JP2011173130A - Method of manufacturing toroidal type continuously variable transmission - Google Patents

Method of manufacturing toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2011173130A
JP2011173130A JP2010037057A JP2010037057A JP2011173130A JP 2011173130 A JP2011173130 A JP 2011173130A JP 2010037057 A JP2010037057 A JP 2010037057A JP 2010037057 A JP2010037057 A JP 2010037057A JP 2011173130 A JP2011173130 A JP 2011173130A
Authority
JP
Japan
Prior art keywords
foam roller
groove
roller
disk
concave groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037057A
Other languages
Japanese (ja)
Other versions
JP5381797B2 (en
Inventor
Daiki Nishii
大樹 西井
Seihatsu Ri
成発 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010037057A priority Critical patent/JP5381797B2/en
Publication of JP2011173130A publication Critical patent/JP2011173130A/en
Application granted granted Critical
Publication of JP5381797B2 publication Critical patent/JP5381797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a recessed groove having high shape accuracy on one-side face of a disk to improve the traction property stably and at a low cost. <P>SOLUTION: A form roller 17 which has the curved surface 20 having a shape corresponding to the recessed groove to be formed is supported to a tool displacing member 21 for moving the form roller 17 via an elastic member 23. By rotating a disk 15 in a state where the form roller 17 is pressed against the one-side surface 16, the recessed groove is formed on the one-side surface 16. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、例えば自動車用の自動変速機として、或はポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用する、トロイダル型無段変速機の製造方法の改良に関する。具体的には、各パワーローラの周面と各ディスクの軸方向片側面とのトラクション部のトラクション特性(トラクション係数)の向上を図るべく、これら各パワーローラの周面と各ディスクの軸方向片側面とのうちの少なくとも一方の面(少なくとも何れかのトラクション面)に、例えば深さが1〜3μm程度の凹溝(微細溝)を(トラクション面の全体に亙り)形成する構造に関し、形状精度の高い凹溝(所望の形状の凹溝)を安定的に、且つ、低コストで形成できる製造方法の実現を図るものである。   The present invention relates to an improvement in a manufacturing method of a toroidal type continuously variable transmission that is used, for example, as an automatic transmission for an automobile or as a transmission for adjusting the operating speed of various industrial machines such as a pump. Specifically, in order to improve the traction characteristics (traction coefficient) of the traction portion between the circumferential surface of each power roller and one axial side surface of each disk, the circumferential surface of each power roller and the axial piece of each disk. Concerning a structure in which a concave groove (fine groove) having a depth of, for example, about 1 to 3 μm (over the entire traction surface) is formed on at least one of the side surfaces (at least one of the traction surfaces). It is intended to realize a manufacturing method that can stably form a high-groove groove (a groove having a desired shape) at low cost.

自動車用変速装置としてトロイダル型無段変速機を使用する事が、一部で実施されて周知である。図6〜7は、現在実施されているトロイダル型無段変速機の基本構成を示している。このトロイダル型無段変速機は、ダブルキャビティ型と呼ばれるもので、それぞれが中炭素鋼、高炭素鋼、軸受鋼等の硬質鋼製である1対の入力側ディスク1、1を入力回転軸2に対し、それぞれがトロイド曲面(断面円弧形の凹面)であって特許請求の範囲に記載した軸方向片側面に相当する入力側内側面3、3同士を、互いに対向させた状態で、互いに同心に、且つ、同期した回転を自在に支持している。   The use of a toroidal type continuously variable transmission as an automobile transmission is partly implemented and well known. 6 to 7 show a basic configuration of a toroidal-type continuously variable transmission currently being implemented. This toroidal type continuously variable transmission is called a double cavity type, and a pair of input side disks 1 and 1 each made of hard steel such as medium carbon steel, high carbon steel, bearing steel, etc. are connected to an input rotary shaft 2. On the other hand, each of them is a toroidal curved surface (concave surface having a circular arc cross section) and the input side inner side surfaces 3 and 3 corresponding to one side surface in the axial direction described in the claims are opposed to each other. It supports concentric and synchronized rotation freely.

又、上記入力回転軸2の中間部周囲に、中間部外周面に出力歯車4を固設した出力筒5を、この入力回転軸2に対する回転を自在に支持している。又、この出力筒5の両端部に、それぞれが中炭素鋼、高炭素鋼、軸受鋼等の硬質鋼製である出力側ディスク6、6を、スプライン係合により、上記出力筒5と同期した回転自在に支持している。この状態で、それぞれがトロイド曲面であって特許請求の範囲に記載した軸方向片側面に相当する、上記両出力側ディスク6、6の出力側内側面7、7が、上記両入力側内側面3、3に対向する。   An output cylinder 5 having an output gear 4 fixed to the outer peripheral surface of the intermediate portion is supported around the intermediate portion of the input rotary shaft 2 so as to freely rotate with respect to the input rotary shaft 2. Further, the output side disks 6 and 6 each made of hard steel such as medium carbon steel, high carbon steel, bearing steel, etc. are synchronized with the output cylinder 5 by spline engagement at both ends of the output cylinder 5. It is supported rotatably. In this state, each of the output side inner surfaces 7 and 7 of the output side disks 6 and 6, each of which is a toroidal curved surface and corresponding to one axial side surface recited in the claims, is the both input side inner side surfaces. 3 and 3 are opposed.

又、上記入力回転軸2の周囲で上記入力側、出力側両内側面3、7同士の間部分(キャビティ)に、それぞれの周面を球状凸面とした、それぞれが中炭素鋼、高炭素鋼、軸受鋼等の硬質鋼製であるパワーローラ8、8を、2個ずつ配置している。これら各パワーローラ8、8は、それぞれトラニオン9、9の内側面に、基半部と先半部とが偏心した支持軸10、10と複数の転がり軸受とを介して、これら各支持軸10、10の先半部回りの回転、及び、これら各支持軸10、10の基半部を中心とする若干の揺動変位自在に支持されている。又、上記各トラニオン9、9は、それぞれの長さ方向(図6の表裏方向、図7の上下方向)両端部にこれら各トラニオン9、9毎に互いに同心に設けられた、傾転軸11、11を中心として揺動変位自在である。   Further, around the input rotation shaft 2, the peripheral surfaces are formed as spherical convex surfaces between the input-side and output-side inner side surfaces 3 and 7 (cavities), each of which is a medium carbon steel and a high carbon steel. Two power rollers 8, 8 made of hard steel such as bearing steel are disposed. The power rollers 8 and 8 are respectively connected to the inner surfaces of the trunnions 9 and 9 via support shafts 10 and 10 whose base half and tip half are eccentric and a plurality of rolling bearings. 10 is supported in such a manner that it can be rotated about the front half of the front half and a small amount of swinging about the base half of each of the support shafts 10 and 10. Each trunnion 9, 9 is provided with a tilt shaft 11 concentrically provided for each trunnion 9, 9 at both ends in the length direction (front and back direction in FIG. 6, vertical direction in FIG. 7). , 11 can be swung freely.

これら各トラニオン9、9を揺動(傾斜)させる動作は、油圧式のアクチュエータ12、12により、これら各トラニオン9、9を上記各傾転軸11、11の軸方向に変位させる事により行う。即ち、変速時には、上記各アクチュエータ12、12への圧油の給排により、上記各トラニオン9、9を上記各傾転軸11、11の軸方向に変位させる。この結果、上記各パワーローラ8、8の周面と上記入力側、出力側各内側面3、7との接触部(トラクション部)の接線方向に作用する力の方向が変化する(サイドスリップが発生する)ので、上記各トラニオン9、9が上記各傾転軸11、11を中心として揺動変位する。   The operation of swinging (tilting) each trunnion 9, 9 is performed by displacing each trunnion 9, 9 in the axial direction of each tilt shaft 11, 11 by hydraulic actuators 12, 12. That is, at the time of shifting, the trunnions 9 and 9 are displaced in the axial direction of the tilt shafts 11 and 11 by supplying and discharging pressure oil to and from the actuators 12 and 12. As a result, the direction of the force acting in the tangential direction of the contact portion (traction portion) between the peripheral surface of each of the power rollers 8 and 8 and each of the input side and output side inner surfaces 3 and 7 changes (side slip occurs). Therefore, the trunnions 9, 9 are oscillated and displaced about the tilt shafts 11, 11.

上述の様なトロイダル型無段変速機の運転時には、駆動軸13により一方(図6の左方)の入力側ディスク1を、ローディングカム式の押圧装置14を介して回転駆動する。この結果、前記入力回転軸2の両端部に支持された1対の入力側ディスク1、1が、互いに近付く方向に押圧されつつ同期して回転する。そして、この回転が、上記各パワーローラ8、8を介して前記両出力側ディスク6、6に伝わり、前記出力歯車4から取り出される。   During operation of the toroidal-type continuously variable transmission as described above, one input side disk 1 (left side in FIG. 6) is rotationally driven by a drive shaft 13 via a loading cam type pressing device 14. As a result, the pair of input-side disks 1 and 1 supported at both ends of the input rotation shaft 2 rotate synchronously while being pressed in a direction approaching each other. Then, this rotation is transmitted to the output side disks 6 and 6 through the power rollers 8 and 8 and is taken out from the output gear 4.

