JP2011171023A - Electric contact and electric power switch using it - Google Patents

Electric contact and electric power switch using it Download PDF

Info

Publication number
JP2011171023A
JP2011171023A JP2010031934A JP2010031934A JP2011171023A JP 2011171023 A JP2011171023 A JP 2011171023A JP 2010031934 A JP2010031934 A JP 2010031934A JP 2010031934 A JP2010031934 A JP 2010031934A JP 2011171023 A JP2011171023 A JP 2011171023A
Authority
JP
Japan
Prior art keywords
metal
electrical contact
contact
highly conductive
refractory metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010031934A
Other languages
Japanese (ja)
Inventor
Shigeru Kikuchi
茂 菊池
Ayumi Morita
歩 森田
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010031934A priority Critical patent/JP2011171023A/en
Priority to EP11154050A priority patent/EP2362400A3/en
Priority to CN 201110040134 priority patent/CN102162043A/en
Publication of JP2011171023A publication Critical patent/JP2011171023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric contact which is capable of reducing a deposition-separating force by having low strength, and has superior slidability in air while maintaining high sintering characteristics possible of densification by using an appropriate fire-resistant metal as an arc-resistant component. <P>SOLUTION: The electric contact 1 includes: the fire-resistant metal; a high conductive metal; and an easily oxidizable metal. The fire-resistant metal is either one kind of C, Mo, or W. The high conductive metal is Cu. The easily oxidizable metal is at least one kind selected from Co, Be, Fe, Si, Ti, Zr, B, V, and Nb. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気中において摺動接触し、電流を通電・遮断する電気接点と、それを用いた電力開閉器に関する。   The present invention relates to an electrical contact that makes sliding contact in the air and that conducts and interrupts current, and a power switch using the electrical contact.

電力受配電系統の保護機器である各種遮断器や開閉器において、その電流開閉部は多くの場合、絶縁性やアークの拡散消滅性に優れ、電流遮断に有利な真空中に設けられる。そのため、真空雰囲気を維持するための真空容器などが必要で、構造や製造工程が複雑となる。   In various circuit breakers and switches that are protective devices of the power receiving and distributing system, the current switching unit is often provided in a vacuum that is excellent in insulation and arc diffusion extinction and is advantageous for current interruption. Therefore, a vacuum container or the like for maintaining a vacuum atmosphere is necessary, and the structure and manufacturing process are complicated.

しかし、これらの機器には小型・軽量化,低価格化などが求められ、構造の簡素化が必要であり、雰囲気維持容器が不要で構造が単純な大気中での電流開閉が望まれる。また、機器の小型化には電気接点の開閉動作を行う操作機構部を小型化することが有効で、そのためには電気接点同士がジュール熱によって溶着した際の引離し力を小さくすることが必要である。さらに、電気接点間の接触には少なからず摺動(摩擦)が伴うので、電気接点は耐摩耗性に優れ、摺動による損耗が少ないことが望ましい。したがって電気接点には、気中において支障なく通電・遮断でき、溶着引離し力が小さく、耐摩耗性に優れることなどが求められる。   However, these devices are required to be small, light, and low in price, and need to be simplified in structure, and are required to open and close currents in the atmosphere with no need for an atmosphere maintenance container and in a simple structure. In order to reduce the size of the equipment, it is effective to reduce the size of the operating mechanism that opens and closes the electrical contacts. To that end, it is necessary to reduce the pulling force when the electrical contacts are welded together by Joule heat. It is. Furthermore, since the contact between the electrical contacts is not a little accompanied by sliding (friction), it is desirable that the electrical contact is excellent in wear resistance and has little wear due to sliding. Accordingly, electrical contacts are required to be able to be energized and interrupted without any problem in the air, have a small welding pull-off force, and have excellent wear resistance.

特許文献1には、緻密で電気的性能および摺動性に優れた気中電気接点が開示されている。これは、Cu−W,Cu−Mo系の焼結体にCuを溶融含浸して緻密化することにより、通電性などの電気的性能を向上させるとともに、BN等の摺動性向上成分を添加して気中摺動性の改善を図ったものである。   Patent Document 1 discloses an air contact in air that is dense and excellent in electrical performance and slidability. This is because Cu-W, Cu-Mo based sintered body is melt impregnated with Cu and densified to improve electrical performance such as electrical conductivity and add slidability improving components such as BN. In this way, air slidability is improved.

特開平9−111312号公報Japanese Patent Laid-Open No. 9-111312

電流開閉機器の接点材料は、一般に、耐火性金属と高導電性金属を含む複合材料からなる。ここで耐火性金属とは、耐アーク性や耐電圧性能を付与するための成分で、融点1800℃以上の比較的高融点の金属である。また、高導電性金属とは、通電性を有するための成分で、室温での比抵抗が3μΩ・cm以下のCuに代表される良導体金属である。これらの成分を含む接点材料は、良好な通電性を維持するために欠陥なく健全な緻密体であることが必要である一方で、通電ジュール熱によって互いに溶着した際に容易に引離せることが求められ、そのためには低強度であることが望ましい。   The contact material of the current switching device is generally composed of a composite material containing a refractory metal and a highly conductive metal. Here, the refractory metal is a component for imparting arc resistance and voltage resistance performance, and is a metal having a relatively high melting point with a melting point of 1800 ° C. or higher. Further, a highly conductive metal is a component for providing electrical conductivity, and is a good conductor metal typified by Cu having a specific resistance at room temperature of 3 μΩ · cm or less. The contact material containing these components must be a healthy dense body without defects in order to maintain good electrical conductivity, but can be easily separated when welded to each other by energizing Joule heat. For this purpose, low strength is desirable.

さらに、気中での良好な摺動性や耐摩耗性の要求に対し、BN等の摺動性向上成分を添加した特許文献1の接点材料は、BN等の化合物を含むことにより焼結性が低下し、低コストの焼結製法のみでは緻密化が困難である。そのため、焼結後にCuを溶融含浸するが、これは製造コストの増大につながる。   Furthermore, in response to demands for good slidability and wear resistance in the air, the contact material of Patent Document 1 to which a slidability-improving component such as BN is added contains BN and other compounds to sinter. Thus, densification is difficult only by a low-cost sintering method. Therefore, Cu is melt-impregnated after sintering, which leads to an increase in manufacturing cost.

