JP2011169332A - Data storage device - Google Patents

Data storage device Download PDF

Info

Publication number
JP2011169332A
JP2011169332A JP2011130514A JP2011130514A JP2011169332A JP 2011169332 A JP2011169332 A JP 2011169332A JP 2011130514 A JP2011130514 A JP 2011130514A JP 2011130514 A JP2011130514 A JP 2011130514A JP 2011169332 A JP2011169332 A JP 2011169332A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection
injection valve
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011130514A
Other languages
Japanese (ja)
Inventor
Koichi Sugiyama
公一 杉山
Koji Ishizuka
康治 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011130514A priority Critical patent/JP2011169332A/en
Publication of JP2011169332A publication Critical patent/JP2011169332A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a data storage device presenting useful data to analyze the cause of a trouble in fuel injection. <P>SOLUTION: An EEPROM (a storage) mounted on a fuel injection valve stores such data that the bulk modulus of fuel is suddenly changed and data showing the usage state and environment of the fuel injection valve when an injection failure occurs (S12). Thus, the data regarding the bulk modulus is used for analyzing whether the use of inferior fuel causes a trouble such as the injection failure or not, and for analyzing whether the severe usage state and environment causes the trouble such as the injection failure or not. As a result, the useful data can be presented to analyze the cause of a trouble in fuel injection. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の燃料噴射弁に関する各種データを提供するためのデータ記憶装置に関する。   The present invention relates to a data storage device for providing various data related to a fuel injection valve of an internal combustion engine.

特許文献1等に記載の燃料噴射弁に関し、所望する量の燃料を噴射できなくなる等の不具合が生じることがあり、その不具合の原因は、単純に燃料噴射弁が寿命である場合のみならず、多種多様な原因が考えられる。例えば、粗悪燃料が使用された場合や、機関運転状態が瞬時的に高負荷になった状態で燃料噴射弁が使用された場合、高負荷領域での燃料噴射弁の使用頻度が高い場合、等が不具合原因として挙げられる。   With respect to the fuel injection valve described in Patent Document 1 or the like, there may be a problem such that a desired amount of fuel cannot be injected. The cause of the problem is not only when the fuel injection valve is simply at the end of its life, There are many possible causes. For example, when poor fuel is used, when a fuel injection valve is used when the engine operation state is instantaneously high, or when the frequency of use of the fuel injection valve is high in a high load region, etc. Is listed as the cause of the problem.

したがって、燃料噴射弁の使用環境や使用状態等に問題がある場合には、燃料噴射弁を交換しただけでは不十分であり、燃料噴射に関する不具合の原因を追究して解析することが従来より求められている。   Therefore, if there is a problem with the fuel injection valve usage environment, usage conditions, etc., it is not sufficient to replace the fuel injection valve. It has been.

特開2009−74536号公報JP 2009-74536 A

本発明は、上記課題を解決するためになされたものであり、その目的は、燃料噴射に関する不具合の原因を解析するのに有用なデータを提供することを図った、データ記憶装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a data storage device that is intended to provide data useful for analyzing the cause of a malfunction related to fuel injection. It is in.

また、燃料噴射弁の劣化状態を学習するのに有用なデータを提供することを図った、データ記憶装置を提供することを、他の目的とする。   Another object of the present invention is to provide a data storage device that is intended to provide data useful for learning the deterioration state of the fuel injection valve.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

第1の発明では、内燃機関の燃料噴射弁から噴射される燃料の体積弾性係数を算出する算出手段と、算出された前記体積弾性係数の単位時間当たりの変化量が、所定量を超えて大きくなっているか否かを判定する判定手段と、を備え、前記判定手段による判定結果又は前記体積弾性係数の値を記憶手段に記憶させることを特徴とする。   In the first invention, the calculating means for calculating the bulk elastic modulus of the fuel injected from the fuel injection valve of the internal combustion engine, and the change amount per unit time of the calculated bulk elastic coefficient is larger than a predetermined amount. Determining means for determining whether or not the determination is made, and the result of determination by the determining means or the value of the bulk modulus is stored in the storage means.

燃料の体積弾性係数が大きく変化していることが分かれば、その燃料の性状が変化していることが分かり、その場合には、粗悪燃料が使用された疑いが高くなる。この点を鑑みた上記発明によれば、体積弾性係数の単位時間当たりの変化量が、所定量を超えて大きくなっているか否かの判定結果(データ)又は体積弾性係数(データ)の値を記憶手段に記憶させるので、例えば、所望する量の燃料を噴射できなくなる等の不具合が生じた場合に、粗悪燃料を使用したことが原因であるか否かを解析するのに前記データを有効に利用できる。   If it is known that the bulk elastic modulus of the fuel has changed greatly, it can be understood that the property of the fuel has changed, and in that case, there is a high suspicion that the poor fuel has been used. According to the above invention in view of this point, the determination result (data) or the value of the bulk modulus (data) whether or not the amount of change per unit time of the bulk modulus is larger than a predetermined amount is obtained. Since the data is stored in the storage means, for example, when a problem such as the inability to inject a desired amount of fuel occurs, the data is effectively used to analyze whether or not the cause is the use of poor fuel. Available.

なお、上記体積弾性係数とは、燃料の圧力及び体積が変化するにあたり、「ΔP=K・ΔV/V」(K:体積弾性係数、ΔP:燃料の体積変化に伴う圧力変化量、V:燃料通路の体積、ΔV:燃料通路の体積変化量)といった関係式を満足させる係数Kである。   The volume modulus of elasticity is “ΔP = K · ΔV / V” (K: volume modulus of elasticity, ΔP: amount of pressure change associated with volume change of fuel, V: fuel when the pressure and volume of the fuel change. The coefficient K satisfies the relational expression such as the volume of the passage, ΔV: the volume change amount of the fuel passage).

第2の発明では、燃料噴射弁の噴射特性を示す特性値であって、実際の燃料の体積弾性係数に応じて異なる値となる特性値を学習する学習手段を備え、前記特性値の単位時間当たりの変化量が所定量を超えて大きくなった時の、前記判定手段による判定結果又は前記体積弾性係数の値を記憶させることを特徴とする。   In the second invention, there is provided learning means for learning a characteristic value indicating an injection characteristic of the fuel injection valve, which is a different value depending on an actual bulk modulus of fuel, and a unit time of the characteristic value The determination result by the determination unit or the value of the bulk elastic modulus when the hit change amount exceeds a predetermined amount is stored.

体積弾性係数に応じて異なる値となる特性値が大きく変化している場合には、その変化の原因が燃料の性状変化にある可能性が高くなる。よって、このように特性値が大きく変化している場合に、体積弾性係数が大きく変化していると判定手段により判定された場合には、粗悪燃料の使用可能性が極めて高くなる。この点を鑑みた上記発明では、特性値の単位時間当たりの変化量が所定量を超えて大きくなった時の、判定手段による判定結果又は体積弾性係数の値を記憶させるので、粗悪燃料を使用したことが原因であるか否かの上記解析に行う上で、記憶手段に記憶された判定結果がより一層有用なデータとなる。   In the case where the characteristic value that varies depending on the bulk modulus of elasticity has changed greatly, there is a high possibility that the cause of the change is a change in the properties of the fuel. Therefore, when the characteristic value changes greatly in this way and the determination means determines that the bulk modulus has changed significantly, the possibility of using poor fuel becomes extremely high. In view of this point, in the above invention, since the change amount per unit time of the characteristic value exceeds a predetermined amount, the determination result by the determination means or the value of the bulk modulus is stored, so that poor fuel is used. The determination result stored in the storage means becomes more useful data in performing the above analysis of whether or not the cause is the cause.

なお、上記特性値の具体例としては、燃料噴射弁を開弁させて噴射させるにあたり、その開弁指令時間に対する燃料の噴射量が挙げられる。   In addition, as a specific example of the above characteristic value, when the fuel injection valve is opened and injected, the fuel injection amount with respect to the valve opening command time can be mentioned.

