JP2011174825A - Reference device and inspection method using the same - Google Patents

Reference device and inspection method using the same Download PDF

Info

Publication number
JP2011174825A
JP2011174825A JP2010039495A JP2010039495A JP2011174825A JP 2011174825 A JP2011174825 A JP 2011174825A JP 2010039495 A JP2010039495 A JP 2010039495A JP 2010039495 A JP2010039495 A JP 2010039495A JP 2011174825 A JP2011174825 A JP 2011174825A
Authority
JP
Japan
Prior art keywords
reference piece
piece
measured
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010039495A
Other languages
Japanese (ja)
Other versions
JP5439224B2 (en
Inventor
Chihiro Ishizu
千裕 石津
Morimasa Ueda
守正 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2010039495A priority Critical patent/JP5439224B2/en
Publication of JP2011174825A publication Critical patent/JP2011174825A/en
Application granted granted Critical
Publication of JP5439224B2 publication Critical patent/JP5439224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reference device which enables high-accuracy measurement conforming to actual measurement, not depending on restrictions on structure, or others, and an inspection method using the same. <P>SOLUTION: The reference device 1 includes a body 3, a guide mechanism provided linearly in the body 3, a reference piece 7 which can be moved along the guide mechanism and fixed, and a length measuring means which is provided in the body 3 and measures a position of the reference piece 7. The position of the reference piece 7 when the reference piece 7 is moved to a different position along the guide mechanism is measured by the length measuring means, while the position of the reference piece 7 when the reference piece 7 is moved to this different position is measured by a measuring instrument, so that a difference between a measured value of each position of the reference piece 7 measured by the length measuring means and a measured value of each position of the reference piece 7 measured by the measuring instrument is determined. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、座標測定機の検査などを行うために利用される基準器およびそれを用いた検査方法に関する。   The present invention relates to a reference device used for inspecting a coordinate measuring machine and an inspection method using the reference device.

従来、座標測定機の検査などを行うために利用される基準器として、ゲージブロック状の個片を重ね合わせたステップゲージが知られており、また、ステップゲージを利用した検査方法が知られている(例えば特許文献1参照)。   Conventionally, as a reference instrument used to inspect a coordinate measuring machine, a step gauge in which gauge block-shaped pieces are superposed is known, and an inspection method using a step gauge is known. (For example, refer to Patent Document 1).

特許文献1のステップゲージを利用した測定機の検査方法では、ステップゲージを構成する各個片の位置が測定機によって測定され、その測定値と個片の位置(基準値)との差が算出され、この差から測定機の精度が検査される。   In the inspection method of the measuring machine using the step gauge of Patent Document 1, the position of each piece constituting the step gauge is measured by the measuring machine, and the difference between the measured value and the position (reference value) of the piece is calculated. From this difference, the accuracy of the measuring machine is inspected.

特開2007−101279号公報JP 2007-101279 A

しかし、前記特許文献1に記載の基準器では、基準器を大型にすると撓んでしまうなどの構造上の制約などにより、大型の基準器を用いることができない場合が多い。   However, in the reference device described in Patent Document 1, it is often impossible to use a large reference device due to structural limitations such as bending when the reference device is made large.

また、国際規格では、基準器を用いることができない場合の測定方法としてレーザ測長器を併用した組み合わせ手法による間接的な精度検証を認めている。しかし、このような間接的な精度検証では、実際の測定方法とは異なる方法のため、検査のための準備が煩雑であり、実際の測定方法における検査評価とは厳密には一致するとはいえない。   In addition, in the international standard, indirect accuracy verification by a combined method using a laser length measuring device is accepted as a measuring method when the reference device cannot be used. However, in such indirect accuracy verification, since it is different from the actual measurement method, preparation for the inspection is complicated, and it cannot be said that it is exactly the same as the inspection evaluation in the actual measurement method. .

本発明の目的は、構造上の制約などによらずに、実際の測定に即した測定を高精度に行うことができる基準器およびそれを用いた検査方法を提供することである。   An object of the present invention is to provide a reference device and an inspection method using the same, which can perform measurement according to actual measurement with high accuracy regardless of structural limitations.

本発明の基準器は、少なくとも1軸方向に動く測定機の検査を行うために利用される基準器であって、本体と、前記本体に直線的に設けられるガイド機構と、前記ガイド機構に沿って移動可能且つ固定可能な基準片と、前記本体に設けられて前記基準片の位置を測定する測長手段とを有する、ことを特徴とする。   The reference device of the present invention is a reference device used for inspecting a measuring machine that moves in at least one axial direction, and includes a main body, a guide mechanism linearly provided on the main body, and the guide mechanism. And a reference piece that can be moved and fixed, and a length measuring means that is provided on the main body and measures the position of the reference piece.