本発明の目的は、耐アーク成分として適正な耐火性金属を用い、緻密化が可能な高い焼結性を維持しながら低強度化による溶着引離し力の低減が可能で、気中での優れた摺動性を有する電気接点を提供することにある。   The object of the present invention is to use an appropriate refractory metal as an arc-resistant component, and while maintaining high sinterability capable of densification, it is possible to reduce the welding separation force by reducing the strength, and it is excellent in the air Another object of the present invention is to provide an electrical contact having excellent sliding properties.

本発明の電気接点は、耐火性金属と高導電性金属と易酸化性金属を含み、前記耐火性金属がC,Mo,Wのいずれか1種であり、前記高導電性金属がCuであり、前記易酸化性金属はその酸化物生成自由エネルギーが前記耐火性金属および前記高導電性金属の酸化物生成自由エネルギーよりも低い元素であることを特徴とする。   The electrical contact of the present invention includes a refractory metal, a highly conductive metal, and an easily oxidizable metal, wherein the refractory metal is any one of C, Mo, and W, and the highly conductive metal is Cu. The oxidizable metal is an element whose oxide formation free energy is lower than the oxide formation free energy of the refractory metal and the highly conductive metal.

また、本発明の電気接点は、耐火性金属と高導電性金属と易酸化性金属を含み、前記耐火性金属がC,Mo,Wのいずれか1種であり、前記高導電性金属がCuであり、前記易酸化性金属はその酸化物の結晶構造が六方晶である元素であることを特徴とする。   The electrical contact of the present invention includes a refractory metal, a highly conductive metal, and an easily oxidizable metal, wherein the refractory metal is any one of C, Mo, and W, and the highly conductive metal is Cu. The oxidizable metal is an element whose oxide crystal structure is hexagonal.

前記易酸化性金属は、Co,Be,Fe,Si,Ti,Zr,B,V及びNbから選ばれる少なくとも1種であることを特徴とする。   The oxidizable metal is at least one selected from Co, Be, Fe, Si, Ti, Zr, B, V and Nb.

本発明によれば、耐アーク成分として適正な耐火性金属を用い、緻密化が可能な高い焼結性を維持しながら低強度化による溶着引離し力の低減が可能で、気中での優れた摺動性を有する電気接点を提供できる。   According to the present invention, an appropriate refractory metal is used as an arc-resistant component, and while maintaining high sinterability capable of densification, it is possible to reduce the welding separation force by reducing the strength, which is excellent in the air. It is possible to provide an electrical contact having excellent slidability.

本発明の第2実施例に関わる接点ロッドの構成を示す断面図。Sectional drawing which shows the structure of the contact rod in connection with 2nd Example of this invention. 本発明の第4実施例に関わる気中電流開閉部の構造を示す断面図。Sectional drawing which shows the structure of the air current switching part concerning 4th Example of this invention.

本発明者らは、気中における優れた耐摩耗性(摺動性)の付与には、接点の摺動面の摩耗形態を「酸化摩耗」とすることが有効であるとの知見を得た。すなわち、気中摺動時の接点表面において、摩擦熱による温度上昇に伴う酸化層形成量が多いほど摩耗量(損耗量)は少なくなり、これは摩擦によって表面の酸化層のみが除去される「酸化摩耗」形態となるためである。反対に、接点表面の酸化層形成量が少ないと、摺動面での相手材との接触が直接的で、接点あるいは相手材の凝着や剥離,脱落等が生じやすく、これらにより摩耗形態は「凝着摩耗」や「アブレシブ摩耗」となり摩耗量が大きくなる。したがって、気中摺動時の接点表面は、摩擦熱による酸化層の形成が容易であることが望ましい。   The present inventors have obtained knowledge that it is effective to set the wear form of the sliding surface of the contact to “oxidation wear” in order to impart excellent wear resistance (slidability) in the air. . That is, on the contact surface during sliding in the air, the larger the amount of oxide layer formed due to the temperature rise due to frictional heat, the smaller the amount of wear (amount of wear), which means that only the surface oxide layer is removed by friction. This is due to the “oxidation wear” form. On the other hand, if the amount of oxide layer formed on the contact surface is small, the contact with the mating material on the sliding surface is direct, and the contact or mating material tends to adhere, peel, or fall off. The amount of wear increases due to “adhesive wear” and “abrasive wear”. Therefore, it is desirable that the contact surface at the time of air sliding can easily form an oxide layer by frictional heat.

また、電気接点材料の緻密化と低強度化の両立には、耐火性金属粒子と高導電性金属マトリックスの界面に物理的乖離を生じさせることが有効で、この界面乖離が生ずる耐火性金属と高導電性金属の組み合わせが、低強度化およびそれに伴う溶着引離し力の低減を可能にすることを見出した。   In order to achieve both densification and low strength of the electrical contact material, it is effective to cause a physical divergence at the interface between the refractory metal particles and the highly conductive metal matrix. It has been found that a combination of highly conductive metals makes it possible to reduce the strength and the accompanying welding separation force.

これらの知見を基に、本発明の電気接点は耐火性金属と高導電性金属と易酸化性金属を含み、耐火性金属はC,Mo,Wのいずれか1種、高導電性金属はCu、易酸化性金属はその酸化物生成自由エネルギーが耐火性金属および高導電性金属の酸化物生成自由エネルギーよりも低い元素である。易酸化性金属の酸化物生成自由エネルギーが、耐火性金属および高導電性金属の酸化物生成自由エネルギーよりも低いことにより、摺動時の摩擦熱により接点表面に酸化層が容易に生成して摩耗形態が酸化摩耗となり、摩耗量を抑制することができる。また、C,Mo,WはいずれもCuとの反応や固溶がないため、耐火性金属がC,Mo,Wのいずれか1種で、高導電性金属がCuからなることにより、両者間における界面乖離が比較的容易に生じて界面強度が低下し、接点が溶着した際の引離し力を低減できる。   Based on these findings, the electrical contact of the present invention includes a refractory metal, a highly conductive metal, and an easily oxidizable metal. The refractory metal is any one of C, Mo, and W, and the highly conductive metal is Cu. The oxidizable metal is an element whose free energy for forming an oxide is lower than the free energy for forming an oxide of a refractory metal and a highly conductive metal. Because the free energy of oxide formation of oxidizable metals is lower than the free energy of oxide formation of refractory metals and highly conductive metals, an oxide layer is easily formed on the contact surface due to frictional heat during sliding. The wear form becomes oxidative wear, and the amount of wear can be suppressed. Moreover, since C, Mo, and W do not have any reaction or solid solution with Cu, the refractory metal is any one of C, Mo, and W, and the highly conductive metal is made of Cu. The interface dissociation occurs relatively easily, the interface strength decreases, and the pulling force when the contacts are welded can be reduced.

さらに、本発明の電気接点における易酸化性金属は、その酸化物の結晶構造が六方晶である元素である。酸化物の結晶構造が六方晶であると、結晶の六角平面層の層間せん断による自己潤滑効果により、接点表面の摩擦抵抗を軽減でき、摺動性が向上する。   Furthermore, the oxidizable metal in the electrical contact of the present invention is an element whose oxide crystal structure is hexagonal. If the crystal structure of the oxide is hexagonal, the frictional resistance of the contact surface can be reduced and the slidability is improved by the self-lubricating effect due to the interlaminar shear of the hexagonal plane layer of the crystal.

本発明の電気接点における上記のいずれかの条件を満たす易酸化性金属はCo,Be,Fe,Si,Ti,Zr,B,V,Nbである。これらの1種または2種以上を易酸化性金属として用いることにより、摺動時の接点表面において摩擦熱による酸化層が容易に生成し、あるいは、六方晶の結晶構造をもつ酸化層が接点表面に生成し、上記の摩耗量低減や摺動性向上などの効果を発現できる。   The oxidizable metals that satisfy any of the above conditions in the electrical contact of the present invention are Co, Be, Fe, Si, Ti, Zr, B, V, and Nb. By using one or more of these as an easily oxidizable metal, an oxide layer is easily generated by frictional heat on the contact surface during sliding, or an oxide layer having a hexagonal crystal structure is formed on the contact surface. And the effects of reducing the amount of wear and improving slidability can be exhibited.

本発明の電気接点において、耐火性金属の含有量は1〜60体積%である。耐火性金属の含有量がこの範囲より少ないと、耐火性金属粒子と高導電性金属マトリックスとの界面乖離による低強度化効果が十分でなく、溶着引離し力の効果が不足し、この範囲より多いと、緻密化不十分や電気抵抗増大などによって耐溶着性や通電性能が低下する。なお、耐火性金属のC,Mo,Wはそれぞれ比重が異なるため、望ましい耐火性金属の含有量は元素によって異なり、Cは1.0〜4.0体積%、Moは8.0〜32.0体積%、Wは15.3〜60.0体積%であることが好ましい。   In the electrical contact of the present invention, the content of the refractory metal is 1 to 60% by volume. If the content of the refractory metal is less than this range, the effect of reducing the strength due to the interface divergence between the refractory metal particles and the highly conductive metal matrix is not sufficient, and the effect of the welding separation force is insufficient. If the amount is too large, the welding resistance and the current-carrying performance will deteriorate due to insufficient densification and increased electrical resistance. Since C, Mo, and W of refractory metals have different specific gravities, desirable refractory metal contents vary depending on the element, C is 1.0 to 4.0% by volume, and Mo is 8.0 to 32. It is preferable that 0 volume% and W are 15.3 to 60.0 volume%.

また、本発明の電気接点において、易酸化性金属の含有量は0.3〜6体積%である。易酸化性金属の含有量がこの範囲より少ないと、接点表面の酸化層形成が不十分で摺動性の向上効果が得られず、この範囲より多いと、電気抵抗が大きな表面酸化層の厚さが過大となり、通電性能に支障をきたす。   In the electrical contact of the present invention, the content of the easily oxidizable metal is 0.3 to 6% by volume. If the content of the easily oxidizable metal is less than this range, the formation of the oxide layer on the contact surface is insufficient and the effect of improving the slidability cannot be obtained. It becomes too large, and the current-carrying performance is hindered.

本発明の電気接点の製造方法は、耐火性金属,高導電性金属,易酸化性金属それぞれの粉末を混合後、加圧して相対密度65%以上の成形体とし、この成形体をCuの融点(1083℃)以下の温度に加熱して焼結するものである。この方法により、耐火性金属と高導電性金属および易酸化性金属が均一に混合した組織が得られ、耐火性金属と高導電性金属との界面に空隙を形成した乖離状態を得ることができ、溶着後の引離し力を大幅に低減することが可能となる。この界面における空隙は、焼結過程における冷却時に耐火性金属と高導電性金属との熱膨張差から生ずる収縮差によるものと考えられる。   In the method for producing an electrical contact according to the present invention, powders of a refractory metal, a highly conductive metal, and an easily oxidizable metal are mixed and then pressed to form a molded body having a relative density of 65% or more. (1083 ° C.) Sintering by heating to the following temperature. By this method, a structure in which a refractory metal, a highly conductive metal, and an easily oxidizable metal are uniformly mixed is obtained, and a dissociated state in which voids are formed at the interface between the refractory metal and the highly conductive metal can be obtained. The separation force after welding can be greatly reduced. It is considered that the voids at this interface are caused by a difference in shrinkage caused by a difference in thermal expansion between the refractory metal and the highly conductive metal during cooling in the sintering process.

すなわち、上記の耐火性金属に比べてCuの熱膨張率が大きいため、冷却時にはCuが大きく収縮し、界面近傍のCuマトリックスには引張応力が生ずる。この状態で断面観察のために切断すると、応力が開放されて界面で乖離し、空隙が形成される。引張応力を印加した場合も同様に、破断によりCuマトリックスの応力が開放され、クラックが乖離した界面を進展し、空隙となる。このように、焼結過程において界面近傍のCuマトリックスに引張残留応力を生じさせることが有効で、そのための焼結過程における冷却速度は6〜35℃/分とすることが望ましい。   That is, since the coefficient of thermal expansion of Cu is larger than that of the refractory metal, Cu contracts greatly during cooling, and tensile stress is generated in the Cu matrix near the interface. When cutting for cross-sectional observation in this state, the stress is released and separated at the interface, and a void is formed. Similarly, when a tensile stress is applied, the stress of the Cu matrix is released due to the breakage, and the interface where the cracks are separated develops to become voids. Thus, it is effective to generate a tensile residual stress in the Cu matrix in the vicinity of the interface during the sintering process, and the cooling rate in the sintering process is preferably 6 to 35 ° C./min.

また、上記の製法により、易酸化性金属が接点材料中に均一に存在するため、気中摺動の際に表面に酸化層を容易に形成することができ、前述の摺動性向上効果を効率よく発揮する。なお、この製法では、電気接点の最終形状を有する金型を用いることにより、ニアネット形状の成形体を得ることが可能で、焼結後の機械加工が不要となり、低コストで製造できる。   In addition, by the above-described manufacturing method, the oxidizable metal is uniformly present in the contact material, so that an oxide layer can be easily formed on the surface during air sliding, and the above-mentioned sliding property improvement effect can be achieved. Demonstrate efficiently. In this manufacturing method, a near net-shaped molded body can be obtained by using a mold having the final shape of the electrical contact, and machining after sintering is not required, which can be manufactured at low cost.

また、本発明の電気接点の製造方法は、焼結後に大気中あるいは酸化性雰囲気中において、200℃以上の温度に加熱するものである。これにより、電気接点表面に酸化層が形成し、摺動初期における耐摩耗性を向上させることができる。加熱温度がこの温度よりも低いと、接点表面における酸化層形成量が不足し、十分な耐摩耗性向上効果が得られない。加熱温度がこの温度よりも高いと、酸化層が厚くなり、酸化層の亀裂や剥離が生じ易く、同様に十分な効果が得られない。   In addition, the method for producing an electrical contact according to the present invention is such that heating is performed at a temperature of 200 ° C. or higher in the air or in an oxidizing atmosphere after sintering. As a result, an oxide layer is formed on the surface of the electrical contact, and the wear resistance at the initial stage of sliding can be improved. When the heating temperature is lower than this temperature, the amount of oxide layer formed on the contact surface is insufficient, and a sufficient wear resistance improvement effect cannot be obtained. If the heating temperature is higher than this temperature, the oxide layer becomes thick, and the oxide layer is liable to crack or peel off, and similarly, a sufficient effect cannot be obtained.

本発明に関わる電力開閉器は、本発明の電気接点を向かい合わせに突き合わせて一対として用い、その突き合わせ接触の開閉によって、気中において電流を通電および遮断する機能を有するものである。また、電流の通電・遮断は、本発明の電気接点と相手側導体部材との摺動を伴う、嵌め合わせ接触によっても可能である。これにより、優れた遮断性能や通電性能を有し、電気接点同士が溶着した際の引離し力が小さく、摺動接触部の耐摩耗性に優れ、小型で低価格の電力開閉機器が得られる。   The power switch according to the present invention has a function of energizing and shutting off the current in the air by opening and closing the butted contacts by using the electrical contacts of the present invention as a pair. In addition, current can be applied / interrupted by mating contact involving sliding between the electrical contact of the present invention and the mating conductor member. As a result, it has excellent breaking performance and energization performance, has a small pulling force when the electrical contacts are welded to each other, has excellent wear resistance at the sliding contact portion, and can provide a small and low-priced power switchgear. .

なお、真空中で電流を通電および遮断する開閉機構を併せ持つことによって、事故電流等の大電流を真空中で、回路切換え時の小電流を気中で開閉し、電流容量によって開閉機構を使い分けることにより、高信頼性で低コストの電力開閉器が得られる。   In addition, by having an open / close mechanism that turns on and off current in a vacuum, large currents such as accident currents can be opened and closed in vacuum, and small currents when switching circuits can be opened and closed in the air, and the open / close mechanism can be selected according to the current capacity. Thus, a highly reliable and low-cost power switch can be obtained.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

表1に示す組成の電気接点材料を作製し、電気的特性および気中摺動における摩耗率を測定した。   Electrical contact materials having the compositions shown in Table 1 were prepared, and the electrical characteristics and the wear rate in air sliding were measured.

Figure 2011171023
Figure 2011171023

電気接点材料の製造方法は、次のとおりである。   The manufacturing method of the electrical contact material is as follows.

まず、原料は、高導電性金属が粒径60μm以下のCu粉末、耐火性金属がいずれも粒径63μm以下のMoおよびW粉末、易酸化性金属がいずれも粒径5μmのNb,ZrおよびFe粉末である。これらの原料粉末を表1の組成となるような配合比で、V型混合器により混合した。   First, the raw materials were Cu powder having a particle size of 60 μm or less for the highly conductive metal, Mo and W powders having a particle size of 63 μm or less for the refractory metal, and Nb, Zr and Fe each having a particle size of 5 μm for the oxidizable metal. It is a powder. These raw material powders were mixed by a V-type mixer at a blending ratio such that the composition shown in Table 1 was obtained.

次に、この混合粉末を、円盤形状の金型に充填し、油圧プレスにより294MPaの圧力で加圧成形した。成形体の密度は、およそ72%であった。これを約10-2Paの真空中で、1060℃×2時間加熱した後、約13℃/分で冷却して電気接点材料を作製した。この際、比較材として表1に示すように、Cu粉末のみを用いた接点材料および易酸化性金属を含まない接点材料も同様の方法で作製した。なお、本実施例では真空中で焼結したが、焼結雰囲気は非酸化性の還元雰囲気や不活性ガス雰囲気でもよい。 Next, this mixed powder was filled in a disk-shaped mold and pressure-molded at a pressure of 294 MPa by a hydraulic press. The density of the molded body was approximately 72%. This was heated at 1060 ° C. for 2 hours in a vacuum of about 10 −2 Pa, and then cooled at about 13 ° C./min to produce an electrical contact material. At this time, as shown in Table 1 as a comparative material, a contact material using only Cu powder and a contact material not containing an oxidizable metal were also produced in the same manner. In this embodiment, the sintering is performed in a vacuum, but the sintering atmosphere may be a non-oxidizing reducing atmosphere or an inert gas atmosphere.

得られた接点材料の電気的特性として、渦電流式導電率測定器を用いて導電率(通電性)を測定した結果を表1に併せて示す。   As electrical characteristics of the obtained contact materials, the results of measuring the conductivity (conductivity) using an eddy current type conductivity measuring device are also shown in Table 1.

導電率は、Cuのみからなる電気接点(No.11)を基準とした相対値で示した。本発明に関わるNo.1〜No.10の電気接点は、いずれも導電率が0.6以上で、気中接点として適用し得る良好な通電性能を維持できている。比較例のNo.12〜14でも比較的高い導電率を示すが、易酸化性金属の含有量が6体積%を超えると(No.15)、導電率は0.6以下に低下する。   The electrical conductivity was shown as a relative value based on an electrical contact (No. 11) made only of Cu. The electrical contacts No. 1 to No. 10 according to the present invention all have an electric conductivity of 0.6 or more, and can maintain a good energization performance that can be applied as an air contact. Comparative examples No. 12 to 14 show relatively high electrical conductivity, but when the content of easily oxidizable metal exceeds 6% by volume (No. 15), the electrical conductivity decreases to 0.6 or less.

また、気中における摩耗率を、松原式摩耗試験法により測定した。摺動相手材は、一般的な通電部材である無酸素銅とした。摩耗試験片は固定片(10×10×36mm)を得られた接点材料で、可動片(外径25.6/内径20×長さ15mmのリング状)を無酸素銅で作製し、接点材料からなる固定片を大気中で200℃×30分間加熱した後、両者を荷重98Nで接触させながら可動片を200mm/秒で回転させ、摺動後の固定片(接点材料)の損耗体積を摺動距離で除して摩耗率を求めた。その結果を表1に示す。Cuのみからなる電気接点(No.11)は、試験開始後、わずかな摺動距離で試験片間の凝着が生じ、摩耗率は測定できなかった。易酸化性金属を含まない場合には、耐火性金属にW(No.13)よりもMo(No.12)を用いたほうが摩耗率は大きくなる傾向である。   The abrasion rate in the air was measured by the Matsubara type abrasion test method. The sliding counterpart material was oxygen-free copper, which is a common energizing member. The wear test piece is a contact material from which a fixed piece (10 × 10 × 36 mm) was obtained, and a movable piece (ring shape of outer diameter 25.6 / inner diameter 20 × length 15 mm) was made of oxygen-free copper. After heating the fixed piece made of 200 ° C. for 30 minutes in the atmosphere, the movable piece is rotated at 200 mm / second while contacting them with a load of 98 N, and the wear volume of the fixed piece (contact material) after sliding is slid. The wear rate was determined by dividing by the moving distance. The results are shown in Table 1. For the electrical contact made of only Cu (No. 11), adhesion between the test pieces occurred at a slight sliding distance after the test was started, and the wear rate could not be measured. When no easily oxidizable metal is contained, the wear rate tends to be larger when Mo (No. 12) is used as the refractory metal than W (No. 13).

これらに対し、本発明に関わる電気接点は、耐火性金属がMo(No.1〜5)およびW(No.6〜10)いずれの場合にも摩耗率は小さくなり、易酸化性金属を含むことによって耐摩耗性が向上することが確認された。これは、接点材料が易酸化性金属を含むことで、摩擦熱によって脆性で高融点の表面酸化層が容易に生成し、相手材との凝着が生ずることなく酸化層のみが除去される酸化摩耗形態となるためである。この易酸化性金属はNb,Zr,Feいずれでもよく(No.2〜4)、これ以外のCo,Be,Si,Ti,B,V、あるいはこれらの2種以上でも同様の効果が得られる。また、易酸化性金属の含有量は0.3〜6体積%がよく(No.7〜9)、これよりも少ないと摩耗率抑制の効果が小さく(No.14)、これよりも多いと摩耗率は小さくなるものの、前述のように導電率が不足する(No.15)。   On the other hand, the electrical contact according to the present invention has a low wear rate when the refractory metal is either Mo (No. 1 to 5) or W (No. 6 to 10), and contains an oxidizable metal. It was confirmed that the wear resistance was improved. This is because the contact material contains an easily oxidizable metal, so that a brittle, high melting point surface oxide layer is easily generated by frictional heat, and only the oxide layer is removed without causing adhesion with the counterpart material. It is because it becomes a wear form. The easily oxidizable metal may be any of Nb, Zr, and Fe (No. 2 to 4), and the same effect can be obtained with Co, Be, Si, Ti, B, V, or two or more of them. . Further, the content of the easily oxidizable metal is preferably 0.3 to 6% by volume (No. 7 to 9), and if the content is less than this, the effect of suppressing the wear rate is small (No. 14). Although the wear rate is small, the conductivity is insufficient as described above (No. 15).

このように、本発明に関わる電気接点は、気中における接点として優れた電気的特性および耐摩耗性を有することが確認された。   Thus, it was confirmed that the electrical contact according to the present invention has excellent electrical characteristics and wear resistance as a contact in the air.

実施例1で作製した電気接点材料を用いて、通電ロッドと組み合わせた図1に示す接点ロッドを作製した。   Using the electrical contact material produced in Example 1, the contact rod shown in FIG. 1 combined with the energizing rod was produced.

図1において、1は電気接点、2は通電ロッドで、これらの組み合わせあるいは電気接点1のみで接点ロッド100が構成される。接点ロッド100の作製方法は次の通りである。   In FIG. 1, 1 is an electrical contact, 2 is an energizing rod, and a contact rod 100 is constituted by a combination of these or only the electrical contact 1. The manufacturing method of the contact rod 100 is as follows.

図1のa)の場合、実施例1の方法で作製し、所望寸法に加工した電気接点1と、あらかじめ機械加工により作製した無酸素銅からなる通電ロッド2の間にろう材を載置し、これを8.2×10-4Pa以下の真空中で970℃×10分間加熱して、両者を金相学的に一体化した。 In the case of FIG. 1 a), a brazing material is placed between the electrical contact 1 produced by the method of Example 1 and machined to a desired dimension and the energizing rod 2 made of oxygen-free copper produced beforehand by machining. This was heated in a vacuum of 8.2 × 10 −4 Pa or less at 970 ° C. × 10 minutes to integrate them both metallurgically.

図1のb)は、相手側通電部材との接触部にのみ電気接点1を設けた構造である。この場合、リング状に加工した電気接点1をa)と同様にろう付けによって通電ロッド2と一体化することができるが、原料粉末をリング状に成形し、これと通電ロッド2を嵌め合わせた状態で加熱焼結することにより、電気接点1の焼結収縮を利用した焼き嵌めが可能で、ろう材を用いることなく両者を一体化できる。   FIG. 1 b) shows a structure in which the electrical contact 1 is provided only at the contact portion with the counterpart current-carrying member. In this case, the electrical contact 1 processed into a ring shape can be integrated with the current-carrying rod 2 by brazing in the same manner as in a). However, the raw material powder is formed into a ring shape and the current-carrying rod 2 is fitted together. By heat-sintering in the state, shrink fitting using the sintering shrinkage of the electrical contact 1 is possible, and both can be integrated without using a brazing material.

図1のc)は、接点ロッド100全体を電気接点1で構成した場合であるが、通電性やコストを考慮すると、接触部にのみ電気接点1を設けるa)またはb)の構造が望ましい。いずれの場合にも、電気接点1を最終形状に成形し、焼結することで、機械加工などの後加工が不要で低コストの製作が可能となる。   FIG. 1 c) shows a case where the entire contact rod 100 is constituted by the electrical contact 1, but considering the conductivity and cost, the structure of a) or b) in which the electrical contact 1 is provided only at the contact portion is desirable. In any case, the electrical contact 1 is formed into a final shape and sintered, so that post-processing such as machining is unnecessary and low-cost production is possible.

実施例1で作製した電気接点材料から、直径20×厚さ20mmの電気接点を機械加工により採取し、気中(大気中)における突き合わせ接触状態で通電した後の引離し力を測定した。測定には採取した電気接点1を通電ロッド2の先端にろう付けした接点ロッド100(図1のa)を用い、これを大気中で200℃×30分間加熱した後、一対の接点ロッド100を突き合わせ接触・開離できる簡易的装置により、投入電圧×投入電流50(kV・kA)を通電後、接点同士を引離すのに要する力(引離し力)を測定した。その結果を表1に併せて示す。   An electrical contact having a diameter of 20 × 20 mm in thickness was sampled from the electrical contact material produced in Example 1 by machining, and the separation force after being energized in a butt contact state in the air (in the atmosphere) was measured. For the measurement, the contact rod 100 (a in FIG. 1) obtained by brazing the collected electrical contact 1 to the tip of the energizing rod 2 is heated in the atmosphere at 200 ° C. for 30 minutes, and then the pair of contact rods 100 is attached. A simple device capable of butt contact / separation was used to measure the force (separation force) required to separate the contacts from each other after energizing the applied voltage × the applied current 50 (kV · kA). The results are also shown in Table 1.

ここで、引離し力は、Cuのみからなる電気接点(No.11)を基準とした相対値で示した。易酸化性金属を含まない場合には、耐火性金属にW(No.13)よりもMo(No.12)を用いたほうが引離し力は小さくなる。これらのNo.13,No.12に対して、耐火性金属のMo(No.2〜4)およびW(No.7〜9)の含有量がそれぞれ同じ場合はいずれも摩耗率はより小さくなる。これは、易酸化性金属を含むことによって表面酸化層が生成しやすくなり、溶着が生じにくくなったためと考えられる。   Here, the separating force is shown as a relative value based on an electrical contact (No. 11) made of only Cu. When no oxidizable metal is contained, the separating force is smaller when Mo (No. 12) is used as the refractory metal than with W (No. 13). When these contents of Mo (No. 2 to 4) and W (No. 7 to 9) of the refractory metal are the same as those of No. 13 and No. 12, the wear rate is smaller. . This is presumably because the inclusion of an easily oxidizable metal facilitates the formation of a surface oxide layer and makes it difficult for welding to occur.

また、この効果は易酸化性金属の含有量が0.3〜6体積%の場合に発現され(No.7〜9)、これよりも少ないと引離し力低減の効果がなく(No.14)、これよりも多いと導電率の低下および酸化層の生成過多により接触抵抗が増大し、引離し力はわずかながら増加する(No.15)。この易酸化性金属はNb,Zr,Feいずれでもよく(No.2〜4)、これ以外のCo,Be,Si,Ti,B,V、あるいはこれらの2種以上でも同様の効果が得られる。なお、耐火性金属がMo(No.1,No.5)およびW(No.6,No.10)いずれの場合にも、硬質・高融点の耐火性金属が少ないほどCuマトリックスを介した溶着が生じ易く、引離し力は大きくなるが、実用上は支障のない範囲である。   In addition, this effect is manifested when the oxidizable metal content is 0.3 to 6% by volume (No. 7 to 9), and if it is less than this, there is no effect of reducing the separating force (No. 14). ), More than this, the contact resistance increases due to the decrease in conductivity and excessive formation of the oxide layer, and the separating force increases slightly (No. 15). The easily oxidizable metal may be any of Nb, Zr, and Fe (No. 2 to 4), and the same effect can be obtained with Co, Be, Si, Ti, B, V, or two or more of them. . In addition, when the refractory metal is either Mo (No.1, No.5) or W (No.6, No.10), the fewer the hard and high melting point refractory metal, the more the welding is performed through the Cu matrix. Although it is easy to occur and the pulling force becomes large, it is in a range where there is no practical problem.

以上のように、本発明に関わる電気接点は、気中における接点として優れた耐溶着性を有することが確認された。   As described above, it was confirmed that the electrical contact according to the present invention has excellent welding resistance as a contact in the air.

実施例2で作製した接点ロッドを用い、気中で電流を通電・遮断する図2の電流開閉部を作製した。   Using the contact rod produced in Example 2, the current switching part shown in FIG.

図2において1は電気接点、2は通電ロッドで、これらで構成される接点ロッド100は、電気接点1を通電ロッド2の両端にろう付けしたもので、それを大気中で200℃×30分間加熱したものである。3は投入電極、4は断路電極、5は接地電極でいずれも無酸素銅製であり、電気接点1と良好な接触状態が得られる内径を有する。また、接地電極5はアースに接続されている。   In FIG. 2, 1 is an electrical contact, 2 is an energizing rod, and a contact rod 100 constituted by these is a brazed electrical contact 1 to both ends of the energizing rod 2, which is 200 ° C. × 30 minutes in the atmosphere. It has been heated. Reference numeral 3 denotes a closing electrode, 4 is a disconnect electrode, and 5 is a ground electrode, both of which are made of oxygen-free copper and have an inner diameter with which the electrical contact 1 can be in good contact. The ground electrode 5 is connected to the ground.

これらの投入電極3,断路電極4,接地電極5はセラミック製の絶縁筒6により電気的に絶縁された状態で接続されている。7は主回路導体で、一方は投入電極3および断路電極4に接続され、もう一方は電力開閉器本体へ接続されるものである。9は操作ロッドで、8の電気絶縁性の絶縁接続継手により接点ロッド100の一端に接続され、もう一方を別に設ける操作機構によって動作させ、接点ロッド100を駆動するものである。投入電極3,断路電極4および絶縁筒6で囲まれた空間は、粉じん等が侵入しない程度の半密閉空間10で、雰囲気は大気である。以上により、気中電流開閉部200が構成される。なお、投入電極3,断路電極4,接地電極5それぞれの内径側には、電気接点1との良好な接触状態を得るためにばね状の接触子(図示無し)を設けてもよい。   These input electrode 3, disconnect electrode 4, and ground electrode 5 are connected in a state of being electrically insulated by a ceramic insulating cylinder 6. Reference numeral 7 denotes a main circuit conductor, one of which is connected to the input electrode 3 and the disconnecting electrode 4 and the other is connected to the power switch body. Reference numeral 9 denotes an operation rod, which is connected to one end of the contact rod 100 by an electrically insulating insulating connection joint 8 and is operated by an operation mechanism separately provided to drive the contact rod 100. A space surrounded by the input electrode 3, the disconnect electrode 4 and the insulating cylinder 6 is a semi-enclosed space 10 in which dust or the like does not enter, and the atmosphere is air. The air current switching unit 200 is configured as described above. In order to obtain a good contact state with the electrical contact 1, a spring-like contact (not shown) may be provided on the inner diameter side of each of the input electrode 3, the disconnect electrode 4 and the ground electrode 5.

図2のa)の状態では、投入電極3と断路電極4の間が接点ロッド100で電気的に接続された状態であり、主回路導体7を介して電力開閉器本体へ電流が流れる状態にあり、電力開閉器本体における開閉動作によって投入状態あるいは切状態とすることができる。b)の状態では、断路電極4と接地電極5の間が接点ロッド100で接続された状態であり、電力開閉器本体における開閉動作によって断路状態あるいは接地状態とすることができる。接点ロッド100の操作によるこれらの電流切換えは、気中において投入電極3,断路電極4および接地電極5との摺動を伴いながら行われるが、本発明に関わる電気接点1を用いれば、摺動部の耐摩耗性に優れ、溶着を生ずることなく切換えが可能となる。   In the state of FIG. 2 a, the input electrode 3 and the disconnecting electrode 4 are electrically connected by the contact rod 100, and a current flows to the power switch body via the main circuit conductor 7. Yes, the power switch main body can be turned on or off by an opening / closing operation. In the state of b), the disconnecting electrode 4 and the ground electrode 5 are connected by the contact rod 100, and the disconnecting state or the grounding state can be established by the opening / closing operation in the power switch body. These current switching operations by operating the contact rod 100 are performed in the air while sliding with the input electrode 3, the disconnecting electrode 4 and the ground electrode 5. If the electric contact 1 according to the present invention is used, the current switching is performed. The part has excellent wear resistance and can be switched without causing welding.

1 電気接点
2 通電ロッド
3 投入電極
4 断路電極
5 接地電極
6 絶縁筒
7 主回路導体
8 絶縁接続継手
9 操作ロッド
10 反密閉空間
100 接点ロッド
200 気中電流開閉部
DESCRIPTION OF SYMBOLS 1 Electrical contact 2 Current supply rod 3 Input electrode 4 Disconnect electrode 5 Ground electrode 6 Insulation cylinder 7 Main circuit conductor 8 Insulation connection joint 9 Operation rod 10 Anti-sealed space 100 Contact rod 200 Air current switching part

Claims (8)

耐火性金属と高導電性金属と易酸化性金属を含み、前記耐火性金属がC,Mo,Wのいずれか1種であり、前記高導電性金属がCuであり、前記易酸化性金属はその酸化物生成自由エネルギーが前記耐火性金属および前記高導電性金属の酸化物生成自由エネルギーよりも低い元素であることを特徴とする電気接点。   Including a refractory metal, a highly conductive metal, and an easily oxidizable metal, the refractory metal is any one of C, Mo, and W, the highly conductive metal is Cu, and the easily oxidizable metal is An electrical contact characterized in that the oxide formation free energy is an element lower than the oxide formation free energy of the refractory metal and the highly conductive metal. 耐火性金属と高導電性金属と易酸化性金属を含み、前記耐火性金属がC,Mo,Wのいずれか1種であり、前記高導電性金属がCuであり、前記易酸化性金属はその酸化物の結晶構造が六方晶である元素であることを特徴とする電気接点。   Including a refractory metal, a highly conductive metal, and an easily oxidizable metal, the refractory metal is any one of C, Mo, and W, the highly conductive metal is Cu, and the easily oxidizable metal is An electrical contact characterized in that the oxide has a hexagonal crystal structure. 前記易酸化性金属は、Co,Be,Fe,Si,Ti,Zr,B,V及びNbから選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の電気接点。   The electrical contact according to claim 1, wherein the oxidizable metal is at least one selected from Co, Be, Fe, Si, Ti, Zr, B, V, and Nb. 前記耐火性金属の含有量は1〜60体積%、前記易酸化性金属の含有量は0.3〜6体積%であることを特徴とする請求項1〜3に記載の電気接点。   The electrical contact according to claim 1, wherein the content of the refractory metal is 1 to 60% by volume, and the content of the oxidizable metal is 0.3 to 6% by volume. 請求項1〜4に記載の電気接点を向かい合わせに突き合わせて一対としてなる電力開閉器であって、突き合わせ接触の開閉によって、気中において電流を通電および遮断することを特徴とする電力開閉器。   A power switch that is a pair of power switches that face the electrical contacts according to claim 1 in a face-to-face relationship, and that conducts and interrupts current in the air by opening and closing the butted contact. 請求項5において、さらに、真空中で電流を通電および遮断する開閉機構を備えたことを特徴とする電力開閉器。   6. The electric power switch according to claim 5, further comprising an opening / closing mechanism for energizing and interrupting current in vacuum. 請求項1〜4に記載の前記耐火性金属,高導電性金属,易酸化性金属それぞれの粉末を混合した後、加圧して相対密度65%以上の成形体とし、前記成形体をCuの融点以下の温度に加熱して焼結することを特徴とする電気接点の製造方法。   The powders of the refractory metal, the highly conductive metal, and the easily oxidizable metal according to claim 1 are mixed and then pressed to form a molded body having a relative density of 65% or more, and the molded body has a melting point of Cu. A method for producing an electrical contact, comprising heating and sintering to the following temperature. 前記焼結した後に、大気中あるいは酸化性雰囲気中において、200℃以上に加熱することを特徴とする請求項7に記載の電気接点の製造方法。   8. The method of manufacturing an electrical contact according to claim 7, wherein after the sintering, heating to 200 [deg.] C. or higher in air or in an oxidizing atmosphere.
JP2010031934A 2010-02-17 2010-02-17 Electric contact and electric power switch using it Pending JP2011171023A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010031934A JP2011171023A (en) 2010-02-17 2010-02-17 Electric contact and electric power switch using it
EP11154050A EP2362400A3 (en) 2010-02-17 2011-02-10 Electrical contact and switch device using same
CN 201110040134 CN102162043A (en) 2010-02-17 2011-02-16 Electrical contact and switch device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031934A JP2011171023A (en) 2010-02-17 2010-02-17 Electric contact and electric power switch using it

Publications (1)

Publication Number Publication Date
JP2011171023A true JP2011171023A (en) 2011-09-01

Family

ID=44022891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031934A Pending JP2011171023A (en) 2010-02-17 2010-02-17 Electric contact and electric power switch using it

Country Status (3)

Country Link
EP (1) EP2362400A3 (en)
JP (1) JP2011171023A (en)
CN (1) CN102162043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067647A1 (en) * 2014-10-30 2016-05-06 株式会社日立製作所 Switchgear

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200228U (en) * 1986-06-10 1987-12-19
JP2001184963A (en) * 1999-12-28 2001-07-06 Toshiba Corp Electrical contact material and method of producing the same
JP2002327232A (en) * 2001-04-27 2002-11-15 Toshiba Corp Composite material for electrical contact, manufacturing method therefor, and electrical switching device
JP2006128111A (en) * 2004-10-27 2006-05-18 Areva T & D Sa Drive mechanism in hybrid circuit breaker
JP2008541681A (en) * 2005-05-02 2008-11-20 ウォンテ チョン Panel transformer built-in switchboard

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084351A (en) *
US3184835A (en) * 1961-10-02 1965-05-25 Handy & Harman Process for internally oxidationhardening alloys, and alloys and structures made therefrom
KR960002416B1 (en) * 1989-11-09 1996-02-17 프로시다 인코포레이션 Spray conversion process for the production of nanophase composite powders
US6103392A (en) * 1994-12-22 2000-08-15 Osram Sylvania Inc. Tungsten-copper composite powder
JP3794042B2 (en) 1995-10-13 2006-07-05 住友電気工業株式会社 Method for producing composite alloy member
JP2003147407A (en) 2001-11-08 2003-05-21 Hitachi Ltd Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
KR100446985B1 (en) * 2001-11-20 2004-09-01 학교법인 한양학원 A PREPARATION OF W-Cu COMPOSITE POWDER
JP2004211192A (en) 2003-01-09 2004-07-29 Hitachi Ltd Electrode for vacuum valve, and vacuum valve and vacuum breaker obtained by using the same
TW200425192A (en) * 2003-01-09 2004-11-16 Hitachi Ltd Electrode for vacuum interrupter, vacuum interrupter using the same and vacuum circuit-breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200228U (en) * 1986-06-10 1987-12-19
JP2001184963A (en) * 1999-12-28 2001-07-06 Toshiba Corp Electrical contact material and method of producing the same
JP2002327232A (en) * 2001-04-27 2002-11-15 Toshiba Corp Composite material for electrical contact, manufacturing method therefor, and electrical switching device
JP2006128111A (en) * 2004-10-27 2006-05-18 Areva T & D Sa Drive mechanism in hybrid circuit breaker
JP2008541681A (en) * 2005-05-02 2008-11-20 ウォンテ チョン Panel transformer built-in switchboard

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067647A1 (en) * 2014-10-30 2016-05-06 株式会社日立製作所 Switchgear
JP2016092871A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Switch gear

Also Published As

Publication number Publication date
EP2362400A3 (en) 2011-10-12
EP2362400A2 (en) 2011-08-31
CN102162043A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4979604B2 (en) Electrical contacts for vacuum valves
US20100044345A1 (en) Contact element
JP2006140073A (en) Electrode, electrical contact, and its manufacturing method
JP2020509163A (en) Improved electrical contact alloy for vacuum contactors
JP6323578B1 (en) Electrode material manufacturing method and electrode material
US10008341B2 (en) Monolithic contact system and method of forming
EP3062327A1 (en) Electrical contact for vacuum valve and process for producing same
JPH11232971A (en) Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
JP2011171023A (en) Electric contact and electric power switch using it
JP2010061935A (en) Electrical contacts, methods of manufacturing the same, and switchgear for electric power
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JP2008021590A (en) Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker
JPH1012103A (en) Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
JP5753244B2 (en) Contact material and circuit breaker using the same
Guo et al. Preparation, electrical contact performance and arc-erosion behavior of Cu/La2NiO4 composites
JPWO2017168990A1 (en) Contact member manufacturing method, contact member and vacuum valve
JP5506873B2 (en) Contact material and manufacturing method thereof
KR19980087242A (en) Manufacturing Method of Base Material of Vacuum Valve
JP5134800B2 (en) Electrode material and electrode
JP4988489B2 (en) Electrical contact
CN112908733A (en) Alloy arc contact, preparation method and application thereof
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Effective date: 20120406

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120410

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120507

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106