第3の発明では、蓄圧容器から分配される燃料を前記燃料噴射弁の噴孔から噴射する内燃機関に適用され、前記蓄圧容器の吐出口から前記噴孔に至るまでの燃料通路に配置され、燃料圧力を検出する燃圧センサを備え、前記燃圧センサによる検出圧力に基づき、前記判定手段に用いられる前記体積弾性係数を算出することを特徴とする。   In a third aspect of the invention, the fuel distributed from the pressure accumulating container is applied to an internal combustion engine that injects the fuel from the injection hole of the fuel injection valve, and is disposed in a fuel passage from the discharge port of the pressure accumulating container to the injection hole. A fuel pressure sensor for detecting a fuel pressure is provided, and the bulk modulus used for the determination unit is calculated based on a pressure detected by the fuel pressure sensor.

ここで、燃料の噴射に伴い燃圧は低下するが、その低下期間中の燃圧波形を検出すれば、噴射開始時点から噴射終了時点までの燃圧の低下量、及び噴射量を算出することができる。そして、前記低下量は「ΔP:燃料の体積変化に伴う圧力変化量」に相当し、前記噴射量は「ΔV:燃料通路の体積変化量」に相当する。そして、「V:燃料通路の体積」は一義的に決まる変化しない値であるため予め計測した値を用いればよい。したがって、燃圧センサの検出圧力から低下量ΔP及び噴射量ΔVを算出して取得すれば、先述したΔP=K・ΔV/Vとの式に基づき体積弾性係数Kを算出することができる。   Here, although the fuel pressure decreases with fuel injection, if the fuel pressure waveform during the decrease period is detected, the fuel pressure decrease amount and the injection amount from the injection start point to the injection end point can be calculated. The amount of decrease corresponds to “ΔP: the amount of change in pressure associated with the change in volume of fuel”, and the amount of injection corresponds to “ΔV: the amount of change in volume of the fuel passage”. Since “V: volume of fuel passage” is a value that is uniquely determined and does not change, a value measured in advance may be used. Therefore, if the reduction amount ΔP and the injection amount ΔV are calculated and acquired from the detected pressure of the fuel pressure sensor, the bulk elastic modulus K can be calculated based on the above-described equation of ΔP = K · ΔV / V.

この点を鑑みた上記発明によれば、燃圧センサによる検出圧力に基づき体積弾性係数Kを算出するので、体積弾性係数Kを高精度で算出できる。   According to the above-mentioned invention in view of this point, the bulk elastic modulus K is calculated based on the pressure detected by the fuel pressure sensor, so that the bulk elastic modulus K can be calculated with high accuracy.

第4の発明では、内燃機関の燃料噴射弁に対して異常発生を検出した時の、前記燃料噴射弁の使用状態及び使用環境の少なくとも一方を記憶手段に記憶させることを特徴とする。   According to a fourth aspect of the present invention, at least one of a use state and a use environment of the fuel injection valve when abnormality is detected with respect to the fuel injection valve of the internal combustion engine is stored in the storage means.

燃料噴射弁を過酷な状態で使用している場合や、過酷な環境下で使用している場合には、それらが原因となって燃料噴射弁が故障する場合がある。この点を鑑みた上記発明によれば、異常発生時の燃料噴射弁の使用状態及び使用環境を使用データとして記憶手段に記憶させるので、例えば、所望する量の燃料を噴射できなくなる等の不具合が生じた場合に、使用状態及び使用環境が過酷だったことが原因であるか否かを解析するのに前記使用データを有効に利用できる。   When the fuel injection valve is used in a harsh state or when used in a harsh environment, the fuel injection valve may break down due to these causes. According to the above-mentioned invention in view of this point, since the storage unit stores the use state and use environment of the fuel injection valve at the time of occurrence of an abnormality as use data, for example, there is a problem such that a desired amount of fuel cannot be injected. When this occurs, the usage data can be effectively used to analyze whether or not the cause is that the usage state and the usage environment are severe.

上記「使用状態」の具体例として、第5の発明の如く、前記異常発生を検出した時までの前記燃料噴射弁の累積作動時間又は累積作動回数が挙げられる。これら累積作動時間又は累積作動回数が多いほど、燃料噴射弁が耐久限界に近い状態で使用されていたと判断できる。よって、上記発明により記憶された累積作動時間又は累積作動回数のデータを、前記不具合の原因が耐久限界であるか否かを解析するのに有効に利用できる。   As a specific example of the “use state”, as in the fifth aspect, the cumulative operation time or the cumulative number of operations of the fuel injection valve until the occurrence of the abnormality is detected. It can be determined that as the cumulative operation time or the cumulative number of operations increases, the fuel injection valve is used in a state near the endurance limit. Therefore, the data of the cumulative operation time or the cumulative number of operations stored by the above invention can be effectively used for analyzing whether or not the cause of the malfunction is a durability limit.

上記「使用状態」の具体例として、第6の発明の如く、内燃機関の機関回転速度又は機関負荷を複数に領域分けし、前記領域毎における、前記異常発生を検出した時までの前記燃料噴射弁の使用頻度が挙げられる。例えば高回転領域や高負荷領域での使用頻度が高いことが前記不具合の原因となる場合がある。よって、上記発明により記憶された使用頻度のデータを、前記不具合の原因を解析するのに有効に利用できる。   As a specific example of the “use state”, as in the sixth invention, the engine rotation speed or the engine load of the internal combustion engine is divided into a plurality of regions, and the fuel injection until the occurrence of the abnormality is detected in each region. The frequency of use of the valve is mentioned. For example, a high frequency of use in a high rotation area or a high load area may cause the problem. Therefore, the use frequency data stored by the above invention can be effectively used to analyze the cause of the malfunction.

上記「使用環境」の具体例として、第7の発明の如く、前記異常発生を検出した時の燃料圧力、機関回転速度及び燃料噴射量の少なくとも1つが挙げられる。異常発生時に、燃料圧力、機関回転速度及び燃料噴射量の少なくとも1つが瞬時的に上昇していたことが前記不具合の原因となる場合がある。よって、上記発明により記憶されたデータを、前記不具合の原因を解析するのに有効に利用できる。   As a specific example of the “use environment”, as in the seventh invention, at least one of the fuel pressure, the engine rotational speed, and the fuel injection amount when the occurrence of the abnormality is detected can be cited. When the abnormality occurs, at least one of the fuel pressure, the engine rotational speed, and the fuel injection amount may instantaneously increase, which may cause the above-described problem. Therefore, the data stored by the above invention can be effectively used for analyzing the cause of the malfunction.

第8の発明では、内燃機関の燃料噴射弁の初回使用時からの累積作動時間、及び前記燃料噴射弁の劣化状態と相関のある劣化定量値の推移の少なくとも一方を記憶手段に記憶させることを特徴とする。   In the eighth aspect of the invention, the storage means stores at least one of a cumulative operating time from the first use of the fuel injection valve of the internal combustion engine and a transition of the deterioration quantitative value correlated with the deterioration state of the fuel injection valve. Features.

ところで、所望の噴射状態(例えば実噴射開始時期、実噴射量等)となるよう燃料噴射弁を制御するには、燃料噴射弁の劣化状態を加味して制御する必要がある。そこで、劣化状態と相関のある劣化定量値(例えば噴射を指令してから実際に噴射が開始されるまでの遅れ時間等)を検出して学習し、その学習値を加味して燃料噴射弁の作動を制御する場合がある。この場合、劣化定量値(学習値)の推移が急激に変化する推移であれば、劣化定量値の検出頻度(学習頻度)を多くする必要がある。換言すれば、次回の学習タイミングを早める必要がある。また、累積作動時間が短い燃料噴射弁の使用初期段階では、劣化定量値の推移が急激に変化することが想定されるので、前記検出頻度を多くする必要がある。   By the way, in order to control the fuel injection valve so as to be in a desired injection state (for example, actual injection start timing, actual injection amount, etc.), it is necessary to control in consideration of the deterioration state of the fuel injection valve. Therefore, a deterioration quantitative value correlated with the deterioration state (for example, a delay time from when the injection is commanded to when the injection is actually started) is detected and learned, and the learning value is taken into account for the fuel injection valve. The operation may be controlled. In this case, if the transition of the deterioration quantitative value (learned value) changes rapidly, it is necessary to increase the detection frequency (learning frequency) of the deterioration quantitative value. In other words, it is necessary to advance the next learning timing. In addition, in the initial stage of use of the fuel injection valve with a short cumulative operation time, it is assumed that the transition of the deterioration quantitative value changes abruptly. Therefore, it is necessary to increase the detection frequency.