このような構成によれば、基準片自体を移動させて、測長手段によって基準片の位置を測定するため、任意の位置における基準片の位置データが測長手段によって高精度に測定できる。そうすると、従来のステップゲージのように、基準器全体を長く大きくすることが困難な場合であっても、実際の測定に即した測定を行うことができる。
また、測長手段が本体内に設けられているため、測長手段を基準器の外部に配置するときのような煩雑な配置調整作業を行わなくて済み、測長手段を基準器の外部に配置した基準器では対応が難しい空間的な測定軸における測定が可能となる。
また、単一の基準片の位置を変化させながら測定するため、測定部位の均一性などの管理が不要となる。
According to such a configuration, since the reference piece itself is moved and the position of the reference piece is measured by the length measuring means, the position data of the reference piece at an arbitrary position can be measured with high accuracy by the length measuring means. Then, even in the case where it is difficult to enlarge the entire reference device for a long time as in a conventional step gauge, it is possible to perform measurement according to actual measurement.
Further, since the length measuring means is provided in the main body, it is not necessary to perform complicated arrangement adjustment work such as when the length measuring means is arranged outside the reference device, and the length measuring device is provided outside the reference device. It is possible to perform measurements on spatial measurement axes that are difficult to handle with the arranged reference device.
In addition, since measurement is performed while changing the position of a single reference piece, management such as uniformity of the measurement site becomes unnecessary.

本発明の基準器において、前記測長手段は、レーザ発振器と、前記レーザ発振器から発振されるレーザを用いたレーザ干渉計を含む、ことが好ましい。
このような構成によれば、基準片の位置をより高精度に測定できる。
In the reference device of the present invention, it is preferable that the length measuring unit includes a laser oscillator and a laser interferometer using a laser oscillated from the laser oscillator.
According to such a configuration, the position of the reference piece can be measured with higher accuracy.

上記基準器において、前記基準片は別の基準片と交換可能であり、前記別の基準片は、前記ガイド機構の直線方向に対して傾斜する測定面を有する、ことが好ましい。
このような構成によれば、基準器を空間的に傾けた状態でも、測定面を水平な姿勢に設定できるので、画像プローブを有する測定機の精度検査に好適である。
In the above reference device, it is preferable that the reference piece is replaceable with another reference piece, and the another reference piece has a measurement surface inclined with respect to a linear direction of the guide mechanism.
According to such a configuration, the measurement surface can be set in a horizontal posture even in a state where the reference device is spatially inclined, which is suitable for accuracy inspection of a measuring machine having an image probe.

本発明の検査方法は、少なくとも1軸方向に動く測定機の検査を行う検査方法であって、前記基準片を前記ガイド機構に沿って異なる位置に移動させたときの前記基準片の位置を前記測長手段によって測定する工程と、前記基準片が前記異なる位置に移動されたときの前記基準片の位置を前記測定機によって測定する工程と、前記測長手段によって測定された基準片の各位置測定値と、前記測定機によって測定された基準片の各位置測定値との差を求める工程と、を備えることを特徴とする。   The inspection method of the present invention is an inspection method for inspecting a measuring machine that moves in at least one axial direction, and the position of the reference piece when the reference piece is moved to a different position along the guide mechanism. A step of measuring by the length measuring means, a step of measuring the position of the reference piece by the measuring device when the reference piece is moved to the different position, and each position of the reference piece measured by the length measuring means. And a step of obtaining a difference between the measured value and each position measured value of the reference piece measured by the measuring instrument.

このような構成によれば、基準片自体を移動させて、基準片の位置を測長手段によって測定するため、任意の位置における基準片の位置データが測長手段によって高精度に測定できる。よって、測定機の精度に応じて適切な測定間隔で検査を行うことができる。   According to such a configuration, since the reference piece itself is moved and the position of the reference piece is measured by the length measuring means, the position data of the reference piece at an arbitrary position can be measured with high accuracy by the length measuring means. Therefore, it is possible to perform inspection at appropriate measurement intervals according to the accuracy of the measuring instrument.

本発明の校正方法は、画像プローブを有する画像測定機の検査を行う検査方法であって、前記基準片を前記別の基準片に交換する工程と、前記基準器を水平面に対して傾け、前記画像プローブの測定光の光軸に対して前記別の基準片の測定面を垂直にする工程と、前記別の基準片を前記ガイド機構に沿って異なる位置に移動させたときの前記別の基準片の位置を前記測長手段によって測定する工程と、前記別の基準片が前記異なる位置に移動されたときの前記別の基準片の位置を、前記画像プローブの測定光の前記測定面からの反射光を利用して前記画像測定機によって測定する工程と、前記測長手段によって測定された別の基準片の各位置測定値と、前記画像測定機によって測定された別の基準片の各位置測定値との差を求める工程と、を備えることを特徴とする。   The calibration method of the present invention is an inspection method for inspecting an image measuring machine having an image probe, the step of replacing the reference piece with the other reference piece, the reference device being inclined with respect to a horizontal plane, A step of making the measurement surface of the another reference piece perpendicular to the optical axis of the measurement light of the image probe, and the other reference when the other reference piece is moved to a different position along the guide mechanism The step of measuring the position of the piece by the length measuring means, and the position of the other reference piece when the other reference piece is moved to the different position are determined from the measurement surface of the measurement light of the image probe. A step of measuring with the image measuring device using reflected light, a position measurement value of another reference piece measured by the length measuring means, and a position of another reference piece measured by the image measuring device A step of obtaining a difference from the measured value, Characterized in that it obtain.

