JP2011177027A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2011177027A
JP2011177027A JP2011133007A JP2011133007A JP2011177027A JP 2011177027 A JP2011177027 A JP 2011177027A JP 2011133007 A JP2011133007 A JP 2011133007A JP 2011133007 A JP2011133007 A JP 2011133007A JP 2011177027 A JP2011177027 A JP 2011177027A
Authority
JP
Japan
Prior art keywords
voltage command
voltage
output
power converter
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133007A
Other languages
Japanese (ja)
Other versions
JP5133443B2 (en
Inventor
Akira Satake
彰 佐竹
Takahiro Urakabe
隆浩 浦壁
Seiji Anzai
清治 安西
Masaru Kobayashi
勝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011133007A priority Critical patent/JP5133443B2/en
Publication of JP2011177027A publication Critical patent/JP2011177027A/en
Application granted granted Critical
Publication of JP5133443B2 publication Critical patent/JP5133443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a power converter capable of achieving an optimal operation depending on the situation by effectively utilizing a function capable of controlling an output voltage of a DC voltage power supply. <P>SOLUTION: The power converter includes an optimal voltage command generator 7 for outputting an optimal DC voltage command VDC* and a modulation rate kmod so as to minimize the total of losses of a three-phase power converter 1 and a load 2. The voltage outputted from a variable voltage power supply 4 is controlled by the DC voltage command VDC*. The three-phase power converter 1 is switching-controlled at the modulation rate kmod. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、所定の直流電圧指令値に基づき出力電圧が制御可能な直流電圧電源と、この直流電圧電源からの直流電力を交流電力に変換して負荷に供給する電力変換器と、出力電圧指令値に基づき電力変換器を所定の変調率で制御する制御装置とを備えた電力変換装置に関するものである。   The present invention relates to a DC voltage power source that can control an output voltage based on a predetermined DC voltage command value, a power converter that converts DC power from the DC voltage power source into AC power, and supplies it to a load, and an output voltage command The present invention relates to a power conversion device including a control device that controls a power converter at a predetermined modulation rate based on a value.

直流電圧電源からの電力を半導体素子のスイッチング動作により交流に変換する電力変換器の制御方式としては、PWM(パルス幅変調)により正弦波に近い電圧を発生するもの(以下、PWM方式または正弦波方式とも称する)と、120度通電のように矩形波電圧を発生するもの(以下、矩形波方式とも称する)とが知られている。
PWM方式では、電流波形に含まれる高調波成分(本来発生される交流周波数以外の周波数成分)が少ない反面、単位時間当たりの半導体素子のスイッチング回数が多いためスイッチング損失が大きい。また、矩形波方式は、スイッチング回数が少ない分スイッチング損失は少なく、また電圧に含まれる基本波成分の振幅がPWM方式に比べて大きいため電圧利用率を高めることが出来るが、高調波電流が多く発生する。
As a control method of a power converter that converts electric power from a DC voltage power source into AC by switching operation of a semiconductor element, a voltage generating a voltage close to a sine wave by PWM (pulse width modulation) (hereinafter referred to as PWM method or sine wave). And a type that generates a rectangular wave voltage such as 120-degree energization (hereinafter also referred to as a rectangular wave type).
In the PWM method, the harmonic component (frequency component other than the AC frequency that is originally generated) included in the current waveform is small, but the switching loss is large because the number of times of switching of the semiconductor element per unit time is large. In addition, the rectangular wave method has less switching loss due to the smaller number of times of switching, and the amplitude of the fundamental wave component included in the voltage is larger than that of the PWM method, so the voltage utilization can be increased, but the harmonic current is large. appear.

これらの得失を組み合わせた方式として、PWM方式においてPWMキャリアより大きい振幅の指令値を入力して正弦波の振幅の大きい部分を飽和させた、いわゆる過変調駆動方式がある。この方式では、出力電圧指令ピーク値が直流電源電圧より低い場合は正弦波PWM方式により高調波電流を低減し、出力電圧指令ピーク値が直流電源電圧より高くなると過変調駆動を行って電源利用率を高める。さらに、このような過変調駆動を行う装置において直流電圧電源を昇圧回路により電圧可変とし、過変調駆動状態でさらに高い出力駆動電圧が必要になった場合、直流電源電圧を操作して出力電圧指令を制御する、いわゆるPAM動作を行う方式が提案されている(例えば、特許文献1参照)。   As a method combining these advantages and disadvantages, there is a so-called overmodulation drive method in which a command value having an amplitude larger than that of the PWM carrier is input in the PWM method and a portion where the amplitude of the sine wave is large is saturated. In this method, when the output voltage command peak value is lower than the DC power supply voltage, the harmonic current is reduced by the sine wave PWM method, and when the output voltage command peak value becomes higher than the DC power supply voltage, overmodulation drive is performed to To increase. Furthermore, in such a device that performs overmodulation driving, if the DC voltage power supply is variable by a booster circuit and a higher output driving voltage is required in the overmodulation driving state, the output voltage command is operated by operating the DC power supply voltage. There has been proposed a method for performing so-called PAM operation (see, for example, Patent Document 1).

特開2000−333465号公報(段落0048〜0054、図7)JP 2000-333465 A (paragraphs 0048 to 0054, FIG. 7)

ここで、正弦波駆動と過変調駆動時との損失発生を考えてみると、正弦波駆動時には電力変換器ではスイッチング損失が比較的多く発生するが、出力される電圧に高調波成分が少ないために負荷(例えば、モータ)での損失は少ない。一方、過変調駆動時にはスイッチング回数が減少するのでスイッチング損失は比較的少なくなるが、電圧高調波成分が多いために負荷での損失は増大する。
一方、電力変換器の出力電圧の基本波成分振幅は、直流電源電圧と変調率(PWMキャリアと電圧指令の比で、この値が1以上の場合が過変調状態)により決定されるので、同じ振幅の電圧を、異なる直流電源電圧と変調率との組み合わせで出力することが可能である。この場合、例えば、直流電源電圧が低く変調率が大きい状態の場合は負荷側の損失が大きくなり、直流電源電圧が高く変調率が低い状態の場合は電力変換器側の損失が大きくなる。
このように、直流電源電圧と変調率との組み合わせを変えることにより、電力変換器と負荷とで発生する損失のバランス、および損失全体の大きさを操作することが出来る。
しかるに、従来の電力変換器の制御方式では、出力電圧指令の増加に対してまず変調率を大きくして正弦波PWM方式から過変調駆動に移行し、さらに高い出力駆動電圧が必要になった場合は直流電源電圧を上げる動作を行うものであり、運転状況に応じて変調率と直流電源電圧との両方を操作して、例えば、全体の損失が最小となる等の最適な運転を行うことが出来ないという問題点があった。
Considering the generation of loss between sine wave drive and overmodulation drive, the power converter generates a relatively large amount of switching loss during sine wave drive, but the output voltage has few harmonic components. In addition, there is little loss at the load (for example, motor). On the other hand, during overmodulation driving, the number of switching operations decreases, so that the switching loss is relatively small. However, since there are many voltage harmonic components, the loss at the load increases.
On the other hand, the fundamental wave component amplitude of the output voltage of the power converter is the same because it is determined by the DC power supply voltage and the modulation factor (the ratio of the PWM carrier and the voltage command, and when this value is 1 or more). It is possible to output a voltage having an amplitude with a combination of different DC power supply voltages and modulation factors. In this case, for example, the loss on the load side increases when the DC power supply voltage is low and the modulation rate is high, and the loss on the power converter side increases when the DC power supply voltage is high and the modulation rate is low.
Thus, by changing the combination of the DC power supply voltage and the modulation factor, it is possible to manipulate the balance of loss generated in the power converter and the load and the overall loss.
However, in the conventional power converter control system, when the output voltage command increases, the modulation rate is first increased to shift from the sine wave PWM system to overmodulation drive, and a higher output drive voltage is required. Is an operation to increase the DC power supply voltage, and it is possible to operate both the modulation factor and the DC power supply voltage according to the operating situation, for example, to perform an optimal operation such as minimizing the overall loss. There was a problem that it was not possible.