これらの点を鑑みた上記発明によれば、燃料噴射弁の初回使用時からの累積作動時間及び劣化定量値の推移の少なくとも一方を記憶させるので、燃料噴射制御に用いる劣化定量値を取得するにあたり、その劣化定量値の検出頻度(学習頻度)を決定するのに、累積作動時間及び劣化定量値の推移のデータを有効に利用できる。   According to the above invention in view of these points, since at least one of the cumulative operating time from the first use of the fuel injection valve and the transition of the deterioration quantitative value is stored, the deterioration quantitative value used for fuel injection control is acquired. In order to determine the detection frequency (learning frequency) of the deterioration quantitative value, it is possible to effectively use the accumulated operating time and the transition data of the deterioration quantitative value.

特に、第9の発明の如く多気筒内燃機関の場合において、複数の燃料噴射弁の各々に対して記憶させれば、1つの燃料噴射弁を交換した場合に、全ての燃料噴射弁を使用初期段階とみなして一律に学習頻度を多くすることを回避でき、個々の燃料噴射弁の状態に応じて学習頻度を決定できる。よって、学習頻度を過不足なくできる。   In particular, in the case of the multi-cylinder internal combustion engine as in the ninth aspect, if each of the plurality of fuel injection valves is stored, all the fuel injection valves are used in the initial stage when one fuel injection valve is replaced. It is possible to avoid increasing the learning frequency uniformly by considering it as a stage, and the learning frequency can be determined according to the state of each fuel injector. Therefore, the learning frequency can be made without excess or deficiency.

第10の発明では、前記記憶手段は前記燃料噴射弁に搭載されたものであることを特徴とする。   In a tenth aspect of the invention, the storage means is mounted on the fuel injection valve.

ここで、燃料噴射弁とは別の場所に設けられた制御手段(ECU)により燃料噴射弁の作動を制御することが一般的であるが、このようなECUに上述した各種データを記憶させると、不具合の生じた燃料噴射弁を受け取った不具合解析作業者は、ECUをも受け取らなければその各種データを取得できないため、その作業性が悪い。これに対し上記発明によれば、不具合原因解析に有用な各種データ、又は前記学習頻度の決定に有用な各種データが記憶された記憶手段を燃料噴射弁に搭載するので、ECUを受け取ることを要することなく不具合解析作業者は各種データを取得できるので、その作業性を向上できる。   Here, it is common to control the operation of the fuel injection valve by a control means (ECU) provided at a location different from that of the fuel injection valve. Since the trouble analysis worker who has received the fuel injection valve in which the trouble has occurred cannot obtain the various data without receiving the ECU, the workability is poor. On the other hand, according to the above invention, since the storage means storing various data useful for failure cause analysis or various data useful for determining the learning frequency is mounted on the fuel injection valve, it is necessary to receive the ECU. Therefore, the defect analysis operator can acquire various data, and the workability can be improved.

本発明の一実施形態にかかるデータ記憶装置が適用された、内燃機関の燃料噴射システムの概略を示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the outline of the fuel-injection system of an internal combustion engine to which the data storage device concerning one Embodiment of this invention was applied. (a)は図1に示す燃料噴射弁への指令信号、(b)は指令信号に伴い変化する噴射率、(c)は図1に示す燃圧センサにより検出された検出圧力を示すタイムチャート。(A) is a command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate that changes with the command signal, and (c) is a time chart showing a detected pressure detected by the fuel pressure sensor shown in FIG. 本発明の一実施形態において、体積弾性係数の記憶処理を説明するフローチャート。The flowchart explaining the memory | storage process of a bulk modulus in one Embodiment of this invention. 学習値の推移を示す図。The figure which shows transition of a learning value. 本発明の一実施形態において、燃料噴射弁の使用状態及び使用環境の記憶処理を説明するフローチャート。The flowchart explaining the memory | storage process of the use condition and use environment of a fuel injection valve in one Embodiment of this invention. 図5の処理にて使用頻度を記憶させるマップを示す図。The figure which shows the map which memorize | stores use frequency in the process of FIG. 本発明の一実施形態において、学習値推移データの記憶処理を説明するフローチャート。The flowchart explaining the memory | storage process of learning value transition data in one Embodiment of this invention.

以下、本発明に係るデータ記憶装置を具体化した一実施形態を図面に基づいて説明する。本実施形態のデータ記憶装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a data storage device according to the present invention will be described with reference to the drawings. The data storage device of this embodiment is mounted on a vehicle engine (internal combustion engine), and injects high-pressure fuel into a plurality of cylinders # 1 to # 4 and performs compression self-ignition combustion in the engine. A diesel engine is assumed.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、燃料噴射弁10に搭載された燃圧センサ20、燃圧センサ20に搭載されたEEPROM25a(記憶手段)、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。   FIG. 1 shows a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on the fuel injection valve 10, an EEPROM 25a (storage means) mounted on the fuel pressure sensor 20, and an electronic mounted on the vehicle. It is a schematic diagram which shows ECU30 etc. which are control apparatuses.

先ず、燃料噴射弁10を含むエンジンの燃料噴射系について説明する。燃料タンク40内の燃料は、高圧ポンプ41によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10へ分配供給される。   First, the fuel injection system of the engine including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulating container) by the high pressure pump 41, and is distributed and supplied to the fuel injection valve 10 of each cylinder.

燃料噴射弁10は、以下に説明するボデー11、ニードル12(弁体)及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。ニードル12は、ボデー11内に収容されて噴孔11bを開閉する。アクチュエータ13は、ニードル12を開閉作動させる。   The fuel injection valve 10 includes a body 11, a needle 12 (valve element), an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The needle 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b. The actuator 13 opens and closes the needle 12.

そして、ECU30がアクチュエータ13の駆動を制御することで、ニードル12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、ニードル12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の噴射態様を算出し、算出した噴射態様となるよう、アクチュエータ13の駆動を制御する。   The opening / closing operation of the needle 12 is controlled by the ECU 30 controlling the driving of the actuator 13. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the needle 12. For example, the ECU 30 calculates the injection mode such as the injection start timing, the injection end timing, and the injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and controls the driving of the actuator 13 so that the calculated injection mode is obtained. .

次に、燃圧センサ20のハード構成について説明する。   Next, the hardware configuration of the fuel pressure sensor 20 will be described.

燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。   The fuel pressure sensor 20 includes a stem 21 (distortion body), a pressure sensor element 22, a mold IC 23, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a.

圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。   The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路、書き換え可能な不揮発性メモリであるEEPROM25a(記憶手段)等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。   The mold IC 23 is formed by resin molding electronic components such as an amplifier circuit that amplifies the pressure detection signal output from the pressure sensor element 22 and an EEPROM 25a (storage means) that is a rewritable nonvolatile memory. At the same time, it is mounted on the fuel injection valve 10.

ボデー11上部にはコネクタ14が設けられており、コネクタ14に接続されたハーネス15により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。   A connector 14 is provided on the upper portion of the body 11, and the mold IC 23, the actuator 13, and the ECU 30 are electrically connected by a harness 15 connected to the connector 14.

ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化を推定できると言える。そして、噴射率変化を推定できれば、燃料噴射制御に用いる各種制御パラメータ(特性データに相当)を取得して学習することができる。以下、噴射率変化から取得できる上記制御パラメータについて、図2を用いて説明する。   Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (the injection amount injected per unit time) are correlated, and the change in the injection rate can be estimated from the change in the fuel pressure. If the injection rate change can be estimated, various control parameters (corresponding to characteristic data) used for fuel injection control can be acquired and learned. Hereinafter, the control parameters that can be acquired from the change in the injection rate will be described with reference to FIG.

図2(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間)により噴孔11bの開弁時間Tqを制御することで、噴射量Qを制御している。   FIG. 2 (a) shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10, and the actuator 13 is actuated by opening the command signal to open the nozzle hole 11b. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time Tq of the nozzle hole 11b by the pulse-on period (injection command period) of the command signal.

図2(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(推移)を示し、図2(c)は、噴射率の変化に伴い生じる検出圧力の変化(変動波形)を示す。検出圧力の変動と噴射率の変化とは以下に説明する相関があるため、検出圧力の変動波形から噴射率の推移波形を推定することができる。   FIG. 2 (b) shows the change (transition) of the fuel injection rate from the nozzle hole 11b caused by the injection command, and FIG. 2 (c) shows the change (change waveform) of the detected pressure caused by the change of the injection rate. ). Since the detected pressure fluctuation and the injection rate change have the correlation described below, the injection rate transition waveform can be estimated from the detected pressure fluctuation waveform.

すなわち、先ず、図2(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始したことに伴い変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R2の時点で噴射率が下降を開始したことに伴い、検出圧力は変化点P2にて上昇を開始する。その後、R3の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P3にて停止する。   That is, first, as shown in FIG. 2 (a), after the time t1 when the injection start command is given, the injection rate starts to rise and the injection is started when the injection rate is R1. On the other hand, the detected pressure starts decreasing at the change point P1 as the injection rate starts increasing at the time point R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, as the injection rate starts decreasing at the time point R2, the detected pressure starts increasing at the change point P2. Thereafter, as the injection rate becomes zero at the time point R3 and the actual injection ends, the increase in the detected pressure stops at the change point P3.

以上により、燃圧センサ20による検出圧力の変動のうち変化点P1及びP3を検出することで、噴射率の上昇開始時点R1(実噴射開始時点)及び下降終了時点R3(実噴射終了時点)を算出することができる。また、以下に説明する検出圧力の変動と噴射率の変化との相関関係に基づき、検出圧力の変動から噴射率の変化を推定できる。   As described above, by detecting the change points P1 and P3 among the fluctuations in the pressure detected by the fuel pressure sensor 20, the injection rate increase start time R1 (actual injection start time) and decrease end time R3 (actual injection end time) are calculated. can do. Further, based on the correlation between the change in the detected pressure and the change in the injection rate described below, the change in the injection rate can be estimated from the change in the detected pressure.

つまり、検出圧力の変化点P1からP2までの圧力下降率Pαと、噴射率の変化点R1からR2までの噴射率上昇率Rαとは相関がある。変化点P2からP3までの圧力上昇率Pγと変化点R2からR3までの噴射率下降率Rγとは相関がある。変化点P1からP2までの圧力下降量Pβ(最大落込量)と変化点R1からR2までの噴射率上昇量Rβとは相関がある。よって、検出圧力の変動から圧力下降率Pα、圧力上量率Pγ及び圧力下降量Pβを検出することで、噴射率上昇率Rα、噴射率下降率Rγ及び噴射率上昇量Rβを算出することができる。以上の如く噴射率の各種状態R1,R3,Rα,Rβ,Rγを算出することができ、よって、図2(b)に示す燃料噴射率の変化(推移波形)を推定することができる。   That is, there is a correlation between the pressure decrease rate Pα from the detected pressure change point P1 to P2 and the injection rate increase rate Rα from the injection rate change point R1 to R2. There is a correlation between the pressure increase rate Pγ from the change points P2 to P3 and the injection rate decrease rate Rγ from the change points R2 to R3. There is a correlation between the pressure drop amount Pβ (maximum drop amount) from the change points P1 to P2 and the injection rate increase amount Rβ from the change points R1 to R2. Therefore, the injection rate increase rate Rα, the injection rate decrease rate Rγ, and the injection rate increase amount Rβ can be calculated by detecting the pressure decrease rate Pα, the pressure increase rate Pγ, and the pressure decrease rate Pβ from the fluctuation of the detected pressure. it can. As described above, the various states R1, R3, Rα, Rβ, and Rγ of the injection rate can be calculated. Therefore, the change (transition waveform) of the fuel injection rate shown in FIG. 2B can be estimated.

さらに、実噴射開始から終了までの噴射率の積分値(斜線を付した符号Sに示す部分の面積)は噴射量に相当する。そして、検出圧力の変動波形のうち実噴射開始から終了までの噴射率変化に対応する部分(変化点P1〜P3の部分)の圧力の積分値と噴射率の積分値Sとは相関がある。よって、検出圧力の変動から圧力積分値を算出することで、噴射量Qに相当する噴射率積分値Sを算出することができる。   Further, the integral value of the injection rate from the start to the end of actual injection (the area of the portion indicated by the hatched symbol S) corresponds to the injection amount. The integral value of the pressure and the integral value S of the injection rate in the portion corresponding to the change in the injection rate from the start to the end of the actual injection (the change points P1 to P3) in the fluctuation waveform of the detected pressure have a correlation. Therefore, by calculating the pressure integral value from the fluctuation of the detected pressure, the injection rate integral value S corresponding to the injection amount Q can be calculated.

噴射指令信号のパルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tqと、上記各種状態R1,R3,Rα,Rβ,Rγ、及び噴射量Qとの関係を、燃料噴射弁10の劣化状態を示す特性値としてEEPROM25a(記憶手段)に記憶更新して学習する。このように学習している時のECU30は「学習手段」に相当する。   The relationship between the pulse-on timing t1, the pulse-off timing t2 and the pulse-on period Tq of the injection command signal and the various states R1, R3, Rα, Rβ, Rγ and the injection amount Q is a characteristic value indicating the deterioration state of the fuel injection valve 10. And learning by updating the data in the EEPROM 25a (storage means). The ECU 30 during learning in this way corresponds to “learning means”.

より具体的には、以下に説明するtd,te,dqmax等を特性値として学習する。すなわち、パルスオン時期t1から実噴射開始時点R1までの時間を噴射開始応答遅れ時間tdとして学習する。噴射指令による開弁時間Tqと、R1からR3までの時間である実噴射時間との偏差を噴射時間偏差teとして学習する。噴射指令による開弁時間Tqと噴射率上昇量Rβとの比率を上昇量比率dqmaxとして学習する。例えば、燃料噴射弁10の劣化が進行すると、噴射開始応答遅れ時間tdが長くなり、噴射時間偏差teが大きくなる等の傾向が見られる。   More specifically, td, te, dqmax and the like described below are learned as characteristic values. That is, the time from the pulse-on timing t1 to the actual injection start time R1 is learned as the injection start response delay time td. The deviation between the valve opening time Tq by the injection command and the actual injection time that is the time from R1 to R3 is learned as the injection time deviation te. The ratio between the valve opening time Tq by the injection command and the injection rate increase amount Rβ is learned as the increase amount ratio dqmax. For example, when the deterioration of the fuel injection valve 10 progresses, there is a tendency that the injection start response delay time td becomes longer and the injection time deviation te becomes larger.

ECU30のマイコンは、基本的にはアクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき要求噴射量及び要求噴射時期を算出する。そして、学習した特性値により算出される噴射率モデルを用いて、要求噴射量及び要求噴射時期を満たすよう噴射指令信号t1、t2、Tqを設定する。これにより、燃料噴射状態(噴射タイミング及び噴射量等)を制御する。   The microcomputer of the ECU 30 basically calculates the required injection amount and the required injection timing based on the engine load and engine speed calculated from the accelerator operation amount and the like. Then, using the injection rate model calculated from the learned characteristic value, the injection command signals t1, t2, and Tq are set so as to satisfy the required injection amount and the required injection timing. Thus, the fuel injection state (injection timing, injection amount, etc.) is controlled.

ここで、所望する量の燃料を噴射できなくなるといった不具合が生じることがあり、その不具合の原因解析に有用となる各種データを、本実施形態ではEEPROM25aに記憶している。上記不具合の具体例としては、粗悪燃料を使用したことが原因で燃料噴射弁10の劣化が著しく進行した場合、燃料噴射弁10を過酷な状態で使用した場合、過酷な環境下で使用した場合、等が挙げられる。以下、記憶する各種データの内容について説明する。   Here, there may be a problem that a desired amount of fuel cannot be injected, and various data useful for analyzing the cause of the problem are stored in the EEPROM 25a in this embodiment. As a specific example of the above-mentioned problem, when the fuel injection valve 10 has deteriorated remarkably due to the use of poor fuel, when the fuel injection valve 10 is used in a harsh state, or when used in a harsh environment , Etc. Hereinafter, the contents of various data to be stored will be described.

<粗悪燃料使用の解析に用いるデータ>
図3はECU30が有するマイコンにより繰り返し実行される処理であり、先ずステップS10において、上述の如く学習した特性値(学習値)が急変しているか否かを判定する。この「特性値の急変」について図4を用いて説明する。図4の横軸は車両の走行距離を示し、燃料噴射弁の使用時間、使用回数にも相当する。図4の縦軸は学習値を示し、値が大きいほど劣化が進行していることを表す。図中の実線L1は実際の劣化進行度合いを示し、使用初期段階では劣化の進行速度が早いことを表している。そこで本実施形態では、劣化進行速度が速い使用初期段階(例えば走行距離が100kmに達するまでの期間)には、その後の期間に比べて学習頻度を多くしており、例えば初期段階では100km毎に学習し、その後は500km毎に学習する。図4中の符号A1,A2,A3は初期段階での学習ポイントを示し、図4中の符号A4は初期段階以降での学習ポイントを示す。
<Data used for analysis of bad fuel use>
FIG. 3 is a process repeatedly executed by the microcomputer of the ECU 30. First, in step S10, it is determined whether or not the characteristic value (learned value) learned as described above has suddenly changed. This “abrupt change in characteristic value” will be described with reference to FIG. The horizontal axis in FIG. 4 indicates the travel distance of the vehicle, and corresponds to the usage time and the number of uses of the fuel injection valve. The vertical axis in FIG. 4 indicates the learning value, and the larger the value, the more the deterioration is progressing. A solid line L1 in the figure indicates the actual degree of progress of deterioration, and indicates that the progress speed of deterioration is high in the initial stage of use. Therefore, in the present embodiment, the learning frequency is increased in the initial stage of use (for example, the period until the travel distance reaches 100 km) where the deterioration progressing speed is high, for example, every 100 km in the initial stage. Learn and then learn every 500 km. Reference numerals A1, A2, and A3 in FIG. 4 indicate learning points at the initial stage, and reference numeral A4 in FIG. 4 indicates learning points at and after the initial stage.

しかしながら、何らかの原因により、通常想定される劣化進行度合いL1から学習値が外れた場合(点線L2,L3,L4参照)、学習間隔を短くして学習頻度を多くするよう学習タイミングを設定変更する。上記原因の具体例を以下に列挙する。   However, when the learning value deviates from the normally assumed deterioration progress L1 for some reason (see dotted lines L2, L3, and L4), the learning timing is set and changed so as to shorten the learning interval and increase the learning frequency. Specific examples of the causes are listed below.

ステップS10にて特性値の急変有無を判定するにあたり、学習した特性値の単位時間当たりの変化量(つまりL1〜L4の傾き)が所定量を超えて大きくなった場合に、特性値が急変したと判定すればよい。或いは、実際の学習値が点線L2,L3,L4に示すように推移して、想定する値L1から所定量以上外れた場合に特性値が急変したと判定すればよい。   In determining whether or not there is a sudden change in the characteristic value in step S10, the characteristic value suddenly changes when the amount of change of the learned characteristic value per unit time (that is, the slope of L1 to L4) exceeds a predetermined amount. Can be determined. Alternatively, it may be determined that the characteristic value has suddenly changed when the actual learning value changes as indicated by dotted lines L2, L3, and L4 and deviates from the assumed value L1 by a predetermined amount or more.

ステップS10にて学習値が急変していないと判定されれば図3の処理を終了する。一方、学習値が急変したと判定されれば、続くステップS11において、その時の体積弾性係数Kが急変しているか否かを判定する。ステップS11にて体積弾性係数Kが急変していないと判定されれば図3の処理を終了する。一方、体積弾性係数Kが急変したと判定されれば、続くステップS12において、体積弾性係数Kが急変した旨をEEPROM25aに記憶させる。以下、体積弾性係数Kの算出手法について説明する。   If it is determined in step S10 that the learning value has not changed suddenly, the processing in FIG. 3 is terminated. On the other hand, if it is determined that the learning value has changed suddenly, it is determined in subsequent step S11 whether or not the bulk modulus K at that time has changed suddenly. If it is determined in step S11 that the bulk modulus K has not changed suddenly, the processing in FIG. 3 is terminated. On the other hand, if it is determined that the bulk modulus K has suddenly changed, in the subsequent step S12, the fact that the bulk modulus K has suddenly changed is stored in the EEPROM 25a. Hereinafter, a method for calculating the bulk modulus K will be described.

上記体積弾性係数Kとは、高圧ポンプ41の吐出口41aから各々の燃料噴射弁10の噴孔11bに至るまでの燃料経路内全体の燃料を対象とした燃料の体積弾性係数のことである。また、体積弾性係数Kは、所定の流体における圧力変化について、「ΔP=K・ΔV/V」(K:体積弾性係数、ΔP:流体の体積変化に伴う圧力変化量、V:体積、ΔV:体積Vからの体積変化量)なる関係式を満足させる係数Kであり、この係数Kの逆数は圧縮率に相当する。   The bulk modulus K is a bulk modulus of fuel for the fuel in the entire fuel path from the discharge port 41a of the high-pressure pump 41 to the nozzle hole 11b of each fuel injection valve 10. The bulk modulus K is “ΔP = K · ΔV / V” (K: bulk modulus, ΔP: amount of pressure change accompanying fluid volume change, V: volume, ΔV: The coefficient K satisfies the relational expression (volume change from volume V), and the reciprocal of this coefficient K corresponds to the compression ratio.

次に、ECU30に設けられたマイコンが体積弾性係数Kを算出する手順について説明する。先ず、燃圧センサ20による検出圧力を取得し、取得した検出圧力の推移を表す変動波形(図2(c)参照)から、1回の噴射に伴い生じる燃料圧力の低下量ΔPを算出する。具体的には、変化点P1での検出圧力から変化点P3での検出圧力を減算することで、噴射開始時点から終了時点までに生じた燃料圧力の低下量ΔPを算出する。   Next, a procedure in which the microcomputer provided in the ECU 30 calculates the bulk modulus K will be described. First, a detected pressure by the fuel pressure sensor 20 is acquired, and a fuel pressure decrease amount ΔP caused by one injection is calculated from a fluctuation waveform (refer to FIG. 2C) representing a transition of the acquired detected pressure. Specifically, by subtracting the detected pressure at the change point P3 from the detected pressure at the change point P1, a fuel pressure decrease amount ΔP generated from the injection start time to the end time is calculated.

次に、前記変動波形から噴射量Qを算出する。具体的には先述したように、図2(c)に示す変動波形から図2(b)に示す噴射率の推移波形を算出し、その推移波形を用いて実噴射開始から終了までの噴射率の積分値S(噴射量Q)を算出する。   Next, the injection amount Q is calculated from the fluctuation waveform. Specifically, as described above, the transition waveform of the injection rate shown in FIG. 2B is calculated from the fluctuation waveform shown in FIG. 2C, and the injection rate from the start to the end of the actual injection using the transition waveform. The integral value S (injection amount Q) is calculated.

次に、算出した低下量ΔP及び噴射量Qに基づき、体積弾性係数Kを算出する。具体的には、上記関係式「ΔP=K・ΔV/V」中のΔPは低下量ΔPに相当し、関係式中のΔVは噴射量Qに相当する。また、関係式中のVは、予め計測した値であってECU30が有するメモリ(図示せず)又はEEPROM25aに記憶させておいた値を用いる。以上により、低下量ΔP、噴射量Q(ΔV)及び計測値Vを上記関係式に代入することで、体積弾性係数Kを算出する。なお、このように体積弾性係数Kを算出している時のECU30は「算出手段」に相当する。   Next, the bulk modulus K is calculated based on the calculated decrease amount ΔP and injection amount Q. Specifically, ΔP in the relational expression “ΔP = K · ΔV / V” corresponds to the reduction amount ΔP, and ΔV in the relational expression corresponds to the injection amount Q. Further, V in the relational expression is a value measured in advance and a value stored in a memory (not shown) of the ECU 30 or the EEPROM 25a. As described above, the volume elastic modulus K is calculated by substituting the decrease amount ΔP, the injection amount Q (ΔV), and the measured value V into the above relational expression. The ECU 30 when calculating the bulk modulus K in this way corresponds to “calculation means”.

そして、ステップS11にて体積弾性係数Kの急変有無を判定するにあたり、算出した体積弾性係数Kの単位時間当たりの変化量が所定量を超えて大きくなった場合に、体積弾性係数Kが急変したと判定すればよい。或いは、算出した体積弾性係数Kが想定する値から所定量以上外れた場合に体積弾性係数Kが急変したと判定すればよい。   Then, in determining whether or not the bulk modulus K is suddenly changed in step S11, when the amount of change in the calculated bulk modulus K per unit time exceeds a predetermined amount, the bulk modulus K suddenly changes. Can be determined. Or what is necessary is just to determine with the bulk elasticity coefficient K having changed suddenly, when the calculated bulk modulus K deviates more than the predetermined value from the assumed value.

なお、図3のフローチャートでは、体積弾性係数Kの急変有無の判定結果をEEPROM25aに記憶させているが、ステップS11の処理を廃止して、学習値が急変した時の体積弾性係数KをEEPROM25aに記憶させるようにしてもよい。   In the flowchart of FIG. 3, the determination result of whether or not the bulk modulus K is suddenly changed is stored in the EEPROM 25a. However, the processing of step S11 is abolished, and the bulk modulus K when the learning value suddenly changes is stored in the EEPROM 25a. You may make it memorize | store.

ここで、粗悪燃料を用いると、通常燃料と比較して体積弾性係数Kが大きく変化する。また、体積弾性係数Kが変化すれば、上述した各種特性値(学習値)も大きく変化して、点線L2,L3,L4に示すように学習値が想定の範囲外の値となる。したがって、所望する量の燃料を噴射できなくなるといった不具合が生じた場合に、不具合原因を解析する作業者はEEPROM25aに記憶されたデータを見れば、体積弾性係数Kが急変した履歴があるか否か、つまり粗悪燃料の使用有無の履歴を取得することができる。よって、前記不具合が生じた場合に、粗悪燃料を使用したことが原因であるか否かを解析するのに前記データを有効に利用できる。   Here, when the poor fuel is used, the bulk modulus K greatly changes compared to the normal fuel. Further, if the bulk modulus K changes, the above-described various characteristic values (learned values) also change greatly, and the learned values become values outside the assumed range as indicated by dotted lines L2, L3, and L4. Therefore, when a problem such as the inability to inject a desired amount of fuel occurs, an operator who analyzes the cause of the problem looks at the data stored in the EEPROM 25a to determine whether there is a history of sudden changes in the bulk modulus K. That is, it is possible to obtain a history of the presence or absence of use of poor fuel. Therefore, when the problem occurs, the data can be effectively used to analyze whether or not the cause is the use of poor fuel.

<燃料噴射弁の使用状態、使用環境の解析に用いるデータ>
図5はECU30が有するマイコンにより繰り返し実行される処理であり、先ずステップS20において、所望する量の燃料を噴射できなくなるといった噴射異常が発生しているか否かを判定する。例えば、燃圧センサ20の検出圧力から算出した噴射量が、目標噴射量から所定量異常乖離した状態が所定時間以上継続した場合には、噴射異常発生と判定すればよい。或いは、内燃機関の出力が目標出力から所定量異常乖離した状態が所定時間以上継続した場合に、噴射異常発生と判定すればよい。なお、内燃機関の出力は、期間回転速度NEの瞬時値から算出すればよい。
<Data used for analysis of fuel injection valve usage and usage environment>
FIG. 5 is a process repeatedly executed by the microcomputer of the ECU 30. First, in step S20, it is determined whether or not an injection abnormality such that a desired amount of fuel cannot be injected has occurred. For example, if the injection amount calculated from the detected pressure of the fuel pressure sensor 20 is abnormally deviated from the target injection amount by a predetermined amount for a predetermined time or longer, it may be determined that an injection abnormality has occurred. Alternatively, when the output of the internal combustion engine deviates from the target output by a predetermined amount continues for a predetermined time or more, it may be determined that the injection abnormality has occurred. The output of the internal combustion engine may be calculated from the instantaneous value of the period rotational speed NE.

ステップS20にて噴射異常が発生していないと判定されれば図5の処理を終了する。一方、噴射異常が発生したと判定されれば、続くステップS21において、燃料噴射弁10の初回使用時以降から噴射異常発生を検出した時までの、燃料噴射弁10の累積作動時間又は累積作動回数を、使用状態としてEEPROM25aに記憶させる。   If it is determined in step S20 that no injection abnormality has occurred, the process in FIG. 5 is terminated. On the other hand, if it is determined that an injection abnormality has occurred, in the subsequent step S21, the cumulative operation time or the cumulative number of operations of the fuel injection valve 10 from when the fuel injection valve 10 is first used until when the injection abnormality is detected. Is stored in the EEPROM 25a as a use state.

さらに、続くステップS22において、燃料噴射弁10の初回使用時以降から噴射異常発生を検出した時までの、燃料噴射弁10の使用頻度(使用状態)を、以下に説明する領域毎にEEPROM25aに記憶させる。図6は、機関回転速度NE及び機関負荷(燃料噴射量Qに相当)を複数に領域分けしたマップを示しており、燃料噴射弁10の使用頻度D(Qi,NEj)をマップ中の領域毎に記憶させる。要するに、いずれの領域での使用頻度が高かったかを、使用状態のデータとして記憶させる。   Further, in the subsequent step S22, the usage frequency (usage state) of the fuel injection valve 10 from the time when the fuel injection valve 10 is first used until the time when the occurrence of the injection abnormality is detected is stored in the EEPROM 25a for each area described below. Let FIG. 6 shows a map in which the engine speed NE and the engine load (corresponding to the fuel injection amount Q) are divided into a plurality of regions, and the usage frequency D (Qi, NEj) of the fuel injection valve 10 is shown for each region in the map. Remember me. In short, it is stored as usage state data in which area the frequency of use is high.

また、続くステップS23において、噴射異常発生を検出した時点での燃料圧力、機関回転速度NE、機関負荷(燃料噴射量Qに相当)を、使用環境のデータとしてEEPROM25aに記憶させる。   In the subsequent step S23, the fuel pressure, the engine speed NE, and the engine load (corresponding to the fuel injection amount Q) at the time when the occurrence of the injection abnormality is detected are stored in the EEPROM 25a as usage environment data.

ここで、燃料噴射弁10を過酷な状態で使用している場合や、過酷な環境下で使用している場合には、それらが原因となって燃料噴射弁10が故障したり、劣化が著しく促進される場合がある。「過酷な状態で使用」の具体例としては、耐用年数を超えて長期に亘り燃料噴射弁10を使用した場合が挙げられる。したがって、ステップS21で記憶された累積作動時間又は回数のデータは、噴射異常が発生した場合に、使用状態が過酷だったことが原因であるか否かを解析するのに有効に利用できる。   Here, when the fuel injection valve 10 is used in a harsh state or when used in a harsh environment, the fuel injection valve 10 may fail or deteriorate significantly due to these causes. May be promoted. As a specific example of “use in a harsh state”, there is a case where the fuel injection valve 10 is used for a long time exceeding the service life. Therefore, the accumulated operation time or the number of times data stored in step S21 can be effectively used to analyze whether or not the cause is that the usage state is severe when an injection abnormality occurs.

「過酷な状態で使用」の他の具体例としては、高負荷高回転領域での燃料噴射弁10の使用頻度が高いことが挙げられる。したがって、ステップS22で記憶された領域毎の使用頻度のデータは、噴射異常が発生した場合に、使用状態が過酷だったことが原因であるか否かを解析するのに有効に利用できる。   Another specific example of “use in a harsh state” is that the fuel injection valve 10 is frequently used in a high-load high-rotation region. Therefore, the use frequency data for each region stored in step S22 can be effectively used to analyze whether or not the cause is that the use state is severe when an injection abnormality occurs.

「過酷な環境下で使用」の具体例としては、燃料噴射弁10内部の燃圧が瞬時的に許容圧を超えた場合、機関負荷Q及び機関回転速度NEが瞬時的に許容値を超えた場合等が挙げられる。したがって、ステップS23で記憶された噴射異常発生時の燃圧,NE,Qのデータは、噴射異常が発生した場合に、使用環境が過酷だったことが原因であるか否かを解析するのに有効に利用できる。   Specific examples of “use in a harsh environment” include when the fuel pressure inside the fuel injection valve 10 instantaneously exceeds the allowable pressure, or when the engine load Q and the engine speed NE instantaneously exceed the allowable values. Etc. Therefore, the fuel pressure, NE, Q data at the time of occurrence of the injection abnormality stored in step S23 is effective for analyzing whether or not the use environment is severe when the injection abnormality occurs. Available to:

<学習タイミングの決定に用いるデータ>
図7はECU30が有するマイコンにより繰り返し実行される処理であり、先ずステップS30において、先述した各種特性値td,te,dqmaxの学習が実施されたか否かを判定する。実施された場合には、その学習値を取得して、例えば図4中のA1,A2,A3,A4に示す学習値(劣化定量値に相当)の推移データ(図4中の符号L1〜L4に示す推移線)を更新して、EEPROM25aに記憶させる。また、図7の処理とは別に、燃料噴射弁10の初回使用時以降の累積作動時間又は作動回数を、EEPROM25aに記憶させる。
<Data used to determine learning timing>
FIG. 7 is a process repeatedly executed by the microcomputer of the ECU 30. First, in step S30, it is determined whether or not learning of the various characteristic values td, te, and dqmax described above has been performed. When implemented, the learning value is acquired, and for example, transition data (reference characters L1 to L4 in FIG. 4) of learning values (corresponding to deterioration quantitative values) indicated by A1, A2, A3, and A4 in FIG. Are updated and stored in the EEPROM 25a. In addition to the processing of FIG. 7, the cumulative operation time or the number of operations after the first use of the fuel injection valve 10 is stored in the EEPROM 25a.

ここで、先述したように、各種特性値td,te,dqmaxを学習する頻度は、使用初期段階であるほど多く設定し、また、何らかの原因により、通常想定される劣化進行度合いL1から学習値が外れた場合(点線L2,L3,L4参照)にも、学習頻度を多く設定する。   Here, as described above, the frequency of learning the various characteristic values td, te, dqmax is set so as to increase in the initial stage of use, and for some reason, the learning value is calculated from the normally assumed deterioration progress level L1. Even in the case of deviation (see dotted lines L2, L3, and L4), a large learning frequency is set.

したがって、ステップS31で記憶された学習値の推移データに基づけば、通常想定される劣化進行度合いから学習値がどれだけ外れているかの情報を取得できるので、学習頻度、つまり次回の学習タイミングを設定するのに有効に利用できる。また、EEPROM25aに記憶された初回使用時以降の累積作動時間又は作動回数のデータに基づけば、使用初期段階であるか否かの情報を取得できるので、学習頻度、つまり次回の学習タイミングを設定するのに有効に利用できる。   Accordingly, based on the learning value transition data stored in step S31, information on how far the learning value deviates from the normally assumed degree of deterioration can be acquired, so the learning frequency, that is, the next learning timing is set. It can be used effectively to do. In addition, since it is possible to obtain information on whether or not it is in the initial use stage based on the accumulated operation time or operation frequency data after the first use stored in the EEPROM 25a, the learning frequency, that is, the next learning timing is set. It can be used effectively.

特に、各気筒の燃料噴射弁10毎に、該当する燃料噴射弁10の学習値推移データ及び累積作動時間等が、各々のEEPROM25aに記憶されているので、複数の燃料噴射弁10の一部のみを新品に交換した場合において、交換した燃料噴射弁10については使用初期段階に相応する頻度で学習するように設定でき、交換していない燃料噴射弁10については、該当するEEPROM25aに記憶されたデータに基づき学習頻度を設定できる。要するに、燃料噴射弁10毎に適した学習頻度に設定できる。   Particularly, for each fuel injector 10 of each cylinder, since the learning value transition data and the accumulated operation time of the corresponding fuel injector 10 are stored in each EEPROM 25a, only a part of the plurality of fuel injectors 10 is stored. When the fuel injector 10 is replaced with a new one, the replaced fuel injector 10 can be set to learn at a frequency corresponding to the initial stage of use, and the data stored in the corresponding EEPROM 25a can be set for the fuel injector 10 that has not been replaced. The learning frequency can be set based on In short, a learning frequency suitable for each fuel injection valve 10 can be set.

以上により、本実施形態によれば、学習値が急変した時の体積弾性係数Kの急変有無の判定結果(或いは学習値が急変した時の体積弾性係数K)を記憶させるので、所望する量の燃料を噴射できなくなるといった不具合が生じた場合に、粗悪燃料を使用したことが原因であるか否かを解析するのに上記データを有効に利用できる。   As described above, according to the present embodiment, the determination result of the presence or absence of the sudden change in the bulk modulus K when the learned value suddenly changes (or the bulk modulus K when the learned value suddenly changes) is stored. The above data can be used effectively to analyze whether or not the cause is the use of poor fuel when a problem such as inability to inject fuel occurs.

また、噴射異常が発生した場合に、累積作動時間又は回数のデータ、領域毎の使用頻度のデータ、及び噴射異常発生時の燃圧,NE,Qのデータを記憶させるので、燃料噴射弁10を過酷な状態又は過酷な環境下で使用していることが噴射異常の原因となっているか否かを解析するのに、上記データを有効に利用できる。   In addition, when an injection abnormality occurs, the accumulated operation time or number of times data, the usage frequency data for each region, and the fuel pressure, NE, and Q data at the time of the injection abnormality occurrence are stored. The above data can be used effectively to analyze whether or not the use in a harsh state or harsh environment is the cause of the injection abnormality.

また、燃料噴射弁10の特性値(学習値)の推移データや、燃料噴射弁10の累積作動時間又は作動回数を記憶させるので、特性値の学習頻度(タイミング)を設定するのに、上記データを有効に利用できる。   Further, since the transition data of the characteristic value (learning value) of the fuel injection valve 10 and the cumulative operation time or the number of operations of the fuel injection valve 10 are stored, the above data is used to set the learning frequency (timing) of the characteristic value. Can be used effectively.

さらに本実施形態では、図5及び図7の処理によるデータの記憶を、複数の燃料噴射弁10の各々に対して実施するので、噴射異常の原因解析又は学習頻度の設定を、個々の燃料噴射弁10の状態に応じて実施できる。よって、複数の燃料噴射弁10を全て新品に交換するといった無駄を回避できるとともに、学習頻度の過不足抑制を図ることができる。   Further, in the present embodiment, data storage by the processing of FIGS. 5 and 7 is performed for each of the plurality of fuel injection valves 10, so that the cause analysis of injection abnormality or the setting of the learning frequency is set for each fuel injection. It can be implemented depending on the state of the valve 10. Therefore, it is possible to avoid waste such as replacing all of the plurality of fuel injection valves 10 with new ones, and it is possible to suppress excessive or insufficient learning frequency.

また、本実施形態では、図3、図5及び図7の処理による各種データを、燃料噴射弁10の各々に搭載されたEEPROM25aに記憶させる。本実施形態に反し、これらのデータをECU30に記憶させると、不具合の生じた燃料噴射弁10を受け取った不具合解析作業者は、ECU30も受け取らなければその各種データを取得できないため、その作業性が悪い。これに対し本実施形態では、燃料噴射弁10の各々に搭載されたEEPROM25aに記憶させるので、ECU30を受け取ることを要することなく不具合解析作業者は各種データを取得できるので、その解析の作業性を向上できる。   In the present embodiment, various data obtained by the processes of FIGS. 3, 5, and 7 are stored in the EEPROM 25 a mounted on each of the fuel injection valves 10. Contrary to this embodiment, if these data are stored in the ECU 30, the trouble analysis worker who has received the fuel injection valve 10 in which the trouble has occurred cannot obtain the various data without receiving the ECU 30. bad. On the other hand, in this embodiment, since it memorize | stores in EEPROM25a mounted in each of the fuel injection valve 10, since a malfunction analysis operator can acquire various data, without receiving ECU30, the workability | operativity of the analysis is obtained. It can be improved.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態では、不具合原因解析に有用な各種データ(図3及び図5の処理により記憶させたデータ)及び学習頻度の決定に有用な各種データ(図7の処理により記憶させたデータ)を、燃料噴射弁10の各々に搭載されたEEPROM25aに記憶させているが、これらのデータをECU30に記憶させるようにしてもよい。   In the above embodiment, various data useful for failure cause analysis (data stored by the processing of FIGS. 3 and 5) and various data useful for determining the learning frequency (data stored by the processing of FIG. 7) are stored. Although stored in the EEPROM 25a mounted on each of the fuel injection valves 10, these data may be stored in the ECU 30.

・図3の処理では、学習値が急変したことを条件(S10)として体積弾性係数の急変判定を実施しているが、ステップS10の処理を廃止して、学習値の急変有無に拘わらず体積弾性係数の急変判定を実施して、その判定結果又は異常発生時の体積弾性係数をEEPROM25aに記憶させるようにしてもよい。   In the process of FIG. 3, the sudden change determination of the bulk modulus is performed on the condition that the learning value has suddenly changed (S10). However, the process of step S10 is abolished, and the volume regardless of whether or not the learning value suddenly changes. The sudden change determination of the elastic modulus may be performed, and the determination result or the bulk elastic coefficient at the time of occurrence of an abnormality may be stored in the EEPROM 25a.

・上記実施形態では、EEPROM25aを、圧力センサ素子22を備えた燃圧センサ20に取り付けているが、本発明はこのような構成に限定されるものではなく、例えばボデー11やコネクタ14にEEPROM25aを取り付けるよう構成してもよい。   In the above embodiment, the EEPROM 25a is attached to the fuel pressure sensor 20 including the pressure sensor element 22. However, the present invention is not limited to such a configuration. For example, the EEPROM 25a is attached to the body 11 or the connector 14. You may comprise.

10…燃料噴射弁、11b…噴孔、20…燃圧センサ、25a…EEPROM(記憶手段)、30…ECU(算出手段、学習手段)、42…コモンレール(蓄圧容器)、S12…判定手段。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11b ... Injection hole, 20 ... Fuel pressure sensor, 25a ... EEPROM (memory | storage means), 30 ... ECU (calculation means, learning means), 42 ... Common rail (pressure accumulation container), S12 ... Determination means.

Claims (7)

内燃機関の燃料噴射弁に対して異常発生を検出した時の、前記燃料噴射弁の使用状態及び使用環境の少なくとも一方を記憶手段に記憶させることを特徴とするデータ記憶装置。   A data storage device, wherein at least one of a use state and a use environment of the fuel injection valve when an occurrence of an abnormality is detected with respect to the fuel injection valve of the internal combustion engine is stored in a storage means. 前記異常発生を検出した時までの前記燃料噴射弁の累積作動時間又は累積作動回数を、前記使用状態として記憶させることを特徴とする請求項1に記載のデータ記憶装置。   2. The data storage device according to claim 1, wherein the accumulated operation time or the accumulated number of operations of the fuel injection valve until the occurrence of the abnormality is detected is stored as the use state. 内燃機関の機関回転速度又は機関負荷を複数に領域分けし、前記領域毎に、前記異常発生を検出した時までの前記燃料噴射弁の使用頻度を、前記使用状態として記憶させることを特徴とする請求項1又は2に記載のデータ記憶装置。   The engine rotation speed or engine load of the internal combustion engine is divided into a plurality of regions, and the use frequency of the fuel injection valve until the occurrence of the abnormality is detected is stored as the use state for each region. The data storage device according to claim 1 or 2. 前記異常発生を検出した時の燃料圧力、機関回転速度及び燃料噴射量の少なくとも1つを、前記使用環境として記憶させることを特徴とする請求項1〜3のいずれか1つに記載のデータ記憶装置。   The data storage according to any one of claims 1 to 3, wherein at least one of a fuel pressure, an engine speed, and a fuel injection amount when the abnormality is detected is stored as the use environment. apparatus. 内燃機関の燃料噴射弁の初回使用時からの累積作動時間、及び前記燃料噴射弁の劣化状態と相関のある劣化定量値の推移の少なくとも一方を記憶手段に記憶させることを特徴とするデータ記憶装置。   A data storage device for storing in a storage means at least one of a cumulative operating time from the first use of a fuel injection valve of an internal combustion engine and a transition of a deterioration quantitative value correlated with a deterioration state of the fuel injection valve . 前記燃料噴射弁が搭載された気筒を複数有する内燃機関に適用され、
前記記憶手段への記憶は、複数の前記燃料噴射弁の各々に対して実施されることを特徴とする請求項1〜5のいずれか1つに記載のデータ記憶装置。
Applied to an internal combustion engine having a plurality of cylinders mounted with the fuel injection valve;
6. The data storage device according to claim 1, wherein the storage in the storage unit is performed for each of the plurality of fuel injection valves.
前記記憶手段は前記燃料噴射弁に搭載されたものであることを特徴とする請求項1〜6のいずれか1つに記載のデータ記憶装置。   The data storage device according to claim 1, wherein the storage unit is mounted on the fuel injection valve.
JP2011130514A 2011-06-10 2011-06-10 Data storage device Pending JP2011169332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011130514A JP2011169332A (en) 2011-06-10 2011-06-10 Data storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130514A JP2011169332A (en) 2011-06-10 2011-06-10 Data storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009147014A Division JP4844651B2 (en) 2009-06-19 2009-06-19 Data storage

Publications (1)

Publication Number Publication Date
JP2011169332A true JP2011169332A (en) 2011-09-01

Family

ID=44683676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130514A Pending JP2011169332A (en) 2011-06-10 2011-06-10 Data storage device

Country Status (1)

Country Link
JP (1) JP2011169332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238203A (en) * 2012-05-17 2013-11-28 Toyota Motor Corp Monitoring device for engine control unit
US9546992B2 (en) 2014-05-29 2017-01-17 Denso Corporation Fuel property judgment device and method of judging fuel property

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121238A (en) * 1994-10-26 1996-05-14 Nippondenso Co Ltd Vehicle information memory device
JP2002304215A (en) * 2001-04-04 2002-10-18 Isuzu Motors Ltd Failure diagnostic device
JP2007032502A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Control device for vehicle internal combustion engine
JP2009074536A (en) * 2007-08-31 2009-04-09 Denso Corp Fuel injection device, fuel injection system, and method of determining abnormality of fuel injection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121238A (en) * 1994-10-26 1996-05-14 Nippondenso Co Ltd Vehicle information memory device
JP2002304215A (en) * 2001-04-04 2002-10-18 Isuzu Motors Ltd Failure diagnostic device
JP2007032502A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Control device for vehicle internal combustion engine
JP2009074536A (en) * 2007-08-31 2009-04-09 Denso Corp Fuel injection device, fuel injection system, and method of determining abnormality of fuel injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238203A (en) * 2012-05-17 2013-11-28 Toyota Motor Corp Monitoring device for engine control unit
US9546992B2 (en) 2014-05-29 2017-01-17 Denso Corporation Fuel property judgment device and method of judging fuel property

Similar Documents

Publication Publication Date Title
JP4844651B2 (en) Data storage
JP4911199B2 (en) Fuel condition detection device
JP5152237B2 (en) Abnormality judgment method of fuel injection device
JP4453773B2 (en) Fuel injection device, fuel injection system, and fuel injection device abnormality determination method
US8955490B2 (en) Fuel-pressure-sensor diagnosis device
US7438052B2 (en) Abnormality-determining device and method for fuel supply system, and engine control unit
JP4873048B2 (en) Fuel injection control device
US10578043B2 (en) Method for recognizing a state of change of a fuel injector
JP6945556B2 (en) Defect diagnosis method in internal combustion engine
US20110118958A1 (en) Method for adapting the performance of a fuel prefeed pump of a motor vehicle
US20090019926A1 (en) Method for operating a fuel-injection system, in particular of an internal combustion engine
JP2009085164A (en) Defective injection detection device and fuel injection system
CN101929400B (en) Learning device
US9284904B2 (en) Method and device for monitoring a high-pressure fuel system
KR101842314B1 (en) Method for determining a control volume of an injector
JP2011252418A (en) Fuel injection system for internal combustion engine
US20100121600A1 (en) Method and Device For Checking A Pressure Sensor Of A Fuel Injector System
JP5321572B2 (en) Information storage device
JP5126295B2 (en) Fuel injection state detection device
JP2011169332A (en) Data storage device
JP5313846B2 (en) Abnormality diagnosis device for pressure sensor and accumulator fuel injection device
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP2014084754A (en) Rail pressure sensor output characteristic diagnostic method, and common rail-type fuel injection control device
JP5170168B2 (en) Injector replacement determination device
JP5360092B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204