画像プローブを有する画像測定機の検査を行う従来の検査方法では、基準器を空間的に傾けて測定すると、それに合わせて測定面も傾く。測定面が傾くと、画像プローブからの測定光が測定面で反射しても、その反射光は画像プローブとは異なる位置に反射され、画像プローブには集光されない。その結果、基準片の位置を測定できないということが起こり得る。
しかし、上記本願のような構成によれば、基準器を水平面に対して傾けたときに、画像プローブの測定光の光軸に対して別の基準片の測定面を垂直にするので、測定面からの測定光の反射光を画像プローブで確実に集光でき、基準片の位置を画像測定機で確実に測定できる。つまり、基準器を空間的に傾けた姿勢でも検査することができる。
In a conventional inspection method for inspecting an image measuring machine having an image probe, when a reference device is spatially tilted and measured, the measurement surface is tilted accordingly. When the measurement surface is tilted, even if the measurement light from the image probe is reflected by the measurement surface, the reflected light is reflected at a position different from the image probe and is not condensed on the image probe. As a result, it may happen that the position of the reference piece cannot be measured.
However, according to the configuration as described above, when the reference device is tilted with respect to the horizontal plane, the measurement surface of another reference piece is perpendicular to the optical axis of the measurement light of the image probe. The reflected light of the measurement light from can be reliably collected by the image probe, and the position of the reference piece can be reliably measured by the image measuring machine. That is, it is possible to inspect even when the reference device is spatially inclined.

本発明の第1実施形態に係る基準器を示す図。The figure which shows the reference | standard device which concerns on 1st Embodiment of this invention. 図1の基準器のうちレーザ発振器を除いた部分を示す上面図。The top view which shows the part except the laser oscillator among the reference | standard devices of FIG. 本発明の第1実施形態における検査方法を示す図。The figure which shows the inspection method in 1st Embodiment of this invention. 本発明の第2実施形態における検査方法を示す図。The figure which shows the inspection method in 2nd Embodiment of this invention.

以下、本発明の各実施形態を図面に基づいて説明する。
なお、各実施形態において、同一の構成部分には同じ符合を付すとともに、それらの説明を省略または簡略化する。
Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
In each embodiment, the same reference numerals are given to the same components, and descriptions thereof are omitted or simplified.

各実施形態における基準器1は、3次元座標測定機の検査などを行うために利用される。ただし、少なくとも1軸方向に移動可能な測定機であれば、その検査に基準器1を利用できる。
また、図1や図2に示すZ1方向が上側でZ2方向が下側であり、X1−X2軸とY1−Y2軸は互いに直交する座標軸であり且つそれぞれがZ1−Z2軸と直交する座標軸である。
The reference device 1 in each embodiment is used for performing inspection of a three-dimensional coordinate measuring machine. However, the reference device 1 can be used for the inspection as long as the measuring device can move in at least one axial direction.
Also, the Z1 direction shown in FIG. 1 and FIG. 2 is the upper side and the Z2 direction is the lower side, the X1-X2 axis and the Y1-Y2 axis are coordinate axes orthogonal to each other, and each is a coordinate axis orthogonal to the Z1-Z2 axis. is there.

<第1実施形態>
図1と図2に示すように、基準器1は、上側が開放された略箱型の本体3と、本体3に直線的に設けられるガイド機構6と、ガイド機構6に沿って移動可能且つ固定可能な基準片7と、本体3に設けられて基準片7の位置を測定する測長手段とを有する。
<First Embodiment>
As shown in FIG. 1 and FIG. 2, the reference device 1 includes a substantially box-shaped main body 3 that is open on the upper side, a guide mechanism 6 that is linearly provided on the main body 3, and is movable along the guide mechanism 6. It has a reference piece 7 that can be fixed, and a length measuring means that is provided on the main body 3 and measures the position of the reference piece 7.

ガイド機構6は、Y1側およびY2側にX1―X2方向に延びる1対のガイド壁61,62を有し、ガイド壁61側にこのガイド壁61に沿って延びる付勢板63が設けられている。ガイド壁61内部には複数の図示しない付勢ばねが設けられ、付勢板63は付勢ばねによってガイド壁62方向に付勢されている。   The guide mechanism 6 has a pair of guide walls 61 and 62 extending in the X1-X2 direction on the Y1 side and the Y2 side, and an urging plate 63 extending along the guide wall 61 is provided on the guide wall 61 side. Yes. A plurality of biasing springs (not shown) are provided inside the guide wall 61, and the biasing plate 63 is biased toward the guide wall 62 by the biasing spring.

基準片7は略直方体のゲージブロックであり、その上面の一部に、Z軸に垂直な測定面71が形成されている。なお、図3に示して後述するように、測定面71は、画像測定機10からの測定光L4の光軸に対して垂直である。   The reference piece 7 is a substantially rectangular parallelepiped gauge block, and a measurement surface 71 perpendicular to the Z-axis is formed on a part of the upper surface thereof. As will be described later with reference to FIG. 3, the measurement surface 71 is perpendicular to the optical axis of the measurement light L <b> 4 from the image measuring machine 10.