この発明は、上記のような問題点を解決するためになされたものであり、直流電圧電源の出力電圧が制御可能であるという機能を有効に活かして、状況に応じた最適な運転を実現することができる電力変換装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and realizes optimum operation according to the situation by effectively utilizing the function that the output voltage of the DC voltage power supply is controllable. It aims at obtaining the power converter device which can do.

第1の発明に係る電力変換装置は、所定の直流電圧指令値に基づき出力電圧が制御可能な直流電圧電源、この直流電圧電源からの直流電力を交流電力に変換して負荷に供給する電力変換器、および出力電圧指令値に基づき電力変換器を所定の変調率で制御する制御装置を備えたものであって、
電力変換器と負荷とに発生する、予め設定された特性が、予め設定された所望の状態となるよう、直流電圧指令値と変調率とをそれぞれ直流電圧電源と制御装置とに出力する最適電圧指令発生器を備え、
最適電圧指令発生器は、電力変換器の出力電圧をパラメータとして直流電源電圧の直流電圧指令値と電力変換器の変調率との関係を予め求めたデータを有し、出力電圧指令値と変調率とを入力しデータを適用することにより直流電圧指令値を出力する直流電圧指令発生器、変調率と直流電圧指令発生器からの直流電圧指令値とを入力し電力変換器と負荷との特性を演算する特性演算器、および特性演算器から入力した電力変換器と負荷との特性が所望の状態となるよう直流電圧指令発生器と特性演算器とに入力する変調率を調節する変調率調節器を備え、特性が所望の状態となったときの変調率調節器の出力である変調率を所定の変調率として制御装置に出力し、当該変調率を入力したときの直流電圧指令発生器の出力である直流電圧指令値を所定の直流電圧指令値として直流電圧電源に出力するようにしたものである。
A power converter according to a first aspect of the present invention is a DC voltage power source whose output voltage can be controlled based on a predetermined DC voltage command value, and a power converter that converts DC power from the DC voltage power source into AC power and supplies it to a load. And a control device for controlling the power converter at a predetermined modulation rate based on the output voltage command value,
Optimum voltage that outputs the DC voltage command value and the modulation factor to the DC voltage power supply and the control device, respectively, so that the preset characteristics generated in the power converter and the load are in a preset desired state. Equipped with a command generator,
The optimum voltage command generator has data in which the relationship between the DC voltage command value of the DC power supply voltage and the modulation rate of the power converter is obtained in advance using the output voltage of the power converter as a parameter, and the output voltage command value and the modulation rate. DC voltage command generator that outputs DC voltage command value by inputting data, and input the modulation factor and DC voltage command value from DC voltage command generator, and the characteristics of power converter and load A characteristic calculator for calculating, and a modulation rate adjuster for adjusting the modulation rate input to the DC voltage command generator and the characteristic calculator so that the characteristics of the power converter and the load input from the characteristic calculator are in a desired state Output the modulation rate, which is the output of the modulation rate regulator when the characteristic is in a desired state, to the control device as a predetermined modulation rate, and the output of the DC voltage command generator when the modulation rate is input DC voltage command value It is obtained so as to output a DC voltage source as a predetermined DC voltage command value.

また、第2の発明に係る電力変換装置は、所定の直流電圧指令値に基づき出力電圧が制御可能な直流電圧電源、この直流電圧電源からの直流電力を交流電力に変換して負荷に供給する電力変換器、および出力電圧指令値に基づき電力変換器を交流電力の位相に同期した所定の同期パルス数でかつ所定の変調率で制御する制御装置を備えたものであって、
電力変換器と負荷とに発生する、予め設定された特性が、予め設定された所望の状態となるよう、直流電圧指令値と同期パルス数および変調率とをそれぞれ直流電圧電源と制御装置とに出力する最適電圧指令発生器を備え、
最適電圧指令発生器は、同期パルス数の予め設定された種別毎に、電力変換器の出力電圧をパラメータとして直流電源電圧の直流電圧指令値と電力変換器の変調率との関係を予め求めたデータを有し、出力電圧指令値と変調率とを入力しデータを適用することにより直流電圧指令値を出力する直流電圧指令発生器、変調率と直流電圧指令発生器からの直流電圧指令値とを入力し電力変換器と負荷との特性を演算する特性演算器、および特性演算器から入力した電力変換器と負荷との特性が所望の状態となるよう直流電圧指令発生器と特性演算器とに入力する変調率を調節する変調率調節器を備え、特性が所望の状態となったときの変調率調節器の出力である変調率を当該同期パルス数制御のおける所定の変調率として出力し、当該変調率を入力したときの直流電圧指令発生器の出力である直流電圧指令値を当該同期パルス数制御における所定の直流電圧指令値として出力する同期パルス数別最適電圧指令発生器、および同期パルス数別最適電圧指令発生器からの各同期パルス数毎の状態を比較し、状態が最良である同期パルス数と当該同期パルス数に係る最適電圧指令発生器からの変調率とをそれぞれ所定の同期パルス数および所定の変調率として制御装置に出力し、当該同期パルス数に係る最適電圧指令発生器からの直流電圧指令値を所定の直流電圧指令値として直流電圧電源に出力する切替器を備えたものである。
A power converter according to a second aspect of the invention is a DC voltage power source whose output voltage can be controlled based on a predetermined DC voltage command value, and converts DC power from the DC voltage power source into AC power and supplies it to a load. A power converter, and a control device that controls the power converter based on the output voltage command value with a predetermined number of synchronization pulses synchronized with the phase of the AC power and with a predetermined modulation rate,
The DC voltage command value, the number of synchronization pulses, and the modulation rate are respectively set to the DC voltage power supply and the control device so that the preset characteristics generated in the power converter and the load are in a preset desired state. Equipped with an optimal voltage command generator to output,
The optimum voltage command generator previously obtained the relationship between the DC voltage command value of the DC power supply voltage and the modulation rate of the power converter, using the output voltage of the power converter as a parameter for each preset type of the number of synchronization pulses. DC voltage command generator which outputs DC voltage command value by inputting data and applying output voltage command value and modulation factor, and DC voltage command value from modulation factor and DC voltage command generator A characteristic calculator for calculating the characteristics of the power converter and the load, and a DC voltage command generator and a characteristic calculator so that the characteristics of the power converter and the load input from the characteristic calculator are in a desired state. A modulation rate adjuster that adjusts the modulation rate input to the device, and outputs the modulation rate, which is the output of the modulation rate adjuster when the characteristics reach the desired state, as a predetermined modulation rate for controlling the number of synchronization pulses. Enter the modulation rate DC voltage command generator output DC voltage command value as a predetermined DC voltage command value in the synchronous pulse number control, and optimum voltage command generator for each synchronous pulse number The state for each number of synchronization pulses from the generator is compared, and the number of synchronization pulses having the best state and the modulation rate from the optimum voltage command generator related to the number of synchronization pulses are respectively determined to be a predetermined number of synchronization pulses and a predetermined number of synchronization pulses. A switch is provided that outputs the modulation rate to the control device and outputs the DC voltage command value from the optimum voltage command generator related to the number of synchronization pulses to the DC voltage power source as a predetermined DC voltage command value.

第1の発明に係る電力変換装置では、電力変換器と負荷とに発生する、予め設定された特性、例えば、損失が、予め設定された所望の状態、例えば、両者の損失の合計が最小となるよう、最適な直流電圧指令値と変調率とが確実に設定される。   In the power conversion device according to the first aspect of the present invention, a preset characteristic, such as loss, generated in the power converter and the load is a preset desired state, for example, the sum of the losses of both is the minimum. Thus, the optimum DC voltage command value and the modulation factor are reliably set.