上記入力回転軸2と上記出力歯車4との回転速度の比を変える場合で、先ず入力回転軸2と出力歯車4との間で減速を行なう場合には、上記各トラニオン9、9を図6に示す位置に揺動させ、上記各パワーローラ8、8の周面を、上記各入力側ディスク1、1の入力側内側面3、3の中心寄り部分と上記両出力側ディスク6、6の出力側内側面7、7の外周寄り部分とにそれぞれ当接させる。反対に、増速を行なう場合には、上記各トラニオン9、9を図6と反対方向に揺動させ、上記各パワーローラ8、8の周面を、上記両入力側ディスク1、1の入力側内側面3、3の外周寄り部分と上記両出力側ディスク6、6の出力側内側面7、7の中心寄り部分とにそれぞれ当接させる。上記各トラニオン9、9の揺動角度を中間にすれば、上記入力回転軸2と出力歯車4との間で、中間の速度比(変速比)を得られる。   When the ratio of the rotational speeds of the input rotary shaft 2 and the output gear 4 is changed, and when the deceleration is first performed between the input rotary shaft 2 and the output gear 4, the trunnions 9 and 9 are shown in FIG. The power rollers 8 and 8 are swung to the positions shown in FIG. 3 so that the peripheral surfaces of the input-side discs 1 and 1 near the center of the input-side discs 1 and 3 and the output-side discs 6 and 6 It is made to contact | abut to the outer peripheral side part of the output side inner surfaces 7 and 7, respectively. On the contrary, when the speed is increased, the trunnions 9 and 9 are swung in the direction opposite to that in FIG. 6, and the peripheral surfaces of the power rollers 8 and 8 are input to the input disks 1 and 2. It is made to contact | abut to the outer periphery side part of the side inner side surfaces 3 and 3 and the center side part of the output side inner side surfaces 7 and 7 of the said output side disks 6 and 6, respectively. An intermediate speed ratio (transmission ratio) can be obtained between the input rotary shaft 2 and the output gear 4 by setting the swing angles of the trunnions 9 and 9 to an intermediate position.

上述の様なトロイダル型無段変速機の運転時、入力側、出力側各ディスク1、6の入力側、出力側各内側面3、7と各パワーローラ8、8の周面とのトラクション部では、トラクションオイルを介して動力が伝達される。又、このトラクション部で大きなトルクを伝達する為には、このトラクション部に大きな押し付け力を付与する必要がある。但し、この様に大きな押し付け力を付与する場合、上記入力側、出力側各ディスク1、6や各パワーローラ8、8の耐久性が低下し易くなる可能性がある。これら各ディスク1、6や各パワーローラ8、8の強度を確保すべく、これら各部材1、6、8の厚さ寸法を大きくする事は、これら各部材1、6、8を組み込んだトロイダル型無段変速機が大型化する可能性があり、装置の小型化を図る面からは好ましくない。   During operation of the toroidal-type continuously variable transmission as described above, the traction portion between the input and output side inner surfaces 3 and 7 of the input and output discs 1 and 6 and the peripheral surfaces of the power rollers 8 and 8. Then, power is transmitted through the traction oil. In order to transmit a large torque at the traction portion, it is necessary to apply a large pressing force to the traction portion. However, when such a large pressing force is applied, there is a possibility that the durability of the disks 1 and 6 and the power rollers 8 and 8 on the input side and output side are likely to deteriorate. Increasing the thickness of each of the members 1, 6, 8 in order to ensure the strength of each of the disks 1, 6 and each of the power rollers 8, 8 is toroidal incorporating these members 1, 6, 8. The type continuously variable transmission may increase in size, which is not preferable in terms of downsizing the device.

一方、上述の様な不都合の防止を図るべく、例えば特許文献1〜6には、各ディスク1、6の軸方向片側面や各パワーローラ8の周面(トラクション面)に、深さが0.1μm〜8μm程度の凹溝(微細溝)を、当該面全体に亙って(例えば、らせん状に、又は、同心円状に複数)形成する技術が記載されている。この様な技術を採用すれば、トラクション部のトラクション特性(トラクション係数)の向上を図れ、この様な凹溝を形成しない構造に比べ、小さな押し付け力で大きなトルクを伝達できると考えられる。但し、この様な凹溝を形成する構造の場合、この凹溝の溝深さや溝幅が大きくなり過ぎると、上記トラクション部に十分な油膜が形成されず、著しい場合には金属接触を生じ、十分な耐久性の確保を図れなくなる可能性がある。一方、上記凹溝の溝深さや溝幅が小さくなり過ぎると、この凹溝の形成に基づくトラクション特性の向上を十分に得られなくなる可能性がある。この為、この様な凹溝を精度良く形成する技術が求められている。   On the other hand, in order to prevent the inconvenience as described above, for example, Patent Documents 1 to 6 disclose that the depth is 0 on the axial side surface of each of the disks 1 and 6 and the peripheral surface (traction surface) of each power roller 8. A technique for forming concave grooves (fine grooves) of about 1 μm to 8 μm over the entire surface (for example, a plurality of spiral or concentric circles) is described. By adopting such a technique, it is considered that traction characteristics (traction coefficient) of the traction part can be improved, and a large torque can be transmitted with a small pressing force as compared with a structure in which such a concave groove is not formed. However, in the case of a structure that forms such a groove, if the groove depth or groove width of the groove is too large, a sufficient oil film is not formed on the traction part, and in a remarkable case, metal contact occurs, There is a possibility that sufficient durability cannot be ensured. On the other hand, if the groove depth or groove width of the groove is too small, the traction characteristics based on the formation of the groove may not be sufficiently improved. For this reason, a technique for forming such a concave groove with high accuracy is required.

上記特許文献1〜6のうち、例えば特許文献1には、多結晶CBN工具(CBN:立方晶窒化ホウ素)の切削に基づいて、トラクション面に凹溝を形成する技術が記載されている。又、同じく特許文献2には、切削工具の切り込み量をこの切削工具の摩耗量に応じて調節する事により、トラクション面に所望の凹溝を形成する技術が記載されている。又、同じく特許文献3には、切削によりトラクション面に凹溝を形成した後、このトラクション面に研削加工を施す事により、この凹溝の開口縁(隣り合う凹溝同士の間部分により構成される凸部の端縁)にクラウニングを施す技術が記載されている。又、同じく特許文献4には、切削により凹溝を形成する前、又は、後に、直径が6mm程度の窒化珪素製の球体をトラクション面に押し付けて、このトラクション面を加工硬化させる技術が記載されている。又、同じく特許文献5には、凹溝を形成したトラクション面にジチオリン酸亜鉛の被膜を施す技術が記載されている。又、同じく特許文献6には、転造加工によりトラクション面に凹溝を形成する技術が記載されている。   Among the above Patent Documents 1 to 6, for example, Patent Document 1 describes a technique for forming a concave groove on a traction surface based on cutting of a polycrystalline CBN tool (CBN: cubic boron nitride). Similarly, Patent Document 2 describes a technique for forming a desired groove on the traction surface by adjusting the cutting amount of a cutting tool in accordance with the amount of wear of the cutting tool. Similarly, in Patent Document 3, a groove is formed on the traction surface by cutting, and then the traction surface is ground to form an opening edge of the groove (a portion between adjacent grooves). The technique of applying crowning to the edge of the convex portion is described. Similarly, Patent Document 4 describes a technique of pressing and hardening a silicon nitride sphere having a diameter of about 6 mm against a traction surface before or after forming a concave groove by cutting. ing. Similarly, Patent Document 5 describes a technique for applying a zinc dithiophosphate coating on a traction surface in which a concave groove is formed. Similarly, Patent Document 6 describes a technique for forming a concave groove on a traction surface by rolling.

但し、これら特許文献1〜6に記載された技術を採用しただけでは、形状精度の高い凹溝(所望の形状の凹溝)を安定的に、且つ、低コストで形成する事、即ち、所望の凹溝を形成したディスク1、6やパワーローラ8を安定的に量産する事は難しいと考えられる。この理由は、以下の通りである。即ち、例えばトラクション面に凹溝を形成する作業は、被加工物である上記ディスク1、6やパワーローラ8を加工機にセットし、この被加工物1、6、8を回転させつつ行われる。一方、トラクション特性の向上の面からは、上記被加工物である上記ディスク1、6やパワーローラ8のトラクション面に、深さが1〜3μm程度の凹溝を形成する必要がある。但し、上記被加工物1、6、8を加工機に、例えば上記凹溝の深さ方向に関し3μm未満の位置ずれでセットする事や、この様な被加工物1、6、8を、同じく深さ方向に関し3μm未満の振れで回転させる事は、コストや作業時間等を無視すれば不可能でははいが、量産化を図る面からは現実的ではない。   However, by simply adopting the techniques described in Patent Documents 1 to 6, it is possible to stably form a groove having a high shape accuracy (a groove having a desired shape) at a low cost. It is considered difficult to stably mass-produce the disks 1 and 6 and the power roller 8 in which the concave grooves are formed. The reason for this is as follows. That is, for example, the operation of forming the concave groove on the traction surface is performed while the workpieces 1, 6 and 8 are set on a processing machine and the workpieces 1, 6, 8 are rotated. . On the other hand, in order to improve the traction characteristics, it is necessary to form a concave groove having a depth of about 1 to 3 μm on the traction surface of the disk 1 or 6 or the power roller 8 as the workpiece. However, the workpieces 1, 6, and 8 are set on a processing machine, for example, with a positional deviation of less than 3 μm with respect to the depth direction of the concave groove, or such workpieces 1, 6, and 8 are similarly Although it is impossible to rotate with a deflection of less than 3 μm in the depth direction if cost and work time are ignored, it is not realistic from the viewpoint of mass production.

そして、上述の様な凹溝を形成する際、加工工具(切削工具、転造工具)の位置を単純な位置制御だけで規制すると、即ち、予め設定した位置に加工工具を移動させるだけで加工を行うと、上述の様な被加工物1、6、8の位置ずれや振れ分、更には、上記加工工具の不可避的な位置ずれ分、凹溝の形状精度が悪化する(所望の凹溝を形成できない)。又、上記凹溝は、熱処理が施された高硬度のトラクション面に形成する為、加工時間の経過に伴い上記加工工具が摩耗する事が避けられない。この為、この工具の摩耗に関しても、そのままでは、上記凹溝の形状精度の悪化に繋がる。尚、上記特許文献2には、上述した様に切削工具の摩耗量に応じてその切り込み量を調節(補正)する技術が記載されているが、この技術を単に採用しただけでは、上記調節を頻繁に行わなければならず、十分なコストの低減を図れない可能性がある。   Then, when forming the concave groove as described above, if the position of the processing tool (cutting tool, rolling tool) is restricted only by simple position control, that is, the processing tool is simply moved to a preset position. As a result, the positional deviation and deflection of the workpieces 1, 6, and 8 as described above, and the inevitable positional deviation of the processing tool, and the shape accuracy of the concave grooves deteriorate (desired concave grooves). Cannot be formed). In addition, since the concave groove is formed on a high-hardness traction surface that has been heat-treated, it is inevitable that the machining tool will wear with the passage of machining time. For this reason, as for the wear of this tool as it is, it leads to deterioration of the shape accuracy of the groove. Note that, as described above, Patent Document 2 describes a technique for adjusting (correcting) the cutting amount in accordance with the amount of wear of the cutting tool as described above. It must be done frequently, and there is a possibility that sufficient cost reduction cannot be achieved.

特開2002−39306号公報JP 2002-39306 A 特開2002−46001号公報JP 2002-46001 A 特開2004−138145号公報JP 2004-138145 A 特開2004−138165号公報JP 2004-138165 A 特開2004−138216号公報JP 2004-138216 A 特開2002−307204号公報JP 2002-307204 A

本発明のトロイダル型無段変速機の製造方法は、上述の様な事情に鑑み、トラクション面に凹溝(微細溝)を形成する構造に関し、形状精度の高い凹溝(所望の形状の凹溝)を安定的に、且つ、低コストで形成できる製造方法を実現すべく発明したものである。   The manufacturing method of the toroidal type continuously variable transmission according to the present invention relates to a structure in which a concave groove (fine groove) is formed on a traction surface in view of the circumstances as described above, and a concave groove with a high shape accuracy (a concave groove with a desired shape). Is invented in order to realize a manufacturing method that can be formed stably and at low cost.

本発明の製造方法の対象となるトロイダル型無段変速機は、何れも、従来から知られているトロイダル型無段変速機と同様に、少なくとも1対のディスクと複数のパワーローラとを備える。
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持されるものである。
又、上記各パワーローラは、軸方向に関して上記各ディスクの軸方向片側面同士の間位置の円周方向に関して複数個所に設けられて、球状凸面としたそれぞれの周面を、上記各ディスクの軸方向片側面にそれぞれ当接させるものである。
そして、上記各パワーローラの周面と上記各ディスクの軸方向片側面とのうちの少なくとも一方の面(少なくとも何れかのトラクション面)に、トラクション特性(トラクション係数)の向上を図るべく、例えば深さが1〜3μm程度の凹溝(微細溝)を、当該面の周方向に形成している。
Each of the toroidal type continuously variable transmissions to which the manufacturing method of the present invention is applied includes at least a pair of disks and a plurality of power rollers, similarly to the conventionally known toroidal type continuously variable transmissions.
Each of these disks is supported concentrically and freely in relative rotation in a state in which the respective one side surfaces in the axial direction, each of which is a toroidal curved surface having an arc cross section, are opposed to each other.
Each of the power rollers is provided at a plurality of locations in the circumferential direction between the axial side surfaces of each of the disks with respect to the axial direction. It is made to contact each one side of a direction.
In order to improve traction characteristics (traction coefficient) on at least one surface (at least one of the traction surfaces) of the peripheral surface of each power roller and one axial side surface of each disk, A concave groove (fine groove) having a length of about 1 to 3 μm is formed in the circumferential direction of the surface.

特に、本発明の製造方法のうち、請求項1に記載したトロイダル型無段変速機の製造方法に於いては、形成すべき凹溝に対応する形状の転造部を有するフォームローラ(転造工具)を、このフォームローラを変位させる部材{工具を支持すると共に、加工時にこの支持した工具を変位(移動)させる部材。加工機の工具変位部材}に対し、ばね(圧縮コイルばね、皿ばね等)、ゴムの如きエラストマー、合成樹脂等の弾性部材を介して支持し、且つ、この様な弾性部材を介して支持したこのフォームローラを、上記一方の面に押し付けた状態で、これらフォームローラと一方の面とを相対変位させる。具体的には、上記フォームローラに対し被加工部材(ディスク又はパワーローラ)を回転させる、或は、これとは逆に、この被加工部材に対し上記フォームローラを回転(旋回)させる。そして、この様なフォームローラと一方の面との相対変位に基づいて、この一方の面に上記凹溝を形成する。   In particular, in the manufacturing method of the present invention, in the manufacturing method of the toroidal-type continuously variable transmission according to claim 1, a foam roller having a rolling portion having a shape corresponding to the groove to be formed (rolling) The tool) is a member that displaces the foam roller {a member that supports the tool and displaces (moves) the supported tool during processing. The tool displacement member} of the processing machine is supported via an elastic member such as a spring (compression coil spring, disc spring, etc.), an elastomer such as rubber, or a synthetic resin, and is supported via such an elastic member. In a state where the foam roller is pressed against the one surface, the foam roller and the one surface are relatively displaced. Specifically, the workpiece (disk or power roller) is rotated with respect to the foam roller, or conversely, the foam roller is rotated (turned) with respect to the workpiece. And based on the relative displacement of such a form roller and one surface, the said ditch | groove is formed in this one surface.

尚、上記弾性部材は、上記フォームローラの回転中心軸に対し直交する方向で、且つ、このフォームローラを上記一方の面に近付ける方向の弾力を付与するものとする。又、この様な弾性部材のばね定数は、例えば次の様に規制する。即ち、位置制御によりフォームローラを被加工部材に押し付けた状態で、上記フォームローラを変位させる部材(工具変位部材)と上記被加工部材との、上記凹溝の深さ方向に関する位置関係のずれ量をaとした場合に、形成される凹溝の深さのずれ量bが、このズレ量aに対し1/1000〜1/2000程度(b=a/1000〜a/2000)となる様に、上記弾性部材のばね定数を設定する。要するに、位置制御により上記フォームローラを被加工部材に(被加工面を塑性変形させるのに十分な程の力で)押し付けた状態で、上記フォームローラを変位させる部材とこの被加工物との位置ずれ量が例えば0.5mm程度となる場合に、形成される凹溝の深さのずれ量が例えば0.25〜0.5μm程度となる様に、上記ばね定数を設定する。   In addition, the said elastic member shall give the elasticity of the direction orthogonal to the rotation center axis | shaft of the said foam roller, and the direction which makes this foam roller approach the said one surface. The spring constant of such an elastic member is regulated as follows, for example. That is, the positional deviation in the depth direction of the concave groove between the member that displaces the foam roller (tool displacement member) and the member to be processed while the foam roller is pressed against the member to be processed by position control. Is a depth difference b of the groove to be formed so that the deviation a is about 1/1000 to 1/2000 (b = a / 1000 to a / 2000). The spring constant of the elastic member is set. In short, the position of the workpiece and the workpiece that displaces the foam roller in a state where the foam roller is pressed against the workpiece by a position control (with a force sufficient to plastically deform the workpiece surface). When the deviation amount is, for example, about 0.5 mm, the spring constant is set so that the deviation amount of the depth of the groove to be formed is, for example, about 0.25 to 0.5 μm.

又、同じく請求項2に記載したトロイダル型無段変速機の製造方法に於いては、形成すべき凹溝に対応する形状の転造部を有するフォームローラ(転造工具)を、上記一方の面に所定圧で押し付けた状態{一方の面とフォームローラとの当接部(転造加工部)に常に所定の荷重が付与された状態}で、これらフォームローラと一方の面とを相対変位させる。具体的には、上記フォームローラに対し被加工部材(ディスク又はパワーローラ)を回転させる、或は、これとは逆に、この被加工部材に対し上記フォームローラを回転(旋回)させる。そして、この様なフォームローラと一方の面との相対変位に基づいて、この一方の面に上記凹溝を形成する。尚、この様に所定圧で押し付ける為には、例えば、油圧式の押し付け装置により上記フォームローラを、油圧が常に所定の値になる様に制御しつつ押し付ける(定圧制御でフォームローラを押し付ける)。   Further, in the manufacturing method of the toroidal type continuously variable transmission according to claim 2, a foam roller (rolling tool) having a rolling portion having a shape corresponding to the concave groove to be formed is provided on the one side. Relative displacement of the foam roller and one surface in a state where the surface is pressed with a predetermined pressure {a state where a predetermined load is always applied to the contact portion (rolling portion) between one surface and the foam roller} Let Specifically, the workpiece (disk or power roller) is rotated with respect to the foam roller, or conversely, the foam roller is rotated (turned) with respect to the workpiece. And based on the relative displacement of such a form roller and one surface, the said ditch | groove is formed in this one surface. In order to press at a predetermined pressure in this way, for example, the foam roller is pressed by a hydraulic pressing device while controlling the hydraulic pressure to always be a predetermined value (pressing the foam roller by constant pressure control).