基準片7はガイド壁61,62との間に移動可能に配置され、付勢板63を介して付勢ばねからの付勢力によってガイド壁62に付勢された状態で、手動で任意の位置に移動され且つ固定される。   The reference piece 7 is movably disposed between the guide walls 61 and 62 and is manually urged to an arbitrary position while being urged to the guide wall 62 by the urging force from the urging spring via the urging plate 63. Moved and fixed.

測長手段は、レーザ発振器2と、レーザ発振器2から発振されるレーザLを用いたレーザ干渉計4と、レーザ発振器2とレーザ干渉計4とを接続する光ファイバ5とから構成されている。   The length measuring means includes a laser oscillator 2, a laser interferometer 4 using a laser L oscillated from the laser oscillator 2, and an optical fiber 5 connecting the laser oscillator 2 and the laser interferometer 4.

図2に示すように、レーザ干渉計4は、レーザ発振器2から光ファイバ5を介して出射されたレーザ光Lを参照光L1と測定光L2とに分割するビームスプリッタ41と、参照光L1をビームスプリッタ41へ向けて反射する反射ミラー42と、基準片7に取り付けられて測定光L2をビームスプリッタ41へ向けて反射する反射ミラー8と、反射ミラー42によって反射された参照光と反射ミラー8によって反射された測定光との干渉光を検出する検出器43と、を含んで構成されている。   As shown in FIG. 2, the laser interferometer 4 includes a beam splitter 41 that divides the laser light L emitted from the laser oscillator 2 through the optical fiber 5 into the reference light L1 and the measurement light L2, and the reference light L1. The reflection mirror 42 that reflects toward the beam splitter 41, the reflection mirror 8 that is attached to the reference piece 7 and reflects the measurement light L2 toward the beam splitter 41, and the reference light that is reflected by the reflection mirror 42 and the reflection mirror 8 And a detector 43 that detects interference light with the measurement light reflected by.

次に、基準器1の光学系について説明する。
レーザ発振器2からレーザLが発振されると、レーザLは光ファイバ5を通ってレーザ干渉計4に導かれる。レーザLはビームスプリッタ41によって反射ミラー42に向かって進む参照光L1と反射ミラー8に向かって進む測定光L2とに分割される。
Next, the optical system of the reference device 1 will be described.
When the laser L is oscillated from the laser oscillator 2, the laser L is guided to the laser interferometer 4 through the optical fiber 5. The laser L is split by the beam splitter 41 into reference light L1 traveling toward the reflection mirror 42 and measurement light L2 traveling toward the reflection mirror 8.

参照光L1は反射ミラー42によって反射され、測定光L2は反射ミラー8によって反射される。参照光L1の反射光と測定光L2の反射光とはビームスプリッタ41の内部で合成して干渉させられ、この干渉光L3が検出器43に入射する。
干渉光L3を検出器43で検出することにより、反射ミラー8までの距離、すなわち基準片7のX1―X2方向における距離が測定される。これによって、基準片7を所定位置からX1方向またはX2方向に移動させると、その移動距離を測定することができ、よって、基準片7のX1―X2方向における位置が測定できる。
The reference light L1 is reflected by the reflection mirror 42, and the measurement light L2 is reflected by the reflection mirror 8. The reflected light of the reference light L1 and the reflected light of the measurement light L2 are combined and interfered inside the beam splitter 41, and this interference light L3 enters the detector 43.
By detecting the interference light L3 with the detector 43, the distance to the reflection mirror 8, that is, the distance in the X1-X2 direction of the reference piece 7 is measured. Thus, when the reference piece 7 is moved from the predetermined position in the X1 direction or the X2 direction, the movement distance can be measured, and thus the position of the reference piece 7 in the X1-X2 direction can be measured.

次に、本実施形態の基準器1を用いて行う検査方法について説明する。
図3に示すように、本実施形態及び後述する第2実施形態の検査方法では、画像測定機に設けられる画像プローブ10が使用される。画像プローブ10は、測定面71に測定光L4を照射することなどを行う対物レンズなどの光学系が配置された本体部11と、測定面71からの反射光を集光して検出するカメラ12とを有している。
Next, an inspection method performed using the reference device 1 of the present embodiment will be described.
As shown in FIG. 3, in the inspection method of the present embodiment and the second embodiment described later, an image probe 10 provided in an image measuring machine is used. The image probe 10 includes a main body 11 in which an optical system such as an objective lens that irradiates the measurement surface 71 with the measurement light L4 and the like, and a camera 12 that collects and detects reflected light from the measurement surface 71. And have.

画像プローブ10では、測定光L4が図示しない対物レンズによって測定面71に集光される。測定光L4は測定面71で反射され、カメラ12で検出されて基準片1の座標位置が検出される。   In the image probe 10, the measurement light L4 is condensed on the measurement surface 71 by an objective lens (not shown). The measurement light L4 is reflected by the measurement surface 71 and detected by the camera 12, and the coordinate position of the reference piece 1 is detected.

