JP2011171362A - Metallized film for film capacitor and film capacitor - Google Patents

Metallized film for film capacitor and film capacitor Download PDF

Info

Publication number
JP2011171362A
JP2011171362A JP2010031335A JP2010031335A JP2011171362A JP 2011171362 A JP2011171362 A JP 2011171362A JP 2010031335 A JP2010031335 A JP 2010031335A JP 2010031335 A JP2010031335 A JP 2010031335A JP 2011171362 A JP2011171362 A JP 2011171362A
Authority
JP
Japan
Prior art keywords
film
metal
deposited
vapor deposition
atom concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010031335A
Other languages
Japanese (ja)
Inventor
Takeshi Sakurai
健 櫻井
Tetsuya Kouchi
哲哉 古内
Masayuki Aida
正之 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010031335A priority Critical patent/JP2011171362A/en
Publication of JP2011171362A publication Critical patent/JP2011171362A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film capacitor having a high dielectric constant and excellent resistance to thermal peeling (adhesion). <P>SOLUTION: A metallized film for film capacitor has a polypropylene film or a polyethylene terephthalate film as a substrate, wherein a metallized film is formed on the fluorinated or sulfonated surface of the substrate. Preferably, (1) the fluorine atom concentration on the surface of a polypropylene film substrate is 5-48 at%, or the sulfur atom concentration is 1-23 at%, (2) the fluorine atom concentration on the surface of a polyethylene terephthalate film substrate is 2-50 at%, or the sulfur atom concentration is 1-30 at% or less. A film capacitor manufactured by the metallized film is also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、該基体表面に金属が蒸着されたフィルムコンデンサ用金属蒸着フィルム、および、それを使用して製造された高誘電率で優れた耐熱性剥離性(密着性)有するフィルムコンデンサに関する。 The present invention relates to a metal-deposited film for a film capacitor in which a polypropylene film or a polyethylene terephthalate film is used as a base, and a metal is deposited on the surface of the base, and a high-dielectric constant and excellent heat-resistant peelability produced using the film. It relates to a film capacitor having (adhesiveness).

高分子フィルム、特に、ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを誘電体基体とし、その表面に電極として金属蒸着層を有するフィルムを用いた金属化フィルムコンデンサは、セルフヒーリング性(自己回復性)、温度および周波数に依存する容量変化が小さいことから広く利用されている。 A metallized film capacitor using a polymer film, in particular, a polypropylene film or a polyethylene terephthalate film as a dielectric substrate, and a film having a metal vapor deposition layer as an electrode on its surface is self-healing (self-healing), temperature and frequency. It is widely used because its capacitance change depending on the size is small.

これらの金属化フィルムコンデンサは、体積あたりの静電容量が他の種類のコンデンサと比較して小さく、体積あたりの静電容量増加が望まれている。静電容量を増加するためには電極間距離を短くする必要があり、誘電体となる高分子フィルムの厚みを薄くして静電容量を増加することが行われている。しかし、プラスチックフィルム厚みを薄くしすぎると誘電体の絶縁抵抗が低下し耐電圧特性が低下する問題が生じてしまい、また、金属蒸着製造工程、コンデンサ製造工程の作業性が著しく低下することも懸念される。 These metallized film capacitors have a smaller capacitance per volume than other types of capacitors, and an increase in capacitance per volume is desired. In order to increase the capacitance, it is necessary to shorten the distance between the electrodes, and the capacitance is increased by reducing the thickness of the polymer film serving as a dielectric. However, if the thickness of the plastic film is made too thin, there will be a problem that the insulation resistance of the dielectric is lowered and the withstand voltage characteristic is lowered, and there is a concern that the workability of the metal vapor deposition manufacturing process and the capacitor manufacturing process is significantly reduced. Is done.

そこで、体積あたりの静電容量を増加させるために、(イ)誘電率が高いポリフッ化ビニリデンとポリプロピレンのコポリマーフィルムを用いて静電容量を増加させる技術(特許文献1)、(ロ)ポリフッ化ビニリデンよりも誘電率が高いVdF系ポリマー、チタン酸バリウム系酸化物粒子などを含むフィルムを用いて静電容量を増加させる技術(特許文献2)などが知られている。 Therefore, in order to increase the capacitance per volume, (a) a technology for increasing the capacitance using a copolymer film of polyvinylidene fluoride and polypropylene having a high dielectric constant (Patent Document 1), (b) polyfluorination A technique for increasing the capacitance using a film containing a VdF polymer having a dielectric constant higher than that of vinylidene, barium titanate oxide particles, and the like (Patent Document 2) is known.

しかし、ポリフッ化ビニリデンなどのフッ素系樹脂のフィルムは特殊であり、フィルムコンデンサとして一般的に利用されているPPフィルム、ポリエチレンテレフタレートフィルムに比較してコストが高くなる欠点がある。また、フッ素系樹脂のフィルムはポリプロピレンフィルムおよびポリエチレンテレフタレートフィルムに比較して耐張力、耐引裂性に劣り、生産性を低下させることがあり、適用範囲が制限されている。 However, a film of a fluororesin such as polyvinylidene fluoride is special and has a disadvantage that the cost is higher than PP film and polyethylene terephthalate film generally used as a film capacitor. In addition, fluororesin films are inferior in tensile strength and tear resistance as compared with polypropylene films and polyethylene terephthalate films, and may reduce productivity, so that the application range is limited.

一方、一般的な素材であるポリプロピレンフィルム、ポリエチレンテレフタレートフィルムなどは耐熱性がやや低いので、耐熱性を高めるために、ポリフェニレンサルファイドフィルムを使用したコンデンサも実用化されているが、フィルムのコストが高く、またフィルム種に依存した温度依存性が大きいため広い温度範囲での使用が制限される。 On the other hand, general materials such as polypropylene film and polyethylene terephthalate film have slightly low heat resistance, so in order to increase heat resistance, capacitors using polyphenylene sulfide film have been put to practical use, but the cost of the film is high. In addition, use in a wide temperature range is limited because of the large temperature dependence depending on the film type.

最近では、金属化フィルムコンデンサの耐電圧特性などの信頼性を高めるために、金属蒸着フィルムの金属蒸着層をより薄くすることも望まれている。金属蒸着層を薄くすれば、重ね合わされた2枚のフィルムの金属蒸着層間に短絡が生じた場合にも、その短絡箇所の金属蒸着層がより少ないジュール熱で局部的に蒸発するようになり、金属蒸着フィルムにダメージを与えずに短絡が解消され易く、いわゆる自己回復性が向上するのでコンデンサの耐電圧特性が向上し、また、蒸着金属量が少なくて済むため、製造コストが削減でき、製造効率も高めることができるからである。 Recently, in order to improve the reliability such as the withstand voltage characteristic of the metallized film capacitor, it is also desired to make the metal vapor deposition layer of the metal vapor deposition film thinner. If the metal vapor deposition layer is made thin, even if a short circuit occurs between the metal vapor deposition layers of the two superimposed films, the metal vapor deposition layer at the short circuit point will locally evaporate with less Joule heat, Short circuit is easily eliminated without damaging the metal deposited film, so-called self-recovery is improved, so that the withstand voltage characteristics of the capacitor are improved, and the amount of deposited metal is small, so the manufacturing cost can be reduced and the production can be reduced. This is because the efficiency can be increased.

しかし、金属蒸着層を薄くすると、フィルムコンデンサ製造工程での酸化やプラスチックフィルムからの水分による酸化により、蒸着金属層の密着性が低下して、プラスチックフィルム表面に対する蒸着金属層の密着性が低下して蒸着金属層が剥離し易くなり、また蒸着金属の酸化が進み静電容量が低下するなどの問題が生じる。 However, if the metal vapor-deposited layer is thinned, the adhesion of the vapor-deposited metal layer is lowered due to oxidation in the film capacitor manufacturing process and oxidation from the plastic film, and the adhesion of the vapor-deposited metal layer to the plastic film surface is reduced. As a result, the vapor deposited metal layer is easily peeled off, and the vapor deposited metal is further oxidized to lower the capacitance.

このような静電容量の低下を避けるために、(イ)プラスチックフィルムの金属蒸着層の表面に金属アルコキシドの加水分解物からなる誘電体層を設けて単位面積あたりの静電容量を高める技術(特許文献3)、(ロ)アルミニウム蒸着層を有するフィルムと亜鉛蒸着層を有するフィルムを交互に積層することによって静電容量の低下を防止する技術(特許文献4)などが知られている。 In order to avoid such a decrease in capacitance, (a) a technology for increasing the capacitance per unit area by providing a dielectric layer made of a hydrolyzate of metal alkoxide on the surface of the metal vapor deposition layer of the plastic film ( Patent Document 3), (b) a technique (Patent Document 4) for preventing a decrease in capacitance by alternately laminating a film having an aluminum vapor deposition layer and a film having a zinc vapor deposition layer is known.

しかし、従来の前記技術においても、プラスチックフィルムからの水分による酸化によりプラスチックフィルム表面に対する金属蒸着層の密着性が低く、あるいはフィルム表面と金属蒸着層との境界層が不安定であると、静電容量や耐熱性について十分な効果を得ることができない。 However, even in the prior art, if the adhesion of the metal vapor deposition layer to the plastic film surface is low due to oxidation by moisture from the plastic film, or the boundary layer between the film surface and the metal vapor deposition layer is unstable, A sufficient effect cannot be obtained with respect to capacity and heat resistance.

一方、金属蒸着膜の亀裂や欠落を防止するため、金属蒸着膜が設けられるポリプロピレンフィルム表面の原子構成比を限定し、亜鉛を蒸着金属として用いる技術が知られているが(特許文献5)、特定の組成を有するプラスチックフィルムに限定されるので適用が限られる。 On the other hand, in order to prevent cracking and loss of the metal vapor deposition film, a technique is known in which the atomic composition ratio of the polypropylene film surface on which the metal vapor deposition film is provided is limited and zinc is used as the vapor deposition metal (Patent Document 5). Application is limited because it is limited to plastic film having a specific composition.

特表2003−502856号公報Special table 2003-502856 gazette 特開2009−277866号公報JP 2009-277866 A 特開平6−196358号公報JP-A-6-196358 特開2009−277829号公報JP 2009-277829 A 特開平6−256930号公報JP-A-6-256930

本発明は、フィルムコンデンサ用金属蒸着フィルムおよびそのフィルムコンデンサにおける前記問題を解決したものであり、表面がフッ素化またはスルホン化されたポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、その基体表面に金属が蒸着されたフィルムコンデンサ用金属蒸着フィルム、および、その金属蒸着フィルムを使用して製造された高誘電率で優れた耐熱剥離性(密着力)有するフィルムコンデンサを提供する。 The present invention solves the above-described problems in a metal-deposited film for film capacitors and the film capacitor, and uses a polypropylene film or polyethylene terephthalate film whose surface is fluorinated or sulfonated as a substrate, and the metal is deposited on the substrate surface. Provided are a metal-deposited film for a film capacitor, and a film capacitor having a high dielectric constant and excellent heat peelability (adhesion) produced using the metal-deposited film.

本発明者らは、鋭意検討の結果、表面が適切な原子濃度にフッ素化またはスルホン化されたポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、該基体表面に金属が蒸着されたフィルムコンデンサ用の金属蒸着フィルムは、特に、高誘電率で優れた耐熱剥離性を有することを見出した。 As a result of intensive studies, the present inventors have made metal deposition for a film capacitor in which a polypropylene film or polyethylene terephthalate film whose surface is fluorinated or sulfonated to an appropriate atomic concentration is used as a substrate, and a metal is deposited on the substrate surface. It has been found that the film has a particularly excellent heat-resistant peelability at a high dielectric constant.

本発明は、前記知見に基づいて従来の課題を解決したものであり、以下の構成からなる高誘電率で優れた耐熱剥離性を有するフィルムコンデンサ用金属蒸着フィルム、および該金属蒸着フィルムからなるフィルムコンデンサに関する。
〔1〕ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、前記基体のフッ素化またはスルホン化された表面に金属蒸着膜が形成されていることを特徴とするフィルムコンデンサ用金属蒸着フィルム。
〔2〕前記ポリプロピレンフィルム基体の表面のフッ素原子濃度が5at%〜48at%、または、硫黄原子濃度が1at%〜23at%であることを特徴とする前記[1]に記載するフィルムコンデンサ用金属蒸着フィルム。
〔3〕前記ポリエチレンテレフタレートフィルム基体の表面のフッ素原子濃度が2at%〜50at%、または、硫黄原子濃度が1at%〜30at%以下であることを特徴とする前記[1]に記載するフィルムコンデンサ用金属蒸着フィルム。
〔4〕前記蒸着金属が銅、アルミニウム、亜鉛、スズ、あるいはこれらの金属からなる合金であり、前記金属蒸着膜の膜厚が10nm〜100nmであることを特徴とする前記[1]から前記[3]の何れかに記載するフィルムコンデンサ用金属蒸着フィルム。
〔5〕前記[1]から前記[4]の何れかに記載するフィルムコンデンサ用金属蒸着フィルムを使用して製造されたフィルムコンデンサ。
The present invention solves the conventional problems based on the above knowledge, and has a metal-deposited film for a film capacitor having a high dielectric constant and excellent heat-resistant peelability having the following configuration, and a film comprising the metal-deposited film Concerning capacitors.
[1] A metal vapor-deposited film for a film capacitor, wherein a metal vapor-deposited film is formed on a fluorinated or sulfonated surface of the substrate using a polypropylene film or a polyethylene terephthalate film as a substrate.
[2] The metal vapor deposition for film capacitor as described in [1] above, wherein the fluorine atom concentration on the surface of the polypropylene film substrate is 5 at% to 48 at%, or the sulfur atom concentration is 1 at% to 23 at%. the film.
[3] The film capacitor as described in [1] above, wherein the fluorine atom concentration on the surface of the polyethylene terephthalate film substrate is 2 at% to 50 at%, or the sulfur atom concentration is 1 at% to 30 at% or less. Metal vapor deposition film.
[4] The vapor-deposited metal is copper, aluminum, zinc, tin, or an alloy made of these metals, and the metal vapor-deposited film has a thickness of 10 nm to 100 nm. 3] The metal vapor deposition film for film capacitors described in any one of [3].
[5] A film capacitor produced using the metal-deposited film for a film capacitor described in any one of [1] to [4].

本発明のフィルムコンデンサ用金属蒸着フィルムは、ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、前記基体のフッ素化またはスルホン化された表面に金属蒸着膜が形成されており、ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムの表面を適切な原子濃度にフッ素化またはスルホン化することによって、この表面上に形成される金属蒸着膜との密着性が良くなり、また、これらのフィルム自体に含まれる水分の酸化を抑えるので、特に高温での使用時に、フィルム表面の金属蒸着膜の剥離や欠落が殆ど生じないので、高誘電率で優れた耐熱剥離性を有することができる。 The metal-deposited film for a film capacitor of the present invention has a polypropylene film or a polyethylene terephthalate film as a base, and a metal-deposited film is formed on the fluorinated or sulfonated surface of the base. The surface of the polypropylene film or the polyethylene terephthalate film By fluorinating or sulfonating to an appropriate atomic concentration, the adhesion with the metal vapor deposition film formed on this surface is improved, and since the oxidation of moisture contained in these films themselves is suppressed, When the film is used at a high temperature, the metal vapor deposition film on the surface of the film is hardly peeled off or missing, so that it has a high dielectric constant and excellent heat resistance peelability.

本発明のフィルムコンデンサ用金属蒸着フィルムは、前記ポリプロピレンフィルムを基体として用いるものは、該基体表面のフッ素原子濃度が5at%〜48at%、または硫黄原子濃度が1at%〜23at%であるものが好ましい。フッ素原子濃度が5at%未満では、金属蒸着膜との充分な密着性が得られず、48at%を超えると、耐熱剥離性の低下をきたす。また、硫黄原子濃度が1at%未満では、金属蒸着膜との充分な密着性が得られず、23at%を超えると、耐熱剥離性の低下をきたす。 The metal vapor-deposited film for film capacitors of the present invention preferably uses the above-mentioned polypropylene film as a substrate, and the fluorine atom concentration on the substrate surface is 5 at% to 48 at%, or the sulfur atom concentration is 1 at% to 23 at%. . When the fluorine atom concentration is less than 5 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and when it exceeds 48 at%, the heat-resistant peelability is lowered. Further, if the sulfur atom concentration is less than 1 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and if it exceeds 23 at%, the heat-resistant peelability is lowered.

本発明のフィルムコンデンサ用金属蒸着フィルムは、前記ポリエチレンテレフタレートフィルムを基体として用いるものは、該基体表面のフッ素原子濃度が2at%〜50at%、または硫黄原子濃度が1at%〜30at%以下であるものが好ましい。フッ素原子濃度が2at%未満では金属蒸着膜との充分な密着性が得られず、50at%を超えると耐熱剥離性の低下をきたす。また、硫黄原子濃度が1at%未満では金属蒸着膜との充分な密着性が得られず、30at%を超えると耐熱剥離性の低下をきたす。 The metal vapor-deposited film for film capacitors of the present invention uses the above-mentioned polyethylene terephthalate film as a substrate, and the fluorine atom concentration on the substrate surface is 2 at% to 50 at%, or the sulfur atom concentration is 1 at% to 30 at% or less. Is preferred. When the fluorine atom concentration is less than 2 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and when it exceeds 50 at%, the heat-resistant peelability is lowered. Further, when the sulfur atom concentration is less than 1 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and when it exceeds 30 at%, the heat-resistant peelability is lowered.

本発明のフィルムコンデンサ用金属蒸着フィルムは、前記蒸着金属が銅、アルミニウム、亜鉛、スズ、あるいはこれらの金属からなる合金であり、前記金属蒸着膜の膜厚が10nm〜100nmであることが好ましい。膜厚が10nm未満であると十分な静電容量を得ることが難しくなる。膜厚が100nmを超えると重量が増し、経済性も低下する。 In the metal-deposited film for a film capacitor of the present invention, the deposited metal is preferably copper, aluminum, zinc, tin, or an alloy made of these metals, and the thickness of the metal-deposited film is preferably 10 nm to 100 nm. If the film thickness is less than 10 nm, it is difficult to obtain a sufficient capacitance. When the film thickness exceeds 100 nm, the weight increases and the economic efficiency decreases.

本発明のフィルムコンデンサは、本発明のフィルムコンデンサ用金属蒸着フィルムを使用して製造されたことを特徴とする。本発明のフィルムコンデンサは、高誘電率で優れた耐熱剥離性(密着性力)を示す。 The film capacitor of the present invention is manufactured using the metal-deposited film for a film capacitor of the present invention. The film capacitor of the present invention exhibits excellent heat resistance peelability (adhesive strength) with a high dielectric constant.

本発明のフィルムコンデンサ用金属蒸着フィルムは、表面がフッ素化またはスルホン化されたポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムからなる基体面に金属が蒸着されおり、高誘電率で優れた耐熱剥離性を有する。本発明のフィルムコンデンサ用金属蒸着フィルムを使用して製造されたフィルムコンデンサは、高誘電率で温度依存性が小さく優れた耐熱性有する。 The metal-deposited film for a film capacitor of the present invention has a high dielectric constant and excellent heat-resistant peelability because the metal is deposited on a substrate surface made of a fluorinated or sulfonated polypropylene film or polyethylene terephthalate film. The film capacitor manufactured using the metal-deposited film for film capacitor of the present invention has a high dielectric constant, small temperature dependency, and excellent heat resistance.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明のフィルムコンデンサ用金属蒸着フィルムは、ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、前記基体のフッ素化またはスルホン化された表面に金属蒸着膜が形成されていることを特徴とする。
Hereinafter, the present invention will be specifically described based on embodiments.
The metal-deposited film for film capacitors of the present invention is characterized in that a polypropylene film or a polyethylene terephthalate film is used as a base, and a metal-deposited film is formed on the fluorinated or sulfonated surface of the base.

ポリエステルフィルムは安価で使用しやすい利点がある。一方、ポリプロピレンフィルムはポリエステルフィルムよりも高精度、高性能なフィルムコンデンサを形成できる利点がある。ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムの厚さは用途に応じて適宜設定されるが、一般的には0.5〜25μmが適当であり、1.5〜16μmが好ましい。 Polyester film has the advantage of being inexpensive and easy to use. On the other hand, a polypropylene film has an advantage that a film capacitor with higher accuracy and higher performance than a polyester film can be formed. Although the thickness of a polypropylene film or a polyethylene terephthalate film is suitably set according to a use, generally 0.5-25 micrometers is suitable and 1.5-16 micrometers is preferable.

基体のポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムの表面(片面または両面)は、フッ素化あるいはスルホン化されている。 The surface (one side or both sides) of the base polypropylene film or polyethylene terephthalate film is fluorinated or sulfonated.

フッ素化処理は、例えば、フィルムをフッ素ガスまたはフッ素含有ガスに接触させて、フィルム表面をフッ素と反応させても良く、フッ素化剤を含む処理液にフィルムを浸漬しても良く、HF系イオン液体中で電解フッ素化を行う方法でも良い。何れの場合でも、フッ素化の程度は、フッ素濃度、反応時間、反応温度などを調整することにより制御される。 In the fluorination treatment, for example, the film surface may be contacted with fluorine gas or a fluorine-containing gas to react the film surface with fluorine, or the film may be immersed in a treatment solution containing a fluorinating agent. A method of performing electrolytic fluorination in a liquid may be used. In any case, the degree of fluorination is controlled by adjusting the fluorine concentration, reaction time, reaction temperature, and the like.

フッ素化ガスとしては、フッ素ガスに窒素ガスを混合した希釈ガス(フッ素ガス濃度0.1〜10vol%程度)を用い、反応温度20℃〜200℃、反応時間数分〜2時間程度で反応させれば良い。 As the fluorinated gas, a dilution gas (fluorine gas concentration of about 0.1 to 10 vol%) in which nitrogen gas is mixed with fluorine gas is used, and the reaction temperature is 20 ° C. to 200 ° C., and the reaction time is several minutes to about 2 hours. Just do it.

フッ素化剤としては、例えば、N-フルオロー’N−クロロメチルトリエチレンジアミン ビス(テトラフルオロほう酸)、トリフルオロメタンスルホン酸−N−フルオロピリジウム、テトラフルオロボレート−N−フルオロピリジウム、テトラフルオロボレート−N−フルオロ−2,4,6−トリメチルピリジウム、トリフルオロメタンスルホン酸−フルオロ−2,4,6−トリメチルピリジウムなどを用いることができる。 Examples of the fluorinating agent include N-fluoro-'N-chloromethyltriethylenediamine bis (tetrafluoroborate), trifluoromethanesulfonic acid-N-fluoropyridium, tetrafluoroborate-N-fluoropyridium, tetrafluoroborate- N-fluoro-2,4,6-trimethylpyridium, trifluoromethanesulfonic acid-fluoro-2,4,6-trimethylpyridium, or the like can be used.

また、フッ素化処理に先立ち、フィルム表面を酸化処理することによって、より温和な条件でフッ素化することができる。この事前の酸化処理は、例えば、飽和水蒸気を含んだ窒素ガスを雰囲気下の反応室にフィルムを導入し、100℃〜200℃に数分加熱すれば良い。 Further, prior to the fluorination treatment, the film surface can be oxidized to be fluorinated under milder conditions. This preliminary oxidation treatment may be performed, for example, by introducing a film of nitrogen gas containing saturated water vapor into a reaction chamber under an atmosphere and heating to 100 ° C. to 200 ° C. for several minutes.

スルホン化は、例えば、スルホン化剤を溶解した処理液にフィルムを浸漬処理することによりなされる。スルホン化処理液としては、例えば、硫酸、クロロスルホン酸などをジクロロエタン、テトラクロロエタン、クロロホルム、四塩化炭素などの塩素系溶媒で希釈した溶液を用いることができる。また、発煙硫酸液中に浸漬する、或いは、フッ素ガスと亜硫酸ガスの雰囲気中に数分〜2時間程度放置することでも処理できる。 Sulfonation is performed, for example, by immersing the film in a treatment solution in which a sulfonating agent is dissolved. As the sulfonation treatment liquid, for example, a solution obtained by diluting sulfuric acid, chlorosulfonic acid or the like with a chlorinated solvent such as dichloroethane, tetrachloroethane, chloroform, or carbon tetrachloride can be used. The treatment can also be performed by immersing in a fuming sulfuric acid solution or by leaving it in an atmosphere of fluorine gas and sulfurous acid gas for several minutes to 2 hours.

何れの場合でも、スルホン化の程度は、処理時間、処理液の硫酸濃度ないしスルホン酸濃度、液温、発煙硫酸濃度、亜硫酸ガス濃度などによって制御することができる。例えば、一般的には、処理温度30℃〜200℃、処理時間は2分〜2時間であれば良い。 In any case, the degree of sulfonation can be controlled by treatment time, sulfuric acid concentration or sulfonic acid concentration of the treatment liquid, liquid temperature, fuming sulfuric acid concentration, sulfurous acid gas concentration, and the like. For example, generally, the treatment temperature may be 30 ° C. to 200 ° C., and the treatment time may be 2 minutes to 2 hours.

フッ素化の程度、あるいはスルホン化の程度は、例えば、フィルム表面のフッ素原子濃度あるいは硫黄原子濃度をX線光電子分光法(XPS)などによって、フィルム表面の任意の箇所について測定し、その測定データから判断することができる。 The degree of fluorination or the degree of sulfonation is determined, for example, by measuring the fluorine atom concentration or sulfur atom concentration on the film surface at any point on the film surface by X-ray photoelectron spectroscopy (XPS) and the like. Judgment can be made.

ポリプロピレンフィルムを用いた基体については、該基体表面のフッ素原子濃度が5at%〜48at%、または硫黄原子濃度が1at%〜23at%であれば良い。フッ素原子濃度が5at%未満では金属蒸着膜との充分な密着性が得られず、48at%を超えると耐熱剥離性の低下をきたす。また、硫黄原子濃度が1at%未満では金属蒸着膜との充分な密着性が得られず、23at%を超えると耐熱剥離性の低下をきたす。 For a substrate using a polypropylene film, the fluorine atom concentration on the substrate surface may be 5 at% to 48 at%, or the sulfur atom concentration may be 1 at% to 23 at%. When the fluorine atom concentration is less than 5 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and when it exceeds 48 at%, the heat-resistant peelability is lowered. Further, when the sulfur atom concentration is less than 1 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and when it exceeds 23 at%, the heat-resistant peelability is lowered.

ポリエチレンテレフタレートフィルムを用いた基体については、該基体表面のフッ素原子濃度が2at%〜50at%、または硫黄原子濃度が1at%〜30at%であれば良い。フッ素原子濃度が2at%未満では金属蒸着膜との充分な密着性が得られず、50at]%を超えると耐熱剥離性の低下をきたす。また、硫黄原子濃度が1at%未満では金属蒸着膜との充分な密着性が得られず、30at%を超えると耐熱剥離性の低下をきたす。 For a substrate using a polyethylene terephthalate film, the fluorine atom concentration on the substrate surface may be 2 at% to 50 at%, or the sulfur atom concentration may be 1 at% to 30 at%. When the fluorine atom concentration is less than 2 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and when it exceeds 50 at]%, the heat-resistant peelability is lowered. Further, when the sulfur atom concentration is less than 1 at%, sufficient adhesion to the metal vapor deposition film cannot be obtained, and when it exceeds 30 at%, the heat-resistant peelability is lowered.

本発明の金属蒸着フィルムは、基体フィルムのフッ素化またはスルホン化された表面に金属蒸着膜が設けられている。金属蒸着膜の形成方法は、例えば、蒸着、スパッタリング、イオンプレーティングあるいはメッキなどの方法を用いることができる。 In the metal vapor deposition film of the present invention, the metal vapor deposition film is provided on the fluorinated or sulfonated surface of the base film. As a method for forming the metal vapor deposition film, for example, a method such as vapor deposition, sputtering, ion plating, or plating can be used.

蒸着金属の種類は、例えば、アルミニウム、亜鉛、スズ、ニッケル、クロム、鉄、銅、チタン、あるいはこれらの金属を含有する合金等が挙げられる。コンデンサの電気特性や生産性の面からは、亜鉛、アルミニウム、スズ、またはそれらを含む合金が好ましく用いられる。 Examples of the vapor deposition metal include aluminum, zinc, tin, nickel, chromium, iron, copper, titanium, and alloys containing these metals. From the viewpoint of the electrical characteristics and productivity of the capacitor, zinc, aluminum, tin, or an alloy containing them is preferably used.

金属蒸着膜の厚さは10nm〜100nmが適当であり、30nm〜80nmが好ましい。この膜厚が10nm未満であると十分な静電容量を得ることが難しくなる。また、この膜厚が100nmより厚いと重量が増し、経済性も低下する。 The thickness of the metal vapor deposition film is suitably 10 nm to 100 nm, preferably 30 nm to 80 nm. If this film thickness is less than 10 nm, it is difficult to obtain a sufficient capacitance. On the other hand, if the film thickness is thicker than 100 nm, the weight increases and the economic efficiency decreases.

本発明のフィルムコンデンサ用金属蒸着フィルムは、ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、フッ素化またはスルホン化された基体面上に金属が蒸着されおり、高誘電率で優れた耐熱剥離性を有する。本発明のフィルムコンデンサ用金属蒸着フィルムを使用して製造されたフィルムコンデンサは、高誘電率で温度依存性が小さく優れた耐熱性有する。 The metal-deposited film for a film capacitor of the present invention has a polypropylene film or a polyethylene terephthalate film as a substrate, metal is deposited on a fluorinated or sulfonated substrate surface, and has a high dielectric constant and excellent heat-resistant peelability. The film capacitor manufactured using the metal-deposited film for film capacitor of the present invention has a high dielectric constant, small temperature dependency, and excellent heat resistance.

以下、本発明の実施例を示す。なお、以下の実施例において、誘電率は日本工業規格〔JIS C2151〕に準拠し、20℃、1kHで測定した。密着力は日本工業規格〔JIS C6471〕に準拠して測定した。また、フッ素及び硫黄の原子濃度はX線光電子分光法(XPS)にて測定した。 Examples of the present invention will be described below. In the following examples, the dielectric constant was measured at 20 ° C. and 1 kH in accordance with Japanese Industrial Standard [JIS C2151]. The adhesion was measured according to Japanese Industrial Standard [JIS C6471]. The atomic concentrations of fluorine and sulfur were measured by X-ray photoelectron spectroscopy (XPS).

〔実施例1〕
厚さ4μmのポリプロピレンフィルムを、フッ素化ガス(フッ素ガスに窒素ガスを混合、フッ素ガス量1vol%)雰囲気の反応室に入れ、10分間、50℃に保持してフィルムの両表面をフッ素化処理した。これを純水で洗浄し、乾燥した後に、フッ素化処理したフィルム両表面にアルミニウムを膜厚50nmに蒸着して金属蒸着フィルムを形成し、フッ素原子濃度、誘電率を測定し、結果を表1に示した。
また、乾燥後のフッ素化処理されたフィルムの片面に銅を膜厚50nmに蒸着して、さらに銅を電解めっき法にて8μmの厚みに形成した。この金属めっきフィルムについて、フィルムと金属の常温および耐熱試験後(100℃にて1時間)の密着力を測定し、結果を表1に示した。
比較基準として、フッ素化処理を行わない以外は実施例1と同様にして比較試料を形成し、この誘電率、フィルムと金属の常温および耐熱試験後(100℃にて1時間)の密着力を表1に示した。
[Example 1]
A 4 μm thick polypropylene film is placed in a reaction chamber in an atmosphere of fluorinated gas (fluorine gas mixed with nitrogen gas, fluorine gas amount 1 vol%) and held at 50 ° C. for 10 minutes to fluorinate both surfaces of the film. did. This was washed with pure water and dried, then aluminum was vapor-deposited on both surfaces of the fluorinated film to form a metal vapor-deposited film, and the fluorine atom concentration and dielectric constant were measured. It was shown to.
Moreover, copper was vapor-deposited to a film thickness of 50 nm on one side of the fluorinated film after drying, and copper was further formed to a thickness of 8 μm by electrolytic plating. About this metal plating film, the normal temperature of the film and the metal, and the adhesive force after a heat test (1 hour at 100 ° C.) were measured, and the results are shown in Table 1.
As a reference for comparison, a comparative sample was formed in the same manner as in Example 1 except that fluorination treatment was not performed. The dielectric constant, the adhesion between the film and metal at room temperature and after a heat test (100 ° C. for 1 hour) It is shown in Table 1.

〔実施例2〜実施例4〕
フッ素化ガスのフッ素ガス量、処理温度、処理時間を表1に示す条件にした他は、実施例1と同様にしてフッ素化処理を行った。次いで、フッ素化処理したフィルムに実施例1と同様に金属膜を形成し、金属蒸着フィルムおよび金属めっきフィルムを作製した。この金属蒸着フィルムおよび金属めっきフィルムについてフッ素原子濃度、誘電率、フィルムと金属の常温および耐熱試験後(100℃にて1時間)の密着力を測定した。この結果を表1に示した。実施例1〜4は何れも比較試料に比べて、誘電率が約2割〜約3割向上し、蒸着金属の密着力が常温で約1.5倍〜約1.8倍に向上しており、加熱後も密着力が殆ど変わらない。
[Examples 2 to 4]
The fluorination treatment was performed in the same manner as in Example 1 except that the amount of fluorine gas, the treatment temperature, and the treatment time of the fluorination gas were changed to the conditions shown in Table 1. Next, a metal film was formed on the fluorinated film in the same manner as in Example 1 to prepare a metal vapor deposited film and a metal plated film. The metal vapor deposition film and the metal plating film were measured for fluorine atom concentration, dielectric constant, adhesion between the film and metal at room temperature and after a heat test (100 ° C. for 1 hour). The results are shown in Table 1. In each of Examples 1 to 4, the dielectric constant is improved by about 20% to about 30% compared to the comparative sample, and the adhesion of the deposited metal is improved by about 1.5 times to about 1.8 times at room temperature. In addition, the adhesive force hardly changes even after heating.

Figure 2011171362
Figure 2011171362

〔実施例5〕
厚さ4μmのポリプロピレンフィルムを、温度60℃の発煙硫酸溶液中(SO3濃度30vol%)に2分間浸漬してスルホン化処理を行った。これを純水で洗浄した後にスルホン化処理したフィルム両表面にアルミニウムを膜厚50nmに蒸着して金属蒸着フィルムを形成した。この金属について、硫黄原子濃度、誘電率を測定した。この結果を表2に示した。また、乾燥後のスルホン化処理されたフィルムの片面に銅を膜厚50nmに蒸着して、さらに銅を電解めっき法にて8μmの厚みに形成した。この金属めっきフィルムについて、フィルムと金属の常温および耐熱試験後(100℃にて1時間)の密着力を測定した。この結果を表2に示した。
比較基準として、スルホン化処理を行わない以外は実施例5と同様にして比較試料を形成し、この誘電率、フィルムと金属の常温および耐熱試験後(100℃にて1時間)の密着力を表1に示した。
Example 5
A 4 μm thick polypropylene film was immersed in a fuming sulfuric acid solution (SO 3 concentration 30 vol%) at a temperature of 60 ° C. for 2 minutes for sulfonation treatment. This was washed with pure water, and then aluminum was vapor-deposited to a film thickness of 50 nm on both surfaces of the sulfonated film to form a metal vapor-deposited film. The sulfur atom concentration and dielectric constant of this metal were measured. The results are shown in Table 2. Moreover, copper was vapor-deposited to a film thickness of 50 nm on one surface of the sulfonated film after drying, and copper was further formed to a thickness of 8 μm by an electrolytic plating method. About this metal plating film, the adhesive force after normal temperature and a heat test of a film and a metal (1 hour at 100 degreeC) was measured. The results are shown in Table 2.
As a reference for comparison, a comparative sample was formed in the same manner as in Example 5 except that the sulfonation treatment was not performed. The dielectric constant, the adhesion between the film and metal at room temperature and after a heat test (100 ° C. for 1 hour) It is shown in Table 1.

〔実施例6〜実施例8〕
発煙硫酸の濃度、処理温度、処理時間を表2に示す条件にした他は実施例5と同様にしてスルホン化処理を行った。次いで、スルホン化処理したフィルムに実施例5と同様に金属膜を形成し、金属蒸着フィルムおよび金属めっきフィルムを作製した。この金属蒸着フィルムについて硫黄原子濃度、誘電率、フィルムと金属の常温および耐熱試験後(100℃にて1時間)の密着力を測定した。この結果を表2に示した。実施例5〜8は何れも比較試料に比べて、誘電率が約3割〜約4割向上し、蒸着金属の密着力が常温で約1.5倍〜約1.7倍に向上しており、加熱後も密着力が殆ど変わらない。
[Examples 6 to 8]
The sulfonation treatment was performed in the same manner as in Example 5 except that the fuming sulfuric acid concentration, the treatment temperature, and the treatment time were changed to the conditions shown in Table 2. Next, a metal film was formed on the sulfonated film in the same manner as in Example 5 to prepare a metal vapor deposited film and a metal plated film. With respect to this metal vapor-deposited film, the sulfur atom concentration, the dielectric constant, and the adhesion between the film and metal at room temperature and after a heat resistance test (at 100 ° C. for 1 hour) were measured. The results are shown in Table 2. In each of Examples 5 to 8, the dielectric constant was improved by about 30% to about 40% compared to the comparative sample, and the adhesion strength of the deposited metal was improved by about 1.5 to 1.7 times at room temperature. In addition, the adhesive force hardly changes even after heating.

Figure 2011171362
Figure 2011171362

〔実施例9〕
厚さ4μmのポリエチレンテレフタレートフィルムを、フッ素化ガス(フッ素ガスに窒素ガスを混合、フッ素ガス量1vol%)雰囲気の反応室に入れ、10分間、50℃に保持してフィルムの両表面をフッ素化処理した。これを純水で洗浄し、乾燥した後にフッ素化処理したフィルム両表面にアルミニウムを膜厚50nmに蒸着して金属蒸着フィルムを形成した。この金属蒸着フィルムについて、フッ素原子濃度、誘電率を測定した。この結果を表3に示した。また、乾燥後のフッ素化処理されたフィルムの片面に銅を膜厚50nmに蒸着して、さらに銅を電解めっき法にて8μmの厚みに形成した。この金属めっきフィルムについて、フィルムと金属の常温および耐熱試験後(150℃にて1時間)の密着力を測定した。この結果を表3に示した。
比較基準として、フッ素化処理を行わない以外は実施例9と同様にして比較試料を形成し、この誘電率、フィルムと金属の常温および耐熱試験後(150℃1時間)の密着力を表3に示した。
Example 9
A polyethylene terephthalate film with a thickness of 4 μm is placed in a reaction chamber in an atmosphere of fluorinated gas (fluorine gas mixed with nitrogen gas, fluorine gas amount 1 vol%) and held at 50 ° C. for 10 minutes to fluorinate both surfaces of the film. Processed. This was washed with pure water, dried, and then fluorinated on both surfaces, aluminum was vapor-deposited to a film thickness of 50 nm to form a metal vapor-deposited film. This metal vapor deposition film was measured for fluorine atom concentration and dielectric constant. The results are shown in Table 3. Moreover, copper was vapor-deposited to a film thickness of 50 nm on one side of the fluorinated film after drying, and copper was further formed to a thickness of 8 μm by electrolytic plating. About this metal plating film, the adhesive force after normal temperature of a film and a metal and a heat test (1 hour at 150 degreeC) was measured. The results are shown in Table 3.
As a comparative standard, a comparative sample was formed in the same manner as in Example 9 except that the fluorination treatment was not performed. The dielectric constant, the adhesion between the film and metal at room temperature and after a heat test (150 ° C. for 1 hour) are shown in Table 3. It was shown to.

〔実施例10〜実施例12〕
フッ素化ガスのフッ素ガス量、処理温度、処理時間を表3に示す条件にした他は実施例9と同様にしてフッ素化処理を行った。次いで、フッ素化処理したフィルムに実施例9と同様に金属膜を形成し、金属蒸着フィルムおよび金属めっきフィルムを作製した。この金属蒸着フィルムおよび金属めっきフィルムについてフッ素原子濃度、誘電率、フィルムと金属の常温および耐熱試験後(150℃にて1時間)の密着力を測定した。この結果を表3に示した。実施例9〜12は何れも比較試料に比べて、誘電率が約1割〜約2割向上し、蒸着金属の密着力が常温で約1.5倍〜約1.6倍に向上しており、加熱後も密着力が変わらない。
[Examples 10 to 12]
The fluorination treatment was performed in the same manner as in Example 9 except that the amount of fluorine gas, the treatment temperature, and the treatment time of the fluorination gas were changed to the conditions shown in Table 3. Next, a metal film was formed on the fluorinated film in the same manner as in Example 9 to produce a metal vapor-deposited film and a metal plated film. About this metal vapor deposition film and metal plating film, the fluorine atom density | concentration, the dielectric constant, the normal temperature of the film and the metal, and the adhesive force after a heat test (1 hour at 150 degreeC) were measured. The results are shown in Table 3. In each of Examples 9 to 12, the dielectric constant is improved by about 10% to about 20%, and the adhesion of the deposited metal is improved by about 1.5 to 1.6 times at room temperature as compared with the comparative sample. The adhesion does not change even after heating.

Figure 2011171362
Figure 2011171362

〔実施例13〕
厚さ4μmのポリエチレンテレフタレートフィルムを、温度60℃の発煙硫酸溶液中(SO3濃度30vol%)に2分間浸漬してスルホン化処理を行った。これを純水で洗浄した後に、スルホン化処理したフィルム両表面にアルミニウムを膜厚50nmに蒸着して金属蒸着フィルムを形成した。この金属蒸着フィルムについて、硫黄原子濃度、誘電率を測定した。この結果を表4に示した。また、乾燥後のスルホン化処理されたフィルムの片面に銅を膜厚50nmに蒸着して、さらに銅を電解めっき法にて8μmの厚みに形成した。この金属めっきフィルムについて、フィルムと金属の常温および耐熱試験後(150℃1時間)の密着力を測定した。この結果を表4に示した。
比較基準として、スルホン化処理を行わない以外は実施例14と同様にして比較試料を形成し、この誘電率、フィルムと金属の常温および耐熱試験後(100℃にて1時間)の密着力を表4に示した。
Example 13
A 4 μm thick polyethylene terephthalate film was immersed in a fuming sulfuric acid solution (SO 3 concentration 30 vol%) at a temperature of 60 ° C. for 2 minutes for sulfonation treatment. After washing this with pure water, aluminum was vapor-deposited to a film thickness of 50 nm on both surfaces of the sulfonated film to form a metal vapor-deposited film. About this metal vapor deposition film, the sulfur atom density | concentration and the dielectric constant were measured. The results are shown in Table 4. Moreover, copper was vapor-deposited to a film thickness of 50 nm on one surface of the sulfonated film after drying, and copper was further formed to a thickness of 8 μm by an electrolytic plating method. About this metal plating film, the adhesive force after normal temperature and a heat test (150 degreeC1 hour) of a film and a metal was measured. The results are shown in Table 4.
As a reference for comparison, a comparative sample was formed in the same manner as in Example 14 except that the sulfonation treatment was not performed. The dielectric constant, the adhesion between the film and metal at room temperature and after a heat test (100 ° C. for 1 hour) It is shown in Table 4.

〔実施例14〜実施例16〕
発煙硫酸の濃度、処理温度、処理時間を表4に示す条件にした他は実施例14と同様にしてスルホン化処理を行った。次いで、スルホン化処理したフィルムに実施例14と同様に金属膜を形成し、金属蒸着フィルムおよび金属めっきフィルムを作製した。この金属蒸着フィルムおよび金属めっきフィルムについてフッ素原子濃度、誘電率、フィルムと金属の常温および耐熱試験後(150℃にて1時間)の密着力を測定した。この結果を表4に示した。実施例13〜16は何れも比較試料に比べて、誘電率が約1割〜約2割向上し、蒸着金属の密着力が常温で約1.5倍〜約1.6倍に向上しており、加熱後も密着力が殆ど変わらない。
[Examples 14 to 16]
The sulfonation treatment was performed in the same manner as in Example 14 except that the fuming sulfuric acid concentration, the treatment temperature, and the treatment time were changed to the conditions shown in Table 4. Next, a metal film was formed on the sulfonated film in the same manner as in Example 14 to prepare a metal vapor deposited film and a metal plated film. About this metal vapor deposition film and metal plating film, the fluorine atom density | concentration, the dielectric constant, the normal temperature of the film and the metal, and the adhesive force after a heat test (1 hour at 150 degreeC) were measured. The results are shown in Table 4. In each of Examples 13 to 16, the dielectric constant is improved by about 10% to about 20% compared to the comparative sample, and the adhesion of the deposited metal is improved by about 1.5 to 1.6 times at room temperature. In addition, the adhesive force hardly changes even after heating.

Figure 2011171362
Figure 2011171362

Claims (5)

ポリプロピレンフィルムまたはポリエチレンテレフタレートフィルムを基体とし、前記基体のフッ素化またはスルホン化された表面に金属蒸着膜が形成されていることを特徴とするフィルムコンデンサ用金属蒸着フィルム。 A metal-deposited film for a film capacitor, characterized in that a polypropylene film or a polyethylene terephthalate film is used as a base, and a metal-deposited film is formed on a fluorinated or sulfonated surface of the base. 前記ポリプロピレンフィルム基体の表面のフッ素原子濃度が5at%〜48at%、または、硫黄原子濃度が1at%〜23at%であることを特徴とする請求項1に記載するフィルムコンデンサ用金属蒸着フィルム。 2. The metal-deposited film for a film capacitor according to claim 1, wherein the fluorine atom concentration on the surface of the polypropylene film substrate is 5 at% to 48 at%, or the sulfur atom concentration is 1 at% to 23 at%. 前記ポリエチレンテレフタレートフィルム基体の表面のフッ素原子濃度が2at%〜50at%、または、硫黄原子濃度が1at%〜30at%以下であることを特徴とする請求項1に記載するフィルムコンデンサ用金属蒸着フィルム。 2. The metal-deposited film for a film capacitor according to claim 1, wherein the fluorine atom concentration on the surface of the polyethylene terephthalate film substrate is 2 at% to 50 at%, or the sulfur atom concentration is 1 at% to 30 at% or less. 前記蒸着金属が銅、アルミニウム、亜鉛、スズ、あるいはこれらの金属からなる合金であり、前記金属蒸着膜の膜厚が10nm〜100nmであることを特徴とする請求項1から請求項3の何れかに記載するフィルムコンデンサ用金属蒸着フィルム。 4. The vapor deposition metal according to claim 1, wherein the vapor deposition metal is copper, aluminum, zinc, tin, or an alloy made of these metals, and the thickness of the metal vapor deposition film is 10 nm to 100 nm. Metal-deposited film for film capacitors described in 1. 請求項1から請求項4の何れかに記載するフィルムコンデンサ用金属蒸着フィルムを使用して製造されたフィルムコンデンサ。 The film capacitor manufactured using the metal vapor deposition film for film capacitors in any one of Claims 1-4.
JP2010031335A 2010-02-16 2010-02-16 Metallized film for film capacitor and film capacitor Pending JP2011171362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031335A JP2011171362A (en) 2010-02-16 2010-02-16 Metallized film for film capacitor and film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031335A JP2011171362A (en) 2010-02-16 2010-02-16 Metallized film for film capacitor and film capacitor

Publications (1)

Publication Number Publication Date
JP2011171362A true JP2011171362A (en) 2011-09-01

Family

ID=44685200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031335A Pending JP2011171362A (en) 2010-02-16 2010-02-16 Metallized film for film capacitor and film capacitor

Country Status (1)

Country Link
JP (1) JP2011171362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116218008A (en) * 2022-12-13 2023-06-06 安徽省宁国市海伟电子有限公司 Polypropylene metallized film and metallized film capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241807A (en) * 1990-02-20 1991-10-29 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH06172966A (en) * 1992-12-09 1994-06-21 Toppan Printing Co Ltd Production of metal oxide vapor-deposited film
JPH08510295A (en) * 1993-05-14 1996-10-29 ミネソタ マイニング アンド マニュファクチャリング カンパニー Metal film and products using the same
JP2007300126A (en) * 2006-05-05 2007-11-15 General Electric Co <Ge> High temperature capacitor and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241807A (en) * 1990-02-20 1991-10-29 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPH06172966A (en) * 1992-12-09 1994-06-21 Toppan Printing Co Ltd Production of metal oxide vapor-deposited film
JPH08510295A (en) * 1993-05-14 1996-10-29 ミネソタ マイニング アンド マニュファクチャリング カンパニー Metal film and products using the same
JP2007300126A (en) * 2006-05-05 2007-11-15 General Electric Co <Ge> High temperature capacitor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116218008A (en) * 2022-12-13 2023-06-06 安徽省宁国市海伟电子有限公司 Polypropylene metallized film and metallized film capacitor

Similar Documents

Publication Publication Date Title
US6804109B1 (en) Solid electrolyte capacitor having transition metal oxide underlayer and conductive polymer electrolyte
JP4983744B2 (en) Manufacturing method of solid electrolytic capacitor
US20110272288A1 (en) Method for fabricating carbon nanotube aluminum foil electrode
JP4785122B2 (en) Oxidizing agent / dopant for conductive polymer, conductive composition, solid electrolytic capacitor and production method thereof.
US3397446A (en) Thin film capacitors employing semiconductive oxide electrolytes
JP2000073198A (en) Method and electrolyte for anodic treatment of valve metal
JP2015115475A (en) Electrode foil, electrolytic capacitor and manufacturing method of electrode foil
JP2011171362A (en) Metallized film for film capacitor and film capacitor
JPH02249221A (en) Solid electrolytic capacitor
JP4845781B2 (en) Manufacturing method of solid electrolytic capacitor
JPWO2009051133A1 (en) Capacitor manufacturing method, capacitor, wiring board, electronic device and IC card
JP2010278360A (en) Solid electrolytic capacitor and method of manufacturing the same
WO2012137968A1 (en) Conductive polymer aqueous suspension, method for producing same, conductive organic material, solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2007059499A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP2000114109A (en) Solid electrolytic capacitor and its manufacture
JP6492290B2 (en) Electrolytic capacitor and manufacturing method thereof, and electrode foil and manufacturing method thereof
JPS62118509A (en) Solid electrolytic capacitor
JP2001326145A (en) Capacitor and its manufacturing method
JP2017103412A (en) Solid electrolytic capacitor
JP4909246B2 (en) Manufacturing method of solid electrolytic capacitor
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0645195A (en) Manufacture of solid-state electrolytic capacitor
JP2007103468A (en) Electrolytic capacitor and manufacturing method thereof
JP2004119603A (en) Manufacturing method of solid electrolytic capacitor
JPH0358404A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A02 Decision of refusal

Effective date: 20140416

Free format text: JAPANESE INTERMEDIATE CODE: A02