また、第2の発明に係る電力変換装置は、電力変換器と負荷とに発生する、予め設定された特性、例えば、損失が、予め設定された所望の状態、例えば、両者の損失の合計が最小となるよう、最適な直流電圧指令値と同期パルス数および変調率とが確実に設定される。   Further, the power conversion device according to the second aspect of the present invention has a preset characteristic, for example, loss generated in the power converter and the load, and a desired state set in advance, for example, the sum of both losses. The optimum DC voltage command value, the number of synchronization pulses, and the modulation rate are reliably set so as to be minimized.

この発明の実施の形態1における電力変換装置の基本的な構成を示す図である。It is a figure which shows the basic composition of the power converter device in Embodiment 1 of this invention. 図1のスイッチング指令発生器3の内部構成を示す図である。It is a figure which shows the internal structure of the switching command generator 3 of FIG. 図2の最適電圧指令発生器7の内部構成を示す図である。It is a figure which shows the internal structure of the optimal voltage command generator 7 of FIG. 電圧vをパラメータとした、直流電源電圧VDC*と変調率kmodとの関係を示す特性図である。It is a characteristic view showing the relationship between the DC power supply voltage VDC * and the modulation factor kmod with the voltage v as a parameter. 損失推定値Pinv、Ploadと変調率kmodとの関係を示す特性図である。It is a characteristic view which shows the relationship between loss estimated value Pinv, Pload and modulation factor kmod. この発明の実施の形態2における電力変換装置のスイッチング指令発生器3の内部構成を示す図である。It is a figure which shows the internal structure of the switching command generator 3 of the power converter device in Embodiment 2 of this invention. 図6の最適電圧・パルス指令発生器17の内部構成を示す図である。It is a figure which shows the internal structure of the optimal voltage and pulse command generator 17 of FIG.

実施の形態1.
図1は、本発明の実施の形態1による電力変換装置の基本的な構成を示す図であり、例として、三相電力変換器1が、例えば、電動機などの負荷2に対して絶対値v、周波数ωの三相交流電圧を印加して駆動する場合の構成を示したものである。
積分器6により周波数ωを積分して電圧位相θが求められ、負荷2に流れる電流は電流センサ5により検出される。絶対値v、位相θの電圧ベクトル指令に対して、スイッチング指令発生器3は、出力電圧が制御可能な直流電圧電源である可変電圧電源4への電圧指令VDC*、および三相電力変換器1のスイッチングを行うゲートパルス信号GP(三相の上下アーム駆動で計6つ)を出力する。このゲートパルス信号GPにより三相電力変換器1はスイッチング動作を行い、また同変換器1には可変電圧電源4より電圧指令VDC*に従った電圧の電力が供給されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a basic configuration of a power conversion device according to Embodiment 1 of the present invention. As an example, a three-phase power converter 1 has an absolute value v with respect to a load 2 such as an electric motor. 2 shows a configuration in the case of driving by applying a three-phase AC voltage of frequency ω.
The voltage phase θ is obtained by integrating the frequency ω by the integrator 6, and the current flowing through the load 2 is detected by the current sensor 5. In response to a voltage vector command having an absolute value v and a phase θ, the switching command generator 3 outputs a voltage command VDC * to the variable voltage power source 4 which is a DC voltage power source whose output voltage can be controlled, and the three-phase power converter 1. The gate pulse signal GP (6 in total by driving the three-phase upper and lower arms) is output. The three-phase power converter 1 performs a switching operation by the gate pulse signal GP, and the converter 1 is supplied with electric power having a voltage according to the voltage command VDC * from the variable voltage power source 4.

図2は、スイッチング指令発生器3の内部構成を示したものである。負荷電流iuvwは、座標変換器12において電圧位相θ上での極座標表示の値irθに変換される。最適電圧指令発生器7は、与えられた電圧絶対値vから、周波数ωと負荷電流irθとを参照して、最適な直流電源電圧VDC*と変調率kmodとを出力する。一方、電圧位相θは、座標変換器8に入力されて、振幅1の三相交流値v0uvwに変換される。乗算器9は、この三相交流値v0uvwに変調率kmodを乗じる。三角波発生器10は、PWMキャリア周波数で振幅1の三角波を発生しており、この三角波と乗算器9の出力とを比較器11で比較し、正負論理のパルスを作成することによりゲートパルス信号GPが生成される。   FIG. 2 shows the internal configuration of the switching command generator 3. The load current iuvw is converted by the coordinate converter 12 into a polar coordinate display value irθ on the voltage phase θ. The optimum voltage command generator 7 outputs the optimum DC power supply voltage VDC * and the modulation factor kmod with reference to the frequency ω and the load current irθ from the given voltage absolute value v. On the other hand, the voltage phase θ is input to the coordinate converter 8 and converted into a three-phase AC value v0uvw having an amplitude of 1. The multiplier 9 multiplies the three-phase AC value v0uvw by the modulation factor kmod. The triangular wave generator 10 generates a triangular wave having an amplitude of 1 at the PWM carrier frequency. The triangular wave and the output of the multiplier 9 are compared by a comparator 11 to generate a positive / negative logic pulse, thereby generating a gate pulse signal GP. Is generated.

図3は、最適電圧指令発生器7の内部構成を示したものである。直流電圧指令発生器13は、変調率がkmodの場合に電圧絶対値vに相当する基本波成分振幅を持つ電圧を出力するのに必要な直流電圧指令VDC*を求める。図4は、直流電圧指令発生器13に格納されているデータの一例である。図4より分かるように、一定電圧値において直流電源電圧VDC*は変調率kmodに対して単調減少になるので、電圧絶対値vと変調率kmodとを与えると直流電源電圧VDC*は一意に決定することが出来る。
なお、後述する説明で理解されるように、変調率調節器16から出力される変調率kmodが直流電圧指令発生器13にフィードバックされ、例えば、電力変換器1と負荷2とで発生する損失の合計が最小となる状態に収束した段階での変調率kmodを入力とする直流電圧指令発生器13の出力が、最終的に求めるべき直流電圧指令VDC*となる。
FIG. 3 shows the internal configuration of the optimum voltage command generator 7. The DC voltage command generator 13 obtains a DC voltage command VDC * necessary for outputting a voltage having a fundamental wave component amplitude corresponding to the voltage absolute value v when the modulation factor is kmod. FIG. 4 is an example of data stored in the DC voltage command generator 13. As can be seen from FIG. 4, the DC power supply voltage VDC * monotonously decreases with respect to the modulation factor kmod at a constant voltage value. Therefore, when the voltage absolute value v and the modulation factor kmod are given, the DC power supply voltage VDC * is uniquely determined. I can do it.
As will be understood from the description below, the modulation factor kmod output from the modulation factor adjuster 16 is fed back to the DC voltage command generator 13, for example, the loss generated by the power converter 1 and the load 2. The output of the DC voltage command generator 13 that receives the modulation factor kmod at the stage of convergence to the state where the sum is minimized is the DC voltage command VDC * to be finally obtained.

変調率kmodと直流電源電圧VDC*は、負荷電流irθ、周波数ωとともに、特性演算器としての変換器損失モデル14および負荷損失モデル15に入力される。変換器損失モデル14および負荷損失モデル15には、予め測定された損失データが格納されており、与えられた条件で変換器1および負荷2に発生する損失の推定値Pinv,Ploadを出力する。変調率調節器16は、入力された損失推定値Pinv,Ploadを参照しながら、これらの損失が所望の状態となる、例えば、損失合計値Pinv+Ploadが最小となるように変調率kmodを調節する。なお、変換器損失モデル14が出力する損失データには、可変電圧電源4の損失を含めてもよい。   Modulation factor kmod and DC power supply voltage VDC * are input to converter loss model 14 and load loss model 15 as a characteristic calculator together with load current irθ and frequency ω. The converter loss model 14 and the load loss model 15 store loss data measured in advance, and output estimated values Pinv and Pload of losses generated in the converter 1 and the load 2 under given conditions. The modulation rate adjuster 16 adjusts the modulation rate kmod so that these losses are in a desired state, for example, the total loss value Pinv + Pload is minimized, with reference to the input loss estimation values Pinv and Pload. The loss data output from the converter loss model 14 may include the loss of the variable voltage power supply 4.

例として、一定周波数、一定負荷電流で運転中の最適電圧指令発生器7の動作を説明する。入力された電圧絶対値vに対して、まず変調率kmodの初期値が設定され(あるいは前回の演算結果の変調率を初期値としてもよい)、直流電圧指令発生器13により直流電圧指令VDC*が求められ、変調率kmod、負荷電流irθ、周波数ωとともに変換器損失モデル14および負荷損失モデル15に入力される。
ある周波数ω、負荷電流irθでの変調率kmodと、変換器損失推定値Pinvおよび負荷損失推定値Ploadの関係の例を図5に示す。なお、電圧絶対値vが一定の場合、変調率kmodにより直流電圧指令VDC*は一意に決定されるので、損失の変化を調節するパラメータとしては変調率のみを考えればよい。
As an example, the operation of the optimum voltage command generator 7 during operation at a constant frequency and a constant load current will be described. First, an initial value of the modulation factor kmod is set with respect to the input voltage absolute value v (or the modulation factor of the previous calculation result may be set as an initial value), and the DC voltage command generator 13 generates a DC voltage command VDC *. Is input to the converter loss model 14 and the load loss model 15 together with the modulation rate kmod, the load current irθ, and the frequency ω.
FIG. 5 shows an example of the relationship among the modulation factor kmod at a certain frequency ω and the load current irθ, the converter loss estimated value Pinv, and the load loss estimated value Pload. When the voltage absolute value v is constant, the direct-current voltage command VDC * is uniquely determined by the modulation factor kmod, so that only the modulation factor may be considered as a parameter for adjusting the loss change.

図5に示すように、変換器損失推定値Pinvは、変調率kmodが大きくなるにつれて電源電圧が低くなるために減少し、変調率1以上ではスイッチング回数が減少するにつれて更に大きく減少する。これに対して負荷損失(モータなどの誘導性負荷を想定)は、変調率1までは電源電圧が低くなるにつれてPWMキャリア成分の高調波電流が減少するため負荷損失推定値Ploadは減少するが、変調率が1を超えると過変調電圧波形に含まれる高調波成分により電流高調波成分が増加するため、変調率の増加に対して損失は増加する。   As shown in FIG. 5, the converter loss estimation value Pinv decreases as the power supply voltage decreases as the modulation factor kmod increases, and at the modulation factor of 1 or more, the converter loss estimated value Pinv decreases further as the switching frequency decreases. On the other hand, load loss (assuming an inductive load such as a motor) decreases the estimated load loss Pload because the harmonic current of the PWM carrier component decreases as the power supply voltage decreases until a modulation factor of 1, When the modulation rate exceeds 1, the current harmonic component increases due to the harmonic component included in the overmodulation voltage waveform, and therefore the loss increases as the modulation rate increases.

今、変調率調節器16が、その変調率kmodを調節する目標、即ち、請求項1では、所望の状態と表現している目標として、損失の合計を最小とすることを考える。変調率調節器16は、初期の変調率kmodより得られる損失推定値Pinv、Ploadの合計を記憶した後、変調率kmodを微小量Δkmodだけ増加させて同様の上記処理を行う。この変調率の微小量変化Δkmodにより得られる損失推定値Pinv、Ploadの合計が前回の損失より小さい場合、変調率調節器16はさらに変調率を微小量Δkmodだけ増加させて同様の上記処理を行う。逆に、もし損失の合計が前回より大きい場合、変調率調節器16は、今度は変調率を微小量Δkmodだけ減少させて同様の上記処理を行う。このような処理を繰り返し行うことにより、変調率kmodは最終的に損失推定値Pinv、Ploadの合計が最小となる値に収束し、この損失最小となる変調率kmodおよび直流電源電圧VDC*が最適電圧指令発生器7としての出力となる。   Now, consider that the modulation factor adjuster 16 minimizes the total loss as a target for adjusting the modulation factor kmod, that is, a target expressed as a desired state in claim 1. The modulation rate adjuster 16 stores the sum of the estimated loss values Pinv and Pload obtained from the initial modulation rate kmod, and then increases the modulation rate kmod by a minute amount Δkmod and performs the same process. When the sum of the estimated loss values Pinv and Pload obtained by the minute change Δkmod of the modulation rate is smaller than the previous loss, the modulation rate adjuster 16 further increases the modulation rate by the minute amount Δkmod and performs the same processing. . On the contrary, if the total loss is larger than the previous time, the modulation rate adjuster 16 reduces the modulation rate by a minute amount Δkmod and performs the same process. By repeating such processing, the modulation factor kmod finally converges to a value that minimizes the sum of the estimated loss values Pinv and Pload, and the modulation factor kmod and the DC power supply voltage VDC * that minimize this loss are optimal. It becomes an output as the voltage command generator 7.

なお、以上の説明では、最適電圧指令発生器7は、損失の合計が最小となるような直流電源電圧と変調率とを求めたが、所定の特性、所望の状態としてその他の特性、状態に従って直流電源電圧と変調率とを選択してもよい。
例えば、変換器1と負荷2とのそれぞれに温度計を設けておいて、変換器1と負荷2の内、温度的により余裕がある方に発生する損失が大きくなるよう、損失最小点からずれた状態の直流電源電圧と変調率とを選択してもよい。
さらに、直流電源電圧と変調率との選択の基準は、損失以外のパラメータについても存在しうる。例えば、変換器1および負荷2から発生する騒音、振動や電磁ノイズなども選択の基準となり得る。これらの損失以外の特性、パラメータを加えた最適化を行う方法としては、例えば、これらのパラメータによる得失を損失相当の値に換算して損失モデルに格納しておけばよい。例えば、騒音が大きくなる運転条件では実際の損失より大きな損失が発生するように損失モデルが動作するようにしておけば、損失と損失以外のパラメータのバランスを考慮して直流電源電圧と変調率とを選択することができる。
In the above description, the optimum voltage command generator 7 calculates the DC power supply voltage and the modulation factor that minimize the total loss, but according to other characteristics and states as predetermined characteristics and desired states. The DC power supply voltage and the modulation factor may be selected.
For example, if a thermometer is provided for each of the converter 1 and the load 2, the loss is shifted from the minimum loss point so that the loss that occurs in the converter 1 and the load 2 that has more room for temperature increases. The direct-current power supply voltage and the modulation factor may be selected.
Furthermore, the criteria for selecting the DC power supply voltage and the modulation factor may exist for parameters other than loss. For example, noise, vibration, electromagnetic noise, and the like generated from the converter 1 and the load 2 can be the selection criteria. As a method for performing optimization by adding characteristics and parameters other than these losses, for example, the profits and losses by these parameters may be converted into values corresponding to the losses and stored in the loss model. For example, if the loss model is operated so that a loss larger than the actual loss occurs under operating conditions where the noise is high, the DC power supply voltage and the modulation factor are considered in consideration of the balance of parameters other than loss and loss. Can be selected.