例えば、基準片7を手動により図3に実線で示す(i)の位置に移動させ、基準片7のX1―X2方向における位置をレーザ干渉計4で測定する。また、画像プローブ10によって、基準片7の座標位置を測定する。次に、手動により、基準片7を図3の(i)で示す位置から2点鎖線で示す(ii)の位置に移動させ、前記と同様に、レーザ干渉計4によって基準片7のX1―X2方向における位置を測定し、画像プローブ10によって基準片7の座標位置を測定する。   For example, the reference piece 7 is manually moved to the position (i) indicated by the solid line in FIG. 3, and the position of the reference piece 7 in the X1-X2 direction is measured by the laser interferometer 4. Further, the coordinate position of the reference piece 7 is measured by the image probe 10. Next, the reference piece 7 is manually moved from the position shown by (i) in FIG. 3 to the position (ii) shown by a two-dot chain line, and the laser interferometer 4 performs X1- The position in the X2 direction is measured, and the coordinate position of the reference piece 7 is measured by the image probe 10.

このような計測をX1―X2方向における複数の位置で行い、レーザ干渉計4によって測定された基準片7の各位置測定値と、画像プローブ10によって測定された基準片7の各座標位置測定値との差を求める。そして、この差から画像測定機の精度検査を行う。さらに、この検査結果から画像測定機の校正を行う。   Such measurement is performed at a plurality of positions in the X1-X2 direction, and each position measurement value of the reference piece 7 measured by the laser interferometer 4 and each coordinate position measurement value of the reference piece 7 measured by the image probe 10 are measured. Find the difference between Then, the accuracy of the image measuring machine is checked from this difference. Further, the image measuring machine is calibrated from the inspection result.

本実施形態の基準器1では、基準片7自体を移動させて、基準片7のX1―X2方向における位置をレーザ干渉計4によって測定するため、任意の位置における基準片7の位置データがレーザ干渉計4によって高精度に測定できる。そうすると、従来のステップゲージなどのように、基準器全体を長く大きくすることが困難な場合であっても、実際の測定に即した測定を行うことができる。   In the reference device 1 of the present embodiment, the reference piece 7 itself is moved and the position of the reference piece 7 in the X1-X2 direction is measured by the laser interferometer 4, so that the position data of the reference piece 7 at an arbitrary position is the laser. The interferometer 4 can measure with high accuracy. Then, even in the case where it is difficult to enlarge the entire reference device for a long time, such as a conventional step gauge, it is possible to perform measurement in accordance with actual measurement.

また、ビームスプリッタ41などの光学系が予め配置されたレーザ干渉計4が基準器1に内蔵されているため、レーザ干渉計を基準器1の外部に配置するときのような煩雑な配置調整作業を行わなくて済み、レーザ干渉計を基準器1の外部に配置した基準器では対応が難しい空間的な測定軸における測定が可能となる。   Further, since the laser interferometer 4 in which the optical system such as the beam splitter 41 is arranged in advance is built in the reference device 1, complicated arrangement adjustment work such as when the laser interferometer is arranged outside the reference device 1. Thus, it is possible to perform measurement on a spatial measurement axis that is difficult to cope with with a reference device in which a laser interferometer is arranged outside the reference device 1.

また、単一の基準片7の位置を変化させながら測定するため、X1−X2方向の測定長さ全域に渡る測定部位の均一性などの管理が不要となる。   Further, since the measurement is performed while changing the position of the single reference piece 7, it is not necessary to manage the uniformity of the measurement site over the entire measurement length in the X1-X2 direction.

また、本実施形態の基準器1を用いた上記検査方法では、基準片7自体を移動させて、基準片7の位置をレーザ干渉計4によって測定するため、任意の位置における基準片7の位置データがレーザ干渉計4によって高精度に測定できる。よって、画像測定機の精度に応じて適切な測定間隔で検査を行うことができる。   Further, in the above inspection method using the reference device 1 of the present embodiment, the reference piece 7 itself is moved and the position of the reference piece 7 is measured by the laser interferometer 4, so that the position of the reference piece 7 at an arbitrary position is measured. Data can be measured with high accuracy by the laser interferometer 4. Therefore, it is possible to perform inspection at appropriate measurement intervals according to the accuracy of the image measuring machine.

<第2実施形態>
次に、図4に基づき、本発明の第2実施形態の基準器1とそれを用いた検査方法について説明する。
図4に示すように、本実施形態の基準器1では、第1実施形態の基準器1と異なり、基準片7の上側部分が削られて傾斜面が形成されている。そして、この傾斜面上に測定面71が形成される。測定面71はガイド機構6の直線方向に対して傾斜している。このような本実施形態の基準片7は、第1実施形態の基準片7と交換可能となっている。
Second Embodiment
Next, based on FIG. 4, the reference | standard device 1 of 2nd Embodiment of this invention and the test | inspection method using the same are demonstrated.
As shown in FIG. 4, in the reference device 1 of the present embodiment, unlike the reference device 1 of the first embodiment, the upper portion of the reference piece 7 is cut to form an inclined surface. And the measurement surface 71 is formed on this inclined surface. The measurement surface 71 is inclined with respect to the linear direction of the guide mechanism 6. Such a reference piece 7 of this embodiment is replaceable with the reference piece 7 of the first embodiment.

このような基準器1を用いた本実施形態の検査方法は、第1実施形態の検査方法とは異なり、基準片7を前記傾斜面が形成されたものに交換して本体3内に配置する。また、図示しない調整機構により、基準器1のうちレーザ発振器2を除く本体3などの構成機器をXY平面に対して所定角度傾ける。なお、前記構成機器をさらにY軸方向に対して傾けてもよい。そして、測定面71を画像プローブ10からの測定光L4の光軸に対して常に垂直となるようにする。   Unlike the inspection method of the first embodiment, the inspection method of the present embodiment using the reference device 1 is arranged in the main body 3 by replacing the reference piece 7 with the one having the inclined surface. . In addition, by using an adjustment mechanism (not shown), constituent devices such as the main body 3 excluding the laser oscillator 2 in the reference device 1 are inclined by a predetermined angle with respect to the XY plane. The constituent devices may be further tilted with respect to the Y-axis direction. The measurement surface 71 is always perpendicular to the optical axis of the measurement light L4 from the image probe 10.

その後、第1実施形態と同様の測定方法によって、レーザ干渉計4によって測定された基準片7の各位置測定値と、画像プローブ10によって測定された基準片7の各座標位置測定値との差が求められる。なお、本実施形態では、前記構成機器が空間的に傾いた状態で、基準片7が図4に実線で示す(i)の位置から2点鎖線で示す(ii)の位置に移動されるが、基準片7はガイド壁61と62との間で挟持され、付勢板63を介して付勢ばねからの付勢力によってY2方向に付勢されている。このため、基準片7が図4の(ii)の位置に移動されても、レーザ干渉計4側にずれ落ちるということなどは無い。   Then, the difference between each position measurement value of the reference piece 7 measured by the laser interferometer 4 and each coordinate position measurement value of the reference piece 7 measured by the image probe 10 by the same measurement method as in the first embodiment. Is required. In the present embodiment, the reference piece 7 is moved from the position (i) indicated by the solid line in FIG. 4 to the position (ii) indicated by the two-dot chain line in a state where the component devices are spatially inclined. The reference piece 7 is sandwiched between the guide walls 61 and 62 and is urged in the Y2 direction by the urging force from the urging spring via the urging plate 63. For this reason, even if the reference piece 7 is moved to the position of (ii) in FIG.

よって、本実施形態においても、前述した第1実施形態と同様の効果を得ることができる。さらに、本実施形態では、基準器1を傾けたときに、画像プローブ10の測定光L4の光軸に対して基準片7の測定面71を垂直にするので、測定面71からの測定光L4の反射光を画像プローブ10で確実に集光でき、基準片7の位置を画像測定機で確実に測定できる。つまり、基準器1を空間的に傾けた姿勢でも検査することができる。   Therefore, also in this embodiment, the same effect as the first embodiment described above can be obtained. Furthermore, in this embodiment, when the reference device 1 is tilted, the measurement surface 71 of the reference piece 7 is perpendicular to the optical axis of the measurement light L4 of the image probe 10, and therefore the measurement light L4 from the measurement surface 71 is measured. Can be reliably collected by the image probe 10, and the position of the reference piece 7 can be reliably measured by the image measuring machine. That is, it is possible to inspect even when the reference device 1 is spatially inclined.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前記実施形態では、非接触式の画像プローブを有する画像測定機について説明したが、本発明は、接触式のプローブを有する3次元測定機についても適用できる。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the embodiment, the image measuring machine having the non-contact type image probe has been described. However, the present invention can also be applied to a three-dimensional measuring machine having a contact type probe.

また、前記実施形態では、測長手段として、レーザ発振器2を有するレーザ干渉計4を用いたが、基準片7の位置を高精度に検出できるものであればこれに限られない。例えば、光電式、静電容量式、磁気式などの測長手段であってもよい。   Moreover, in the said embodiment, although the laser interferometer 4 which has the laser oscillator 2 was used as a length measuring means, if it can detect the position of the reference | standard piece 7 with high precision, it will not be restricted to this. For example, a length measuring means such as a photoelectric type, a capacitance type, or a magnetic type may be used.

また、前記第2実施形態では、基準片は、上側部分が削られて傾斜面を有する形状としたが、これ以外の形状の基準片を作成してそれらを合わせて交換可能としてもよい。基準片の測定面が画像プローブ10からの測定光L4の光軸に対して常に垂直になればよい。このように、形状の異なる複数の基準片を交換可能としておくと、1種類の基準器で、様々な方向に動く座標測定機の検査が可能となる。   Moreover, in the said 2nd Embodiment, although the reference | standard piece was made into the shape which the upper part is shaved and has an inclined surface, it is good also as reference | standard pieces of shapes other than this being produced, and making them interchangeable. It is sufficient that the measurement surface of the reference piece is always perpendicular to the optical axis of the measurement light L4 from the image probe 10. As described above, when a plurality of reference pieces having different shapes can be exchanged, it is possible to inspect a coordinate measuring machine moving in various directions with one kind of reference piece.