又、上述の様な本発明のトロイダル型無段変速機の製造方法を実施する場合に好ましくは、上記一方の面に研削加工、又は、超仕上加工を施した後、この一方の面に凹溝を形成する。
又、同じく本発明のトロイダル型無段変速機の製造方法を実施する場合に好ましくは、上記一方の面に凹溝を形成した後、この一方の面に超仕上加工又はショット加工(例えばショットピーニング加工)を施して、この凹溝の開口縁、即ち、隣り合う凹溝同士の間部分により構成される凸部の端縁を滑らかな曲面にする(丸める、クラウニングさせる)。
又、同じく本発明のトロイダル型無段変速機の製造方法を実施する場合に好ましくは、上記フォームローラ(転造工具)を、高硬度で耐摩耗性の優れたもの、例えば超硬合金、チタン合金、セラミックス、ダイヤモンド等により造られたものとする。
又、このフォームローラは、算盤の玉(断面を略菱形とした円盤)の如き形状を有するものとし、ローラ支持部材により回転自在に支持する。又、このローラ支持部材は、1対の支持片を互いに平行に固設したものとする。そして、これら各支持片の互いに対向する側面同士の間に上記フォームローラを、これら両側面に対し直交する軸を中心とする回転を可能に支持する。又、その回転中心軸に対し直角方向に、上記一方の面に押し付けられる曲面部(形成すべき凹溝に対応する形状の転造部)を、上記フォームローラの全周に亙って設ける。そして、この様なフォームローラを回転自在に支持した上記ローラ支持部材を、前記弾性部材、又は、油圧式の押し付け装置を介して、加工機の工具変位部材に支持する。
Further, when the method for manufacturing the toroidal type continuously variable transmission of the present invention as described above is carried out, preferably, the one surface is subjected to grinding or superfinishing, and then the one surface is recessed. Grooves are formed.
Similarly, when the method for manufacturing a toroidal continuously variable transmission according to the present invention is carried out, preferably, a concave groove is formed on the one surface, and then superfinishing or shot processing (for example, shot peening is performed on the one surface. The opening edge of the concave groove, that is, the end edge of the convex portion constituted by the portion between adjacent concave grooves is made a smooth curved surface (rounded or crowned).
Similarly, when carrying out the manufacturing method of the toroidal type continuously variable transmission according to the present invention, the foam roller (rolling tool) preferably has a high hardness and excellent wear resistance, such as a cemented carbide, titanium, etc. It shall be made of an alloy, ceramics, diamond or the like.
The foam roller has a shape such as an abacus ball (a disk having a substantially diamond-shaped cross section) and is rotatably supported by a roller support member. In addition, this roller support member has a pair of support pieces fixed in parallel to each other. And the said foam roller is supported between the mutually opposing side surfaces of these each support piece so that rotation centering on the axis | shaft orthogonal to these both side surfaces is possible. Further, a curved surface portion (rolled portion having a shape corresponding to the concave groove to be formed) pressed against the one surface is provided over the entire circumference of the foam roller in a direction perpendicular to the rotation center axis. And the said roller support member which supported such a foam roller rotatably is supported by the tool displacement member of a processing machine via the said elastic member or a hydraulic pressing apparatus.

尚、上記一方の面に形成すべき凹溝の形状(溝深さ、溝幅、溝ピッチ等)は、トロイダル型無段変速機の使用時に、トラクション部に付与される押し付け力やこのトラクション部で必要とされる油膜の厚さ等との関係に基づくトラクション特性(トラクション係数)が、所望のものとなる様に規制する。具体的には、上記凹溝の深さは、例えば1〜3μm程度とし、同じくその幅は、例えば30〜100μm程度とし、隣り合う凹溝同士の間隔(ピッチ)は、例えば100〜300μm程度とする。そして、上記フォームローラの曲面部(転造部)の曲率半径Rは、形成される凹溝の形状(溝深さ、溝幅、溝ピッチ等)が、上記押し付け力や油膜形成状況との関係で、所望のトラクション特性となる様に規制する。具体的には、上記曲面部(転造部)の曲率半径Rを、例えば0.05〜1mm(より好ましくは、0.1〜0.5mm、更に好ましくは、0.2〜0.3mm)とする。   Note that the shape of the groove to be formed on the one surface (groove depth, groove width, groove pitch, etc.) depends on the pressing force applied to the traction part or the traction part when the toroidal continuously variable transmission is used. The traction characteristic (traction coefficient) based on the relationship with the required oil film thickness is regulated so as to be a desired one. Specifically, the depth of the concave groove is, for example, about 1 to 3 μm, the width thereof is, for example, about 30 to 100 μm, and the interval (pitch) between adjacent concave grooves is, for example, about 100 to 300 μm. To do. The curvature radius R of the curved surface portion (rolled portion) of the foam roller is related to the shape of the groove formed (groove depth, groove width, groove pitch, etc.) and the pressing force or the state of oil film formation. Thus, the desired traction characteristic is regulated. Specifically, the curvature radius R of the curved surface portion (rolled portion) is, for example, 0.05 to 1 mm (more preferably 0.1 to 0.5 mm, still more preferably 0.2 to 0.3 mm). And

又、同じく本発明のトロイダル型無段変速機の製造方法を実施する場合に好ましくは、上記工具変位部材に上記フォームローラを、上記被加工部材に対し、次の様に支持する。即ち、この被加工部材の一方の面のうちで、加工範囲の略中央(例えば被加工部材の径方向に関する略中央)となる部分の法線と、上記フォームローラの回転中心軸とが略直交する様に、このフォームローラを支持する。そして、この様にフォームローラを支持した上記工具変位部材を、上記一方の面に沿う様に相対的に移動(被加工部材の軸方向並びに径方向に移動)させ、この一方の面に上記凹溝を形成する。   Similarly, when the method of manufacturing the toroidal continuously variable transmission according to the present invention is carried out, the foam roller is preferably supported on the tool displacement member and the workpiece is supported as follows. That is, the normal line of the portion of one surface of the processed member that is approximately the center of the processing range (for example, approximately the center in the radial direction of the processed member) is substantially orthogonal to the rotation center axis of the foam roller. As you do, this foam roller is supported. Then, the tool displacement member supporting the foam roller in this way is relatively moved (moved in the axial direction and the radial direction of the workpiece) along the one surface, and the concave portion is formed on the one surface. Grooves are formed.

又、上記工具変位部材を、回転式の工具交換機であるタレットを備えたものとし、このタレットに支持した複数のフォームローラにより、上記被加工部材の一方の面を加工(凹溝を形成)する事もできる。例えば2個のフォームローラで加工を行う場合には、一方のフォームローラにより、上記一方の面のうち、例えば被加工部材の径方向に関して内径側半部を加工すると共に、他方のフォームローラにより、同じく外径側部半部(残部)を加工する。この場合に、上記一方の面に押し付けた状態での、当該フォームローラの回転中心軸と上記被加工部材の中心軸とのなす角が、それぞれのフォームローラで互いに異なる様に、これら各フォームローラを上記タレットに支持する。より具体的には、上記内径側半部を加工する一方のフォームローラは、この一方のフォームローラによる加工時に、この内径側半部の加工範囲の径方向に関する略中央部分の法線とその中心軸とが略直交する様に、上記タレットに支持する。又、上記外径側半部を加工する他方のフォームローラは、この他方のフォームローラによる加工時に、この外径側半部の加工範囲の径方向に関する略中央部分の法線とその中心軸とが略直交する様に、上記タレットに支持する。そして、上記一方のフォームローラ(或は他方のフォームローラ)で加工を行った後、上記タレットを回転させ、上記他方のフォームローラ(或は一方のフォームローラ)で加工する事により、上記一方の面のうちで上記凹溝を形成すべき部分の全体に亙り、この凹溝を形成する。尚、3個以上のフォームローラを支持する場合にも、それぞれのフォームローラが加工を受け持つ部分と各フォームローラの回転中心軸との関係に応じて(例えば、加工部分の法線と回転中心軸とが直交乃至はそれに近い状態となる様に)、上記各フォームローラを上記タレットに支持する。   Further, the tool displacement member is provided with a turret which is a rotary tool changer, and one surface of the workpiece is processed (formed with a concave groove) by a plurality of foam rollers supported by the turret. You can also do things. For example, when processing with two foam rollers, one half of the above-mentioned one surface is processed with one foam roller, for example, with respect to the radial direction of the workpiece, and the other foam roller Similarly, the outer side half (remaining part) is processed. In this case, each of the foam rollers is set so that the angle formed between the rotation center axis of the foam roller and the central axis of the workpiece is different from each other in the state of being pressed against the one surface. Is supported by the turret. More specifically, the one foam roller that processes the inner diameter half is the normal line and the center of the substantially central portion in the radial direction of the processing range of the inner diameter half when the one foam roller is processed. The turret is supported so that the axis is substantially orthogonal. Further, the other foam roller for processing the outer diameter side half portion has a normal line of the substantially central portion in the radial direction of the processing range of the outer diameter side half portion and a center axis thereof when processed by the other foam roller. Are supported by the turret so that they are substantially orthogonal. Then, after processing with the one foam roller (or the other foam roller), the turret is rotated and processed with the other foam roller (or one foam roller). The concave groove is formed over the entire portion of the surface where the concave groove is to be formed. Even when three or more foam rollers are supported, depending on the relationship between the portion of each foam roller responsible for processing and the rotation center axis of each foam roller (for example, the normal line of the processing portion and the rotation center axis) And each foam roller is supported by the turret so that they are orthogonal or close to each other.

上述の様に構成する本発明のトロイダル型無段変速機の製造方法によれば、トラクション面である一方の面に形状精度の高い凹溝(所望の形状の凹溝)を安定的に、且つ、低コストで形成できる。
即ち、請求項1に記載した製造方法によれば、フォームローラ(転造工具)を上記一方の面に弾性部材を介して押し付ける為、このフォームローラを変位させる工具変位部材と上記一方の面との位置関係(凹溝の深さ方向に関する位置関係)が多少(例えば0.5mm程度)ずれたとしても(例えば、フォームローラの送り量や被加工部材のセット位置が多少ずれたとしても)、このずれを上記弾性部材により吸収できる(形成される凹溝の深さ方向に関するずれを抑えられる)。この為、上記位置関係(送り量)のずれに拘らず、上記凹溝を安定して精度良く形成できる(所望の形状の凹溝を安定して形成できる)。
又、請求項2に記載した製造方法によれば、フォームローラを上記一方の面に所定圧で押し付ける為、上記請求項1に記載した製造方法と同様に、このフォームローラを変位させる工具変位部材と上記一方の面との位置関係が多少ずれたとしても、上記押し付け力が所定圧に規制される事で、このずれが吸収される。この為、上記位置関係のずれに拘らず、上記凹溝を安定して精度良く形成できる。
According to the manufacturing method of the toroidal type continuously variable transmission of the present invention configured as described above, a groove having a high shape accuracy (a groove having a desired shape) is stably formed on one surface which is a traction surface, and Can be formed at low cost.
That is, according to the manufacturing method described in claim 1, in order to press the foam roller (rolling tool) against the one surface via the elastic member, the tool displacement member for displacing the foam roller and the one surface Even if the positional relationship (the positional relationship in the depth direction of the groove) is slightly deviated (for example, about 0.5 mm) (for example, even if the feed amount of the foam roller or the set position of the workpiece is somewhat deviated), This shift can be absorbed by the elastic member (a shift in the depth direction of the formed groove can be suppressed). For this reason, the groove can be stably formed with high accuracy regardless of the positional relationship (feed amount) shift (a groove having a desired shape can be formed stably).
Further, according to the manufacturing method described in claim 2, since the foam roller is pressed against the one surface with a predetermined pressure, the tool displacement member for displacing the foam roller as in the manufacturing method described in claim 1 is used. Even if the positional relationship between the surface and the one surface is slightly deviated, this displacement is absorbed by restricting the pressing force to a predetermined pressure. For this reason, it is possible to form the concave groove stably and accurately regardless of the displacement of the positional relationship.

又、何れの製造方法の場合も、弾性部材を設ける事や、押し付け力を定圧にする為の押し付け装置を設けるだけで済む為、凹溝を形成する為の加工機のコストの増大も抑えられる。言い換えれば、この様な弾性部材や押し付け装置を、例えば汎用のNC旋盤に設ける事で、上述の様にずれを吸収する事ができる為、高精度で複雑、且つ、高価な加工機を必要としなくて済む。この為、トラクション面に所望の凹溝を形成したディスクやパワーローラを、安定的、且つ、低コストで量産できる。又、加工時間の経過に伴い、上記フォームローラが摩耗しても、この摩耗に伴うずれを、上述の位置関係(送り量)のずれと同様に吸収する事ができる。この為、このフォームローラの交換や、この摩耗に基づく位置関係の微調整をする手間も低減でき、この面からも、量産化、低コスト化を図れる。又、上記凹溝を、フォームローラによる転造加工に基づいて形成する為、この凹溝の形成と同時に、この凹溝を形成した部分の加工硬化を安定して行う事ができ、優れた耐久性を有する構造を低コストで得られる。尚、何れの製造方法の場合も、フォームローラのずれのうち、主として凹溝の深さ方向に関するずれを吸収する事を意図しているが、この深さ方向の以外のずれ、例えば幅方向のずれは略そのままとなる(吸収されない)。但し、多少幅方向にずれたとしても、凹溝の形成される位置が幅方向にずれるだけで(幅方向に関する形成位置が一方の面全体に亙って等しくずれるだけで)、トラクション特性やトラクション部での油膜形成に及ぼす悪影響は殆どない。   In any of the manufacturing methods, it is only necessary to provide an elastic member or a pressing device for setting the pressing force to a constant pressure. Therefore, an increase in the cost of the processing machine for forming the concave groove can be suppressed. . In other words, by providing such an elastic member and pressing device, for example, on a general-purpose NC lathe, it is possible to absorb the deviation as described above, which requires a highly accurate, complicated and expensive processing machine. No need. For this reason, it is possible to mass-produce a disk and a power roller in which a desired concave groove is formed on the traction surface at a stable and low cost. Further, even if the foam roller is worn as the processing time elapses, the deviation due to the wear can be absorbed in the same manner as the positional relationship (feed amount). For this reason, it is possible to reduce the trouble of exchanging the foam roller and finely adjusting the positional relationship based on the wear. From this aspect as well, mass production and cost reduction can be achieved. In addition, since the concave groove is formed on the basis of a rolling process using a foam roller, at the same time as the formation of the concave groove, work hardening of the portion where the concave groove is formed can be performed stably, and excellent durability. A structure having the property can be obtained at low cost. In any of the manufacturing methods, it is intended to mainly absorb the deviation in the depth direction of the concave groove among the deviations of the foam roller. However, deviations other than the depth direction, for example, in the width direction, are intended. The deviation is almost as it is (not absorbed). However, even if the position is slightly shifted in the width direction, the position where the concave groove is formed is only shifted in the width direction (only the position in the width direction is shifted over the entire surface). There is almost no adverse effect on oil film formation in the part.

尚、上述の様な凹溝を形成する作業を、上記一方の面に研削加工、又は、超仕上加工を施した後に行えば、この凹溝を形成した後に研削加工や超仕上加工を施す場合に比べ、この研削加工や超仕上加工の誤差(例えば被加工部材や砥石のセット誤差等)に伴う凹溝の深さのばらつきを低減できる。一方、上記凹溝を形成した後、超仕上加工又はショット加工(例えばショットピーニング加工)を施す事により、この凹溝の開口縁(凸部の端縁)を滑らかな曲面にすれば、トラクション部の油膜形成をより良好に保て、この面からも、トラクション特性(トラクション係数)の向上を図れる。又、上記フォームローラを、高硬度で耐摩耗性の優れたものとすれば、このフォームローラの寿命の確保を図れ、上述した工具摩耗に基づくずれを吸収できる事と相俟って、更なる低コスト化を図れる。   In addition, if the work for forming the groove as described above is performed after grinding or superfinishing on the one surface, grinding or superfinishing is performed after the groove is formed. Compared to the above, it is possible to reduce the variation in the depth of the concave groove due to an error in the grinding process or super-finishing process (for example, a setting error of a workpiece or a grinding stone). On the other hand, if the opening edge (end edge of a convex part) is made into a smooth curved surface by performing super finishing processing or shot processing (for example, shot peening processing) after forming the concave groove, the traction portion Therefore, it is possible to improve the traction characteristics (traction coefficient) from this aspect. In addition, if the foam roller is made of high hardness and excellent wear resistance, the life of the foam roller can be ensured, coupled with the fact that the deviation due to the tool wear described above can be absorbed. Cost reduction can be achieved.

本発明の実施の形態の第1例を、ディスクにフォームローラを押し付けた状態で示す部分断面図。The fragmentary sectional view which shows the 1st example of embodiment of this invention in the state which pressed the foam roller against the disk. フォームローラのみを取り出して、このフォームローラの径方向から見た状態で示す図。The figure which takes out only a foam roller and shows the state seen from the radial direction of this foam roller. 工具変位部材の位置と形成される凹溝の溝深さとの関係の1例を示す線図。The diagram which shows one example of the relationship between the position of a tool displacement member, and the groove depth of the recessed groove formed. 本発明の実施の形態の第2例を、タレットにフォームローラを支持した状態で示す図。The figure which shows the 2nd example of embodiment of this invention in the state which supported the foam roller on the turret. ディスクにフォームローラを押し付けた状態を示す図で、(イ)は、図4の上側に設置されたフォームローラを押し付けた状態を、(ロ)は、図4の左下側に設置されたフォームローラを押し付けた状態を、それぞれ示している。FIGS. 5A and 5B are diagrams showing a state in which the foam roller is pressed against the disk, where FIG. 4A shows the state where the foam roller installed on the upper side of FIG. 4 is pressed, and FIG. Each of the states pressed is shown. トロイダル型無段変速機の1例を示す断面図。Sectional drawing which shows one example of a toroidal type continuously variable transmission. 図6のA−A断面に相当する図。The figure equivalent to the AA cross section of FIG.

[実施の形態の第1例]
図1〜3は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、入力側、出力側各ディスク1、6の入力側、出力側各内側面3、7とパワーローラ8(図6、7参照)の周面とのうちの少なくとも一方の面(少なくとも何れかのトラクション面)に、トラクション特性(トラクション係数)の向上を図る為の凹溝(図示は省略)を、高精度で、且つ、低コストで形成する方法にある。トロイダル型無段変速機の構造及び作用は、前述の図6〜7に示した従来構造と同様であるから、重複する図示並びに説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 to 3 show a first example of an embodiment of the present invention. The feature of this example is that at least one of the input side and output side inner surfaces 3 and 7 of the input side and output side disks 1 and 6 and the peripheral surface of the power roller 8 (see FIGS. 6 and 7). In this method, a concave groove (not shown) for improving the traction characteristics (traction coefficient) is formed on the surface (at least one of the traction surfaces) with high accuracy and at low cost. Since the structure and operation of the toroidal continuously variable transmission are the same as those of the conventional structure shown in FIGS. 6 to 7, the overlapping illustrations and descriptions are omitted or simplified. explain.

本例の場合は、トロイダル型無段変速機を構成するディスク15(図6の入力側ディスク1、出力側ディスク6に相当)の軸方向片側面16(図6の入力側内側面3、出力側内側面7に相当)に、例えば深さが1〜3μm程度の上記凹溝(微細溝)を形成する。この凹溝は、研削加工又は超仕上加工により平滑面とされた上記ディスク15の片側面16に、転造加工、即ち、図2に示す様なフォームローラ17を押し付けつつ、上記ディスク15を回転させる事により形成する。このフォームローラ17は、算盤の玉(断面を略菱形とした円盤)の如き形状を有するもので、ローラ支持部材18により回転自在に支持している。又、このローラ支持部材18は、1対の支持片19、19を互いに平行に固設しており、これら各支持片19の互いに対向する側面同士の間に上記フォームローラ17を、これら両側面に対し直交する軸αを中心とする回転を可能に支持している。   In the case of this example, one axial side surface 16 of the disk 15 (corresponding to the input side disk 1 and the output side disk 6 in FIG. 6) constituting the toroidal type continuously variable transmission (the input side inner surface 3 in FIG. 6 and the output). The concave groove (fine groove) having a depth of, for example, about 1 to 3 μm is formed in the side inner surface 7. The concave groove is formed by rolling, that is, pressing the foam roller 17 as shown in FIG. 2 against the one side surface 16 of the disk 15 which has been smoothed by grinding or superfinishing. It is formed by letting. The foam roller 17 has a shape like a ball of an abacus (a disk having a substantially diamond-shaped cross section) and is rotatably supported by a roller support member 18. The roller support member 18 has a pair of support pieces 19 and 19 fixed in parallel to each other, and the foam roller 17 is placed between the side faces of the support pieces 19 facing each other. Is supported so as to be able to rotate around an axis α orthogonal to the axis.

そして、このフォームローラ17の表面のうちで、その回転中心軸αに対し直角方向となる部分には、上記片側面16に押し付けられる曲面部20、即ち、形成すべき凹溝の内面形状に対応する(凹凸が逆になった)外面形状を有する転造部を、全周に亙って設けている。この様なフォームローラ17は、高硬度で耐摩耗性の優れたもの、例えば超硬合金、チタン合金、セラミックス、ダイヤモンド等により造られたものとしている。又、上記曲面部20の曲率半径Rは、例えば0.05〜1mm(より好ましくは、0.1〜0.5mm、更に好ましくは、0.2〜0.3mm)としている。尚、この様な曲面部20の曲率半径Rは、形成される凹溝の形状(溝深さ、溝幅、溝ピッチ等)が、トロイダル型無段変速機の使用時にトラクション部に付与される押し付け力やこのトラクション部で必要とされる油膜の厚さ等との関係で必要なトラクション特性(トラクション係数)を得られるものとなる様に、設定している。   The portion of the surface of the foam roller 17 that is perpendicular to the rotation center axis α corresponds to the curved surface portion 20 pressed against the one side surface 16, that is, the inner surface shape of the concave groove to be formed. A rolled part having an outer surface shape (with the concavities and convexities reversed) is provided over the entire circumference. Such a foam roller 17 is made of a material having high hardness and excellent wear resistance, for example, cemented carbide, titanium alloy, ceramics, diamond and the like. The curvature radius R of the curved surface portion 20 is, for example, 0.05 to 1 mm (more preferably 0.1 to 0.5 mm, and still more preferably 0.2 to 0.3 mm). The curvature radius R of the curved surface portion 20 is given to the traction portion when the shape of the groove formed (groove depth, groove width, groove pitch, etc.) is used in the toroidal-type continuously variable transmission. It is set so that the required traction characteristics (traction coefficient) can be obtained in relation to the pressing force and the thickness of the oil film required in the traction section.

又、本例の場合には、上述の様なフォームローラ17を支持した上記ローラ支持部材18を、工具変位部材21を構成する腕部22に対し、ばね(圧縮コイルばね、皿ばね等)、或は、ゴムの如きエラストマー、合成樹脂等の弾性部材23を介して支持している。この弾性部材23は、上記フォームローラ17の回転中心軸αに対し直交する方向で、且つ、このフォームローラ17を上記片側面16に近付ける方向の弾力を付与する。そして、この様な弾性部材22を介して上記工具変位部材20に支持した上記フォームローラ17を、回転中心軸βを中心に回転する上記ディスク15の片側面16に押し付けて、この片側面16に上記凹溝を形成する。   In the case of this example, the roller support member 18 supporting the foam roller 17 as described above is moved against the arm portion 22 constituting the tool displacement member 21 by a spring (compression coil spring, disc spring, etc.) Alternatively, it is supported through an elastic member 23 such as an elastomer such as rubber or a synthetic resin. The elastic member 23 imparts elasticity in a direction perpendicular to the rotation center axis α of the foam roller 17 and in a direction in which the foam roller 17 approaches the one side surface 16. Then, the foam roller 17 supported by the tool displacement member 20 through such an elastic member 22 is pressed against one side surface 16 of the disk 15 rotating around the rotation center axis β, and the one side surface 16 is pressed against the one side surface 16. The concave groove is formed.

尚、上記フォームローラ17は、上記ローラ支持部材18を介して上記工具変位部材21に、次の様な位置関係で支持している。即ち、上記ディスク15の片側面16のうちで、加工範囲kの略中央(片側面16の径方向に関する略中央)となる部分の法線Hと、上記フォームローラ17の回転中心軸αとが略直交する様に、このフォームローラ17を支持している。そして、この様な状態でフォームローラ17を支持した上記工具変位部材21を、上記片側面16に沿う様に相対的{被加工部材であるディスク15の軸方向(X方向)並びに径方向(Y方向)}に移動させ、回転するディスク15の片側面16に上記凹溝を形成する。この場合に上記フォームローラ17は、このディスク15の径方向に関し、内径側から外径側に移動させる事もできるし、外径側から内径側に移動させる事もできる。又、この場合に、上記ディスク15を回転させた状態で、上記フォームローラ17を径方向及び軸方向に関して、互いに関連させつつ(片側面16を倣いつつ)、連続的に移動させれば、この片側面16に上記凹溝を螺旋状に形成できる。又、径方向に関する移動と軸方向に関する押し付けとを繰り返す事で、上記片側面16に上記凹溝を同心円状に多数設ける事もできる。何れにしても、上記フォームローラ17の転造に基づいて形成される上記凹溝が、所望のピッチや所望の軌跡となる様に、上記ディスク15の回転速度とフォームローラ17のX方向並びにY方向の移動速度とを設定する。   The foam roller 17 is supported on the tool displacement member 21 via the roller support member 18 in the following positional relationship. That is, the normal line H of the portion of the one side surface 16 of the disk 15 that is substantially the center of the processing range k (substantially the center in the radial direction of the one side surface 16) and the rotation center axis α of the foam roller 17 are as follows. The foam roller 17 is supported so as to be substantially orthogonal. Then, the tool displacement member 21 that supports the foam roller 17 in such a state is relatively positioned along the one side surface 16 {the axial direction (X direction) and the radial direction (Y Direction)}, and the concave groove is formed on one side surface 16 of the rotating disk 15. In this case, the foam roller 17 can be moved from the inner diameter side to the outer diameter side with respect to the radial direction of the disk 15, or can be moved from the outer diameter side to the inner diameter side. In this case, when the disk 15 is rotated, the foam roller 17 is continuously moved while being associated with each other in the radial direction and the axial direction (following the one side surface 16). The concave groove can be spirally formed on one side surface 16. Further, by repeating the movement in the radial direction and the pressing in the axial direction, a large number of the concave grooves can be provided concentrically on the one side surface 16. In any case, the rotational speed of the disk 15, the X direction of the foam roller 17 and the Y direction so that the concave grooves formed based on the rolling of the foam roller 17 have a desired pitch and a desired locus. Set the direction movement speed.

又、本例の場合には、前記弾性部材23のばね定数を、例えば図3に示す様な関係に規制している。即ち、位置制御により上記工具変位部材21を移動させ、上記フォームローラ17を上記片側面16に押し付けた状態で、この工具変位部材21と上記ディスク15との、上記凹溝の深さ方向に関する位置関係のずれ量(目標値と実際の値とのずれ量)をaとした場合に、形成される凹溝の深さのずれ量(目標値と実際の値とのずれ量)bが、上記ズレ量aに対し1/1000程度(b=a/1000)となる様に設定している。従って、上記工具変位部材21とディスク15との(凹溝の深さ方向に関する)位置関係が、上記フォームローラ17を位置制御により上記片側面16に押し付けた状態で、例えば目標値から0.5mm程度ずれたとしても、形成される凹溝の深さは、目標値から0.5μm程度ずれるだけで済む。   In the case of this example, the spring constant of the elastic member 23 is restricted to the relationship shown in FIG. 3, for example. That is, the position of the tool displacement member 21 and the disk 15 in the depth direction of the concave groove in a state where the tool displacement member 21 is moved by position control and the foam roller 17 is pressed against the one side surface 16. When the relationship deviation amount (the deviation amount between the target value and the actual value) is a, the depth deviation amount (the deviation amount between the target value and the actual value) b of the recessed groove to be formed is It is set to be about 1/1000 (b = a / 1000) with respect to the shift amount a. Accordingly, the positional relationship between the tool displacement member 21 and the disk 15 (with respect to the depth direction of the groove) is, for example, 0.5 mm from the target value in a state where the foam roller 17 is pressed against the one side surface 16 by position control. Even if it is deviated to some extent, the depth of the groove to be formed need only deviate from the target value by about 0.5 μm.

上述の様な本例によれば、トラクション面である片側面16に形状精度の高い凹溝(所望の形状の凹溝)を安定的に、且つ、低コストで形成できる。
即ち、上記フォームローラ17を上記片側面16に弾性部材23を介して押し付ける為、上記工具変位部材21と上記ディスク15との位置関係(凹溝の深さ方向に関する位置関係)が多少(例えば0.5mm程度)ずれたとしても(例えば、工具変位部材21の送り量やディスク15のセット位置が多少ずれたとしても)、形成される凹溝の深さとの関係でこのずれを、上記弾性部材23により1/1000程度(例えば0.5μm程度)に低減できる(形成される凹溝の深さ方向に関するずれを1/1000程度に抑えられる)。この為、上記位置関係(送り量)のずれに拘らず、上記凹溝を安定して精度良く形成できる(所望の形状の凹溝を安定して形成できる)。
According to this example as described above, a groove having a high shape accuracy (a groove having a desired shape) can be formed stably and at low cost on one side surface 16 which is a traction surface.
That is, since the foam roller 17 is pressed against the one side surface 16 via the elastic member 23, the positional relationship between the tool displacement member 21 and the disk 15 (the positional relationship in the depth direction of the groove) is somewhat (for example, 0). About 5 mm) (for example, even if the feed amount of the tool displacement member 21 or the set position of the disk 15 is slightly shifted), the shift is caused by the above-mentioned elastic member in relation to the depth of the groove to be formed. 23 can be reduced to about 1/1000 (for example, about 0.5 μm) (the displacement of the formed groove in the depth direction can be suppressed to about 1/1000). For this reason, the groove can be stably formed with high accuracy regardless of the positional relationship (feed amount) shift (a groove having a desired shape can be formed stably).

しかも、上述の様な弾性部材23を設けるだけで、上述の様にずれを吸収できる為、上記凹溝を形成する為の加工機のコストが増大する事も抑えられる。言い換えれば、例えば汎用のNC旋盤に上記弾性部材23を設ける事で、上述の様にずれを吸収できる為、高精度で複雑、且つ、高価な加工機を必要としなくて済む。この為、トラクション面に所望の凹溝を形成したディスク15を、安定的、且つ、低コストで量産できる。又、加工時間の経過に伴ない、上記フォームローラ17が摩耗しても、この摩耗に伴うずれも、上述の位置関係(送り量)のずれと同様に吸収する事ができる。この為、このフォームローラ17の交換や、この摩耗に基づく位置関係の微調整をする手間も低減でき、この面からも、量産化、低コスト化を図れる。又、上記凹溝をフォームローラ17による転造加工に基づいて形成する為、この凹溝の形成と同時に、この凹溝を形成した部分の加工硬化を安定して行う事ができ、優れた耐久性を有する構造を低コストで得られる。   Moreover, since the displacement can be absorbed as described above only by providing the elastic member 23 as described above, an increase in the cost of the processing machine for forming the concave groove can be suppressed. In other words, for example, by providing the elastic member 23 on a general-purpose NC lathe, the shift can be absorbed as described above, so that a highly accurate, complicated and expensive processing machine is not required. For this reason, the disk 15 having a desired groove formed on the traction surface can be mass-produced stably at a low cost. Further, even if the foam roller 17 is worn as the processing time elapses, the deviation due to the wear can be absorbed in the same manner as the positional relationship (feed amount). For this reason, it is possible to reduce the trouble of exchanging the foam roller 17 and finely adjusting the positional relationship based on the wear. From this aspect as well, mass production and cost reduction can be achieved. Further, since the groove is formed on the basis of the rolling process by the foam roller 17, at the same time as the formation of the groove, work hardening of the portion where the groove is formed can be performed stably, and excellent durability is achieved. A structure having the property can be obtained at low cost.

又、上述の様なフォームローラ17により凹溝を形成する作業を、上記片側面16に研削加工、又は、超仕上げ加工を施した後に行っている為、この凹溝を形成した後に研削加工や超仕上加工を施す場合に比べ、この研削加工や超仕上加工の誤差(例えばディスク15や砥石のセット誤差等)に伴う凹溝の深さのばらつきを低減できる。尚、上述の様にフォームローラ17により片側面16に凹溝を形成した後、必要に応じて、この片側面16に超仕上加工又はショット加工(例えばショットピーニング加工)を施し、この凹溝の開口縁、即ち、隣り合う凹溝同士の間部分により構成される凸部の端縁を滑らかな曲面にする(丸める、クラウニングさせる)事もできる。この様に凹溝の開口縁(凸部の端縁)を滑らかな曲面にすれば、トラクション部の油膜形成をより良好に保て、この面からも、トラクション特性(トラクション係数)の向上を図れる。又、上記フォームローラ17を、高硬度で耐摩耗性の優れたものとしている為、このフォームローラ17の寿命の確保を図れ、上述した工具摩耗に基づくずれを吸収できる事と相俟って、更なる低コスト化を図れる。   In addition, since the work for forming the concave groove by the foam roller 17 as described above is performed after grinding or superfinishing the one side surface 16, the grinding process or the like after the formation of the concave groove is performed. Compared with the case where super finishing is performed, it is possible to reduce the variation in the depth of the concave grooves due to errors in the grinding and super finishing (for example, setting errors of the disk 15 and the grindstone). As described above, after forming a concave groove on one side surface 16 with the foam roller 17, superfinishing or shot processing (for example, shot peening processing) is performed on the one side surface 16 as necessary. An opening edge, that is, an end edge of a convex portion constituted by a portion between adjacent concave grooves can be formed into a smooth curved surface (rounded or crowned). In this way, if the opening edge of the concave groove (end edge of the convex part) is a smooth curved surface, the oil film formation of the traction part can be kept better, and the traction characteristics (traction coefficient) can be improved also from this surface. . In addition, since the foam roller 17 has high hardness and excellent wear resistance, the life of the foam roller 17 can be ensured and coupled with the ability to absorb the deviation due to the tool wear described above, Further cost reduction can be achieved.

[実施の形態の第2例]
図4〜5は、本発明の実施の形態の第2例を示している。本例の場合には、工具変位部材21aを、回転式の工具交換機であるタレット24を備えたものとしている。そして、このタレット24に、複数(本例の場合には2個)のフォームローラ17a、17bを支持し、これら複数のフォームローラ17a、17bにより、ディスク15の片側面16に凹溝(微細溝)を形成する様にしている。この様な本例の場合には、一方のフォームローラ17aにより、上記片側面16のうち、上記ディスク15の径方向に関して内径側半部に凹溝を形成すると共に、他方のフォームローラ17bにより、同じく外径側部半部(残部)に凹溝を形成する。この為に、これら各フォームローラ17a、17bを上記片側面16に押し付けた状態での、当該フォームローラ17a、17bの回転中心軸α1、α2と上記ディスク15の回転中心軸βとのなす角θ1、θ2が、それぞれのフォームローラ17a、17b毎に異なる様に、これら各フォームローラ17a、17bを上記タレット24に支持している。
[Second Example of Embodiment]
4 to 5 show a second example of the embodiment of the present invention. In the case of this example, the tool displacement member 21a is provided with a turret 24 which is a rotary tool changer. The turret 24 supports a plurality (two in this example) of foam rollers 17a and 17b, and the plurality of foam rollers 17a and 17b supports a concave groove (fine groove) on one side surface 16 of the disk 15. ). In the case of this example, a concave groove is formed in the inner half of the one side surface 16 in the radial direction of the disk 15 by one foam roller 17a, and the other foam roller 17b Similarly, a concave groove is formed in the outer diameter side half (remaining part). Therefore, the rotation center axes α 1 and α 2 of the foam rollers 17 a and 17 b and the rotation center axis β of the disk 15 in a state where the foam rollers 17 a and 17 b are pressed against the one side surface 16. These foam rollers 17a and 17b are supported by the turret 24 so that the angles θ 1 and θ 2 are different for each of the foam rollers 17a and 17b.

より具体的には、上記内径側半部を加工する上記一方のフォームローラ17aは、この一方のフォームローラ17aによる加工時に、この内径側半部の加工範囲k1の径方向に関する略中央部分の法線H1とその回転中心軸α1とが略直交する様に、上記タレット24に支持している。又、上記外径側半部を加工する他方のフォームローラ17bは、この他方のフォームローラ17bによる加工時に、この外径側半部の加工範囲k2の径方向に関する略中央部分の法線H2とその回転中心軸α2とが略直交する様に、上記タレット24に支持している。そして、上記一方のフォームローラ17a(或は他方のフォームローラ17b)で加工を行った後、上記タレット24を回転させ、上記他方のフォームローラ17b(或は一方のフォームローラ17a)で加工する事により、上記片側面16のうちで上記凹溝を形成すべき部分の全体に亙り、この凹溝を形成する。 More specifically, the one of the form rollers 17a to process the inner diameter side half portion, during processing by the one of the form rollers 17a, the substantially central portion in the radial direction of the machining area k 1 of the inner diameter side half The normal line H 1 and the rotation center axis α 1 are supported by the turret 24 so as to be substantially orthogonal. Also, other forms rollers 17b for processing the outer diameter side half portion at the time of processing by the other form roller 17b, the normal H of the substantially central portion in the radial direction of the machining area k 2 of the outer diameter side half 2 and the rotation center axis α 2 are supported by the turret 24 so as to be substantially orthogonal to each other. Then, after processing with the one foam roller 17a (or the other foam roller 17b), the turret 24 is rotated and processed with the other foam roller 17b (or one foam roller 17a). Thus, the concave groove is formed over the entire portion of the one side surface 16 where the concave groove is to be formed.

この様な本例の場合には、上記各フォームローラ17a、17bと片側面16との接触状態をより微細に調節できる{回転中心軸α1、α2と当該加工部分の法線との関係を、片側面16全体に亙って大きく(90度に近い値に)できる}。言い換えれば、上記各フォームローラ17a、17bの転造部を、上記片側面16に対して立たせた状態で加工できる(加工面に対して転造部が寝ない様にできる)。又、本例の場合も、前述した実施の形態の第1例と同様に、弾性部材23により位置ずれを吸収できる為、例えば上記タレット24を汎用のもの(高精度の位置決め機能を有しないもの)を用いても、上記凹溝を精度良く形成できる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
In the case of this example, the contact state between each of the foam rollers 17a and 17b and the one side surface 16 can be adjusted more finely {relationship between the rotation center axes α 1 and α 2 and the normal line of the processed portion. Can be increased (close to 90 degrees) over the entire side surface 16}. In other words, the rolling part of each of the foam rollers 17a and 17b can be processed while standing on the one side surface 16 (the rolling part can be prevented from lying on the processing surface). Also in this example, since the displacement can be absorbed by the elastic member 23 as in the first example of the embodiment described above, for example, the turret 24 is a general-purpose one (not having a high-precision positioning function). ), The concave groove can be formed with high accuracy.
Since the configuration and operation of other parts are the same as those of the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

上述した各例は、ディスク15の片側面に凹溝を形成する場合を示したが、パワーローラ8(図6、7参照)の周面に凹溝を形成する事もできる。又、上述した各例は、フォームローラ17、17a、17bに対し被加工部材であるディスク15を回転させて凹溝を形成する場合を示したが、被加工部材に対しフォームローラを回転(旋回)させて凹溝を形成する事もできる。又、上述した各例は、弾性部材23を介して支持したフォームローラ17、17a、17bにより凹溝を形成する場合を示したが、次の様に凹溝を形成する事もできる。即ち、図示は省略するが、形成すべき凹溝に対応する形状の転造部を有するフォームローラを、ディスクの片側面又はパワーローラの周面に所定圧で押し付けた状態{一方の面とフォームローラとの当接部(転造加工部)に常に所定の荷重が付与された状態}で、このディスク又はパワーローラとフォームローラとを相対変位させる事により、上記片側面又は周面に上記凹溝を形成する事もでる。尚、この様に所定圧で押し付ける為には、例えば、油圧式の押し付け装置により上記フォームローラを、油圧が常に所定の値になる様に制御しつつ押し付ける(定圧制御でフォームローラを押し付ける)。   Each example mentioned above showed the case where a ditch | groove was formed in the one side surface of the disk 15, However, A ditch | groove can also be formed in the surrounding surface of the power roller 8 (refer FIG. 6, 7). In each of the above examples, the disk 15 which is a workpiece is rotated with respect to the foam rollers 17, 17a and 17b to form a concave groove. However, the foam roller is rotated (rotated) with respect to the workpiece. ) To form a concave groove. Moreover, although each example mentioned above showed the case where a ditch | groove was formed by the foam rollers 17, 17a, 17b supported via the elastic member 23, a ditch | groove can also be formed as follows. That is, although not shown in the figure, a foam roller having a rolling portion having a shape corresponding to the groove to be formed is pressed against one side of the disk or the circumferential surface of the power roller with a predetermined pressure {one side and the foam In a state where a predetermined load is always applied to the contact portion (rolling processing portion) with the roller}, the disc or the power roller and the foam roller are relatively displaced, whereby the concave portion is formed on the one side surface or the peripheral surface. Grooves can also be formed. In order to press at a predetermined pressure in this way, for example, the above-mentioned foam roller is pressed by a hydraulic pressing device while controlling the hydraulic pressure to always be a predetermined value (pressing the foam roller by constant pressure control).

1 入力側ディスク
2 入力回転軸
3 入力側内側面
4 出力歯車
5 出力筒
6 出力側ディスク
7 出力側内側面
8 パワーローラ
9 トラニオン
10 支持軸
11 傾転軸
12 アクチュエータ
13 駆動軸
14 押圧装置
15 ディスク
16 片側面
17、17a、17b フォームローラ
18 ローラ支持部材
19 支持片
20 曲面部
21、21a 工具変位部材
22 腕部
23 弾性部材
24 タレット
DESCRIPTION OF SYMBOLS 1 Input side disk 2 Input rotating shaft 3 Input side inner surface 4 Output gear 5 Output cylinder 6 Output side disk 7 Output side inner surface 8 Power roller 9 Trunnion 10 Support shaft 11 Tilt shaft 12 Actuator 13 Drive shaft 14 Press device 15 Disk 16 One side surface 17, 17a, 17b Foam roller 18 Roller support member 19 Support piece 20 Curved surface portion 21, 21a Tool displacement member 22 Arm portion 23 Elastic member 24 Turret

Claims (2)

それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持された少なくとも1対のディスクと、軸方向に関してこれら各ディスクの軸方向片側面同士の間位置の円周方向に関して複数個所に設けられて、球状凸面としたそれぞれの周面を、上記各ディスクの軸方向片側面にそれぞれ当接させた複数のパワーローラとを備え、これら各パワーローラの周面と上記各ディスクの軸方向片側面とのうちの少なくとも一方の面に、トラクション特性の向上を図る為の凹溝を、当該面の周方向に形成したトロイダル型無段変速機の製造方法に於いて、
形成すべき凹溝に対応する形状の転造部を有するフォームローラを、このフォームローラを変位させる部材に対し弾性部材を介して支持し、且つ、この弾性部材を介して支持した上記フォームローラを上記一方の面に押し付けた状態で、これらフォームローラと一方の面とを相対変位させる事により、この一方の面に上記凹溝を形成する事を特徴とするトロイダル型無段変速機の製造方法。
At least one pair of discs that are concentrically supported by each other in a state in which one side surfaces in the axial direction, each of which is a toroidal curved surface having an arc-shaped cross section, are opposed to each other and freely rotatable relative to each other, and each of these discs in the axial direction. A plurality of power rollers provided at a plurality of positions in the circumferential direction between the axial side surfaces of the disk, and each circumferential surface as a spherical convex surface is in contact with the axial one side surface of each disk; A toroidal in which a concave groove for improving traction characteristics is formed in at least one of the circumferential surface of each power roller and one axial side surface of each disk in the circumferential direction of the surface. In the manufacturing method of the type continuously variable transmission,
A foam roller having a rolling portion having a shape corresponding to the concave groove to be formed is supported via an elastic member with respect to a member that displaces the foam roller, and the foam roller supported via the elastic member is provided. A method of manufacturing a toroidal continuously variable transmission, characterized in that the concave groove is formed on one surface of the foam roller by relatively displacing the foam roller and the one surface while being pressed against the one surface. .
それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持された少なくとも1対のディスクと、軸方向に関してこれら各ディスクの軸方向片側面同士の間位置の円周方向に関して複数個所に設けられて、球状凸面としたそれぞれの周面を、上記各ディスクの軸方向片側面にそれぞれ当接させた複数のパワーローラとを備え、これら各パワーローラの周面と上記各ディスクの軸方向片側面とのうちの少なくとも一方の面に、トラクション特性の向上を図る為の凹溝を、当該面の周方向に形成したトロイダル型無段変速機の製造方法に於いて、
形成すべき凹溝に対応する形状の転造部を有するフォームローラを上記一方の面に所定圧で押し付けた状態で、これらフォームローラと一方の面とを相対変位させる事により、この一方の面に上記凹溝を形成する事を特徴とするトロイダル型無段変速機の製造方法。
At least one pair of discs that are concentrically supported by each other in a state in which one side surfaces in the axial direction, each of which is a toroidal curved surface having an arc-shaped cross section, are opposed to each other and freely rotatable relative to each other, and each of these discs in the axial direction. A plurality of power rollers provided at a plurality of positions in the circumferential direction between the axial side surfaces of the disk, and each circumferential surface as a spherical convex surface is in contact with the axial one side surface of each disk; A toroidal in which a concave groove for improving traction characteristics is formed in at least one of the circumferential surface of each power roller and one axial side surface of each disk in the circumferential direction of the surface. In the manufacturing method of the type continuously variable transmission,
In a state where a foam roller having a rolling portion having a shape corresponding to the concave groove to be formed is pressed against the one surface with a predetermined pressure, the foam roller and the one surface are relatively displaced, thereby this one surface. A method for manufacturing a toroidal-type continuously variable transmission, characterized in that the above-mentioned concave groove is formed on the top.
JP2010037057A 2010-02-23 2010-02-23 Manufacturing method of toroidal type continuously variable transmission Expired - Fee Related JP5381797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037057A JP5381797B2 (en) 2010-02-23 2010-02-23 Manufacturing method of toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037057A JP5381797B2 (en) 2010-02-23 2010-02-23 Manufacturing method of toroidal type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2011173130A true JP2011173130A (en) 2011-09-08
JP5381797B2 JP5381797B2 (en) 2014-01-08

Family

ID=44686509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037057A Expired - Fee Related JP5381797B2 (en) 2010-02-23 2010-02-23 Manufacturing method of toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5381797B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501488A (en) * 1985-01-23 1987-06-18 エスコフイエ テクノロジ− エス.ア−. Method for forming grooves in the wall of a rotating body and apparatus therefor
JPH04333338A (en) * 1991-05-01 1992-11-20 Ogura Clutch Co Ltd Manufacture of pulley having multi-stripe v-grooves
JP2004138165A (en) * 2002-10-18 2004-05-13 Nissan Motor Co Ltd Disk for traction drive and its manufacturing method
JP2004223570A (en) * 2003-01-23 2004-08-12 Nissan Motor Co Ltd Method and apparatus for processing surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501488A (en) * 1985-01-23 1987-06-18 エスコフイエ テクノロジ− エス.ア−. Method for forming grooves in the wall of a rotating body and apparatus therefor
JPH04333338A (en) * 1991-05-01 1992-11-20 Ogura Clutch Co Ltd Manufacture of pulley having multi-stripe v-grooves
JP2004138165A (en) * 2002-10-18 2004-05-13 Nissan Motor Co Ltd Disk for traction drive and its manufacturing method
JP2004223570A (en) * 2003-01-23 2004-08-12 Nissan Motor Co Ltd Method and apparatus for processing surface

Also Published As

Publication number Publication date
JP5381797B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US9188206B2 (en) Toroidal continuously variable transmission
KR100389247B1 (en) Traction drive rotary assembly and process for producing rolling element thereof
US7958635B2 (en) Process for producing a pulley for a continuously variable belt drive transmission
CN102076980B (en) Self-aligning roller bearing, bearing, and self-aligning roller bearing processing method
JP5056591B2 (en) Toroidal continuously variable transmission
JP5088303B2 (en) Toroidal continuously variable transmission
JP4164680B2 (en) Toroidal type continuously variable transmission disk processing method
JP5381797B2 (en) Manufacturing method of toroidal type continuously variable transmission
JP5747723B2 (en) Trunnion of toroidal type continuously variable transmission and processing method thereof
JP5835361B2 (en) Toroidal continuously variable transmission
JP3783507B2 (en) Machining method of toroidal type continuously variable transmission disk
KR100816576B1 (en) Method and apparatus for producing transmission plates for a continuously variable transmission
JP4915288B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP4915287B2 (en) Toroidal continuously variable transmission
US20040077456A1 (en) Toroidal disc for traction drive device and method of producing same
JP3951499B2 (en) Power roller bearing for toroidal type continuously variable transmission
JP2006308037A (en) Toroidal continuously variable transmission
JP5953961B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP5488416B2 (en) Manufacturing method of outer ring for toroidal type continuously variable transmission
JPH0861452A (en) Method for forming cam face on member constituting loading cam device for toroidal continuously variable transmission
JP4470539B2 (en) Trunnion manufacturing method
JP2013202726A (en) Method of manufacturing toroidal continuously variable transmission
JP2003301908A (en) Toroidal continuously variable transmission
JP2004216481A (en) Manufacturing method for traction drive roller
JP2005061568A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees