JP2011174103A - Magnetic material for iron core, method for producing the same, and iron core - Google Patents

Magnetic material for iron core, method for producing the same, and iron core Download PDF

Info

Publication number
JP2011174103A
JP2011174103A JP2010036995A JP2010036995A JP2011174103A JP 2011174103 A JP2011174103 A JP 2011174103A JP 2010036995 A JP2010036995 A JP 2010036995A JP 2010036995 A JP2010036995 A JP 2010036995A JP 2011174103 A JP2011174103 A JP 2011174103A
Authority
JP
Japan
Prior art keywords
magnetic
less
iron core
magnetic material
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010036995A
Other languages
Japanese (ja)
Inventor
Takehiro Miyoshi
健宏 三好
Yoshiyuki Fujiwara
義行 藤原
Yasuyuki Iida
恭之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Proterial Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Metals Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010036995A priority Critical patent/JP2011174103A/en
Publication of JP2011174103A publication Critical patent/JP2011174103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic material for an iron core having more adequate characteristics of iron loss than those of conventional one while revealing a means for stably obtaining adequate excitation characteristics of an alloy which contains Fe-approximately 49% Co-approximately 2% V, and is used for a magnetic material for an iron core, and to provide the iron core which uses the magnetic material for the iron core. <P>SOLUTION: The magnetic material for the iron core with a sheet thickness of 200 μm or less has a composition including, by mass%, 97% or more Co+Fe on the condition that Fe:Co is 0.9-1.1, and the balance being 1.70-2.00% V and 0.01-0.45% Mn with impurities, in which C and S are regulated to 0.008% or less and 0.01% or less respectively, V+Mn is controlled to 2.15% or less, and Mn:S satisfies the relationship in the range of 10-100; has an average crystal grain size of 30 μm or more; a coercive force of less than 40 A/m; an operating magnetic flux density of 1T; and a total iron loss less than 11 W/kg at an operating frequency of 400 Hz. The iron core uses the magnetic material for the iron core. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、小型・軽量化、高出力化及び高効率化が必要とされる各種のモータ等の電動回転機、トランス、リアクトル等に用いる鉄心用磁性材及びその製造方法と、この鉄心用磁性材を用いた鉄心に関するものである。   The present invention relates to a magnetic material for an iron core used for electric rotating machines such as various motors, transformers, reactors, etc., which are required to be small and light, high output and high efficiency, and a method for manufacturing the same, and the magnetic material for the iron core It relates to iron cores made of wood.

近年、カーエレクトロニクスの発展により、自動車には車軸駆動用、ワイパー用、窓開閉用、ミラー駆動用として各種のモータから構成された電動回転機(以下、「回転機」という)が多量に搭載されている。年々、自動車一台当たりの回転機の搭載数は増加しており、車体重量の増加による燃費への影響も無視できなくなりつつある。加えて、地球環境保護の観点からも、自動車搭載用の回転機には小型・軽量化、高出力化及び高効率化が求められるようになってきている。このような回転機の高性能化には、回転機のステータやロータとして使用される鉄心用磁性材には、励磁可能な磁束密度(飽和磁束密度)の向上及び鉄損特性の向上が必要とされる。
同様に、各種のトランスに用いられる鉄心用磁性材からなるコア(鉄心)、あるいはリアクトルの鉄心用磁性材からなるコアについても、鉄損特性の向上が必要とされる。
In recent years, with the development of car electronics, automobiles are equipped with a large number of electric rotating machines (hereinafter referred to as “rotating machines”) composed of various motors for driving axles, wipers, opening / closing windows, and driving mirrors. ing. The number of installed rotating machines per car is increasing year by year, and the impact on fuel consumption due to the increase in the weight of the car body is becoming ignorable. In addition, from the viewpoint of protecting the global environment, rotating machines mounted on automobiles are required to be smaller, lighter, higher in output, and more efficient. In order to improve the performance of such rotating machines, it is necessary to improve the magnetic flux density (saturated magnetic flux density) and iron loss characteristics of magnetic materials for iron cores used as stators and rotors of rotating machines. Is done.
Similarly, an improvement in iron loss characteristics is required for a core (iron core) made of a magnetic material for an iron core used in various transformers or a core made of a magnetic material for an iron core of a reactor.

上記した回転機、トランス、リアクトル等に用いられる鉄心用磁性材としては、従来から無方向性電磁鋼板と呼ばれる安価なFe−約3質量%Si系合金が用いられている。しかし、無方向性電磁鋼板の飽和磁束密度(以下、「Bs」という)は約2.0Tであり、回転機、トランス、リアクトル等のさらなる高性能化には、より高Bsな鉄心用磁性材が必要とされる。
このような高Bsの鉄心用磁性材としては、Bsが約2.2Tの純Feや約2.3〜2.4Tのパーメンダーまたはパーメンジュールと称されるFe−約50質量%Co系合金が、古くから知られている。特に、Fe−約50質量%Co系合金は、高価な合金系ではあるものの、そのBsの高さから、近年になって回転機用等の磁性材として注目され始めている。
As a magnetic material for an iron core used in the above-described rotating machine, transformer, reactor, etc., an inexpensive Fe—about 3 mass% Si-based alloy called a non-oriented electrical steel sheet has been conventionally used. However, the saturation magnetic flux density (hereinafter referred to as “Bs”) of the non-oriented electrical steel sheet is about 2.0 T, and for higher performance of rotating machines, transformers, reactors, etc., higher Bs magnetic material for iron cores. Is needed.
Examples of such high Bs magnetic materials for iron cores include pure Fe with Bs of about 2.2T and Fe—about 50% by mass Co-based alloy with about 2.3 to 2.4T as a permender or permendur. But it has been known for a long time. In particular, Fe—about 50 mass% Co-based alloy is an expensive alloy system, but due to its high Bs, recently it has begun to attract attention as a magnetic material for rotating machines.

高BsのFe−約50質量%Co系合金は、常温下での脆さを改善するために、一般には、熱間圧延後の冷間圧延性を確保するため、約2質量%のV元素添加とともに、冷間圧延前に急速冷却を前提とした固溶化熱処理を必要とする。
このようなFe−Co系合金の冷間加工性を、工業規模の量産性で確保するために提案されている特許文献として、Fe−Co系合金の製造方法(特許文献1)、Fe−Co系磁性合金及びその製造方法(特許文献2)、鉄−コバルト合金板の製造方法(特許文献3)等の開示がなされている。
High-Bs Fe—about 50% by mass Co-based alloy is generally about 2% by mass of V element in order to improve brittleness at room temperature, and generally to ensure cold rollability after hot rolling. Along with the addition, a solution heat treatment on the premise of rapid cooling is required before cold rolling.
Patent documents proposed for securing the cold workability of such an Fe-Co-based alloy with mass productivity on an industrial scale include a method for producing an Fe-Co-based alloy (Patent Document 1), Fe-Co, and the like. Disclosure of a magnetic alloy and a method for producing the same (Patent Document 2), a method for producing an iron-cobalt alloy plate (Patent Document 3), and the like has been made.

特許文献1のFe−Co系合金の製造方法は、質量%でCo:46〜52%を含むFe−Co系合金の厚さ2.5mm以下の熱間圧延コイルを、その長さ方向に連続的に走行させ、その走行中に固溶化加熱を行い、該加熱後の800℃から400までの間を400℃/sec以上の冷却速度で急冷することにより、その後の冷間圧延性を確保するFe−Co系合金の製造方法である。   The manufacturing method of the Fe-Co type alloy of patent document 1 is the continuous hot rolling coil of thickness 2.5mm or less of the Fe-Co type alloy which contains Co: 46-52% by mass% in the length direction. The solution is heated in a solid state, and solution heating is performed during the traveling, and the subsequent cold rolling property is ensured by rapidly cooling between 800 ° C. and 400 ° C. at a cooling rate of 400 ° C./sec or more. This is a method for producing an Fe-Co alloy.

特許文献2のFe−Co系磁性合金及びその製造方法は、質量%でCo:40〜60%、V:5.0%以下、Si:3.0%以下、Al:3.0%以下、C:0.1%以下、残部実質的にFeからなるFe−Co系磁性合金を、950℃以上の温度から30℃/sec以上の冷却速度で固溶化熱処理を行い、その後700℃以上のα相領域の温度で磁性焼鈍することで、冷間圧延性と高Bsを確保するFe−Co系合金の製造方法である。   The Fe—Co based magnetic alloy and the manufacturing method thereof in Patent Document 2 are, in mass%, Co: 40 to 60%, V: 5.0% or less, Si: 3.0% or less, Al: 3.0% or less, C: Fe—Co-based magnetic alloy consisting essentially of Fe of 0.1% or less and the balance being Fe is subjected to a solution heat treatment at a cooling rate of 30 ° C./sec from a temperature of 950 ° C. or higher, and then α of 700 ° C. or higher. This is a method for producing an Fe—Co alloy that secures cold rollability and high Bs by magnetic annealing at a temperature in the phase region.

特許文献3の鉄−コバルト合金板の製造方法は、質量%でCo:45〜52%、V:0.5〜3.0%を含有するFe−Co系合金スラブを、加熱後、圧延終了温度750〜1100℃の条件下で4.0mm未満の板厚に熱間圧延し、その後直ちに水量が1.0m/min以上のジェット噴流ゾーンを走行させて急冷することにより、その後の冷間圧延性を確保するFe−Co系合金の製造方法である。 The manufacturing method of the iron-cobalt alloy plate of patent document 3 is the completion | finish of rolling, after heating the Fe-Co-type alloy slab containing Co: 45-52% and V: 0.5-3.0% by mass%. Hot rolling to a plate thickness of less than 4.0 mm under conditions of a temperature of 750 to 1100 ° C., and then immediately cooling by running in a jet jet zone where the amount of water is 1.0 m 3 / min or more, This is a method for producing an Fe—Co alloy that ensures rollability.

特開昭62−44561号公報JP-A-62-44561 特開平1−255645号公報JP-A-1-255645 特開平10−88301号公報JP-A-10-88301

特許文献1から3に開示される何れの技術も、高BsのFe−Co系合金の冷間加工性を、工業規模の量産性で確保するのに優れた技術である。
ところで、自動車搭載用の各種の回転機の高性能化には、高Bsの他に、鉄損特性の向上が必要とされる。一般的に、渦電流損失とヒステリシス損失と呼ばれる損失で構成される鉄損特性の向上には、鉄心用磁性材の、渦電流損失を低減させるために板厚の減少やヒステリシス損失を低減させるために励磁特性の向上(保磁力の低減など)が必要となる。特にヒステリシス損失の低減に寄与する励磁特性の向上には、良好な励磁特性を得るための適切な成分範囲、製造プロセス条件に、鉄心用磁性材としての製造条件を管理する必要がある。
しかし、特許文献1から3に開示される何れの技術も、鉄心用磁性材の励磁特性と成分範囲、製造プロセス条件の関係については十分に検討されておらず、良好な励磁特性を安定して得ることが難しかった。
したがって、上述したような特許文献1から3に開示されるFe−Co系合金及びその製造方法では、近年の小型・軽量化、高出力化及び高効率化が要求される自動車搭載用の回転機の磁心材料である鉄心用磁性材として要求される鉄損特性には十分に対応できないという問題があった。同様に、各種の制御機器や通信機器において、高精度な制御を行うための電子回路において使用される各種のトランスやリアクトル等を構成する鉄心用磁性材についても、このような問題があった。
Any of the techniques disclosed in Patent Documents 1 to 3 is an excellent technique for securing the cold workability of a Fe-Co alloy having a high Bs with mass productivity on an industrial scale.
Incidentally, in order to improve the performance of various rotating machines mounted on automobiles, in addition to high Bs, improvement in iron loss characteristics is required. In general, to improve the iron loss characteristics composed of eddy current loss and loss called hysteresis loss, in order to reduce the eddy current loss and hysteresis loss of the magnetic material for iron core In addition, it is necessary to improve the excitation characteristics (such as reducing the coercive force). In particular, in order to improve the excitation characteristics that contribute to the reduction of hysteresis loss, it is necessary to manage the manufacturing conditions as the magnetic material for the iron core within an appropriate component range and manufacturing process conditions for obtaining good excitation characteristics.
However, none of the techniques disclosed in Patent Documents 1 to 3 has sufficiently studied the relationship between the excitation characteristics, the component range, and the manufacturing process conditions of the magnetic material for the iron core. It was difficult to get.
Therefore, in the Fe—Co alloy and the manufacturing method disclosed in Patent Documents 1 to 3 as described above, a rotating machine for mounting on an automobile, which is required to be small and light in weight in recent years, and to have high output and high efficiency. There is a problem that the iron loss characteristics required as a magnetic material for an iron core, which is a magnetic core material, cannot be sufficiently met. Similarly, the magnetic materials for iron cores constituting various transformers and reactors used in electronic circuits for performing high-precision control in various control devices and communication devices have such problems.

本発明の目的は、鉄心用磁性材としてのFe−約50質量%Co系合金の良好な励磁特性を安定して得るための手段を明らかにするとともに、従来よりも良好な鉄損特性を具備した鉄心用磁性材及びその製造方法、この鉄心用磁性材を用いた鉄心を提供することである。   The object of the present invention is to clarify means for stably obtaining good excitation characteristics of an Fe—about 50 mass% Co-based alloy as a magnetic material for iron cores, and to have iron loss characteristics better than before. It is to provide a magnetic material for an iron core, a manufacturing method thereof, and an iron core using the magnetic material for an iron core.

本発明者等は、回転機等に用いる鉄心用磁性材としてパーメンダーまたはパーメンジュールと称されるFe−Co−V系合金において、高いBsを損なわず、且つ良好な励磁特性ならびに所望の鉄損特性が安定して得られるよう鋭意検討した。その結果、C、Mn、V等の不純物ならびに微量添加元素の成分量、固溶化熱処理、冷間圧延率、磁性焼鈍などの製造プロセス条件を適正に制御することにより、高いBsを損なわず、且つ、従来よりも良好な励磁特性ならびに所望の鉄損特性が安定して得られることを見出し本発明に到達した。   In the Fe-Co-V alloy called permender or permendur as a magnetic material for iron core used in a rotating machine or the like, the present inventors do not impair high Bs and have good excitation characteristics and desired iron loss. We intensively studied to obtain stable characteristics. As a result, by appropriately controlling the manufacturing process conditions such as the amount of impurities such as C, Mn, and V, as well as the component amount of trace addition elements, solution heat treatment, cold rolling rate, and magnetic annealing, high Bs is not impaired, and As a result, the inventors have found that excellent excitation characteristics as well as desired iron loss characteristics can be stably obtained compared with the prior art, and have reached the present invention.

すなわち、本発明は、板厚が200μm以下の鉄心用磁性材であって、該鉄心用磁性材は、質量%で、Co+Fe:97%以上、且つ、Fe:Coが0.9〜1.1、残部はV:1.70〜2.00%、Mn:0.01〜0.45%と不純物でなり、該不純物のうち、C:0.008%以下、S:0.01%以下に規制し、且つ、前記VとMnは、V+Mn:2.15%以下であり、Mn:Sが10〜100の関係を満足する組成を有し、平均結晶粒径:30μm以上、保磁力:40A/m未満、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損:11W/kg未満からなる鉄心用磁性材である。   That is, the present invention is a magnetic material for iron core having a plate thickness of 200 μm or less, and the magnetic material for iron core is in mass%, Co + Fe: 97% or more, and Fe: Co is 0.9 to 1.1. The remainder is made up of impurities such as V: 1.70 to 2.00%, Mn: 0.01 to 0.45%, and among these impurities, C: 0.008% or less, S: 0.01% or less In addition, V and Mn are V + Mn: 2.15% or less, Mn: S has a composition satisfying the relationship of 10 to 100, average crystal grain size: 30 μm or more, coercive force: 40 A It is a magnetic material for an iron core having a total iron loss of less than 11 W / kg at an operating frequency of 400 Hz with an operating magnetic flux density of 1 T.

また、本発明は、質量%で、Co+Fe:97%以上、且つ、Fe:Coが0.9〜1.1、残部はV:1.70〜2.00%、Mn:0.01〜0.45%と不純物でなり、該不純物のうち、C:0.008%以下、S:0.01%以下に規制し、且つ、前記VとMnは、V+Mn:2.15%以下であり、Mn:Sが10〜100の関係を満足する組成を有する熱間圧延材を、γ変態温度以上に加熱した後、急冷を行う熱処理工程と、該熱処理工程の後、90%以上の圧延率で冷間圧延を行って板厚を200μm以下の冷間圧延材とし、該冷間圧延材を800〜900℃で磁性焼鈍を行い、平均結晶粒径:30μm以上、保磁力:40A/m未満、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損:11W/kg未満とする鉄心用磁性材の製造方法である。   In the present invention, the mass% is Co + Fe: 97% or more, Fe: Co is 0.9 to 1.1, the balance is V: 1.70 to 2.00%, Mn: 0.01 to 0 .45% of impurities, of which C: 0.008% or less, S: 0.01% or less, and V and Mn are V + Mn: 2.15% or less, A hot-rolled material having a composition satisfying the relationship of Mn: S of 10 to 100 is heated to a temperature equal to or higher than the γ transformation temperature and then rapidly cooled, and after the heat treatment step, at a rolling rate of 90% or more. Cold rolling is performed to obtain a cold rolled material having a plate thickness of 200 μm or less, the cold rolled material is subjected to magnetic annealing at 800 to 900 ° C., an average crystal grain size: 30 μm or more, a coercive force: less than 40 A / m, Iron with operating magnetic flux density of 1T and total iron loss at operating frequency of 400Hz: less than 11W / kg It is a manufacturing method of use magnetic material.

さらに、本発明は、上記した鉄心用磁性材を用いたことを特徴とする鉄心である。この本発明に係る鉄心は、板厚が200μm以下の上記構成の鉄心用磁性材をプレス加工等により所望の形状に成形した板材を鉄心として、その複数枚を積層して回転機のステータ(固定子)またはロータ(回転子)、トランスのコア、リアクトルのコアとして使用されるものである。   Furthermore, the present invention provides an iron core using the above-described magnetic material for iron core. The iron core according to the present invention is a stator (fixed) of a rotating machine in which a plurality of sheets are laminated by using, as an iron core, a magnetic material for an iron core having a thickness of 200 μm or less formed into a desired shape by pressing or the like. Used as a core of a rotor or a rotor, a transformer core, or a reactor.

本発明によれば、鉄心用磁性材として、高Bsを維持したまま、励磁特性を飛躍的に改善することができるとともに、従来よりも良好な鉄損特性を具備した、特に自動車に搭載される各種の回転機に使用してその高効率化の効果を発揮することができる鉄心用磁性材を提供することができる。さらに、本発明の鉄心用磁性材を用いた鉄心を、回転機のステータ本体、ロータ本体、各種のトランスのコア、あるいはリアクトルのコアとして使用することにより、良好な鉄損特性を得ることができる。   According to the present invention, as a magnetic material for an iron core, the excitation characteristics can be drastically improved while maintaining a high Bs, and the iron loss characteristics better than the conventional ones are mounted, particularly in automobiles. It is possible to provide a magnetic material for an iron core that can be used for various rotating machines and exhibit the effect of improving its efficiency. Furthermore, by using the iron core using the magnetic material for iron core of the present invention as a stator main body, a rotor main body, a core of various transformers, or a core of a reactor, good iron loss characteristics can be obtained. .

本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 比較例の磁性焼鈍後の一例を示す光学顕微鏡による断面ミクロ組織写真である。It is a cross-sectional microstructure photograph by the optical microscope which shows an example after the magnetic annealing of a comparative example. 比較例の磁性焼鈍後の一例を示す光学顕微鏡による断面ミクロ組織写真である。It is a cross-sectional microstructure photograph by the optical microscope which shows an example after the magnetic annealing of a comparative example. 本発明の磁性焼鈍後の一例を示す光学顕微鏡による断面ミクロ組織写真である。It is a cross-sectional microstructure photograph by the optical microscope which shows an example after the magnetic annealing of this invention. 比較例の磁性焼鈍後の一例を示す光学顕微鏡による断面ミクロ組織写真である。It is a cross-sectional microstructure photograph by the optical microscope which shows an example after the magnetic annealing of a comparative example. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 比較例の固溶化熱処理後の一例を示す光学顕微鏡による断面ミクロ組織写真である。It is a cross-sectional microstructure photograph by the optical microscope which shows an example after the solution heat treatment of a comparative example. 本発明の固溶化熱処理後の一例を示す光学顕微鏡による断面ミクロ組織写真である。It is a cross-sectional microstructure photograph by the optical microscope which shows an example after the solution heat treatment of this invention. 本発明の固溶化熱処理後の一例を示す光学顕微鏡による断面ミクロ組織写真である。It is a cross-sectional microstructure photograph by the optical microscope which shows an example after the solution heat treatment of this invention. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 本発明と比較例の磁気特性比較の一例を示すグラフである。It is a graph which shows an example of the magnetic characteristic comparison of this invention and a comparative example. 本発明の鉄心を、回転機のステータとして使用したときの実施形態を説明するための要部の部分平面図である。It is a fragmentary top view of the principal part for demonstrating embodiment when the iron core of this invention is used as a stator of a rotary machine.

上述したように、本発明の重要な特徴は、Fe−Co系合金において、励磁特性と成分範囲、製造プロセス条件の関係について鋭意検討した結果、高Bsを維持したまま、良好な励磁特性ならびに鉄損特性を安定して得る成分範囲と製造プロセス条件を明らかにしたことにある。
本発明は、Fe−Co系合金の成分、製造プロセス条件に対して、主成分のFe、Co量、微量添加元素のV、Mn量、不純物元素のC、S量などの成分範囲と、固溶化熱処理温度、冷間圧延率、磁性焼鈍温度等の製造プロセス条件の関係を適正化することで、高Bsを維持したまま、励磁特性を飛躍的に改善できる。加えて、従来のFe−Co系合金が、磁性焼鈍と称される軟磁気特性を付与する熱処理工程の僅かな加熱温度の違いに、敏感に反応して、励磁特性を劣化させ易いという問題を改善することに成功したものである。
また、本発明は、鉄心用磁性材としてのFe−Co系合金の板厚ならびに励磁特性と鉄損特性の関係について鋭意検討した結果、回転機のステータ本体あるいはロータ本体、トランスのコア、リアクトルのコア等に使用する鉄心用磁性材として、所望の鉄損特性を得る手段を明らかにしたものである。これにより、本発明の鉄心用磁性材は、高Bsを維持したまま、良好な励磁特性をもつFe−Co系合金により、高Bs、且つ良好な鉄損特性を具備した鉄心用磁性材の安定生産が可能となったものである。
このように、本発明の鉄心用磁性材を鉄心として製品化、すなわち、回転機のステータ本体あるいはロータ本体、トランスのコア、リアクトルのコアとして良好に使用可能である。
As described above, the important feature of the present invention is that, as a result of intensive studies on the relationship between excitation characteristics, component ranges, and manufacturing process conditions in Fe-Co alloys, good excitation characteristics and iron are maintained while maintaining high Bs. The purpose of this study is to clarify the component range and manufacturing process conditions for obtaining stable loss characteristics.
The present invention relates to a component range such as Fe, Co content of the main component, V, Mn content of trace addition element, C, S content of impurity element, etc. By optimizing the relationship between the manufacturing process conditions such as the solution heat treatment temperature, the cold rolling rate, and the magnetic annealing temperature, the excitation characteristics can be dramatically improved while maintaining high Bs. In addition, the conventional Fe-Co alloy is sensitive to the slight difference in heating temperature in the heat treatment process that imparts soft magnetic characteristics called magnetic annealing, and the excitation characteristics are likely to deteriorate. It has succeeded in improving.
In addition, as a result of intensive studies on the thickness of the Fe-Co alloy as the magnetic material for the iron core and the relationship between the excitation characteristics and the iron loss characteristics, the present invention has revealed that the stator body or rotor body of the rotating machine, the core of the transformer, and the reactor As a magnetic material for an iron core used for a core or the like, a means for obtaining a desired iron loss characteristic is clarified. As a result, the magnetic material for iron core of the present invention is stable in the magnetic material for iron core having high Bs and good iron loss characteristics by the Fe-Co alloy having good excitation characteristics while maintaining high Bs. Production is now possible.
As described above, the magnetic material for iron core of the present invention can be commercialized as an iron core, that is, can be satisfactorily used as a stator body or rotor body of a rotating machine, a core of a transformer, and a core of a reactor.

最初に、本発明の鉄心用磁性材を鉄心として、回転機のステータとして適用する場合の実施形態について説明する。
図17は、本発明の鉄心を、回転機1のステータとして使用したときの実施形態の一例を説明するための図であって、ステータ部分の要部を示す平面図である。この回転機1は、例えば、ハイブリット車の駆動用の電動機に適用される。図17に示すように、回転機1はステータ(固定子)2と、ステータ2の内側に所定の間隔3Sを設定して配置されたロータ(回転子)3を備え、これらステータ2とロータ3は、図示しないハウジング(モータケース)内に収容されて構成されている。
First, an embodiment in the case of applying the magnetic material for iron core of the present invention as an iron core as a stator of a rotating machine will be described.
FIG. 17 is a view for explaining an example of an embodiment when the iron core of the present invention is used as the stator of the rotating machine 1, and is a plan view showing the main part of the stator portion. The rotating machine 1 is applied to, for example, an electric motor for driving a hybrid vehicle. As shown in FIG. 17, the rotating machine 1 includes a stator (stator) 2 and a rotor (rotor) 3 arranged at a predetermined interval 3 </ b> S inside the stator 2, and the stator 2 and the rotor 3. Is housed in a housing (motor case) (not shown).

ステータ2は環状に形成されたヨーク部2aと、ヨーク部2aの内周面2a1(周面)に径方向内側に突出して形成される複数のティース部2bと、各ティース部2bに巻回されるコイル2cとで構成されている(図17にはステータ2の一部のみを図示している)。ティース部2bは、ティース本体部2b1と、ティース本体部2b1の先端に形成されるティース先端鍔部2b2とを有している。なお、ヨーク部2aは、例えば図示しないハウジング内に固定されている。   The stator 2 is wound around each of the tooth portions 2b, a yoke portion 2a formed in an annular shape, a plurality of tooth portions 2b formed to project radially inward from an inner peripheral surface 2a1 (peripheral surface) of the yoke portion 2a, and the like. (Only a part of the stator 2 is shown in FIG. 17). The teeth part 2b has the teeth main-body part 2b1 and the teeth front-end collar part 2b2 formed in the front-end | tip of the teeth main-body part 2b1. The yoke portion 2a is fixed in a housing (not shown), for example.

コイル2cは、例えば、表面が絶縁材料で被覆された金属線(例えば、銅)で形成され、各ティース部2bのティース本体部2b1の周囲に巻回されている。なお、コイル2cは、例えば、U相、V相、W相のコイルが周方向に順に配列されている。   The coil 2c is formed of, for example, a metal wire (for example, copper) whose surface is covered with an insulating material, and is wound around the tooth body 2b1 of each tooth 2b. In the coil 2c, for example, U-phase, V-phase, and W-phase coils are sequentially arranged in the circumferential direction.

ロータ3は、例えば、周縁部に、周方向に沿って永久磁石3bが埋め込まれたもので構成されている。すなわち、ロータ3は、環状のロータヨーク3aを有し、ロータヨーク3aの周方向に形成された各スロット(図示せず)内に永久磁石3bが埋め込まれて構成されている。また、ロータ3の中心には、動力を伝達する軸(シャフト)が固定されている。なお、永久磁石3bとしては、例えば、R−T−B系希土類磁石(R:Yを含む希土類元素の1種又は2種以上、T:Fe又はFeとCo)を用いることができる。   The rotor 3 is configured by, for example, a permanent magnet 3b embedded in the peripheral portion along the circumferential direction. That is, the rotor 3 has an annular rotor yoke 3a, and is configured such that permanent magnets 3b are embedded in slots (not shown) formed in the circumferential direction of the rotor yoke 3a. A shaft (shaft) for transmitting power is fixed at the center of the rotor 3. As the permanent magnet 3b, for example, an R-T-B rare earth magnet (one or more of R: Y-containing rare earth elements, T: Fe or Fe and Co) can be used.

上記した構成を備えた回転機1において、ステータ2を構成する部材が、本発明に係る鉄心用磁性材を鉄心として適用している。
続いて、本発明に係る鉄心用磁性材について、その成分を含む材料構成の特徴について説明する。
In the rotating machine 1 having the above-described configuration, the member constituting the stator 2 uses the magnetic material for iron core according to the present invention as the iron core.
Then, the characteristic of the material structure containing the component is demonstrated about the magnetic material for iron cores which concerns on this invention.

本発明の鉄心用磁性材の板厚は200μm以下とする。
これは、後述する本発明の成分をいくら適正な範囲に調整しても、板厚が200μmを超えて厚くすると、良好な励磁特性によるヒステリシス損失の低減を成しても、渦電流損失の増加により、所望の全鉄損を得ることができなくなるためである。
そのため、本発明では、所望の励磁特性及び全鉄損を得ることができる板厚として、200μm以下と規定した。好ましい板厚は10〜150μmである。
The plate thickness of the magnetic material for iron core of the present invention is 200 μm or less.
Even if the components of the present invention to be described later are adjusted to an appropriate range, an increase in eddy current loss can be achieved even if the hysteresis loss is reduced by good excitation characteristics when the plate thickness exceeds 200 μm. This is because the desired total iron loss cannot be obtained.
Therefore, in the present invention, the plate thickness that can obtain desired excitation characteristics and total iron loss is defined as 200 μm or less. A preferred plate thickness is 10 to 150 μm.

次に、本発明で規定する各元素の添加の理由とその含有量について説明する。なお、各元素の含有量は質量%である。
Co+Fe:97%以上、且つ、Fe:Coが0.9〜1.1
先ず、FeとCoについて説明する。
本発明において、FeとCoは高いBsを得るために必要不可欠な元素であり、CoをFeに含有させることにより、例えば2.0T以上の高いBsを得ることができる。本発明では、この高いBsを得るための最適なFeとCoの含有量、及び、FeとCoの最適バランスとしてCoとFeの総量を97%以上とし、且つ、Fe:Co(FeとCoの含有量の比率)が0.9〜1.1の範囲とした。
Next, the reason for addition of each element prescribed | regulated by this invention and its content are demonstrated. In addition, content of each element is the mass%.
Co + Fe: 97% or more, and Fe: Co is 0.9 to 1.1
First, Fe and Co will be described.
In the present invention, Fe and Co are indispensable elements for obtaining high Bs. By incorporating Co into Fe, for example, high Bs of 2.0 T or more can be obtained. In the present invention, the optimal content of Fe and Co for obtaining this high Bs, and the total balance of Co and Fe as an optimal balance of Fe and Co is set to 97% or more, and Fe: Co (of Fe and Co) The content ratio was in the range of 0.9 to 1.1.

V:1.70〜2.00%
Vは、少な過ぎると冷間圧延における脆化問題を引き起こすため、本発明では1.70%以上含有させる。一方、V量が多過ぎると、Bsの低下をまねく他、マトリックス中に微細なV系炭化物が多量に分散し、励磁特性ならびに鉄損特性の低下を引き起こすため、質量%で、2.00%以下の添加とする。Vの好ましい上限は1.95%である。
Mn:0.01〜0.45%
Mnは、その添加により、不純物元素のSをMnSとして固定するため、励磁特性及び鉄損特性の向上に効果を発揮するが、多過ぎると、逆に励磁特性ならびに鉄損特性の低下をまねくため、質量%で、0.45%以下の添加とする。
なお、Mn添加による、上記効果を得るには下限を0.01%以上とする。
V: 1.70-2.00%
If V is too small, it causes embrittlement problems in cold rolling, so 1.70% or more is contained in the present invention. On the other hand, if the amount of V is too large, Bs will be lowered, and fine V-based carbides will be dispersed in a large amount in the matrix, causing deterioration of excitation characteristics and iron loss characteristics. Add the following. A preferable upper limit of V is 1.95%.
Mn: 0.01 to 0.45%
When Mn is added, S of the impurity element is fixed as MnS, so that it is effective in improving the excitation characteristics and iron loss characteristics. However, if too much Mn is added, the excitation characteristics and iron loss characteristics are reduced. The addition of 0.45% or less by mass%.
In order to obtain the above effect by adding Mn, the lower limit is made 0.01% or more.

V+Mn:2.15%以下
本発明では、積極的に添加するVとMnは、上記の範囲を満たした上で、更にVとMnの総量を2.15%以下の範囲とする。
これは、VとMnがFe−Co系合金において、γ変態温度を低下させる元素であり、VとMnの総量が2.15%を超えると、結晶粒が粗大化し易い900℃近傍まで磁性焼鈍温度を高くした場合に、逆に金属組織が不安定となり易く、保磁力が著しく大きくなる惧れがあるためである。そのため、VまたはMnの単独の範囲を満たしただけでは、良好な励磁特性ならびに鉄損特性を安定して得ることができ難くなる。したがって、V+Mn量の上限を2.15%以下に限定する。好ましい上限は2.1%である。
Mn:Sが10〜100
上述したとおり、Mnは、その添加により、不純物元素のSをMnSとして固定する。そのため、不純物Sをより確実に固定できるMnが必要となる。MnとSの含有量の比率が、Mn:Sで10未満であると、不純物SをMnSとして固定することができず、一方、Mn:Sで100を超えても、MnSとして固定するより一層の効果向上が望めないため、Mn:Sを10〜100の範囲とする。
V + Mn: 2.15% or less In the present invention, the positively added V and Mn satisfy the above range, and the total amount of V and Mn is set to a range of 2.15% or less.
In this Fe-Co alloy, V and Mn are elements that lower the γ transformation temperature. When the total amount of V and Mn exceeds 2.15%, the crystal grains tend to coarsen to near 900 ° C. This is because, when the temperature is increased, the metal structure tends to be unstable and the coercive force may be significantly increased. Therefore, it is difficult to stably obtain good excitation characteristics and iron loss characteristics only by satisfying the single range of V or Mn. Therefore, the upper limit of the amount of V + Mn is limited to 2.15% or less. A preferable upper limit is 2.1%.
Mn: S is 10 to 100
As described above, Mn fixes the impurity element S as MnS by its addition. Therefore, Mn that can fix impurities S more reliably is required. When the ratio of the contents of Mn and S is less than 10 in Mn: S, the impurity S cannot be fixed as MnS. On the other hand, even if it exceeds 100 in Mn: S, it is much more fixed than MnS. Therefore, Mn: S should be in the range of 10-100.

C:0.008%以下、S:0.01%以下
CとSは良好な励磁特性ならびに鉄損特性を阻害する不純物元素である。Cが0.008%を超えたり、Sが0.01%を超えて残留すると、良好な励磁特性ならびに鉄損特性が安定して得られなくなる。そのため、本発明では不純物としてのC、Sを、C:0.008%以下、S:0.01%以下に規制する。好ましくは、C:0.005%以下、S:0.005%以下の範囲である。
C: 0.008% or less, S: 0.01% or less C and S are impurity elements that inhibit good excitation characteristics and iron loss characteristics. If C exceeds 0.008% or S exceeds 0.01%, good excitation characteristics and iron loss characteristics cannot be obtained stably. Therefore, in the present invention, C and S as impurities are restricted to C: 0.008% or less and S: 0.01% or less. Preferably, the range is C: 0.005% or less and S: 0.005% or less.

以上、説明した本発明で規定する各元素の成分範囲は、良好な励磁特性及び鉄損を安定して得るのに必要不可欠である。
例えば、板厚が200μm以下の範囲において、上記の各元素の成分範囲や元素同士の関係が、多少本発明の範囲外となったとしても、良好な励磁特性及び鉄損特性が得られる場合がある。しかしながら、僅かな成分の差異によって、励磁特性及び鉄損特性は、後述する磁性焼鈍と称される軟磁気特性を付与する熱処理工程の僅かな加熱温度の違いに敏感に反応する。その結果、工業的に量産を行なう場合、同一ロットであっても、励磁特性や鉄損がばらついてしまう。
一方で、本発明で規定する成分範囲であれば、安定した磁気特性を得ることができる磁性焼鈍の温度範囲を広げることができる。そのため、本発明では、各元素共に極めて限定的な成分範囲とした。
この効果については、後記する実施例にて、詳しく示すことにする。
As described above, the component range of each element defined in the present invention is indispensable for stably obtaining good excitation characteristics and iron loss.
For example, in the range where the plate thickness is 200 μm or less, even if the component ranges of the above elements and the relationship between the elements are slightly out of the scope of the present invention, good excitation characteristics and iron loss characteristics may be obtained. is there. However, due to a slight difference in components, the excitation characteristics and the iron loss characteristics are sensitive to a slight difference in heating temperature in a heat treatment process that gives a soft magnetic characteristic called magnetic annealing, which will be described later. As a result, when mass production is industrially performed, even in the same lot, excitation characteristics and iron loss vary.
On the other hand, if it is the component range prescribed | regulated by this invention, the temperature range of the magnetic annealing which can acquire the stable magnetic characteristic can be expanded. Therefore, in the present invention, each element has an extremely limited component range.
This effect will be described in detail in the examples described later.

次に金属組織について説明する。
平均結晶粒径:30μm以上
本発明の鉄心用磁性材の断面または平面ミクロ組織は、その平均結晶粒径が、30μm以上と規定する。これは、磁壁移動の障害となる結晶粒界を少なくすることで、良好な励磁特性ならびに鉄損特性を得ることができるためである。
なお、本発明で言う平均結晶粒径とは、鉄心用磁性材の断面または平面ミクロ組織における結晶粒を円形に近似したときの平均直径のことである。もし、例えば、板厚方向に結晶粒が単独で存在する場合、その単独結晶粒から平均直径を求めることにする。
Next, the metal structure will be described.
Average crystal grain size: 30 μm or more The cross-sectional or planar microstructure of the magnetic material for iron core of the present invention is defined to have an average crystal grain size of 30 μm or more. This is because good excitation characteristics and iron loss characteristics can be obtained by reducing the crystal grain boundaries that hinder domain wall movement.
In addition, the average crystal grain diameter said by this invention is an average diameter when the crystal grain in the cross section or planar microstructure of a magnetic material for iron cores is approximated circularly. For example, when crystal grains exist alone in the plate thickness direction, the average diameter is determined from the single crystal grains.

次に保磁力について説明する。
保磁力:40A/m未満
本発明の鉄心用磁性材は、保磁力を40A/m未満と規定する。保磁力が40A/mを超えると、良好な励磁特性とは言えず、ヒステリシス損失の増加を促し、所望の全鉄損を得難くなるためである。
Next, the coercive force will be described.
Coercive force: less than 40 A / m The magnetic material for iron core of the present invention defines the coercive force to be less than 40 A / m. This is because if the coercive force exceeds 40 A / m, it cannot be said that the excitation characteristics are good, and an increase in hysteresis loss is promoted, making it difficult to obtain a desired total iron loss.

次に全鉄損について説明する。
全鉄損:11W/kg未満
本発明の鉄心用磁性材は、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損を11W/kg未満と規定する。これは、回転機用として一般的な鉄心用磁性材である公知の無方向性電磁鋼板(板厚100〜200μm)の、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損が約11W/kgとなるからである。
全鉄損が11W/kgを超えると、高いBsによる、回転機等の高い出力が得られても、回転機等における損失が大きくなり、その効率を低下させるためである。
Next, the total iron loss will be described.
Total iron loss: less than 11 W / kg The magnetic material for iron core of the present invention defines the total magnetic loss as less than 11 W / kg at an operating magnetic flux density of 1 T and an operating frequency of 400 Hz. This is a known non-oriented electrical steel sheet (plate thickness 100-200 μm), which is a general magnetic material for iron cores for use in rotating machines, and the total magnetic loss at an operating magnetic frequency density of 1 T and an operating frequency of 400 Hz is about 11 W / kg. Because it becomes.
This is because when the total iron loss exceeds 11 W / kg, even if a high output of a rotating machine or the like due to high Bs is obtained, the loss in the rotating machine or the like becomes large and the efficiency is lowered.

次に本発明の鉄心用磁性材を得るための製造方法について説明する。
先ず、上記の組成に調整した熱間圧延材素材を用意する。熱間圧延材を作製する工程は、以降の工程を進め易くするための鋼片を得る目的であり、熱間圧延の加熱温度は1000〜1150℃であることが望ましい。
該熱間圧延材を作製した後、γ変態温度以上に加熱した後、急冷を行う熱処理工程を行う。ここで、熱処理温度をγ変態温度以上に規定した理由は、冷間圧延時の脆化問題を避け、且つ、良好な励磁特性及び鉄損特性を安定して得るためである。本発明の鉄心用磁性材に係る合金の場合、γ変態温度は約910〜930℃の範囲である。そのため、実際の熱処理温度としては950℃以上であることが望ましい。また、表面酸化の過度な進行や熱処理にかかるエネルギーを低減するために、上限は1200℃以下とすることが望ましい。
また、γ変態温度以上に加熱した後の冷却速度は、常温下での冷間圧延性が得られれば良く、水冷以上の冷却速度が望ましい。なお、固溶化熱処理工程の後に、酸化スケールの除去工程を行うことが望ましい。
Next, a manufacturing method for obtaining the magnetic material for iron core of the present invention will be described.
First, a hot rolled material adjusted to the above composition is prepared. The step of producing the hot rolled material is for the purpose of obtaining a steel slab for facilitating the subsequent steps, and the heating temperature of the hot rolling is preferably 1000 to 1150 ° C.
After producing the hot-rolled material, it is heated to a temperature equal to or higher than the γ transformation temperature, and then subjected to a heat treatment step for rapid cooling. Here, the reason why the heat treatment temperature is specified to be equal to or higher than the γ transformation temperature is to avoid embrittlement problems during cold rolling and to stably obtain good excitation characteristics and iron loss characteristics. In the case of the alloy according to the magnetic material for iron core of the present invention, the γ transformation temperature is in the range of about 910 to 930 ° C. Therefore, the actual heat treatment temperature is desirably 950 ° C. or higher. Further, the upper limit is desirably set to 1200 ° C. or less in order to reduce the excessive amount of surface oxidation and the energy required for heat treatment.
Further, the cooling rate after heating to the γ transformation temperature or higher is only required to obtain cold rollability at room temperature, and a cooling rate higher than water cooling is desirable. In addition, it is desirable to perform the removal process of an oxide scale after a solution heat treatment process.

上記の熱処理工程の後、90%以上の圧延率で冷間圧延を行って板厚を200μm以下の冷間圧延材とする工程を行う。
圧延率を90%以上に規定した理由は、素材に冷間加工歪を蓄積させ、以降の磁性焼鈍時に、より結晶粒の成長を促し、良好な励磁特性及び鉄損特性を安定して得るのに効果があるためである。
次に、上記の冷間圧延材を800〜900℃で磁性焼鈍を行い、平均結晶粒径:30μm以上にする熱処理工程を行う。
磁性焼鈍は、冷間圧延組織を再結晶または二次再結晶組織とすることで、加工歪の除去及び結晶粒を粗大化させることができる。磁性焼鈍温度は、低過ぎると、十分な結晶粒の成長が成されず、良好な励磁特性及び鉄損特性を安定して得られないため、800℃以上であることが必要である。一方、γ変態温度を超えると、粒界近傍にα‐γ変態に伴う部分的な微細粒が形成され、逆に励磁特性及び鉄損特性が低下するため、磁性焼鈍の上限は900℃以下とする。好ましくは、840〜890℃の範囲である。
なお、磁性焼鈍は表面酸化などを避けるため、真空中または水素雰囲気下で行うことが望ましい。
上述した工程により、保磁力:40A/m未満、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損:11W/kg未満の特性を安定して得ることができる。
After the heat treatment step, cold rolling is performed at a rolling rate of 90% or more to obtain a cold rolled material having a plate thickness of 200 μm or less.
The reason why the rolling rate is specified to be 90% or more is that cold working strain is accumulated in the material, and during subsequent magnetic annealing, the growth of crystal grains is further promoted, and good excitation characteristics and iron loss characteristics can be stably obtained. This is because it is effective.
Next, the cold-rolled material is subjected to a magnetic annealing at 800 to 900 ° C. to perform a heat treatment step to make the average crystal grain size: 30 μm or more.
In the magnetic annealing, the cold-rolled structure is recrystallized or secondary recrystallized structure, so that the processing strain can be removed and the crystal grains can be coarsened. If the magnetic annealing temperature is too low, sufficient crystal grain growth cannot be achieved, and good excitation characteristics and iron loss characteristics cannot be stably obtained. Therefore, the magnetic annealing temperature needs to be 800 ° C. or higher. On the other hand, when the γ transformation temperature is exceeded, partial fine grains associated with the α-γ transformation are formed in the vicinity of the grain boundary, and conversely, the excitation characteristics and iron loss characteristics deteriorate, so the upper limit of magnetic annealing is 900 ° C. or less. To do. Preferably, it is the range of 840-890 degreeC.
The magnetic annealing is preferably performed in a vacuum or in a hydrogen atmosphere in order to avoid surface oxidation.
Through the above-described steps, it is possible to stably obtain characteristics of coercive force: less than 40 A / m, operating magnetic flux density of 1 T, and total iron loss at operating frequency of 400 Hz: less than 11 W / kg.

本発明では上述した製造方法により、鉄心用磁性材を得ることができる。なお、鉄心用磁性材を本発明に係る鉄心(コア)として用いる場合は、例えば、プレス加工等により所望の形状に成形する。
所望の形状への成形は、生産性を考慮すると、磁性焼鈍後に所望の形状に成形しても良いが、磁気特性の劣化が心配されるため、冷間圧延材を用いて所望の形状に加工を行い、その後に磁性焼鈍を行うと良い。
In the present invention, a magnetic material for an iron core can be obtained by the manufacturing method described above. In addition, when using the magnetic material for iron cores as the iron core (core) which concerns on this invention, it shape | molds in a desired shape by press work etc., for example.
In consideration of productivity, the desired shape may be formed into a desired shape after magnetic annealing. However, since there is a concern about the deterioration of magnetic properties, it is processed into a desired shape using a cold-rolled material. It is good to perform magnetic annealing after that.

(実施例1)
続いて、本発明に係る鉄心用磁性材を製造して、その鉄心用磁性材としての特性を評価した結果について説明する。
表1に示す組成に質量調整した原料を真空溶解し、鋳型に鋳造して溶製材素材を得た。
得られた溶製材素材を1000〜1150℃に加熱して鍛伸した後、1000〜1150℃に加熱して熱間圧延を行い、板厚が2.5mm(No.7のみ板厚1.4mm)の熱間圧延材を作製した。
その後、熱間圧延材を700〜1050℃に加熱して、−0.5℃以下の氷塩水中に浸漬させて急速冷却とする熱処理を行った。次いで、酸洗い後、グラインダー加工で酸化皮膜の除去を行い、冷間圧延で厚さ0.15mmまでの薄板化が可能か、冷間圧延性の調査を行った。なお、溶製材のγ変態温度は910〜930℃である。
表1に、各温度で固溶化熱処理を行った後の、No.1〜No.16までの冷間圧延性を示す。冷間圧延で厚さ0.15mmまでの薄板化が可能であったものを「○」、割れがひどく、以降の工程に進めなかったものを「×」とした。なお、未評価材は「−」として示した。
No.1〜16のうち、本発明の成分範囲内にある合金は、No.5、No.9〜No.11、No.13及びNo.16の合金である。
Example 1
Then, the magnetic material for iron cores concerning this invention is manufactured, and the result of having evaluated the characteristic as the magnetic material for iron cores is demonstrated.
The raw material whose mass was adjusted to the composition shown in Table 1 was melted in vacuum, and cast into a mold to obtain a molten material.
The obtained melted material is heated to 1000 to 1150 ° C. and forged, then heated to 1000 to 1150 ° C. and hot rolled, and the thickness is 2.5 mm (only No. 7 is 1.4 mm thick). ) Was produced.
Thereafter, the hot-rolled material was heated to 700 to 1050 ° C. and immersed in ice-salt water at −0.5 ° C. or lower to perform rapid cooling. Next, after pickling, the oxide film was removed by grinder processing, and whether or not it was possible to reduce the thickness to 0.15 mm by cold rolling was investigated for cold rollability. The γ transformation temperature of the melted material is 910 to 930 ° C.
Table 1 shows the No. after solution heat treatment at each temperature. 1-No. A cold rollability of up to 16. “○” indicates that the sheet can be thinned to a thickness of 0.15 mm by cold rolling, and “X” indicates that the crack was severe and the subsequent process could not proceed. In addition, the unevaluated material is indicated as “−”.
No. Among the alloys 1 to 16, the alloys within the component range of the present invention are No. 1 to No. 16. 5, no. 9-No. 11, no. 13 and no. 16 alloys.

なお、溶製材素材におけるNo.1〜6は、冷間圧延性に及ぼすV添加量の影響を調査するため、V量を無添加〜2.02%の範囲で変えたものである。
V量が無添加のNo.1は、全ての熱処理温度において、冷間圧延が不可能であった。V量が1.70%未満のNo.2〜4は、規則化温度(約730℃)以上、1000℃未満の比較的に低い熱処理温度では、冷間圧延が可能であったものの、1000℃以上の高温域では、冷間圧延が不可能であった。
V量が1.70%以上のNo.5、No.6は、規則化温度(約730℃)以上の、何れの熱処理温度においても冷間圧延が可能であり、量産時の脆化問題をより安定して回避できることが確認できた。また、V量が1.70%以上のNo.7〜16については、冷間圧延で厚さ0.15mmまでの薄板化が、特に問題なく可能であった。
In addition, No. in the melted lumber material. Nos. 1 to 6 are obtained by changing the V amount in the range of no addition to 2.02% in order to investigate the influence of the V addition amount on the cold rolling property.
No. with no added amount of V. In No. 1, cold rolling was impossible at all heat treatment temperatures. No. V amount of less than 1.70%. In Nos. 2 to 4, although cold rolling was possible at a relatively low heat treatment temperature of not less than the ordering temperature (about 730 ° C.) and less than 1000 ° C., cold rolling was not possible in a high temperature region of 1000 ° C. or more. It was possible.
No. with V amount of 1.70% or more. 5, no. No. 6 was able to be cold-rolled at any heat treatment temperature not lower than the ordering temperature (about 730 ° C.) and confirmed that the embrittlement problem during mass production could be avoided more stably. In addition, No. having a V amount of 1.70% or more. About 7-16, the thickness reduction to thickness 0.15mm was possible without the problem in particular by cold rolling.

























表1に示す冷間圧延が可能であったものの中で、No.7〜16までの冷間圧延材から鉄心用磁性材の製品形状とする場合を模擬して、外径45mm、内径33mmのJISリングを打ち抜き加工によって採取した。その後、冷間加工歪の除去及び結晶粒の粗大化を目的に、水素雰囲気中、加熱温度850℃で保持時間3hrと、加熱温度880℃で保持時間10hrの磁性焼鈍を施して鉄心用磁性材とした。
また、複数枚のJISリングを、絶縁を目的とした層間紙を間に挟みながら積層し、プラスチック製のリングケースに納めてから、一次巻線200回、二次巻線50回の巻線を巻いて、励磁(直流磁気)特性及び鉄損特性を測定した。
Among those in which the cold rolling shown in Table 1 was possible, No. A JIS ring having an outer diameter of 45 mm and an inner diameter of 33 mm was sampled by punching, simulating the case where the product shape of a magnetic material for iron core was changed from a cold rolled material of 7 to 16. Thereafter, for the purpose of removing cold working strain and coarsening of crystal grains, magnetic annealing is performed in a hydrogen atmosphere at a heating temperature of 850 ° C. for a holding time of 3 hours and at a heating temperature of 880 ° C. for a holding time of 10 hours. It was.
In addition, a plurality of JIS rings are stacked with interlayer paper for insulation between them and placed in a plastic ring case, and then 200 primary windings and 50 secondary windings are formed. Winding and measuring the excitation (DC magnetism) characteristics and the iron loss characteristics.

表2に、測定した励磁(直流磁気)特性及び鉄損特性を示す。
励磁(直流磁気)特性については、鉄心用磁性材として重要な全鉄損(ヒステリシス損失)に大きな影響を及ぼす保磁力Hc(単位はA/m)と、飽和磁束密度の代わりに、磁束密度としてほぼ飽和している印加磁場4000A/mにおける磁束密度(B4000≒Bs、単位はT)を測定した。加えて、鉄損特性についても、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損(W10/400、単位はW/kg)を測定した。
なお、未評価項目は「−」とした。ここで、保磁力40A/m未満、B4000が2.0T以上、且つ、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損が11W/kg未満を満たす特性を具備するものが、鉄心用磁性材として好適である。
Table 2 shows the measured excitation (DC magnetism) characteristics and iron loss characteristics.
As for the excitation (DC magnetism) characteristics, instead of the coercive force Hc (unit: A / m) and the saturation magnetic flux density, which greatly affects the total iron loss (hysteresis loss), which is important as a magnetic material for iron cores, the magnetic flux density Magnetic flux density (B4000≈Bs, unit is T) was measured at an applied magnetic field of 4000 A / m, which was almost saturated. In addition, as for the iron loss characteristics, the total magnetic loss (W10 / 400, the unit is W / kg) was measured at an operating frequency of 400 Hz with an operating magnetic flux density of 1T.
The unassessed item was “−”. Here, the magnetic material for the iron core has the characteristics that the coercive force is less than 40 A / m, B4000 is 2.0 T or more, the operating magnetic flux density is 1 T, and the total iron loss at the operating frequency of 400 Hz is less than 11 W / kg. It is suitable as.

























本発明で規定する成分範囲、熱処理工程及び板厚を満足する本発明例のNo.9〜11、No.13、No.16B、No.16Cは、磁性焼鈍温度が850℃、880℃の何れも、平均結晶粒径が30μm以上であり、B4000が2.0T以上、且つ、保磁力が40A/m未満であり、高いBsを損なわず、且つ、良好な励磁特性を安定して得られることが確認できた。
また、上記の本発明例の鉄損測定を実施した結果、磁性焼鈍温度が850℃、880℃の何れも、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が11W/kg未満と良好な鉄損特性も得られることが確認できた。
No. of the example of the present invention satisfying the component range, heat treatment step and plate thickness specified in the present invention. 9-11, no. 13, no. 16B, no. 16C has a magnetic annealing temperature of 850 ° C. and 880 ° C., the average crystal grain size is 30 μm or more, B4000 is 2.0 T or more, the coercive force is less than 40 A / m, and high Bs is not impaired. In addition, it was confirmed that good excitation characteristics can be stably obtained.
In addition, as a result of conducting the iron loss measurement of the above-described example of the present invention, as for the magnetic annealing temperatures of 850 ° C. and 880 ° C., the total magnetic loss W10 / 400 at an operating magnetic flux density of 1T and an operating frequency of 400 Hz is less than 11 W / kg. It was confirmed that good iron loss characteristics were also obtained.

一方、比較例No.7は、0.015%のCと2.08%のVを含有し、且つ、固溶化熱処理温度を850℃とするもので、磁性焼鈍温度が850℃において、平均結晶粒径が16.2μmと小さく、保磁力が59.5A/mと、良好な励磁特性が得られなかった。また、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が11.7W/kgと良好な鉄損特性も得られなかった。これは、C、Vの添加量が過多であり、且つ、固溶化熱処理温度がγ変態温度以下と低いため、多数の微細なV系炭化物がマトリックス中に分散し、該磁性焼鈍温度における結晶粒の成長を抑制したためと考えられる。
さらに、No.7はVとMnの総量が2.19%と高く、磁性焼鈍温度が880℃においても、保磁力が51.0A/mと、良好な励磁特性が得られなかった。
これは、V+Mn量が2.15%を超えて添加されているため、γ変態温度が低下し、該磁性焼鈍温度において、金属組織が不安定になったためと考えられる。
On the other hand, Comparative Example No. No. 7 contains 0.015% C and 2.08% V, and the solution heat treatment temperature is 850 ° C. The average crystal grain size is 16.2 μm at the magnetic annealing temperature of 850 ° C. However, the coercive force was 59.5 A / m, and good excitation characteristics could not be obtained. Moreover, the total magnetic loss W10 / 400 was 11.7 W / kg at an operating magnetic flux density of 1T and an operating frequency of 400 Hz, and good iron loss characteristics were not obtained. This is because the amount of addition of C and V is excessive, and the solution heat treatment temperature is as low as the γ transformation temperature or less, so a large number of fine V-based carbides are dispersed in the matrix, and the crystal grains at the magnetic annealing temperature This is thought to be due to the suppression of growth.
Furthermore, no. No. 7 had a high total amount of V and Mn of 2.19%, and even when the magnetic annealing temperature was 880 ° C., the coercive force was 51.0 A / m, and good excitation characteristics could not be obtained.
This is presumably because the V + Mn content was added in excess of 2.15%, so the γ transformation temperature was lowered and the metal structure became unstable at the magnetic annealing temperature.

比較例No.8は、質量%の比で7.0のMn/Sの組成とするもので、磁性焼鈍温度が850℃において、Mn添加による不純物Sの固定の効果が乏しく、保磁力が41.1A/mと、良好な励磁特性が得られなかった。
なお、No.8は磁性焼鈍温度が880℃において、平均結晶粒径が58.8μm、保磁力が31.6A/mと、良好な励磁特性が得られ、且つ、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が11.7W/kgと良好な鉄損特性を得られるが、僅か30℃の磁性焼鈍温度の違いによって保磁力が大きく変化してしまい、良好な励磁特性および鉄損特性を安定して得るのは困難であった。
Comparative Example No. No. 8 has a composition of Mn / S of 7.0 by mass ratio. At a magnetic annealing temperature of 850 ° C., the effect of fixing impurities S by addition of Mn is poor, and the coercive force is 41.1 A / m. Good excitation characteristics could not be obtained.
In addition, No. No. 8 has a magnetic annealing temperature of 880 ° C., an average crystal grain size of 58.8 μm, a coercive force of 31.6 A / m and good excitation characteristics, and an operating magnetic flux density of 1 T and an operating frequency of 400 Hz. The iron loss W10 / 400 is 11.7 W / kg and good iron loss characteristics can be obtained, but the coercive force changes greatly due to the difference in magnetic annealing temperature of only 30 ° C. It was difficult to obtain stably.

比較例No.12は、0.51%のMnと、2.31%のV+Mn量の組成とするもので、磁性焼鈍温度が880℃において、金属組織が不安定となり、平均結晶粒径が18.8μmと小さく、保磁力が78.6A/mと、良好な励磁特性が得られなかった。また、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が13.0W/kgと良好な鉄損特性も得られなかった。なお、No.12は、磁性焼鈍温度が850℃において、平均結晶粒径が35.4μm、保磁力が39.1A/mと、良好な励磁特性が得られ、且つ、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が9.8W/kgと良好な鉄損特性を得られるが、僅か30℃の磁性焼鈍温度の違いによって保磁力が大きく変化してしまい、良好な励磁特性および鉄損特性を安定して得るのは困難であった。   Comparative Example No. No. 12 has a composition of 0.51% Mn and 2.31% V + Mn. When the magnetic annealing temperature is 880 ° C., the metal structure becomes unstable and the average grain size is as small as 18.8 μm. The coercive force was 78.6 A / m, and good excitation characteristics could not be obtained. Moreover, the total magnetic loss W10 / 400 at an operating magnetic frequency density of 1T and an operating frequency of 400 Hz was 13.0 W / kg, and good iron loss characteristics were not obtained. In addition, No. No. 12 has a magnetic annealing temperature of 850 ° C., an average crystal grain size of 35.4 μm, a coercive force of 39.1 A / m and good excitation characteristics, and an operating magnetic flux density of 1 T and an operating frequency of 400 Hz. Good iron loss characteristics with a total iron loss W10 / 400 of 9.8 W / kg can be obtained, but the coercive force changes greatly due to the difference in magnetic annealing temperature of only 30 ° C., and good excitation characteristics and iron loss characteristics It was difficult to stably obtain

比較例No.14、及び、No.15A〜No.15Cは、Cをそれぞれ、0.014%、0.009%含有する。そのため、磁性焼鈍温度が850℃において、多数の微細なV系炭化物がマトリックス中に分散し、該磁性焼鈍温度における結晶粒の成長を抑制してしまい、保磁力がそれぞれ、45.5A/m、51.0A/m、46.8A/m、43.3A/mと、良好な励磁特性を得られないことが確認できた。また、比較例No.15A〜No.15Cは、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400がそれぞれ、12.1W/kg、11.3W/kg、11.7W/kgと良好な鉄損特性も得られなかった。
なお、比較例No.14、及び、No.15A〜No.15Cは、磁性焼鈍温度が880℃において、保磁力がそれぞれ、30.5A/m、29.5A/m、31.3A/m、31.2A/mと、良好な励磁特性が得られ、且つ、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400がそれぞれ、9.0W/kg、9.6W/kg、9.9W/kg、9.7W/kgと良好な鉄損特性も得られるが、僅か30℃の磁性焼鈍温度の違いによって保磁力が大きく変化してしまい、良好な励磁特性および鉄損特性を安定して得るのは困難であった。
以上の結果から、本発明で規定する成分範囲外となる合金では、僅かな磁性焼鈍の変化により、大きく保磁力が変化してしまい、工業的な量産を行なう場合、励磁特性および鉄損特性が不安定となる危険性があることが分る。
Comparative Example No. 14 and No. 15A-No. 15C contains 0.014% and 0.009% of C, respectively. Therefore, when the magnetic annealing temperature is 850 ° C., a large number of fine V-based carbides are dispersed in the matrix, suppressing the growth of crystal grains at the magnetic annealing temperature, and the coercive force is 45.5 A / m, 51.0 A / m, 46.8 A / m, and 43.3 A / m, confirming that good excitation characteristics cannot be obtained. Comparative Example No. 15A-No. In 15C, the operating magnetic flux density was 1T, and the total iron loss W10 / 400 at an operating frequency of 400 Hz was 12.1 W / kg, 11.3 W / kg, 11.7 W / kg, respectively, and good iron loss characteristics were not obtained. .
Comparative Example No. 14 and No. 15A-No. 15C has good excitation characteristics such as 30.5 A / m, 29.5 A / m, 31.3 A / m, and 31.2 A / m, respectively, at a magnetic annealing temperature of 880 ° C., and The total iron loss W10 / 400 at an operating frequency of 400 Hz with an operating magnetic flux density of 1 T is 9.0 W / kg, 9.6 W / kg, 9.9 W / kg, and 9.7 W / kg, respectively. Although it was obtained, the coercive force greatly changed due to the difference in magnetic annealing temperature of only 30 ° C., and it was difficult to stably obtain good excitation characteristics and iron loss characteristics.
From the above results, in an alloy that falls outside the component range specified in the present invention, the coercive force greatly changes due to a slight change in magnetic annealing. It turns out that there is a risk of instability.

No.16は、本発明で規定する成分を満たす合金である。
しかし、No.16A(比較例)は、冷間圧延前の固溶化熱処理温度を850℃とするもので、磁性焼鈍温度が850℃において、平均結晶粒径が26.6μm、保磁力が43.4A/mと、良好な励磁特性を得られず、且つ、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が11.0W/kgと良好な鉄損特性も得られなかった。これは、熱処理温度がγ変態温度未満であるため、多数の微細なV系炭化物がマトリックス中に分散し易くなり、磁性焼鈍温度における結晶粒の成長を抑制したためと考えられる。
なお、No.16Aにおいても、磁性焼鈍温度が880℃において、平均結晶粒径が58.8μm、保磁力が30.0A/mと、良好な励磁特性が得られ、且つ、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が9.3W/kgと良好な鉄損特性も得られるが、固溶化熱処理工程の加熱温度が不十分であるため、僅か30℃の磁性焼鈍温度の違いによって、保磁力が大きく変化してしまい、良好な励磁特性および鉄損特性を安定して得るのは困難であった。
このことから、適切に成分調整を行なったとしても、固溶化熱処理工程の加熱温度を適正としないと、良好な励磁特性および鉄損特性を安定して得るのは困難であることが分る。
No. 16 is an alloy satisfying the components defined in the present invention.
However, no. 16A (Comparative Example) is a solution heat treatment temperature before cold rolling of 850 ° C., the magnetic annealing temperature is 850 ° C., the average crystal grain size is 26.6 μm, and the coercive force is 43.4 A / m. In addition, good excitation characteristics could not be obtained, and the total iron loss W10 / 400 was 11.0 W / kg at an operating magnetic flux density of 1T and an operating frequency of 400 Hz, and good iron loss characteristics could not be obtained. This is probably because the heat treatment temperature is lower than the γ transformation temperature, so that many fine V-based carbides are easily dispersed in the matrix and suppress the growth of crystal grains at the magnetic annealing temperature.
In addition, No. Even at 16A, the magnetic annealing temperature was 880 ° C., the average crystal grain size was 58.8 μm, the coercive force was 30.0 A / m, and good excitation characteristics were obtained. The operating magnetic flux density was 1 T, and the operating frequency was 400 Hz. The total iron loss W10 / 400 is 9.3 W / kg, but good iron loss characteristics can be obtained. However, since the heating temperature of the solution heat treatment process is insufficient, the difference in magnetic annealing temperature is only 30 ° C. The magnetic force has changed greatly, and it has been difficult to stably obtain good excitation characteristics and iron loss characteristics.
From this, it can be understood that even if the components are appropriately adjusted, it is difficult to stably obtain good excitation characteristics and iron loss characteristics unless the heating temperature in the solution heat treatment step is appropriate.

No.16D及び16Eは、板厚が本発明で規定する範囲より厚いものである。
No.16D(比較例)は、板厚が250μmである。そのため、板厚の厚いNo.16Dでは、磁性焼鈍温度が850℃において、平均結晶粒径が40.1μm、保磁力が37.6A/mと、良好な励磁特性を得られたが、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が12.4W/kgと良好な鉄損特性が得られなかった。
これは、200μmを超える板厚としたことで、励磁特性の向上によるヒステリシス損失の低減よりも、板厚の増加による渦電流損失の増加の方が大きな影響を及ぼしたためと考えられる。
このことから、成分、製造プロセスの適正化により、励磁特性の向上を成しても、板厚が厚くなり過ぎると、良好な鉄損特性を安定して得るのは困難であることが分る。
No. 16D and 16E are thicker than the range defined in the present invention.
No. 16D (comparative example) has a plate thickness of 250 μm. Therefore, the thick plate No. In 16D, the magnetic annealing temperature was 850 ° C., the average crystal grain size was 40.1 μm, the coercive force was 37.6 A / m, and good excitation characteristics were obtained, but the operating magnetic flux density was 1 T and the operating frequency was 400 Hz. The total iron loss W10 / 400 was 12.4 W / kg, and good iron loss characteristics were not obtained.
This is presumably because the increase in eddy current loss due to the increase in plate thickness had a greater effect than the reduction in hysteresis loss due to the improvement in excitation characteristics because the plate thickness exceeded 200 μm.
From this, it can be seen that even if the excitation characteristics are improved by optimizing the components and the manufacturing process, it is difficult to stably obtain good iron loss characteristics if the plate thickness becomes too thick. .

No.16E(比較例)は、冷間圧延率を86.0%、板厚を350μmとするもので、磁性焼鈍温度が850℃において、保磁力が41.1A/mと、良好な励磁特性が得られなかった。さらに、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400が17.3W/kgと著しく増加し、良好な鉄損特性も得られなかった。
これは、冷間圧延率を90%未満としたことで、該磁性焼鈍温度における結晶粒の成長が促進されなかったために、良好な励磁特性が得られなかったものと思われる。加えて、200μmを超える板厚としたことで、板厚の増加による渦電流損失の増加が引き起こされ、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損W10/400の著しい増加をまねいたと思われる。
このことから、適切に成分調整を行なったとしても、冷間圧延の圧延率が低く、また、板厚が厚くなり過ぎると、良好な励磁特性および鉄損特性を安定して得るのは困難であることが分る。
No. 16E (Comparative Example) has a cold rolling rate of 86.0% and a plate thickness of 350 μm, and a magnetic annealing temperature of 850 ° C. and a coercive force of 41.1 A / m provide good excitation characteristics. I couldn't. Furthermore, the total magnetic loss W10 / 400 at an operating magnetic flux density of 1T and an operating frequency of 400 Hz significantly increased to 17.3 W / kg, and good iron loss characteristics were not obtained.
This is presumably because when the cold rolling rate was less than 90%, the growth of crystal grains at the magnetic annealing temperature was not promoted, so that good excitation characteristics could not be obtained. In addition, the plate thickness exceeding 200 μm caused an increase in eddy current loss due to the increase in plate thickness, which caused a significant increase in total iron loss W10 / 400 at an operating frequency of 400 Hz with an operating magnetic flux density of 1T. Seem.
For this reason, even if the components are appropriately adjusted, it is difficult to stably obtain good excitation characteristics and iron loss characteristics when the rolling ratio of cold rolling is low and the plate thickness becomes too thick. I know that there is.

次に、本発明例No.9〜No.11、No.13、No.16B及びNo.16Cと、比較例No.7、実施例No.12、No.15A〜No.15C及びNo.16Aの磁気特性比較を図1示す。また、本発明例は何れも磁性焼鈍温度850℃及び880℃における両磁気特性、比較例No.7、No.15A〜No.15C及びNo.16Aは磁性焼鈍温度850℃、比較例No.12は磁性焼鈍温度880℃の磁気特性である。
なお、横軸に保磁力(Hc)、縦軸に全鉄損(W10/400)をとり、本発明例は「○」、比較例は「×」とした。
図1の結果から、本発明の鉄心用磁性材では、成分範囲、製造プロセス条件を最適化し、保磁力を40A/m未満とした効果により、上記最適化を行わず、保磁力が40A/m以上となる比較例に比べて、良好な全鉄損(W10/400)が得られることが分かる。
Next, Invention Example No. 9-No. 11, no. 13, no. 16B and No. 16C and Comparative Example No. 7, Example No. 12, no. 15A-No. 15C and No. A comparison of the magnetic properties of 16A is shown in FIG. In addition, both examples of the present invention have both magnetic characteristics at magnetic annealing temperatures of 850 ° C. and 880 ° C. 7, no. 15A-No. 15C and No. 16A is a magnetic annealing temperature of 850 ° C. Reference numeral 12 denotes magnetic characteristics at a magnetic annealing temperature of 880 ° C.
The coercive force (Hc) is taken on the horizontal axis, the total iron loss (W10 / 400) is taken on the vertical axis, and “O” in the present invention example and “X” in the comparative example.
From the results of FIG. 1, in the magnetic material for iron core of the present invention, the coercive force is 40 A / m without performing the above optimization due to the effect of optimizing the component range and manufacturing process conditions and setting the coercive force to less than 40 A / m. It can be seen that better total iron loss (W10 / 400) can be obtained as compared with the comparative example described above.

図2に、本発明例No.16Cと、比較例No.16D、No.16Eの、磁性焼鈍温度850℃における磁気特性比較を示す。横軸に板厚、縦軸に全鉄損(W10/400)をとり、本発明例は「○」、比較例は「×」とした。
本発明の鉄心用磁性材では、板厚を200μm以下とする効果により、板厚が200μmを超える比較例に比べて、良好な全鉄損(W10/400)が得られることが分かる。
In FIG. 16C and Comparative Example No. 16D, no. 16E shows a comparison of magnetic properties at a magnetic annealing temperature of 850 ° C. The plate thickness is taken on the horizontal axis, and the total iron loss (W10 / 400) is taken on the vertical axis. The example of the present invention is “◯” and the comparative example is “x”.
In the magnetic material for iron core of the present invention, it can be seen that a good total iron loss (W10 / 400) can be obtained by the effect of setting the plate thickness to 200 μm or less as compared with the comparative example in which the plate thickness exceeds 200 μm.

次に、本発明例No.9〜No.11、No.13、No.16B及びNo.16Cと、比較例No.14、No.15B及びNo.15Cの、磁性焼鈍温度が850℃における磁気特性比較を図3に示す。横軸にC量、縦軸に保磁力(Hc)をとったものである。なお、本発明例は「○」、比較例は「×」とした。
本発明の鉄心用磁性材では、C量を、質量%で、0.008%以下とする効果により、C量のみが0.008%を超え、本発明の範囲から外れる比較例と比べて、良好な励磁特性が得られることが分かる。
Next, Invention Example No. 9-No. 11, no. 13, no. 16B and no. 16C and Comparative Example No. 14, no. 15B and No. FIG. 3 shows a comparison of magnetic characteristics of 15C at a magnetic annealing temperature of 850 ° C. The horizontal axis represents the amount of C, and the vertical axis represents the coercive force (Hc). In addition, the example of this invention was set as "(circle)" and the comparative example was set as "*".
In the magnetic material for iron core of the present invention, the amount of C is 0.008% or less in mass%, so that only the amount of C exceeds 0.008%, compared with a comparative example that deviates from the scope of the present invention. It can be seen that good excitation characteristics can be obtained.

図4に、本発明例No.9〜No.11、No.13、No.16B及びNo.16Cと、比較例No.7、No.12の、磁性焼鈍温度が880℃における磁気特性比較を示す。横軸にV+Mn量、縦軸に保磁力(Hc)をとったものである。なお、本発明例は「○」、比較例は「×」とした。
本発明の鉄心用磁性材では、V+Mn量を、質量%で、2.15%以下とする効果により、V+Mn量がこの範囲を外れる比較例と比べて、良好な励磁特性が得られることが分かる。
In FIG. 9-No. 11, no. 13, no. 16B and no. 16C and Comparative Example No. 7, no. 12 shows a comparison of magnetic characteristics at a magnetic annealing temperature of 880 ° C. The horizontal axis represents the amount of V + Mn, and the vertical axis represents the coercive force (Hc). In addition, the example of this invention was set as "(circle)" and the comparative example was set as "*".
In the magnetic material for iron core of the present invention, it can be seen that, due to the effect that the amount of V + Mn is 2.15% or less in mass%, excellent excitation characteristics can be obtained as compared with the comparative example in which the amount of V + Mn is out of this range. .

図5に、本発明例No.9〜No.11、No.13、No.16B及びNo.16Cと、比較例No.8及びNo.12の、磁性焼鈍温度が850℃における磁気特性比較を示す。横軸にMn/S(質量%の比)、縦軸に保磁力(Hc)をとったものである。なお、本発明例は「○」、比較例は「×」とした。加えて、比較例No.12の、磁性焼鈍温度が850℃におけるMn/Sと保磁力(Hc)との関係も、参考までに「△」として記載した。
本発明の鉄心用磁性材では、Mn/Sを、質量%の比で、10〜100とする効果により、Mn/Sがこの範囲を外れる比較例と比べて、良好な励磁特性が得られることが分かる。
In FIG. 9-No. 11, no. 13, no. 16B and No. 16C and Comparative Example No. 8 and no. 12 shows a comparison of magnetic characteristics at a magnetic annealing temperature of 850 ° C. The horizontal axis represents Mn / S (ratio by mass%), and the vertical axis represents coercive force (Hc). In addition, the example of this invention was set to "(circle)", and the comparative example was set to "x". In addition, Comparative Example No. 12, the relationship between Mn / S and the coercive force (Hc) at a magnetic annealing temperature of 850 ° C. is also indicated as “Δ” for reference.
In the magnetic material for iron core of the present invention, excellent excitation characteristics can be obtained compared to the comparative example in which Mn / S is out of this range due to the effect of setting Mn / S to 10 to 100 by mass ratio. I understand.

図6に、No.9〜No.11、No.13、No.16B及びNo.16Cと、比較例No.7、No.12、No.15A及びNo.16Aの磁気特性比較を示す。また、本発明例は何れも磁性焼鈍温度850℃及び880℃における両磁気特性、比較例No.7、No.15A及びNo.16Aは磁性焼鈍温度850℃、比較例No.12は磁性焼鈍温度880℃の磁気特性である。なお、横軸に平均結晶粒径、縦軸に保磁力(Hc)をとり、本発明例は「○」、比較例は「×」とした。
本発明の鉄心用磁性材では、平均結晶粒径を30μm以上とする効果により、平均結晶粒径が30μm未満の比較例と比べて、良好な励磁特性が得られることが分かる。
なお、図7にNo.7(比較例)、図8にNo.16A(比較例)、図9にNo.16B(本発明例)及び図10にNo.16C(本発明例)の、加熱温度が850℃の磁性焼鈍を行った後の光学顕微鏡による断面ミクロ組織写真を示す。組織観察は全て、乾式のフラットミリング(Arイオンによる逆スパッタ)仕上にて実施した。
本発明の鉄心用磁性材が、比較例と比べて、結晶粒径が大きいことが確認できた。
In FIG. 9-No. 11, no. 13, no. 16B and No. 16C and Comparative Example No. 7, no. 12, no. 15A and No. The magnetic characteristic comparison of 16A is shown. In addition, both examples of the present invention have both magnetic characteristics at magnetic annealing temperatures of 850 ° C. and 880 ° C. 7, no. 15A and No. 16A is a magnetic annealing temperature of 850 ° C. Reference numeral 12 denotes magnetic characteristics at a magnetic annealing temperature of 880 ° C. The horizontal axis represents the average crystal grain size, the vertical axis represents the coercive force (Hc), and the example of the present invention was “◯” and the comparative example was “x”.
In the magnetic material for iron core of the present invention, it can be seen that excellent excitation characteristics can be obtained by the effect of setting the average crystal grain size to 30 μm or more as compared with the comparative example having an average crystal grain size of less than 30 μm.
In FIG. 7 (comparative example) and FIG. 16A (comparative example), FIG. 16B (example of the present invention) and FIG. The cross-sectional microstructure photograph by the optical microscope after performing the magnetic annealing of heating temperature 850 degreeC of 16C (invention example) is shown. All the structure observations were performed by dry flat milling (reverse sputtering with Ar ions) finish.
It was confirmed that the magnetic material for iron core of the present invention had a larger crystal grain size than the comparative example.

図11に、本発明例No.16B、No.16Cと、比較例No.16Aの、磁性焼鈍温度が850℃における磁気特性比較を示す。横軸に固溶化熱処理温度、縦軸に保磁力(Hc)をとったものである。なお、本発明例は「○」、比較例は「×」とした。
本発明の鉄心用磁性材では、固溶化熱処理温度をγ変態温度以上とする効果により、γ変態温度未満の比較例と比べて、良好な励磁特性が得られることが分かる。
なお、図12にNo.16A(比較例)、図13にNo.16B(本発明例)及び図14にNo.16C(本発明例)の、固溶化熱処理を行った後の光学顕微鏡による断面ミクロ組織写真を示す。ここで、組織観察は全て、薬液による腐食にて実施した。
図12に示すNo.16A(比較例)は、α(フェライト)単相組織を呈しており、加熱温度が850℃の固溶化熱処理において、γ変態温度未満の加熱であることが確認できた。
図13に示すNo.16B(本発明例)は、二相組織を呈しており、加熱温度が950℃の固溶化熱処理において、α(フェライト)−γ(オーステナイト)二相組織を有する、γ変態温度以上まで加熱されていることが確認できた。
図14に示すNo.16C(本発明例)は、結晶粒の乱れた単相組織を呈しており、加熱温度が1050℃の固溶化熱処理において、γ単相組織を有する、γ変態温度以上まで加熱されていることが確認できた。
In FIG. 16B, no. 16C and Comparative Example No. 16A shows a comparison of magnetic characteristics at a magnetic annealing temperature of 850 ° C. The horizontal axis represents the solution heat treatment temperature, and the vertical axis represents the coercive force (Hc). In addition, the example of this invention was set to "(circle)", and the comparative example was set to "x".
In the magnetic material for iron core of the present invention, it can be seen that, due to the effect that the solution heat treatment temperature is equal to or higher than the γ transformation temperature, excellent excitation characteristics can be obtained as compared with the comparative example having a temperature lower than the γ transformation temperature.
In FIG. 16A (comparative example), FIG. 16B (invention example) and FIG. The cross-sectional microstructure photograph by the optical microscope after performing solution heat treatment of 16C (invention example) is shown. Here, all the structure observations were carried out by corrosion with a chemical solution.
No. 1 shown in FIG. 16A (Comparative Example) exhibited an α (ferrite) single-phase structure, and it was confirmed that the heating was less than the γ transformation temperature in the solution heat treatment at a heating temperature of 850 ° C.
No. 1 shown in FIG. 16B (Example of the present invention) has a two-phase structure, and is heated to a temperature equal to or higher than the γ transformation temperature, which has an α (ferrite) -γ (austenite) two-phase structure in a solution heat treatment at a heating temperature of 950 ° C. It was confirmed that
No. 1 shown in FIG. 16C (Example of the present invention) exhibits a single-phase structure with disordered crystal grains, and is heated to a temperature equal to or higher than the γ transformation temperature having a γ single-phase structure in a solution heat treatment at a heating temperature of 1050 ° C. It could be confirmed.

図15に、本発明例No.16Cと、比較例No.16Eの、磁性焼鈍温度が850℃における磁気特性比較を示す。横軸に冷間圧延率、縦軸に保磁力(Hc)をとったものである。なお、本発明例は「○」、比較例は「×」とした。加えて、比較例No.16Dの、磁性焼鈍温度が850℃における冷間圧延率と保磁力(Hc)との関係も、参考までに「△」として記載した。
本発明の鉄心用磁性材では、冷間圧延率を90%以上とする効果により、冷間圧延率が90%未満の比較例と比べて、良好な励磁特性が得られることが分かる。
In FIG. 16C and Comparative Example No. 16E shows a comparison of magnetic characteristics at a magnetic annealing temperature of 850 ° C. The horizontal axis represents the cold rolling rate and the vertical axis represents the coercive force (Hc). In addition, the example of this invention was set to "(circle)", and the comparative example was set to "x". In addition, Comparative Example No. The relationship between the cold rolling rate and the coercive force (Hc) of 16D at a magnetic annealing temperature of 850 ° C. is also indicated as “Δ” for reference.
In the magnetic material for iron cores of the present invention, it can be seen that, due to the effect of setting the cold rolling rate to 90% or more, excellent excitation characteristics can be obtained as compared with the comparative example having a cold rolling rate of less than 90%.

図16に、No.9〜No.11、No.13、No.16B及びNo.16Cと、比較例No.7、No.8、No.12、No.14、No.15A〜No.15C及びNo.16Aの磁気特性比較を示す。横軸に磁性焼鈍温度、縦軸に保磁力(Hc)をとったものである。なお、本発明例は「○」、比較例は「×」とした。
本発明の鉄心用磁性材では、成分範囲、製造プロセス条件を最適化することで、最適化の成されていない比較例と比べて、800〜900℃の磁性焼鈍温度によらず、良好な励磁特性を得られることが分かる。
In FIG. 9-No. 11, no. 13, no. 16B and No. 16C and Comparative Example No. 7, no. 8, no. 12, no. 14, no. 15A-No. 15C and No. The magnetic characteristic comparison of 16A is shown. The horizontal axis represents the magnetic annealing temperature, and the vertical axis represents the coercive force (Hc). In addition, the example of this invention was set as "(circle)" and the comparative example was set as "*".
In the magnetic material for iron core of the present invention, by optimizing the component range and manufacturing process conditions, excellent excitation can be achieved regardless of the magnetic annealing temperature of 800 to 900 ° C. as compared with the comparative example which is not optimized. It can be seen that the characteristics can be obtained.

(実施例2)
続いて、本発明に係る鉄心用磁性材を鉄心として、回転機のステータに適用した場合の効果をCAE解析により評価した結果について説明する。
このCAE解析においては、表2に示す本発明例No.16Cと、比較例No、15Aの鉄心用磁性材(磁気焼鈍温度はいずれも850°)を鉄心として、図17に示す回転機1のステータ2に適用した場合に、それぞれのモータトルク、モータ損失をCAE解析(電磁界解析ソフトウェア)により計算した。
(Example 2)
Then, the result of having evaluated the effect at the time of applying to the stator of a rotary machine by making the magnetic material for iron cores which concerns on this invention into an iron core by a CAE analysis is demonstrated.
In this CAE analysis, the present invention example No. When applied to the stator 2 of the rotating machine 1 shown in FIG. 17 using the magnetic material for iron core of 16C and Comparative Examples No. 15A (magnetic annealing temperatures are all 850 °) as the iron core, the respective motor torque and motor loss. Was calculated by CAE analysis (electromagnetic field analysis software).

なお、このCAEによる解析条件の概要は次の通りである。
ステータ、ロータの形状 : 自動車用モータの形状と同一のモデルを作成
(ステータ、ロータ、コイル、磁石、空気部)
材料 : 各部位に材料特性の定義
(BH特性、鉄損特性、電気抵抗値、密度)
モータ損失 : ロータの鉄損とステータの鉄損の和
The outline of the analysis conditions by CAE is as follows.
Stator and rotor shapes: Create the same model as the motor motor shape
(Stator, rotor, coil, magnet, air part)
Material: Definition of material properties for each part
(BH characteristics, iron loss characteristics, electrical resistance, density)
Motor loss: Sum of rotor iron loss and stator iron loss

上記した解析条件で実施したCAE解析の結果を表3に示す。表3に示すように、モータトルクについては、本発明例No.16C、比較例No、15Aともに124(N・m)と同一の値が得られた。これに対して、モータ損失(ロータの鉄損とステータの鉄損の和)については、本発明例No.16Cの鉄心用磁性材は、比較例No、15Aと比較して22.2%のモータ損失が向上することが確認された。
上記したCAE解析の結果により、本発明に係る鉄心用磁性材を用いた鉄心を、回転機のステータ本体、ロータ本体、トランスのコア、リアクトルのコアとして適用すると、良好な効率向上が可能となると判断できる。なお、本発明に係る鉄心用磁性材をトランスのコアあるいはリアクトルのコアに適用した場合、一般的には前記したモータ等の電動回転機(モータ)よりも高い周波数環境で用いられる。周波数が高いときに発生する渦損は回転数に二乗で大きくなるため、鉄損の低い本発明の鉄心用磁性材の効果はより顕著となる。
Table 3 shows the results of CAE analysis performed under the analysis conditions described above. As shown in Table 3, for the motor torque, Example No. of the present invention. The same value as 124 (N · m) was obtained for both 16C and Comparative Examples No and 15A. On the other hand, regarding the motor loss (the sum of the iron loss of the rotor and the iron loss of the stator), the invention example No. It was confirmed that the 16C iron core magnetic material improved in 22.2% motor loss as compared with Comparative Examples No and 15A.
As a result of the above-described CAE analysis, when an iron core using the magnetic material for iron core according to the present invention is applied as a stator body of a rotating machine, a rotor body, a core of a transformer, and a core of a reactor, a favorable efficiency improvement can be achieved. I can judge. When the magnetic material for iron core according to the present invention is applied to a transformer core or a reactor core, it is generally used in a higher frequency environment than an electric rotating machine (motor) such as the motor described above. Since the vortex loss generated when the frequency is high is increased by the square of the number of revolutions, the effect of the magnetic material for iron core of the present invention having a low iron loss becomes more remarkable.

本発明の鉄心用磁性材は、小型・軽量化、高出力化及び高効率化が必要とされる回転機、トランスのコア、リアクトルのコア、等の鉄心(磁心材料)として使用するのに最も適した材料である。   The magnetic material for iron cores of the present invention is most suitable for use as iron cores (magnetic core materials) for rotating machines, transformer cores, reactor cores, etc. that require miniaturization, weight reduction, high output and high efficiency. Suitable material.

1 :回転機
2 :ステータ
2a:ヨーク部
2b:ティース部
2c:コイル
3 :ロータ
3a:ロータヨーク
3b:永久磁石
DESCRIPTION OF SYMBOLS 1: Rotating machine 2: Stator 2a: Yoke part 2b: Teeth part 2c: Coil 3: Rotor 3a: Rotor yoke 3b: Permanent magnet

Claims (3)

板厚が200μm以下の鉄心用磁性材であって、該鉄心用磁性材は、質量%で、Co+Fe:97%以上、且つ、Fe:Coが0.9〜1.1、残部はV:1.70〜2.00%、Mn:0.01〜0.40%と不純物でなり、該不純物のうち、C:0.008%以下、S:0.01%以下に規制し、且つ、前記VとMnは、V+Mn:2.15%以下であり、Mn:Sが10〜100の関係を満足する組成を有し、平均結晶粒径:30μm以上、保磁力:40A/m未満、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損:11W/kg未満からなることを特徴とする鉄心用磁性材。   A magnetic material for iron core having a plate thickness of 200 μm or less, the magnetic material for iron core being in mass%, Co + Fe: 97% or more, Fe: Co being 0.9 to 1.1, and the balance being V: 1 70 to 2.00%, Mn: 0.01 to 0.40% and impurities, C: 0.008% or less, S: 0.01% or less of the impurities, V and Mn are V + Mn: 2.15% or less, Mn: S has a composition satisfying the relationship of 10 to 100, average grain size: 30 μm or more, coercive force: less than 40 A / m, operating magnetic flux A magnetic material for iron core, characterized by comprising a total iron loss of less than 11 W / kg at a density of 1 T and an operating frequency of 400 Hz. 質量%で、Co+Fe:97%以上、且つ、Fe:Coが0.9〜1.1、残部はV:1.70〜2.00%、Mn:0.01〜0.40%と不純物でなり、該不純物のうち、C:0.008%以下、S:0.01%以下に規制し、且つ、前記VとMnは、V+Mn:2.15%以下であり、Mn:Sが10〜100の関係を満足する組成を有する熱間圧延材を、γ変態温度以上に加熱した後、急冷を行う熱処理工程と、該熱処理工程の後、90%以上の圧延率で冷間圧延を行って板厚を200μm以下の冷間圧延材とし、該冷間圧延材を800〜900℃で磁性焼鈍を行い、平均結晶粒径:30μm以上、保磁力:40A/m未満、動作磁束密度を1Tとし動作周波数400Hzにおける全鉄損:11W/kg未満とすることを特徴とする鉄心用磁性材の製造方法。   In mass%, Co + Fe: 97% or more, Fe: Co is 0.9 to 1.1, the balance is V: 1.70 to 2.00%, Mn: 0.01 to 0.40%. Among the impurities, C: 0.008% or less, S: 0.01% or less, and V and Mn are V + Mn: 2.15% or less, and Mn: S is 10 to 10%. A hot-rolled material having a composition satisfying the relationship of 100 is heated to a temperature equal to or higher than the γ-transformation temperature and then rapidly cooled, and after the heat-treatment step, cold rolling is performed at a rolling rate of 90% or more. A cold-rolled material having a thickness of 200 μm or less is subjected to magnetic annealing at 800 to 900 ° C., the average crystal grain size is 30 μm or more, the coercive force is less than 40 A / m, and the operating magnetic flux density is 1T. Iron loss at an operating frequency of 400 Hz: Fe lower than 11 W / kg Manufacturing method of use magnetic material. 請求項1に記載の鉄心用磁性材を用いたことを特徴とする鉄心。
An iron core using the iron core magnetic material according to claim 1.
JP2010036995A 2010-02-23 2010-02-23 Magnetic material for iron core, method for producing the same, and iron core Pending JP2011174103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036995A JP2011174103A (en) 2010-02-23 2010-02-23 Magnetic material for iron core, method for producing the same, and iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036995A JP2011174103A (en) 2010-02-23 2010-02-23 Magnetic material for iron core, method for producing the same, and iron core

Publications (1)

Publication Number Publication Date
JP2011174103A true JP2011174103A (en) 2011-09-08

Family

ID=44687224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036995A Pending JP2011174103A (en) 2010-02-23 2010-02-23 Magnetic material for iron core, method for producing the same, and iron core

Country Status (1)

Country Link
JP (1) JP2011174103A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508447A (en) * 2011-12-16 2015-03-19 アペラム Method for producing a thin strip made of soft magnetic alloy and the resulting strip
CN105467347A (en) * 2015-11-17 2016-04-06 国网浙江省电力公司电力科学研究院 Voltage transformer excitation characteristic curve calculating method
CN105740569A (en) * 2016-02-24 2016-07-06 国家电网公司 Current transformer engineering model building method based on transient large current testing technology
WO2017017526A3 (en) * 2015-07-28 2017-03-09 Can As Sun, Inc. Stator magnetic core brushless motor apparatus, system and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508447A (en) * 2011-12-16 2015-03-19 アペラム Method for producing a thin strip made of soft magnetic alloy and the resulting strip
US10957481B2 (en) 2011-12-16 2021-03-23 Aperam Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained
US11600439B2 (en) 2011-12-16 2023-03-07 Aperam Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained
WO2017017526A3 (en) * 2015-07-28 2017-03-09 Can As Sun, Inc. Stator magnetic core brushless motor apparatus, system and methods
CN105467347A (en) * 2015-11-17 2016-04-06 国网浙江省电力公司电力科学研究院 Voltage transformer excitation characteristic curve calculating method
CN105467347B (en) * 2015-11-17 2018-04-10 国网浙江省电力公司电力科学研究院 A kind of voltage transformer exciting characteristic curve acquiring method
CN105740569A (en) * 2016-02-24 2016-07-06 国家电网公司 Current transformer engineering model building method based on transient large current testing technology

Similar Documents

Publication Publication Date Title
JP4779474B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5186036B2 (en) IPM motor rotor and IPM motor using the same
JP5437476B2 (en) Method for producing non-oriented electrical steel sheet
JP2008050686A (en) Nonoriented silicon steel sheet having excellent strength and magnetic property and its production method
US20050206267A1 (en) Method of manufacturing a stator core
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JP2010031328A (en) Nonoriented silicon steel sheet for rotor and production method therefor
JP2009299102A (en) Nonoriented silicon steel sheet for rotor and production method therefor
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
CN113474472B (en) Non-oriented electromagnetic steel sheet
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP2011174103A (en) Magnetic material for iron core, method for producing the same, and iron core
JP4311127B2 (en) High tension non-oriented electrical steel sheet and method for producing the same
JP2021025097A (en) Non-oriented electromagnetic steel sheet and method for producing the same
JP6339768B2 (en) Steel plate for rotor core of IPM motor excellent in field weakening and manufacturing method thereof
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5671871B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007039754A (en) METHOD FOR PRODUCING Cu-CONTAINING NONORIENTED ELECTRICAL STEEL SHEET
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
KR20230137416A (en) Non-oriented electrical steel sheet, iron core, manufacturing method of iron core, motor and motor manufacturing method
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JP4265508B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP6110097B2 (en) High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
JP6724479B2 (en) Non-oriented electrical steel sheet, motor core, and method for manufacturing non-oriented electrical steel sheet
JP2017179484A (en) Nonoriented electromagnetic steel sheet, motor core and manufacturing method of nonoriented electromagnetic steel sheet