さらに、前記第2実施形態では、傾斜面が予め形成された基準片を用いたが、傾斜面は予め形成されていなくてもよく、測定面が形成された部分を任意の角度に傾けることができる調整機構を有するものであってもよい。例えば、基準片が、下方の基部と、上面に測定面が形成されて基部の上方で傾斜角度を調整可能な調整可動部からなるものであってもよい。この場合には、調整可動部の一方の端部が基部の一方の端部に、例えばヒンジなどによって片持ち固定され、調整可動部の他方の自由端側に調整ねじが螺着される。そして、調整ねじを締める又は緩めることにより、前記固定部分を中心として、調整可動部の傾斜角度が変化されて、調整可動部及び測定面がガイド機構6の直線方向に対して任意の角度に傾斜した状態とされる。   Furthermore, in the second embodiment, the reference piece having the inclined surface formed in advance is used. However, the inclined surface may not be formed in advance, and the portion where the measurement surface is formed may be inclined at an arbitrary angle. It may have an adjustment mechanism that can be used. For example, the reference piece may include a lower base portion and an adjustment movable portion having a measurement surface formed on the upper surface and capable of adjusting the inclination angle above the base portion. In this case, one end portion of the adjustment movable portion is cantilevered and fixed to one end portion of the base portion by, for example, a hinge, and an adjustment screw is screwed to the other free end side of the adjustment movable portion. Then, by tightening or loosening the adjustment screw, the inclination angle of the adjustment movable portion is changed around the fixed portion, and the adjustment movable portion and the measurement surface are inclined at an arbitrary angle with respect to the linear direction of the guide mechanism 6. It is assumed that

本発明は、座標計測機の検査などを行うために利用される基準器およびそれを用いた検査方法に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a reference device used for performing an inspection of a coordinate measuring machine and an inspection method using the reference device.

1…基準器、
2…レーザ発振器、
3…本体、
4…レーザ干渉計、
6…ガイド機構、
7…基準片、
10…画像プローブ、
71…測定面、
L4…測定光
1 ... Reference device,
2 ... Laser oscillator,
3 ... body,
4 ... Laser interferometer,
6 ... Guide mechanism,
7 ... reference piece,
10: Image probe,
71 ... measurement surface,
L4 ... Measurement light

Claims (5)

少なくとも1軸方向に動く測定機の検査を行うために利用される基準器であって、
本体と、
前記本体に直線的に設けられるガイド機構と、
前記ガイド機構に沿って移動可能且つ固定可能な基準片と、
前記本体に設けられて前記基準片の位置を測定する測長手段とを有する、ことを特徴とする基準器。
A reference instrument used to inspect a measuring machine moving in at least one axial direction,
The body,
A guide mechanism linearly provided on the main body;
A reference piece movable and fixed along the guide mechanism;
And a length measuring means provided on the main body for measuring the position of the reference piece.
請求項1に記載の基準器において、
前記測長手段は、レーザ発振器と、前記レーザ発振器から発振されるレーザを用いたレーザ干渉計を含む、ことを特徴とする基準器。
The reference device according to claim 1, wherein
The length measuring means includes a laser oscillator and a laser interferometer using a laser oscillated from the laser oscillator.
請求項2に記載の基準器において、
前記基準片は別の基準片と交換可能であり、
前記別の基準片は、前記ガイド機構の直線方向に対して傾斜する測定面を有する、ことを特徴とする基準器。
The reference device according to claim 2, wherein
The reference piece is replaceable with another reference piece;
The another reference piece has a measurement surface inclined with respect to a linear direction of the guide mechanism.
請求項1または2に記載の基準器を用いて、少なくとも1軸方向に動く測定機の検査を行う検査方法であって、
前記基準片を前記ガイド機構に沿って異なる位置に移動させたときの前記基準片の位置を前記測長手段によって測定する工程と、
前記基準片が前記異なる位置に移動されたときの前記基準片の位置を前記測定機によって測定する工程と、
前記測長手段によって測定された基準片の各位置測定値と、前記測定機によって測定された基準片の各位置測定値との差を求める工程と、を備えることを特徴とする検査方法。
An inspection method for inspecting a measuring machine that moves in at least one axial direction using the reference device according to claim 1,
Measuring the position of the reference piece when the reference piece is moved to a different position along the guide mechanism by the length measuring means;
Measuring the position of the reference piece when the reference piece is moved to the different position by the measuring device;
An inspection method comprising: calculating a difference between each position measurement value of the reference piece measured by the length measuring unit and each position measurement value of the reference piece measured by the measuring machine.
請求項3に記載の基準器を用いて、画像プローブを有する画像測定機の検査を行う検査方法であって、
前記基準片を前記別の基準片に交換する工程と、
前記基準器を水平面に対して傾け、前記画像プローブの測定光の光軸に対して前記別の基準片の測定面を垂直にする工程と、
前記別の基準片を前記ガイド機構に沿って異なる位置に移動させたときの前記別の基準片の位置を前記測長手段によって測定する工程と、
前記別の基準片が前記異なる位置に移動されたときの前記別の基準片の位置を、前記画像プローブの測定光の前記測定面からの反射光を利用して前記画像測定機によって測定する工程と、
前記測長手段によって測定された別の基準片の各位置測定値と、前記画像測定機によって測定された別の基準片の各位置測定値との差を求める工程と、を備えることを特徴とする検査方法。
An inspection method for inspecting an image measuring machine having an image probe using the reference device according to claim 3,
Replacing the reference piece with the other reference piece;
Tilting the reference device with respect to a horizontal plane, and making the measurement surface of the another reference piece perpendicular to the optical axis of the measurement light of the image probe;
Measuring the position of the other reference piece when the other reference piece is moved to a different position along the guide mechanism by the length measuring means;
A step of measuring the position of the another reference piece when the other reference piece is moved to the different position by using the image measuring machine by using the reflected light from the measurement surface of the measurement light of the image probe; When,
Obtaining a difference between each position measurement value of another reference piece measured by the length measuring unit and each position measurement value of another reference piece measured by the image measuring machine, Inspection method to do.
JP2010039495A 2010-02-25 2010-02-25 Reference device and inspection method using the same Expired - Fee Related JP5439224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039495A JP5439224B2 (en) 2010-02-25 2010-02-25 Reference device and inspection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039495A JP5439224B2 (en) 2010-02-25 2010-02-25 Reference device and inspection method using the same

Publications (2)

Publication Number Publication Date
JP2011174825A true JP2011174825A (en) 2011-09-08
JP5439224B2 JP5439224B2 (en) 2014-03-12

Family

ID=44687810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039495A Expired - Fee Related JP5439224B2 (en) 2010-02-25 2010-02-25 Reference device and inspection method using the same

Country Status (1)

Country Link
JP (1) JP5439224B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195504A (en) * 1986-02-24 1987-08-28 Advantest Corp Surface position detecting device
JPH01129604U (en) * 1988-02-18 1989-09-04
JPH06300522A (en) * 1993-03-25 1994-10-28 Renishaw Plc Method and device for calibrating measured value and optically machined part
JPH1068616A (en) * 1996-08-28 1998-03-10 Fuji Xerox Co Ltd Shape measuring equipment
JP2006284304A (en) * 2005-03-31 2006-10-19 Fujinon Corp Method and device of conversion factor calibration of fringe measuring device and fringe measuring device with conversion factor calibration device
JP2007101279A (en) * 2005-10-03 2007-04-19 Mitsutoyo Corp Correction coefficient determining method of rectangular coordinate moving mechanism, and collecting method of measuring data
JP2007121124A (en) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd Precision assurance fixture for ccd camera-based three-dimensional shape measurement device
JP2008096172A (en) * 2006-10-06 2008-04-24 Mitsutoyo Corp Image-measuring-machine calibration scale

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195504A (en) * 1986-02-24 1987-08-28 Advantest Corp Surface position detecting device
JPH01129604U (en) * 1988-02-18 1989-09-04
JPH06300522A (en) * 1993-03-25 1994-10-28 Renishaw Plc Method and device for calibrating measured value and optically machined part
JPH1068616A (en) * 1996-08-28 1998-03-10 Fuji Xerox Co Ltd Shape measuring equipment
JP2006284304A (en) * 2005-03-31 2006-10-19 Fujinon Corp Method and device of conversion factor calibration of fringe measuring device and fringe measuring device with conversion factor calibration device
JP2007101279A (en) * 2005-10-03 2007-04-19 Mitsutoyo Corp Correction coefficient determining method of rectangular coordinate moving mechanism, and collecting method of measuring data
JP2007121124A (en) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd Precision assurance fixture for ccd camera-based three-dimensional shape measurement device
JP2008096172A (en) * 2006-10-06 2008-04-24 Mitsutoyo Corp Image-measuring-machine calibration scale

Also Published As

Publication number Publication date
JP5439224B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
US7681439B2 (en) Measuring apparatus
US9372079B1 (en) Optical plate for calibration of coordinate measuring machines
KR20130108121A (en) Position-measuring device and system having such a position-measuring device
US8736850B2 (en) Method and device for measuring surfaces in a highly precise manner
US10371511B2 (en) Device and method for geometrically measuring an object
EP2163906A1 (en) Method of detecting a movement of a measuring probe and measuring instrument
JP6119981B2 (en) Calibration jig and calibration method for optical interference measuring apparatus
JP2012237686A (en) Measuring instrument
JP2011095239A (en) Surface shape measuring device
JP2012177620A (en) Measurement instrument
JP2007078594A (en) Angle measuring device for minute plane
JP4427632B2 (en) High-precision 3D shape measuring device
KR101817132B1 (en) Precision measuring system using interferometer and vision
KR100937477B1 (en) A Coordinate Measuring Machine Using A Reference Plate
JP5439224B2 (en) Reference device and inspection method using the same
Yujiu et al. A non-contact calibration system for step gauges using automatic collimation techniques
Ferrucci et al. Dimensional metrology
JP2005214740A (en) Phase correction value measuring method
JP5149085B2 (en) Displacement meter
Ehrig et al. Artefacts with rough surfaces for verification of optical microsensors
JP2003121131A (en) Measuring method for straightness by scanning gap amount detection
JP2010060493A (en) Method of evaluating shape of aspheric lens
CN110686620B (en) Measuring device and method for grating integration precision and measuring system for planar grating ruler
JP4533050B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2011232198A (en) Measuring method using oblique incidence interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees