領域より広い領域)であり、(7)及び(8)並びにそれらを引用する項の「第1領域」とは、成分調整部材において基板支持面に対向する領域(基板支持面の直下の領域)より狭い領域である。   In the component adjustment member of the present invention, the “first region” is an expression for explaining the position of the permeation hole in the component adjustment member, and (2) and (3) and the “Citation” in the section that refers to them. The term “one region” refers to a region including a region facing the substrate support surface (a region directly below the substrate support surface) in the component adjusting member (that is, a region including only a region immediately below the substrate support surface, or a region wider than that region). The “first region” in (7) and (8) and the section that cites them is a region narrower than the region facing the substrate support surface (the region immediately below the substrate support surface) in the component adjustment member. is there.

本発明の成分調整部材において、周端側の開口率は透過孔を有さないことによって、ゼロであっても構わない。   In the component adjusting member of the present invention, the aperture ratio on the peripheral end side may be zero by not having a transmission hole.

本発明の成分調整部材によれば、坩堝内に充填された原料中に温度勾配が生じるのは不可避であるために発生する昇華ガスは原料面の部位によって量、組成ともに異なるが、結晶成長用容器内の空間を2つに分離し、かつ、昇華ガスが原料収容部のある空間から基板がある空間に抜けにくい構成とされているので、昇華して原料面に上がってきたガスが原料面近傍で混合されることになる。そのため、坩堝の中央部と周縁部で、昇華ガス中の珪素と炭素の成分比の差が生じることが抑制される。
また、原料から昇華したガスが坩堝の中央部と周縁部で均一混合されるためには成分調整部材が原料面に接していてはならない。成分調整部材が原料と接触していると、成分調整部材の外周部が坩堝(成長用容器)内壁と同様腐食されることがある。また、十分に均一混合される為には成分調整部材は原料面から10mm以上離間させることが望ましい。また、40mm以上離間するとガスが成分調整部材に達する前に混合が進み、成分調整部材として意味がなくなり、不要な空間が大きくなることで成長可能な空間が減ってしまうことや温度制御が難しくなることなどの不具合が生じてくるので望ましくない。さらに成分調整部材がガスを透過することにより、適当な圧力損失が生じることが重要である。成分調整部材前後の圧力損失が小さいと、原料面から発生してきたガスが成分調整部材を容易に通過し、十分に混合せず、ガス組成が均一化しない。適当な圧力損失を生じさせる為に好ましい成分調整部材の厚さは3mm以上20mm以下であり、成分調整部材を貫通する孔の直径は0.5〜3mmである。この範囲外では整流板内のガスの透過抵抗が過大、あるいは過小となり、適当な成長条件が得られない。また、この様な成分調整部材を設けることにより、不均一な原料温度によって過度の原料昇華が進んだ場合に発生する原料由来の微小パーティクル(不純物)の成長面への運搬も抑制される。
さらにまた、本発明の成分調整部材はいわば多数の原料ガス供給ノズルを成長基板の真下に集中して配置する構成であって、原料ガスが成長基板(例えば、炭化珪素種結晶)の外周より外側から入射する原料ガスを抑制し、成長基板の成長面の中央部よりも周辺部で原料ガス(例えば、炭化珪素ガス)のガス密度が高くなることを回避して、成長面全体で平坦な成長面として結晶成長が進むものとした。すなわち、成長基板の成長面の中央部と周辺部とでできるだけ原料ガス密度が一様になり、成長面での結晶成長速度が一様になる。
According to the component adjusting member of the present invention, it is inevitable that a temperature gradient is generated in the raw material filled in the crucible. Since the space in the container is separated into two and the sublimation gas is difficult to escape from the space where the raw material container is located to the space where the substrate is located, the gas that has sublimated and goes up to the raw material surface It will be mixed in the vicinity. Therefore, it is suppressed that the difference in the component ratio of silicon and carbon in the sublimation gas occurs between the central part and the peripheral part of the crucible.
In addition, in order for the gas sublimated from the raw material to be uniformly mixed at the central portion and the peripheral portion of the crucible, the component adjusting member must not be in contact with the raw material surface. When the component adjusting member is in contact with the raw material, the outer peripheral portion of the component adjusting member may be corroded in the same manner as the inner wall of the crucible (growth vessel). Moreover, in order to mix sufficiently uniformly, it is desirable that the component adjusting member is separated from the raw material surface by 10 mm or more. Further, if the distance is 40 mm or more, mixing proceeds before the gas reaches the component adjusting member, meaningless as the component adjusting member, and the unnecessary space increases, so that the space that can be grown decreases and temperature control becomes difficult. This is not desirable because it causes problems. Furthermore, it is important that an appropriate pressure loss occurs when the component adjusting member transmits gas. If the pressure loss before and after the component adjusting member is small, the gas generated from the raw material surface easily passes through the component adjusting member, does not mix sufficiently, and the gas composition does not become uniform. In order to generate an appropriate pressure loss, the thickness of the preferable component adjusting member is 3 mm or more and 20 mm or less, and the diameter of the hole penetrating the component adjusting member is 0.5 to 3 mm. Outside this range, the permeation resistance of the gas in the rectifying plate becomes too large or too small, and appropriate growth conditions cannot be obtained. Further, by providing such a component adjusting member, transport of raw material-derived fine particles (impurities) to the growth surface that occurs when excessive sublimation of the raw material proceeds due to a non-uniform raw material temperature is also suppressed.
Furthermore, the component adjusting member of the present invention has a configuration in which a large number of source gas supply nozzles are concentrated and arranged directly below the growth substrate, and the source gas is outside the outer periphery of the growth substrate (for example, silicon carbide seed crystal). The growth of the entire growth surface is suppressed by suppressing the source gas entering from the center and avoiding the gas density of the source gas (for example, silicon carbide gas) being higher in the peripheral portion than in the central portion of the growth surface of the growth substrate. It was assumed that crystal growth progressed as a plane. That is, the source gas density is made as uniform as possible in the central portion and the peripheral portion of the growth surface of the growth substrate, and the crystal growth rate on the growth surface becomes uniform.

本発明の成分調整部材が炭素材料からなる構成では、炭化珪素単結晶の成長に用いる場合、結晶成長中に結晶成長用容器内で不足する炭素を供給する部材として機能する。
また、成分調整部材は、坩堝(成長容器)に対して、位置が固定される。昇華法で炭化珪素を成長させる場合、原料粉末は焼結された状態になり、原料表面の位置は大きくは変わらない状態で保持され、内部の材料が昇華してゆく。そのため、結晶成長の間を通して、安定的に原料表面との間隔を保つことが可能となる。
When the component adjusting member of the present invention is made of a carbon material, when used for growing a silicon carbide single crystal, the component adjusting member functions as a member for supplying insufficient carbon in the crystal growth vessel during crystal growth.
Further, the position of the component adjusting member is fixed with respect to the crucible (growth vessel). When silicon carbide is grown by the sublimation method, the raw material powder is in a sintered state, the position of the raw material surface is maintained in a state that does not change greatly, and the internal material is sublimated. For this reason, it is possible to stably maintain a distance from the raw material surface throughout the crystal growth.

本発明の一実施形態の成分調整部材の平面模式図である。It is a plane schematic diagram of the component adjustment member of one Embodiment of this invention. 図1で示した成分調整部材を備えた本発明の一実施形態の単結晶成長装置の断面模式図である。It is a cross-sectional schematic diagram of the single crystal growth apparatus of one Embodiment of this invention provided with the component adjustment member shown in FIG. 本発明の他の実施形態の単結晶成長装置の断面模式図である。It is a cross-sectional schematic diagram of the single crystal growth apparatus of other embodiment of this invention. 本発明の他の実施形態の成分調整部材の断面模式図である。It is a cross-sectional schematic diagram of the component adjustment member of other embodiment of this invention. 従来の単結晶成長装置の断面模式図である。It is a cross-sectional schematic diagram of a conventional single crystal growth apparatus. 従来の単結晶成長装置における昇華ガスの流れを説明する図である。It is a figure explaining the flow of the sublimation gas in the conventional single crystal growth apparatus. 従来の遮断板を備えた単結晶成長装置の断面模式図である。It is a cross-sectional schematic diagram of the single crystal growth apparatus provided with the conventional interruption | blocking board.

以下、本発明を適用した実施形態である成分調整部材及びそれを備えた単結晶成長装置について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, a component adjusting member and a single crystal growth apparatus including the same according to an embodiment to which the present invention is applied will be described in detail with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.

図1に本発明の一実施形態の成分調整部材の平面図を示す。
この成分調整部材1は、基板支持面に対向する領域を含む第1領域2(図において点線で囲まれた領域)にのみ、円周に沿って原料の昇華ガスが透過する複数の透過孔5を有し、第1領域2の外側に位置する第1領域2以外の領域3には透過孔は有さない。従って、中央側に位置する第1領域2の開口率(透過孔5の総開口面積/透過孔5以外の部分の総面積)は、周端側に位置する領域3の開口率よりも高い。
FIG. 1 is a plan view of a component adjusting member according to an embodiment of the present invention.
This component adjusting member 1 has a plurality of permeation holes 5 through which the sublimation gas of the raw material permeates along the circumference only in the first region 2 (region surrounded by a dotted line in the figure) including the region facing the substrate support surface. The region 3 other than the first region 2 located outside the first region 2 has no transmission hole. Therefore, the aperture ratio of the first region 2 located on the center side (total aperture area of the transmission holes 5 / total area of portions other than the transmission holes 5) is higher than the aperture ratio of the region 3 located on the peripheral end side.

成分調整部材1の透過孔5の径は0.5〜3mmであるのが好ましい。0.5mm以下の場合は、圧力損失が大き過ぎて、基板側に供給される原料昇華ガスの量が不十分になるし、昇華ガスが滞留して目詰まりとなるおそれがあるからである。また、3mm以上の場合は、孔の壁面に十分に衝突せずに透過してしまうため遮蔽の効果が十分でなく、特に成分調整部材が炭素材料からなる場合は昇華ガスが孔の壁面に当たって炭素の補充を受ける効果が十分得られないからである。   The diameter of the transmission hole 5 of the component adjusting member 1 is preferably 0.5 to 3 mm. In the case of 0.5 mm or less, the pressure loss is too large, the amount of the raw material sublimation gas supplied to the substrate side becomes insufficient, and the sublimation gas may stay and become clogged. Also, in the case of 3 mm or more, the effect of shielding is not sufficient because it penetrates without colliding sufficiently with the wall surface of the hole, and particularly when the component adjusting member is made of a carbon material, the sublimation gas hits the wall surface of the hole and carbon This is because the effect of receiving supplementation cannot be obtained sufficiently.

図2に、図1で示した成分調整部材を備えた本発明の一実施形態の単結晶成長装置の断面模式図を示す。
この単結晶成長装置10では、結晶成長用容器11と、結晶成長用容器11内の下部に位置する原料収容部12と、原料収容部11の上方に配置して原料収容部12より小径の基板支持面13aで基板14を支持する基板支持部13とを備え、さらに、図1で示した成分調整部材1が原料収容部12と基板支持部13との間に配置して結晶成長用容器11内の空間を分離し、成分調整部材1の外周部1aが結晶成長用容器11の内壁で支持されている。符号17は原料、符号18は単結晶、符号19は加熱手段を示す。
FIG. 2 shows a schematic cross-sectional view of a single crystal growth apparatus according to an embodiment of the present invention provided with the component adjusting member shown in FIG.
In this single crystal growth apparatus 10, a crystal growth container 11, a raw material container 12 positioned in the lower part of the crystal growth container 11, and a substrate having a smaller diameter than the raw material container 12 disposed above the raw material container 11. And a substrate support portion 13 for supporting the substrate 14 on the support surface 13a. Further, the component adjusting member 1 shown in FIG. 1 is disposed between the raw material storage portion 12 and the substrate support portion 13 to provide a crystal growth vessel 11. The inner space is separated, and the outer peripheral portion 1 a of the component adjusting member 1 is supported by the inner wall of the crystal growth vessel 11. Reference numeral 17 is a raw material, reference numeral 18 is a single crystal, and reference numeral 19 is a heating means.

成分調整部材1の第1領域2の面積は、基板支持面に対向する領域の面積の±10%の範囲内であるのが好ましい。この範囲を超える場合は、結晶成長面の凹状化を抑制するのに十分な整流効果を奏しないからである。   The area of the first region 2 of the component adjustment member 1 is preferably within a range of ± 10% of the area of the region facing the substrate support surface. If this range is exceeded, the rectifying effect sufficient to suppress the depression of the crystal growth surface is not achieved.

成分調整部材1は、その上面が基板支持面13aから40〜120mm離間して配置されているのが好ましい。40mmより近接した場合には、成分調整部材の設置による単結晶成長面への温度的影響が大きくなるからであり、120mmより離間した場合には、成分調整部材に配置した透過孔の影響を受けにくくなり、成長面形状制御効果が小さくなるからである。   It is preferable that the component adjustment member 1 is disposed such that its upper surface is spaced from the substrate support surface 13a by 40 to 120 mm. This is because when the distance is more than 40 mm, the temperature effect on the single crystal growth surface due to the installation of the component adjusting member becomes larger. When the distance is more than 120 mm, the effect is affected by the through holes arranged in the component adjusting member. This is because the growth surface shape control effect becomes small.

また、成分調整部材1は、その下面が原料収容部12の最上面から10〜50mm離間して配置されているのが好ましい。10mmより近接した場合には、昇華ガスの混合が不十分となるからであり、50mmより離間した場合には、成長空間の温度勾配を変えてしまうからである。   Moreover, it is preferable that the lower surface of the component adjustment member 1 is disposed 10 to 50 mm away from the uppermost surface of the raw material container 12. This is because the sublimation gas is not sufficiently mixed when the distance is more than 10 mm, and the temperature gradient of the growth space is changed when the distance is more than 50 mm.

図3に、本発明の他の実施形態の単結晶成長装置の断面模式図を示す。
この単結晶成長装置20では、成分調整部材1が結晶成長用容器11の底部11aから延在する支持部材15よって支持されている点が図2で示した単結晶成長装置と異なる。
In FIG. 3, the cross-sectional schematic diagram of the single-crystal growth apparatus of other embodiment of this invention is shown.
This single crystal growth apparatus 20 is different from the single crystal growth apparatus shown in FIG. 2 in that the component adjustment member 1 is supported by a support member 15 extending from the bottom 11a of the crystal growth vessel 11.

支持部材15は複数でも構わない。   There may be a plurality of support members 15.

図4(a)及び(b)に、本発明の一実施形態の成分調整部材の断面図を示す。
図4(a)で示した成分調整部材21は1枚の板状部材からなり、透過孔25が径方向に均等間隔で配置している。
図4(b)で示した成分調整部材31は2枚の層状部材31a、1bが重ね合わされてなり、層状部材に形成された透過孔35a、35bが互いにずれている。この成分調整部材では、昇華ガスが孔の壁面に当たって炭素の補充を受ける効果が向上する。
4A and 4B are cross-sectional views of a component adjusting member according to an embodiment of the present invention.
The component adjusting member 21 shown in FIG. 4A is composed of one plate-like member, and the transmission holes 25 are arranged at equal intervals in the radial direction.
In the component adjusting member 31 shown in FIG. 4B, two layered members 31a and 1b are overlapped, and the transmission holes 35a and 35b formed in the layered member are shifted from each other. In this component adjusting member, the effect of sublimation gas striking the wall surface of the hole and being supplemented with carbon is improved.

[実施例1]
図1で示した実施形態の成分調整部材(黒鉛製)を用いて炭化珪素単結晶を製造した。
種結晶基板サイズは直径75mmで、図1における第1領域2の径も75mmとした。すなわち、成分調整部材において種結晶基板の直下にのみ、透過孔が存在する構成である。直径2.5mmの孔を、5mm間隔の碁盤の目状に配置した。成分調整部材と原料収容部の原料表面との間隔は20mmとした。
[Example 1]
A silicon carbide single crystal was manufactured using the component adjustment member (made of graphite) of the embodiment shown in FIG.
The seed crystal substrate size was 75 mm in diameter, and the diameter of the first region 2 in FIG. 1 was also 75 mm. That is, in the component adjustment member, the transmission hole exists only directly under the seed crystal substrate. Holes with a diameter of 2.5 mm were arranged in a grid of 5 mm intervals. The distance between the component adjusting member and the raw material surface of the raw material container was 20 mm.

得られた炭化珪素単結晶は75mm径で高さが30mmの円柱状であった。この炭化珪素単結晶をスライス切断してウエーハとした後、これを研磨して、その断面の顕微鏡観察を行った結果、インクルージョンは皆無であった。   The obtained silicon carbide single crystal was a cylinder having a diameter of 75 mm and a height of 30 mm. The silicon carbide single crystal was sliced into a wafer, which was then polished and subjected to microscopic observation of the cross section. As a result, there was no inclusion.

[実施例2]
図4(b)で示した実施形態の成分調整部材(黒鉛製)を用いて炭化珪素単結晶を製造した。種結晶基板サイズは直径75mmで、図4(b)の層状部材31aにおける第1領域(図1の第1領域2)の径も75mmとした。すなわち、成分調整部材は2枚で構成され種結晶基板の直下にのみ、透過孔が存在する構成である。直径2mmの孔が、5mm間隔で配置されており、孔の位置は互いに重ならない配置となっている。成分調整部材と原料収容部の原料表面との間隔は20mmとした。
[Example 2]
A silicon carbide single crystal was manufactured using the component adjustment member (made of graphite) of the embodiment shown in FIG. The seed crystal substrate size was 75 mm in diameter, and the diameter of the first region (first region 2 in FIG. 1) in the layered member 31a in FIG. 4B was also 75 mm. That is, the component adjusting member is composed of two sheets, and the transmission hole exists only directly under the seed crystal substrate. Holes with a diameter of 2 mm are arranged at intervals of 5 mm, and the positions of the holes do not overlap each other. The distance between the component adjusting member and the raw material surface of the raw material container was 20 mm.

得られた炭化珪素単結晶は75mm径で高さが25mmの円柱状であった。この炭化珪素単結晶をスライス切断してウエーハとした後、これを研磨して、その断面の顕微鏡観察を行った結果、インクルージョンは皆無であった。   The obtained silicon carbide single crystal was a cylinder having a diameter of 75 mm and a height of 25 mm. The silicon carbide single crystal was sliced into a wafer, which was then polished and subjected to microscopic observation of the cross section. As a result, there was no inclusion.

[比較例]
成分調整部材(黒鉛製)を用いなかった点を除いて、図1と同じ条件で炭化珪素単結晶を製造した。
得られた炭化珪素単結晶は75mm径で高さが25mmの円柱状であった。同様に、この断面の顕微鏡観察を行った結果、平均的なインクルージョン密度は40個/cmであった。
[Comparative example]
A silicon carbide single crystal was produced under the same conditions as in FIG. 1 except that the component adjusting member (made of graphite) was not used.
The obtained silicon carbide single crystal was a cylinder having a diameter of 75 mm and a height of 25 mm. Similarly, as a result of microscopic observation of this cross section, the average inclusion density was 40 / cm 2 .

本発明の成分調整部材及びそれを備えた単結晶成長装置は特に、高品質でかつ長尺の単結晶の製造に利用することができる。   The component adjusting member of the present invention and the single crystal growth apparatus provided with the component adjusting member can be used particularly for the production of high-quality and long single crystals.

1 成分調整部材
1a 外周部
2 第1領域
3 第1領域以外の領域
5 透過孔
10 単結晶成長装置
11 結晶成長用容器
11a 底部
12 原料収容部
13 基板支持部
15 支持部材
20 単結晶成長装置
21 成分調整部材
25 透過孔
31 成分調整部材
31a、31b 層状部材
35a、35b 透過孔
DESCRIPTION OF SYMBOLS 1 Component adjustment member 1a Peripheral part 2 1st area | region 3 Area | regions other than 1st area | region 5 Through-hole 10 Single crystal growth apparatus 11 Crystal growth container 11a Bottom part 12 Raw material accommodating part 13 Substrate support part 15 Support member 20 Single crystal growth apparatus 21 Component adjustment member 25 Permeation hole 31 Component adjustment member 31a, 31b Layered member 35a, 35b Transmission hole

Claims (22)

結晶成長用容器と、該結晶成長用容器内の下部に位置する原料収容部と、該原料収容部の上方に同軸に配置して該原料収容部より小径の基板支持面で基板を支持する基板支持部とを備え、前記原料を昇華させて前記基板上に前記原料の化合物半導体単結晶を成長させる単結晶成長装置において、前記原料収容部と前記基板支持部との間に配置して前記結晶成長用容器内の空間を分離する成分調整部材であって、
前記原料の昇華ガスが透過する複数の透過孔を有すると共に、中央側の開口率(前記透過孔の総開口面積/前記透過孔以外の部分の総面積)が周端側の開口率より高いことを特徴とする成分調整部材。
A crystal growth container, a raw material container located in the lower part of the crystal growth container, and a substrate that is coaxially disposed above the raw material container and supports a substrate on a substrate support surface having a smaller diameter than the raw material container A single crystal growth apparatus comprising: a support portion; and sublimating the raw material to grow the compound semiconductor single crystal of the raw material on the substrate. The crystal is disposed between the raw material storage portion and the substrate support portion. A component adjusting member for separating the space in the growth vessel,
It has a plurality of permeation holes through which the sublimation gas of the raw material permeates, and the center side aperture ratio (total aperture area of the permeation holes / total area other than the permeation holes) is higher than the aperture ratio on the peripheral side. The component adjustment member characterized by these.
前記透過孔が、前記基板支持面に対向する領域を含む第1領域にのみ形成されていることを特徴とする請求項1に記載の成分調整部材。   The component adjustment member according to claim 1, wherein the transmission hole is formed only in a first region including a region facing the substrate support surface. 前記透過孔が、前記基板支持面に対向する領域を含む第1領域の開口率が、該第1領域の外側に位置する該第1領域以外の領域の開口率より高くなるように形成されていることを特徴とする請求項1に記載の成分調整部材。   The transmission hole is formed such that an aperture ratio of a first region including a region facing the substrate support surface is higher than an aperture ratio of a region other than the first region located outside the first region. The component adjustment member according to claim 1, wherein: 前記開口率の差が透過孔の孔径の差によることを特徴とする請求項3に記載の成分調整部材。   The component adjustment member according to claim 3, wherein the difference in the aperture ratio is due to the difference in the hole diameters of the transmission holes. 前記開口率の差が透過孔の孔数密度の差によることを特徴とする請求項3に記載の成分調整部材。   The component adjustment member according to claim 3, wherein the difference in the aperture ratio is due to a difference in the hole number density of the transmission holes. 前記第1領域の孔径が0.5〜3mmであることを特徴とする請求項2から5のいずれか一項に記載の成分調整部材。   The component adjustment member according to any one of claims 2 to 5, wherein a hole diameter of the first region is 0.5 to 3 mm. 前記透過孔が、前記基板支持面に対向する領域より狭い第1領域にのみ形成されていることを特徴とする請求項1に記載の成分調整部材。   The component adjustment member according to claim 1, wherein the transmission hole is formed only in a first region narrower than a region facing the substrate support surface. 前記透過孔が、前記基板支持面に対向する領域より狭い第1領域の開口率が、該第1領域の外側に位置する該第1領域以外の領域の開口率より高くなるように形成されていることを特徴とする請求項1に記載の成分調整部材。   The transmission hole is formed such that the aperture ratio of the first region narrower than the region facing the substrate support surface is higher than the aperture ratio of the region other than the first region located outside the first region. The component adjustment member according to claim 1, wherein: 前記開口率の差が透過孔の孔径の差によることを特徴とする請求項8に記載の成分調整部材。   The component adjustment member according to claim 8, wherein the difference in the aperture ratio is due to a difference in the hole diameters of the transmission holes. 前記開口率の差が透過孔の孔数密度の差によることを特徴とする請求項8に記載の成分調整部材。   The component adjustment member according to claim 8, wherein the difference in the aperture ratio is due to a difference in the hole number density of the transmission holes. 前記第1領域の孔径が0.5〜3mmであることを特徴とする請求項7から10のいずれか一項に記載の成分調整部材。   The component adjustment member according to any one of claims 7 to 10, wherein a hole diameter of the first region is 0.5 to 3 mm. 厚さが3mm以上20mm以下であることを特徴とする請求項1から11のいずれか一項に記載の成分調整部材。   The component adjusting member according to any one of claims 1 to 11, wherein the thickness is 3 mm or more and 20 mm or less. 前記成分調整部材は複数の層状部材が重ね合わされてなることを特徴とする請求項1から12のいずれか一項に記載の成分調整部材。   The component adjustment member according to any one of claims 1 to 12, wherein the component adjustment member is formed by superimposing a plurality of layered members. 前記成分調整部材は複数の層状部材が重ね合わされてなり、互いに隣接する層状部材に形成された透過孔が互いにずれていることを特徴とする請求項1から13のいずれか一項に記載の成分調整部材。   The component according to any one of claims 1 to 13, wherein the component adjusting member is formed by superimposing a plurality of layered members, and transmission holes formed in adjacent layered members are shifted from each other. Adjustment member. 前記複数の層状部材のうち少なくとも一は多孔性材料であることを特徴とする請求項13又は14のいずれかに記載の成分調整部材。   The component adjusting member according to claim 13, wherein at least one of the plurality of layered members is a porous material. 前記成分調整部材は炭素材料からなることを特徴とする請求項1から15のいずれか一項に記載の成分調整部材。   The said component adjustment member consists of carbon materials, The component adjustment member as described in any one of Claim 1 to 15 characterized by the above-mentioned. 結晶成長用容器と、該結晶成長用容器内の下部に位置する原料収容部と、該原料収容部の上方に配置して該原料収容部より小径の基板支持面で基板を支持する基板支持部とを備え、前記原料を昇華させて前記基板上に前記原料の化合物半導体単結晶を成長させる単結晶成長装置において、
前記原料収容部と前記基板支持部との間に配置して前記結晶成長用容器内の空間を分離する成分調整部材であって、請求項1から16のいずれか一項に記載の成分調整部材を備えたことを特徴とする単結晶成長装置。
A crystal growth container, a raw material container located in the lower part of the crystal growth container, and a substrate support part disposed above the raw material container and supporting a substrate on a substrate support surface having a smaller diameter than the raw material container A single crystal growth apparatus for growing the compound semiconductor single crystal of the raw material on the substrate by sublimating the raw material,
The component adjusting member according to any one of claims 1 to 16, wherein the component adjusting member is disposed between the raw material storage portion and the substrate support portion and separates a space in the crystal growth vessel. A single crystal growth apparatus comprising:
前記成分調整部材は、その上面が前記基板支持面から40〜120mm離間して配置されていることを特徴とする請求項17に記載の単結晶成長装置。   The single crystal growth apparatus according to claim 17, wherein the component adjusting member has an upper surface disposed at a distance of 40 to 120 mm from the substrate support surface. 前記成分調整部材は、その下面が前記原料収容部の最上面から10〜50mm離間して配置されていることを特徴とする請求項17又は18のいずれかに記載の単結晶成長装置。   19. The single crystal growth apparatus according to claim 17, wherein a lower surface of the component adjusting member is disposed 10 to 50 mm away from an uppermost surface of the raw material container. 前記成分調整部材の外周部が前記結晶成長用容器の内壁で支持されていることを特徴とする請求項17から19のいずれか一項に記載の単結晶成長装置。   The single crystal growth apparatus according to any one of claims 17 to 19, wherein an outer peripheral portion of the component adjusting member is supported by an inner wall of the crystal growth container. 前記成分調整部材が前記結晶成長用容器の底部から延在する支持部材よって支持されていることを特徴とする請求項17から19のいずれか一項に記載の単結晶成長装置。   The single crystal growth apparatus according to any one of claims 17 to 19, wherein the component adjustment member is supported by a support member extending from a bottom of the crystal growth vessel. 前記単結晶は炭化珪素の単結晶であることを特徴とする請求項17から21のいずれか一項に記載の単結晶成長装置。   The single crystal growth apparatus according to any one of claims 17 to 21, wherein the single crystal is a single crystal of silicon carbide.
JP2010043309A 2010-02-26 2010-02-26 Component-adjustment member and single crystal growth device provided therewith Pending JP2011178590A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010043309A JP2011178590A (en) 2010-02-26 2010-02-26 Component-adjustment member and single crystal growth device provided therewith
PCT/JP2011/050339 WO2011105122A1 (en) 2010-02-26 2011-01-12 Component-adjustment member and monocrystal growth device provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043309A JP2011178590A (en) 2010-02-26 2010-02-26 Component-adjustment member and single crystal growth device provided therewith

Publications (1)

Publication Number Publication Date
JP2011178590A true JP2011178590A (en) 2011-09-15

Family

ID=44506546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043309A Pending JP2011178590A (en) 2010-02-26 2010-02-26 Component-adjustment member and single crystal growth device provided therewith

Country Status (2)

Country Link
JP (1) JP2011178590A (en)
WO (1) WO2011105122A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256096A (en) * 2010-06-07 2011-12-22 Sicrystal Ag METHOD OF PRODUCING SiC BULK SINGLE CRYSTAL HAVING NO FACET, AND SINGLE CRYSTAL SiC SUBSTRATE HAVING HOMOGENEOUS RESISTANCE DISTRIBUTION
CN102534763A (en) * 2012-01-17 2012-07-04 山东天岳先进材料科技有限公司 Graphite crucible for growing large-size silicon carbide single crystal by physical vapor deposition method and application thereof
US20130220219A1 (en) * 2012-02-24 2013-08-29 Industry-Academic Cooperation Foundation, Yeungnam University Apparatus for manufacturing photovoltaic cell
JP2013189355A (en) * 2012-03-15 2013-09-26 Sumitomo Electric Ind Ltd Method and device for manufacturing silicon carbide single crystal
JP2015514673A (en) * 2012-04-20 2015-05-21 トゥー‐シックス・インコーポレイテッド Large diameter high quality SiC single crystal, method and apparatus
JP2019194136A (en) * 2018-05-01 2019-11-07 昭和電工株式会社 Shield member and single crystal growth apparatus
US11111599B2 (en) 2018-09-06 2021-09-07 Showa Denko K.K. Single crystal growth method which includes covering a part of a surface of a raw material for sublimation with a metal carbide powder
US11814749B2 (en) * 2018-09-06 2023-11-14 Resonac Corporation Single crystal growth crucible and single crystal growth method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065762B2 (en) 2013-06-21 2017-01-25 株式会社デンソー Silicon carbide semiconductor film forming apparatus and film forming method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137695A (en) * 2001-10-29 2003-05-14 Denso Corp Method and apparatus for producing silicon carbide single crystal
JP4199921B2 (en) * 1997-09-12 2008-12-24 昭和電工株式会社 Method and apparatus for producing silicon carbide single crystal
JP2010013296A (en) * 2008-07-01 2010-01-21 Showa Denko Kk Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal
JP2010024117A (en) * 2008-07-23 2010-02-04 Bridgestone Corp Apparatus and method for producing silicon carbide single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199921B2 (en) * 1997-09-12 2008-12-24 昭和電工株式会社 Method and apparatus for producing silicon carbide single crystal
JP2003137695A (en) * 2001-10-29 2003-05-14 Denso Corp Method and apparatus for producing silicon carbide single crystal
JP2010013296A (en) * 2008-07-01 2010-01-21 Showa Denko Kk Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal
JP2010024117A (en) * 2008-07-23 2010-02-04 Bridgestone Corp Apparatus and method for producing silicon carbide single crystal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256096A (en) * 2010-06-07 2011-12-22 Sicrystal Ag METHOD OF PRODUCING SiC BULK SINGLE CRYSTAL HAVING NO FACET, AND SINGLE CRYSTAL SiC SUBSTRATE HAVING HOMOGENEOUS RESISTANCE DISTRIBUTION
CN102534763A (en) * 2012-01-17 2012-07-04 山东天岳先进材料科技有限公司 Graphite crucible for growing large-size silicon carbide single crystal by physical vapor deposition method and application thereof
US20130220219A1 (en) * 2012-02-24 2013-08-29 Industry-Academic Cooperation Foundation, Yeungnam University Apparatus for manufacturing photovoltaic cell
US9076917B2 (en) 2012-02-24 2015-07-07 Industry-Academic Cooperation Foundation, Yeungnam University Method of manufacturing photovoltaic cell
JP2013189355A (en) * 2012-03-15 2013-09-26 Sumitomo Electric Ind Ltd Method and device for manufacturing silicon carbide single crystal
JP2015514673A (en) * 2012-04-20 2015-05-21 トゥー‐シックス・インコーポレイテッド Large diameter high quality SiC single crystal, method and apparatus
USRE46315E1 (en) 2012-04-20 2017-02-21 Ii-Vi Incorporated Large diameter, high quality SiC single crystals, method and apparatus
KR101731239B1 (en) * 2012-04-20 2017-04-28 투-식스 인코포레이티드 LARGE DIAMETER, HIGH QUALITY SiC SINGLE CRYSTALS, METHOD AND APPARATUS
JP2019194136A (en) * 2018-05-01 2019-11-07 昭和電工株式会社 Shield member and single crystal growth apparatus
JP7085886B2 (en) 2018-05-01 2022-06-17 昭和電工株式会社 Shielding member and single crystal growth device
US11111599B2 (en) 2018-09-06 2021-09-07 Showa Denko K.K. Single crystal growth method which includes covering a part of a surface of a raw material for sublimation with a metal carbide powder
US11814749B2 (en) * 2018-09-06 2023-11-14 Resonac Corporation Single crystal growth crucible and single crystal growth method

Also Published As

Publication number Publication date
WO2011105122A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2011105122A1 (en) Component-adjustment member and monocrystal growth device provided therewith
TWI647348B (en) Method and apparatus for producing bulk tantalum carbide using tantalum carbide seed crystals
JP4748067B2 (en) Method and apparatus for producing silicon carbide single crystal
US20110107961A1 (en) Single crystal manufacturing device and manufacturing method
KR20120082873A (en) Sublimation growth of sic single crystals
JP2013212952A (en) Method for manufacturing silicon carbide single crystal
JP7258273B2 (en) SiC single crystal manufacturing method and coated member
JP2011219295A (en) Apparatus for producing silicon carbide single crystal ingot
US20160002820A1 (en) Crucible and method for producing single crystal
JP2021102533A (en) MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
CN113151897A (en) Crucible structure
JP4692394B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2010076991A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2017095304A (en) Raw material grain for silicon carbide growth, production method of raw material grain for silicon carbide growth, and production method of silicon carbide single crystal
JP7054934B2 (en) Bulk Silicon Carbide with Low Defect Density
JP2010076990A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
CN219526866U (en) Crucible structure and crystal growth apparatus
JP2016117624A (en) crucible
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP2004339029A (en) Method and apparatus for producing silicon carbide single crystal
CN107532328B (en) Method for producing SiC single crystal
JP2006290685A (en) Method for producing silicon carbide single crystal
JP2006143497A (en) Apparatus for manufacturing silicon carbide single crystal
JP7024622B2 (en) Silicon carbide single crystal and its manufacturing method
JP6839526B2 (en) SiC single crystal growth device, SiC single crystal growth method and SiC single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121106

A131 Notification of reasons for refusal

Effective date: 20130521

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A02 Decision of refusal

Effective date: 20130827

Free format text: JAPANESE INTERMEDIATE CODE: A02