なお、最適電圧指令発生器7内部での直流電源電圧と変調率との最適化動作は、必ずしも実際の運転中に行う必要はない。電圧絶対値に対して周波数および負荷電流が決まれば、最適な直流電源電圧と変調率とを求めることは可能であり、予め、電圧絶対値、周波数および負荷電流に対する最適な直流電源電圧と変調率とをテーブル化しておけば、運転中に最適電圧指令発生器7内部での最適化の処理を行うことなく、最適な直流電源電圧と変調率とを求めることが可能になる。これにより演算時間を短縮することが出来る。   Note that the optimization operation of the DC power supply voltage and the modulation factor in the optimum voltage command generator 7 is not necessarily performed during actual operation. If the frequency and load current are determined with respect to the voltage absolute value, it is possible to obtain the optimum DC power supply voltage and modulation factor. In advance, the optimum DC power supply voltage and modulation factor for the voltage absolute value, frequency and load current can be obtained. Are tabled, it is possible to obtain the optimum DC power supply voltage and modulation factor without performing the optimization process inside the optimum voltage command generator 7 during operation. Thereby, the calculation time can be shortened.

また、以上の説明では、所望の電圧絶対値と周波数を持つ三相交流電圧を出力するよう電力変換器1を制御する場合について説明したが、上位の制御系として電流制御やその他の制御が設けられてもよいことは言うまでもない。   In the above description, the case where the power converter 1 is controlled to output a three-phase AC voltage having a desired voltage absolute value and frequency has been described. However, current control and other controls are provided as a higher-level control system. It goes without saying that it may be done.

以上のように、この発明の実施の形態1によれば、可変電圧電源を備える電力変換装置において、電力変換器と負荷のそれぞれで発生する損失あるいはそれ以外の特性、パラメータを、所望の状態に最適化するような直流電源電圧と変調率とを選択しながら運転を行うことが出来るという効果がある。   As described above, according to the first embodiment of the present invention, in a power conversion device including a variable voltage power supply, loss generated in each of the power converter and the load or other characteristics and parameters are set to a desired state. There is an effect that the operation can be performed while selecting the DC power supply voltage and the modulation factor to be optimized.

実施の形態2.
先の実施の形態1の図2では、その三角波発生器10は、一定のPWMキャリア周波数を発生するものとした、従って、特に、PWMキャリア周波数と電力変換器の出力周波数との同期をとらない、いわゆる非同期スイッチング方式を前提とした。しかるに、本願発明の主題は、これらスイッチング方式の種別に影響されるものではない。
この発明の実施の形態2における電力変換装置は、PWMキャリア周波数と電力変換器の出力周波数とが同期して変化する、いわゆる同期スイッチング方式の変力変換器に適用したものである。
同期スイッチング方式は、パルス数(キャリア周波数と出力周波数との比)が小さくなっても電流高調波成分の発生が比較的少なく、低キャリア周波数・高出力周波数の用途(モータの高速駆動など)に好適である。また、同期スイッチング方式は、電力変換器の出力周波数が十分低い場合には、非同期スイッチング(PWMキャリア周波数が出力周波数とは関係なく一定の方式)と比べて演算処理量が増大するわりにはメリットがないため、一般にはキャリア周波数が出力周波数の5倍以下の領域で非同期スイッチング方式と切り替えて使用され、同期パルス数としては高調波含有率を考慮して5、3、1が使用される。同期スイッチング方式においては、同期パルス数により出力可能な電圧基本波成分振幅が決定されるので、実施の形態1で変調率を調節した代わりに、同期パルス数を選択して損失の最適化を行う。
Embodiment 2. FIG.
In FIG. 2 of the first embodiment, the triangular wave generator 10 generates a constant PWM carrier frequency. Therefore, in particular, the PWM carrier frequency and the output frequency of the power converter are not synchronized. Assuming a so-called asynchronous switching system. However, the subject matter of the present invention is not affected by the type of these switching methods.
The power conversion apparatus according to Embodiment 2 of the present invention is applied to a so-called synchronous switching type power converter in which the PWM carrier frequency and the output frequency of the power converter change synchronously.
The synchronous switching method generates relatively little current harmonic components even when the number of pulses (ratio of carrier frequency to output frequency) is small, and is suitable for applications with low carrier frequency and high output frequency (such as high-speed driving of motors). Is preferred. In addition, the synchronous switching method has an advantage in that the amount of calculation processing increases when the output frequency of the power converter is sufficiently low as compared with asynchronous switching (a method in which the PWM carrier frequency is constant regardless of the output frequency). Therefore, in general, it is used by switching to the asynchronous switching method in a region where the carrier frequency is 5 times or less of the output frequency, and 5, 3, and 1 are used as the number of synchronous pulses in consideration of the harmonic content rate. In the synchronous switching method, the voltage fundamental wave component amplitude that can be output is determined by the number of synchronization pulses, so that the loss is optimized by selecting the number of synchronization pulses instead of adjusting the modulation rate in the first embodiment. .

本発明の実施の形態2においても、電力変換装置の基本的な構成は図1と同様である。
図6は、本発明の実施の形態2におけるスイッチング指令発生器3の内部構成を示したものである。負荷電流iuvwは、座標変換器12において電圧位相θ上での極座標表示の値irθに変換される。最適電圧・パルス指令発生器17は、与えられた電圧絶対値vから、周波数ωと負荷電流irθとを参照して、最適な直流電源電圧VDC*、同期スイッチングのパルス数Npulse、および変調率kmodを出力する。一方、電圧位相θは、座標変換器18に入力されて、振幅1の三相交流値v0uvwに変換される。乗算器23は、この三相交流値v0uvwに変調率kmodを乗じる。また、電圧位相θは、5、3、1パルスの同期キャリア波発生器20、21、22に入力され、振幅が1でそれぞれのパルス数の同期キャリア波が発生される。
キャリア波切替器19は、最適電圧・パルス指令発生器17からの同期パルス数Npulseに従い出力する同期キャリア波を切り替える。このキャリア波と乗算器23の出力とを比較器11で比較し、正負論理のパルスを作成することによりゲートパルス信号GPが生成される。
Also in Embodiment 2 of the present invention, the basic configuration of the power converter is the same as that in FIG.
FIG. 6 shows the internal configuration of the switching command generator 3 according to Embodiment 2 of the present invention. The load current iuvw is converted by the coordinate converter 12 into a polar coordinate display value irθ on the voltage phase θ. The optimum voltage / pulse command generator 17 refers to the frequency ω and the load current irθ from the given voltage absolute value v, and determines the optimum DC power supply voltage VDC *, the number of pulses of synchronous switching Npulse, and the modulation factor kmod. Is output. On the other hand, the voltage phase θ is input to the coordinate converter 18 and converted into a three-phase AC value v0uvw having an amplitude of 1. The multiplier 23 multiplies the three-phase AC value v0uvw by the modulation factor kmod. Also, the voltage phase θ is input to 5, 3, and 1-pulse synchronous carrier wave generators 20, 21, and 22, and the synchronous carrier wave having the amplitude of 1 and the number of pulses is generated.
The carrier wave switch 19 switches the synchronous carrier wave to be output according to the number of synchronous pulses Npulse from the optimum voltage / pulse command generator 17. The carrier wave and the output of the multiplier 23 are compared by the comparator 11, and a gate pulse signal GP is generated by generating a pulse of positive / negative logic.

図7は、最適電圧・パルス指令発生器17の内部構成を示したものである。電圧絶対値v、負荷電流irθ、周波数ωは、それぞれ1パルス用最適電圧指令発生器24、3パルス用最適電圧指令発生器25、5パルス用最適電圧指令発生器26に入力される。各パルス用最適電圧指令発生器24、25、26は、実施の形態1の図3に示したものと同じ構成であり、それぞれキャリア波が1、3、5パルスの同期スイッチングの場合において、特性として、ここでは損失が、所望の状態となるように調節した場合の直流電源電圧VDC*n(n=1,3,5)と変調率kmodn(n=1,3,5)、およびその場合の変換器損失推定値Pinvn(n=1,3,5)と負荷損失推定値Ploadn(n=1,3,5)とを出力する。
同期パルス数選択器27は、各最適電圧指令発生器24、25、26が出力する損失推定値Pinv,Ploadから、状態が最良、ここでは、損失が最も小さくなる同期パルス数Npluseを選択し、その同期パルス数によって切替器28を切り替え、最適電圧・パルス指令発生器17が出力する直流電源電圧VDC*と変調率kmodを決定する。
FIG. 7 shows the internal configuration of the optimum voltage / pulse command generator 17. The voltage absolute value v, the load current irθ, and the frequency ω are input to the one-pulse optimum voltage command generator 24, the three-pulse optimum voltage command generator 25, and the five-pulse optimum voltage command generator 26, respectively. The optimum voltage command generators 24, 25, and 26 for each pulse have the same configuration as that shown in FIG. 3 of the first embodiment. In the case where the carrier wave is synchronously switched with 1, 3, and 5 pulses, the characteristics are as follows. Here, the DC power supply voltage VDC * n (n = 1, 3, 5) and the modulation factor kmodn (n = 1, 3, 5) when the loss is adjusted to a desired state, and in that case Converter loss estimated value Pinvn (n = 1, 3, 5) and load loss estimated value Ploadn (n = 1, 3, 5) are output.
The synchronization pulse number selector 27 selects the synchronization pulse number Nplus having the best state, here the smallest loss, from the estimated loss values Pinv, Pload output from the optimum voltage command generators 24, 25, 26. The switch 28 is switched according to the number of synchronization pulses, and the DC power supply voltage VDC * and the modulation factor kmod output from the optimum voltage / pulse command generator 17 are determined.

なお、以上の説明では、最適電圧・パルス指令発生器17は、損失の合計が最小となるような直流電源電圧、同期パルス数、変調率の組み合わせを求めたが、実施の形態1同様に、その他の所定の特性、所望の状態に従ってこれらを選択してもよい。さらに、損失以外の特性、パラメータについても、実施の形態1同様にその影響を加味した損失モデルを用いることにより、損失と損失以外のパラメータのバランスを考慮して直流電源電圧、同期パルス数、変調率を選択することができる。また、実施の形態1同様、最適電圧・パルス指令発生器17内部での直流電源電圧、同期パルス数、変調率の最適化動作は前もって行ってテーブル化することが可能であることは言うまでもない。   In the above description, the optimum voltage / pulse command generator 17 calculates a combination of the DC power supply voltage, the number of synchronization pulses, and the modulation rate that minimizes the total loss. However, as in the first embodiment, These may be selected according to other predetermined characteristics and a desired state. Furthermore, with respect to characteristics and parameters other than loss, a DC power supply voltage, the number of synchronization pulses, and modulation are taken into consideration by taking into account the balance of loss and parameters other than loss by using a loss model that takes into account the effect as in the first embodiment. Rate can be selected. Needless to say, the optimization operation of the DC power supply voltage, the number of synchronization pulses, and the modulation rate in the optimum voltage / pulse command generator 17 can be performed in advance and tabulated as in the first embodiment.

なお、以上の説明では非同期スイッチング方式との切り替えについては説明していないが、この発明は、これらの切り替えを行う場合にも適用可能である。
実際には、周波数を参照して非同期スイッチングと同期スイッチングとを切り替える、あるいは、最適電圧・パルス指令発生器17内部に非同期スイッチングについての最適な直流電源電圧と変調率、およびその場合の変換器損失推定値と負荷損失推定値とを出力するような最適電圧指令発生器を、1、3、5パルスの同期スイッチング用最適電圧指令発生器に並列に加え、運転状況によっては非同期スイッチングをも選択可能な構成にするなどの構成が考えられる。
In the above description, switching to the asynchronous switching method is not described, but the present invention can also be applied to the case of performing these switching.
Actually, switching between asynchronous switching and synchronous switching with reference to the frequency, or the optimum DC power supply voltage and modulation rate for asynchronous switching in the optimum voltage / pulse command generator 17 and the converter loss in that case An optimal voltage command generator that outputs an estimated value and an estimated load loss value is added in parallel to the optimal voltage command generator for synchronous switching of 1, 3, and 5 pulses, and asynchronous switching can also be selected depending on the operating conditions A configuration such as a simple configuration can be considered.

以上のように、この発明の実施の形態2によれば、可変電圧電源を備える電力変換装置において、電力変換器と負荷のそれぞれで発生する損失あるいはそれ以外の特性、パラメータを、所望の状態に最適化するような直流電源電圧、同期パルス数、変調率を選択しながら運転を行うことが出来るという効果がある。   As described above, according to the second embodiment of the present invention, in a power conversion device including a variable voltage power supply, loss generated in each of the power converter and the load or other characteristics and parameters are set to a desired state. There is an effect that the operation can be performed while selecting the DC power supply voltage, the number of synchronization pulses, and the modulation rate to be optimized.

また、この発明の各変形例において、電力変換器の出力電圧と出力周波数と出力電流とがそれぞれ所定の範囲で変化した場合における、特性が所望の状態となる直流電圧指令値と変調率とを予め最適電圧指令発生器で演算して記憶する最適電圧指令格納器を備え、電力変換器の運転時は、その出力電圧と出力周波数と出力電流とを入力として最適電圧指令格納器から読み出した直流電圧指令値と変調率とをそれぞれ直流電圧電源と制御装置とに出力するようにしたので、最適な変調率と直流電圧指令値とを求める演算時間が短縮される。   Further, in each modification of the present invention, a DC voltage command value and a modulation rate at which the characteristics are in a desired state when the output voltage, the output frequency, and the output current of the power converter change in predetermined ranges, respectively. An optimum voltage command storage unit that calculates and stores in advance with an optimum voltage command generator is provided. During operation of the power converter, the output voltage, output frequency, and output current are input to the DC voltage read from the optimum voltage command storage unit. Since the voltage command value and the modulation factor are output to the DC voltage power source and the control device, respectively, the calculation time for obtaining the optimum modulation factor and the DC voltage command value is shortened.

また、電力変換器の出力電圧と出力周波数と出力電流とがそれぞれ所定の範囲で変化した場合における、特性が所望の状態となる直流電圧指令値と同期パルス数と変調率とを予め最適電圧指令発生器で演算して記憶する最適電圧指令格納器を備え、電力変換器の運転時は、その出力電圧と出力周波数と出力電流とを入力として最適電圧指令格納器から読み出した直流電圧指令値と同期パルス数および変調率とをそれぞれ直流電圧電源と制御装置とに出力するようにしたので、最適な変調率、同期パルス数、直流電圧指令値を求める演算時間が短縮される。   In addition, when the output voltage, output frequency, and output current of the power converter change within a predetermined range, the DC voltage command value, the number of synchronization pulses, and the modulation rate at which the characteristics are in a desired state are previously set to the optimum voltage command. It is equipped with an optimum voltage command storage that is calculated and stored in the generator, and when the power converter is in operation, the output voltage, output frequency, and output current are input and the DC voltage command value read from the optimum voltage command storage Since the number of synchronization pulses and the modulation rate are output to the DC voltage power supply and the control device, respectively, the calculation time for obtaining the optimum modulation rate, number of synchronization pulses, and DC voltage command value is shortened.

また、予め設定された特性は、電力変換器と負荷とに発生する損失であり、予め設定された所望の状態は、電力変換器と負荷とに発生する損失の合計が最小となる状態であるので、負荷を含めた全体系の損失を最小とする経済的な運転を実現することができる。   The preset characteristic is a loss occurring in the power converter and the load, and the desired state set in advance is a state in which the total loss occurring in the power converter and the load is minimized. Therefore, it is possible to realize an economical operation that minimizes the loss of the entire system including the load.

本願発明は、電力変換器や負荷については、種々の形式、構成のものに適用でき、上述したと同様の効果を得ることができる。   The present invention can be applied to various types and configurations of power converters and loads, and the same effects as described above can be obtained.

1 三相電力変換器、2 負荷、3 スイッチング指令発生器、4 可変電圧電源、
7 最適電圧指令発生器、10 三角波発生器、11 比較器、
13 直流電圧指令発生器、14 変換器損失モデル、15 負荷損失モデル、
16 変調率調節器、17 最適電圧・パルス指令発生器、19 キャリア波切替器、
20〜22 同期キャリア波発生器、24 1パルス用最適電圧指令発生器、
25 3パルス用最適電圧指令発生器、26 5パルス用最適電圧指令発生器、
27 同期パルス数選択器、28 切替器。
1 Three-phase power converter, 2 loads, 3 switching command generator, 4 variable voltage power supply,
7 optimal voltage command generator, 10 triangular wave generator, 11 comparator,
13 DC voltage command generator, 14 converter loss model, 15 load loss model,
16 Modulation rate adjuster, 17 Optimal voltage / pulse command generator, 19 Carrier wave switch,
20-22 synchronous carrier wave generator, 24 optimal voltage command generator for 1 pulse,
25 Optimal voltage command generator for 3 pulses, 26 Optimal voltage command generator for 5 pulses,
27 Sync pulse number selector, 28 selector.

Claims (5)

所定の直流電圧指令値に基づき出力電圧が制御可能な直流電圧電源、この直流電圧電源からの直流電力を交流電力に変換して負荷に供給する電力変換器、および出力電圧指令値に基づき上記電力変換器を所定の変調率で制御する制御装置を備えたものであって、
上記電力変換器と負荷とに発生する、予め設定された特性が、予め設定された所望の状態となるよう、上記直流電圧指令値と上記変調率とをそれぞれ上記直流電圧電源と制御装置とに出力する最適電圧指令発生器を備え、
上記最適電圧指令発生器は、上記電力変換器の出力電圧をパラメータとして上記直流電源電圧の直流電圧指令値と上記電力変換器の変調率との関係を予め求めたデータを有し、上記出力電圧指令値と変調率とを入力し上記データを適用することにより上記直流電圧指令値を出力する直流電圧指令発生器、上記変調率と上記直流電圧指令発生器からの直流電圧指令値とを入力し上記電力変換器と負荷との上記特性を演算する特性演算器、および上記特性演算器から入力した上記電力変換器と負荷との上記特性が上記所望の状態となるよう上記直流電圧指令発生器と特性演算器とに入力する変調率を調節する変調率調節器を備え、上記特性が上記所望の状態となったときの上記変調率調節器の出力である変調率を上記所定の変調率として上記制御装置に出力し、当該変調率を入力したときの上記直流電圧指令発生器の出力である直流電圧指令値を上記所定の直流電圧指令値として上記直流電圧電源に出力するようにしたことを特徴とする電力変換装置。
A DC voltage power supply whose output voltage can be controlled based on a predetermined DC voltage command value, a power converter for converting DC power from the DC voltage power supply into AC power and supplying the load, and the power based on the output voltage command value Comprising a control device for controlling the converter at a predetermined modulation rate,
The direct-current voltage command value and the modulation factor are respectively transmitted to the direct-current voltage power supply and the control device so that the preset characteristics generated in the power converter and the load are in a preset desired state. Equipped with an optimal voltage command generator to output,
The optimum voltage command generator has data obtained in advance with respect to a relationship between a DC voltage command value of the DC power supply voltage and a modulation factor of the power converter using the output voltage of the power converter as a parameter, and the output voltage A DC voltage command generator that outputs the DC voltage command value by inputting the command value and the modulation factor and applying the data, and the DC voltage command value from the modulation factor and the DC voltage command generator are input. A characteristic calculator for calculating the characteristics of the power converter and the load, and the DC voltage command generator so that the characteristics of the power converter and the load input from the characteristic calculator are in the desired state. A modulation rate adjuster that adjusts the modulation rate input to the characteristic calculator, and the modulation rate that is an output of the modulation rate adjuster when the characteristic is in the desired state as the predetermined modulation rate control The DC voltage command value, which is the output of the DC voltage command generator when the modulation factor is input, is output to the DC voltage power source as the predetermined DC voltage command value. Power converter.
上記電力変換器の出力電圧と出力周波数と出力電流とがそれぞれ所定の範囲で変化した場合における、上記特性が上記所望の状態となる直流電圧指令値と変調率とを予め請求項1に記載の上記最適電圧指令発生器で演算して記憶する最適電圧指令格納器を備え、上記電力変換器の運転時は、その出力電圧と出力周波数と出力電流とを入力として上記最適電圧指令格納器から読み出した上記直流電圧指令値と変調率とをそれぞれ上記直流電圧電源と制御装置とに出力するようにしたことを特徴とする電力変換装置。 The DC voltage command value and the modulation factor at which the characteristics are in the desired state when the output voltage, the output frequency, and the output current of the power converter change within a predetermined range, respectively, according to claim 1 in advance. An optimum voltage command storage for calculating and storing the optimum voltage command generator is provided. When the power converter is in operation, the output voltage, output frequency, and output current are input as input and read from the optimum voltage command storage. A power converter characterized by outputting the DC voltage command value and the modulation factor to the DC voltage power source and the control device, respectively. 所定の直流電圧指令値に基づき出力電圧が制御可能な直流電圧電源、この直流電圧電源からの直流電力を交流電力に変換して負荷に供給する電力変換器、および出力電圧指令値に基づき上記電力変換器を上記交流電力の位相に同期した所定の同期パルス数でかつ所定の変調率で制御する制御装置を備えたものであって、
上記電力変換器と負荷とに発生する、予め設定された特性が、予め設定された所望の状態となるよう、上記直流電圧指令値と上記同期パルス数および上記変調率とをそれぞれ上記直流電圧電源と制御装置とに出力する最適電圧指令発生器を備え、
上記最適電圧指令発生器は、上記同期パルス数の予め設定された種別毎に、上記電力変換器の出力電圧をパラメータとして上記直流電源電圧の直流電圧指令値と上記電力変換器の変調率との関係を予め求めたデータを有し、上記出力電圧指令値と変調率とを入力し上記データを適用することにより上記直流電圧指令値を出力する直流電圧指令発生器、上記変調率と上記直流電圧指令発生器からの直流電圧指令値とを入力し上記電力変換器と負荷との上記特性を演算する特性演算器、および上記特性演算器から入力した上記電力変換器と負荷との上記特性が上記所望の状態となるよう上記直流電圧指令発生器と特性演算器とに入力する変調率を調節する変調率調節器を備え、上記特性が上記所望の状態となったときの上記変調率調節器の出力である変調率を当該同期パルス数制御のおける上記所定の変調率として出力し、当該変調率を入力したときの上記直流電圧指令発生器の出力である直流電圧指令値を上記当該同期パルス数制御における上記所定の直流電圧指令値として出力する同期パルス数別最適電圧指令発生器、および上記同期パルス数別最適電圧指令発生器からの各同期パルス数毎の上記状態を比較し、上記状態が最良である同期パルス数と当該同期パルス数に係る上記最適電圧指令発生器からの変調率とをそれぞれ上記所定の同期パルス数および上記所定の変調率として上記制御装置に出力し、上記当該同期パルス数に係る上記最適電圧指令発生器からの直流電圧指令値を上記所定の直流電圧指令値として上記直流電圧電源に出力する切替器を備えたことを特徴とする電力変換装置。
A DC voltage power supply whose output voltage can be controlled based on a predetermined DC voltage command value, a power converter for converting DC power from the DC voltage power supply into AC power and supplying the load, and the power based on the output voltage command value Comprising a control device for controlling the converter with a predetermined number of synchronization pulses synchronized with the phase of the AC power and with a predetermined modulation rate,
The direct-current voltage power supply is configured such that the direct-current voltage command value, the number of synchronization pulses, and the modulation factor are respectively set so that predetermined characteristics generated in the power converter and the load are set in a desired state. And an optimal voltage command generator that outputs to the control device,
The optimum voltage command generator generates a DC voltage command value of the DC power supply voltage and a modulation factor of the power converter for each preset type of the number of synchronization pulses with the output voltage of the power converter as a parameter. A DC voltage command generator that has data for which a relationship has been obtained in advance, inputs the output voltage command value and a modulation factor, and outputs the DC voltage command value by applying the data; the modulation factor and the DC voltage A characteristic calculator for calculating the characteristics of the power converter and the load by inputting a DC voltage command value from the command generator, and the characteristics of the power converter and the load input from the characteristic calculator are A modulation rate adjuster for adjusting a modulation rate to be input to the DC voltage command generator and the characteristic calculator so as to be in a desired state, and the modulation rate adjuster when the characteristic is in the desired state; On output The modulation rate is output as the predetermined modulation rate in the synchronization pulse number control, and the DC voltage command value that is the output of the DC voltage command generator when the modulation rate is input is used in the synchronization pulse number control. The optimum voltage command generator for each number of synchronization pulses output as the predetermined DC voltage command value and the above-mentioned state for each number of synchronization pulses from the optimum voltage command generator for each number of synchronization pulses are compared. A certain synchronization pulse number and a modulation rate from the optimum voltage command generator related to the synchronization pulse number are output to the control device as the predetermined synchronization pulse number and the predetermined modulation rate, respectively. And a switch for outputting the DC voltage command value from the optimum voltage command generator to the DC voltage power source as the predetermined DC voltage command value. Conversion device.
上記電力変換器の出力電圧と出力周波数と出力電流とがそれぞれ所定の範囲で変化した場合における、上記特性が上記所望の状態となる直流電圧指令値と同期パルス数と変調率とを予め請求項3に記載の上記最適電圧指令発生器で演算して記憶する最適電圧指令格納器を備え、上記電力変換器の運転時は、その出力電圧と出力周波数と出力電流とを入力として上記最適電圧指令格納器から読み出した上記直流電圧指令値と同期パルス数および変調率とをそれぞれ上記直流電圧電源と制御装置とに出力するようにしたことを特徴とする電力変換装置。 The DC voltage command value, the number of synchronization pulses, and the modulation rate at which the characteristics are in the desired state when the output voltage, the output frequency, and the output current of the power converter change within a predetermined range, respectively, are previously claimed. 3. An optimum voltage command storage for calculating and storing the optimum voltage command generator according to claim 3 is provided, and when the power converter is in operation, the output voltage, the output frequency, and the output current are input to the optimum voltage command storage. A power converter, wherein the DC voltage command value, the number of synchronization pulses, and the modulation rate read from the storage unit are output to the DC voltage power source and the control device, respectively. 上記予め設定された特性は、上記電力変換器と負荷とに発生する損失であり、上記予め設定された所望の状態は、上記電力変換器と負荷とに発生する損失の合計が最小となる状態であることを特徴とする請求項1ないし4のいずれか1項に記載の電力変換装置。 The preset characteristic is a loss occurring in the power converter and the load, and the preset desired state is a state where the total loss occurring in the power converter and the load is minimized. The power conversion device according to claim 1, wherein the power conversion device is a power conversion device.
JP2011133007A 2011-06-15 2011-06-15 Power converter Expired - Fee Related JP5133443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133007A JP5133443B2 (en) 2011-06-15 2011-06-15 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133007A JP5133443B2 (en) 2011-06-15 2011-06-15 Power converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005263128A Division JP2007082274A (en) 2005-09-12 2005-09-12 Power converter

Publications (2)

Publication Number Publication Date
JP2011177027A true JP2011177027A (en) 2011-09-08
JP5133443B2 JP5133443B2 (en) 2013-01-30

Family

ID=44689307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133007A Expired - Fee Related JP5133443B2 (en) 2011-06-15 2011-06-15 Power converter

Country Status (1)

Country Link
JP (1) JP5133443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577067A (en) * 2015-12-29 2016-05-11 美的集团武汉制冷设备有限公司 Air conditioner and space voltage vector modulation method and apparatus for compressor of air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297278A (en) * 1988-09-30 1990-04-09 Toshiba Corp Control method for inverter apparatus
JPH04317501A (en) * 1991-04-16 1992-11-09 Mitsubishi Electric Corp Controller for ac electric vehicle
JPH0739010A (en) * 1993-07-16 1995-02-07 Mitsubishi Electric Corp Control device of ac electric rolling stock
JPH11187669A (en) * 1997-12-22 1999-07-09 Toshiba Corp Inverter control method and controller
JP2000333465A (en) * 1999-05-18 2000-11-30 Matsushita Electric Ind Co Ltd Inverter apparatus, motor drive apparatus and motor drive system apparatus
JP2003288126A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Photovoltaic power generation device
JP2004040960A (en) * 2002-07-05 2004-02-05 Mitsubishi Electric Corp Semiconductor module
JP2004357442A (en) * 2003-05-30 2004-12-16 Hitachi Ltd Ac motor drive system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297278A (en) * 1988-09-30 1990-04-09 Toshiba Corp Control method for inverter apparatus
JPH04317501A (en) * 1991-04-16 1992-11-09 Mitsubishi Electric Corp Controller for ac electric vehicle
JPH0739010A (en) * 1993-07-16 1995-02-07 Mitsubishi Electric Corp Control device of ac electric rolling stock
JPH11187669A (en) * 1997-12-22 1999-07-09 Toshiba Corp Inverter control method and controller
JP2000333465A (en) * 1999-05-18 2000-11-30 Matsushita Electric Ind Co Ltd Inverter apparatus, motor drive apparatus and motor drive system apparatus
JP2003288126A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Photovoltaic power generation device
JP2004040960A (en) * 2002-07-05 2004-02-05 Mitsubishi Electric Corp Semiconductor module
JP2004357442A (en) * 2003-05-30 2004-12-16 Hitachi Ltd Ac motor drive system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577067A (en) * 2015-12-29 2016-05-11 美的集团武汉制冷设备有限公司 Air conditioner and space voltage vector modulation method and apparatus for compressor of air conditioner
CN105577067B (en) * 2015-12-29 2019-09-27 美的集团武汉制冷设备有限公司 The space voltage vector modulation method and apparatus of air conditioner and its compressor

Also Published As

Publication number Publication date
JP5133443B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP2007082274A (en) Power converter
JP5377634B2 (en) Control device for load drive system
Lim et al. A comparative study of synchronous current control schemes based on FCS-MPC and PI-PWM for a two-motor three-phase drive
JP5892955B2 (en) Power converter
CN101647187B (en) Inverter controller
JP6240704B2 (en) Three-phase inverter offset voltage generator and three-phase inverter controller
JP2014003783A (en) Power converter controller and multiplex winding-type motor drive unit
TW200924366A (en) Matrix converter
Valencia et al. Virtual-flux finite control set model predictive control of switched reluctance motor drives
KR20200124787A (en) Apparatus and method for controlling inverter driving motor
JP2012135118A (en) Inverter device
JP2015165757A (en) Inverter controller and control method
JP5133443B2 (en) Power converter
JP5506619B2 (en) Inverter device and control method
US10778134B2 (en) Apparatus and method for controlling inverter for driving motor
JP6441879B2 (en) Method and apparatus for generating PWM signal
JP6961096B2 (en) Inverter device
Walz et al. Multi-step model predictive control for a high-speed medium-power PMSM
JP6145025B2 (en) Inverter control device
Hoang et al. Online feedback-based field weakening control of interior permanent magnet brushless AC drives for traction applications accounting for nonlinear inverter characteristics
JP2008109790A (en) Power conversion apparatus
JP5402093B2 (en) Power converter
JP2006246667A (en) Motor driving device
JP7189075B2 (en) MOTOR DRIVE CONTROL APPARATUS AND METHOD, AND MOTOR DRIVE CONTROL SYSTEM
JP2009213321A (en) Pwm inverter device and method of controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5133443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees