JP2011168919A - Polyamide fiber and woven fabric for airbag - Google Patents

Polyamide fiber and woven fabric for airbag Download PDF

Info

Publication number
JP2011168919A
JP2011168919A JP2010033848A JP2010033848A JP2011168919A JP 2011168919 A JP2011168919 A JP 2011168919A JP 2010033848 A JP2010033848 A JP 2010033848A JP 2010033848 A JP2010033848 A JP 2010033848A JP 2011168919 A JP2011168919 A JP 2011168919A
Authority
JP
Japan
Prior art keywords
dtex
polyamide fiber
yarn
roll
airbag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033848A
Other languages
Japanese (ja)
Other versions
JP5646860B2 (en
Inventor
Tatsuya Motonaga
辰也 元永
Makoto Iiboshi
誠 飯干
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2010033848A priority Critical patent/JP5646860B2/en
Publication of JP2011168919A publication Critical patent/JP2011168919A/en
Application granted granted Critical
Publication of JP5646860B2 publication Critical patent/JP5646860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Bags (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a woven fabric for an airbag which can be folded compactly and has bag storability, and is excellent in development speed and burst resistance even if it faces bag development by an inflator, and to provide a polyamide fiber conpositing this woven fabric. <P>SOLUTION: The polyamide fiber has a total fiber fineness of 100-700 dtex, a tensile strength of 9.0-11.5 cN/dtex, a loop strength of 11 cN/dtex or more, and a pushing bending flexibility of 1.3×10<SP>-4</SP>cN/dtex or less, and the woven fabric for an airbag is composed of this polyamide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は機械的特性に優れ、かつ柔軟性に富み、産業資材分野における補強材、折り畳み形状を伴う収納体、エアバッグなどとして有用なポリアミド繊維およびその織物に関する。   The present invention relates to a polyamide fiber excellent in mechanical characteristics and rich in flexibility, and useful as a reinforcing material in a field of industrial materials, a container with a folded shape, an airbag, and the like, and a woven fabric thereof.

ポリアミド繊維は、強靭性、接着性、耐疲労性などに優れるため、各種産業資材用途、例えば、タイヤコード、搬送ベルト、伝動ベルト、ゴムホースなどのゴム補強用コード、安全ベルト、テント、組紐、縫糸およびエアバッグなどに広く用いられている。また、これらの産業資材製品は常に軽量化が求められており、成形加工時や折り畳み形状を伴う収納体として、その製品が用いられる場合には、柔軟性も欠かせない要素である。中でも、車両に搭載されるエアバッグは、乗員の安全を確保するための装置として欠かせないものとなっており、自動車への搭載率は年々高まっている。近年では、運転席や助手席のみならず、サイドカーテン、サイドバッグ、ニーバッグなど収納部位も様々である。これらエアバッグ用織物には機械的特性や低通気性などの基本的な要求事項の他に、それぞれの使用箇所に応じた所望特性が付加される。例えば、運転席用のエアバッグであれば、車両前方の視界の確保、装備される計器類を見やすくするために、コンパクトに折り畳めるエアバッグ用織物が望まれる。また、サイドカーテンは車両の側面全体をカバーする必要があるため、運転席用のエアバッグに比べ、容量が大きくなったり、形状が複雑化したり、側面衝突後の車両横転を考慮し、展開後のバッグが膨張状態を一定時間保持することなどが求められる。さらにサイドバッグやニーバッグなど収納部と乗員が接近しており、いわゆるバッグ作動距離に制約を受ける場合などには、より短時間にてエアバッグを展開しなければならない。以上のように、様々な形態にて使用されるエアバッグには、高度の機械的特性をもつ繊維やコンパクトに折り畳まれる収納性、または変形追随性に富んだ柔軟性に富んだ繊維が好適である。   Polyamide fiber is excellent in toughness, adhesiveness, fatigue resistance, etc., so it can be used for various industrial materials such as tire cords, conveyor belts, power transmission belts, rubber hoses and other rubber reinforcing cords, safety belts, tents, braids and sewing threads. And widely used in airbags and the like. In addition, these industrial material products are always required to be light in weight, and flexibility is an indispensable element when the product is used as a storage body with a molding process or a folded shape. In particular, airbags mounted on vehicles are indispensable as devices for ensuring the safety of passengers, and the rate of mounting on automobiles is increasing year by year. In recent years, there are various storage parts such as a side curtain, a side bag, and a knee bag as well as a driver seat and a passenger seat. In addition to the basic requirements such as mechanical properties and low air permeability, these air bag fabrics are provided with desired properties according to each use location. For example, in the case of an airbag for a driver's seat, a fabric for an airbag that can be folded compactly is desired in order to secure a field of view in front of the vehicle and to make it easier to see the equipped instruments. In addition, the side curtain needs to cover the entire side of the vehicle, so it has a larger capacity, a more complicated shape, and a vehicle rollover after a side collision. It is required that the bag remains in an inflated state for a certain period of time. Furthermore, when the storage part such as the side bag or the knee bag is close to the occupant and the so-called bag working distance is restricted, the airbag must be deployed in a shorter time. As described above, for airbags used in various forms, fibers with high mechanical properties, fibers that can be folded compactly, and fibers that are highly flexible with excellent deformation followability are suitable. is there.

特開平6−248508号公報、および特開平6−299411号公報には、少なくとも95モル%がヘキサメチレンアジパミド単位からなり、硫酸相対粘度が3.0以上で、一定の繊維構造特性を有するポリヘキサメチレンアジパミド繊維を得る技術が開示されている。また、該繊維は強度が11.0g/d以上、伸度が16%以上、沸騰水収縮率が4%以下である、いわゆる高強度ナイロン66繊維であるが、このようなナイロン66は機械的特性には優れるものの、製織工程における収率や該糸が織物製品となった際の変形追随性に富む柔軟性、折り畳み収納性、エアバッグとして用いる際の耐バースト性については、なお課題が残るものであった。特許第3457739号には、収納性、低衝撃性、高速展開性に優れるサイドエアーバッグ用織物を得る技術が開示されている。しかし、該技術に用いられている繊維は、絶対的に繊度が低く収納性、低衝撃性、高速展開性には優れるものの、機械的強度が不足している。また、ポリエステルであることから、ポリアミドと比較し熱容量が小さく、このことは高温に達するエアバッグ展開において課題を残すものであった。特許4166203号には、ポリアミド延伸糸の繊度および応力−ひずみ曲線を調整することにより、エアバッグ作動時、瞬間的に発生する衝撃エネルギーを吸収するためのノンコートエアバッグ用ポリアミド繊維に関する技術が開示されている。しかし、車両の小型化、空間の有効化により、エアバッグ用織物に対するなお一層の整形性、折り畳み収納性が望まれるなか、よりコンパクトに折り畳まれた状態から瞬時に展開されるエアバッグの展開速度、耐バースト性を得るには不十分であった。   In JP-A-6-248508 and JP-A-6-299411, at least 95 mol% is composed of hexamethylene adipamide units, the sulfuric acid relative viscosity is 3.0 or more, and it has certain fiber structure characteristics. Techniques for obtaining polyhexamethylene adipamide fibers are disclosed. The fiber is a so-called high-strength nylon 66 fiber having a strength of 11.0 g / d or more, an elongation of 16% or more, and a boiling water shrinkage of 4% or less. Although excellent in properties, problems still remain with respect to the yield in the weaving process, flexibility with excellent deformation followability when the yarn becomes a woven product, folding storage property, and burst resistance when used as an airbag. It was a thing. Japanese Patent No. 3457539 discloses a technique for obtaining a fabric for a side air bag that is excellent in storage, low impact, and high-speed deployment. However, the fibers used in this technology have absolutely low fineness and excellent storage properties, low impact properties, and high-speed deployment properties, but lack mechanical strength. In addition, since it is a polyester, its heat capacity is smaller than that of polyamide, which leaves a problem in deploying airbags that reach high temperatures. Japanese Patent No. 4166203 discloses a technique relating to polyamide fibers for an uncoated airbag for absorbing impact energy generated instantaneously when the airbag is operated by adjusting the fineness and stress-strain curve of the drawn polyamide yarn. ing. However, as the vehicle is downsized and the space is made more effective, the airbag deployment speed that is instantly deployed from a more compactly folded state is desired, while further shaping and folding storage capability for airbag fabrics is desired. It was insufficient to obtain burst resistance.

本発明はこれらの課題に対し、鋭意検討を重ねた結果、従来の技術において成し得なかった高度な機械的特性を有するポリアミド繊維と該糸からなる織物の折り畳み収納性を兼備し、エアバッグがコンパクトに折り畳まれた状態から瞬時に展開する、高速展開性、耐バースト性に優れたエアバッグ用織物を得たのである。つまり、エアバッグの展開の負荷に耐え得るには、展開起点となる折り畳み部の織糸の機械的特性と柔軟性が必要であり、これら2つの要素がエアバッグの展開速度と耐バースト性に重要であることを見出し、本発明をなすに至ったのである。   As a result of intensive studies on these problems, the present invention combines the folding and storing properties of a polyamide fiber having high mechanical properties that could not be achieved by conventional techniques and a fabric made of the yarn, and an airbag. As a result, we obtained a fabric for airbags that can be instantly deployed from a compactly folded state and has excellent high-speed deployability and burst resistance. In other words, in order to withstand the deployment load of the airbag, the mechanical characteristics and flexibility of the fold yarn that is the starting point of deployment are necessary, and these two factors contribute to the deployment speed and burst resistance of the airbag. They found it important and came to make the present invention.

特開平6−248508号公報JP-A-6-248508 特開平6−299411号公報JP-A-6-299411 特許第3457739号Japanese Patent No. 3457539 特許第4166203号Japanese Patent No. 4166203

本発明は、コンパクトに折り畳めて収納性に優れ、インフレーターによるバッグ展開に際しても、展開速度、耐バースト性に優れたエアバッグ用織物、該織物を構成するポリアミド繊維を提供することを目的とする。   An object of the present invention is to provide an airbag fabric and a polyamide fiber constituting the fabric, which are compactly folded and excellent in storage properties, and have excellent deployment speed and burst resistance even when a bag is developed by an inflator.

本発明者は、前記課題を解決するため、エアバッグ用織物がコンパクトに折り畳まれた状態からインフレーターにより、瞬時に展開される際、展開起点となる折り畳み部の織糸の機械的特性、柔軟性がエアバッグの展開速度、耐バースト性能に重要であることを見出し、本発明をなすに至った。すなわち、本発明は下記の発明を提供する。   In order to solve the above-mentioned problems, the present inventor has found that the mechanical properties and flexibility of the woven yarn at the folding portion that becomes the starting point of the deployment when the airbag fabric is instantly deployed by the inflator from the compactly folded state. Has been found to be important for the airbag deployment speed and burst resistance, and has led to the present invention. That is, the present invention provides the following inventions.

(1)総繊度が100〜700dtex、引張強度が9.0〜11.5cN/dtex、引掛強度が11.0cN/dtex以上、および押し曲げ柔軟度が1.3×10-4cN/dtex以下であることを特徴とするポリアミド繊維。
(2)引張速度が10m/秒である高速引張試験において、引張強度が11.0cN/dtex以上であることを特徴とする上記(1)項に記載のポリアミド繊維。
(3)沸騰水収縮率Sが4〜11%であり、熱収縮応力σが0.25〜0.66cN/dtexであり、これらの関係が次式を満たすことを特徴とする上記(1)項または(2)項に記載のポリアミド繊維。
(0.0569×S+0.013)<σ<(0.0569×S+0.033)
(4)以下の式で表されるポリマー鎖切断指数DGが4〜15の範囲であることを特徴とする上記(1)〜(3)項のいずれか一項に記載のポリアミド繊維。
DG=exp(1.613×102/(N+C)+2.715)−VR
ただし、N:繊維の末端アミノ基濃度(mmol/kg)
C:繊維の末端カルボキシル基濃度(mmol/kg)
VR:繊維の蟻酸相対粘度
(5)上記(1)〜(4)項のいずれか一項に記載のポリアミド繊維から構成されていることを特徴とするエアバッグ用織物。
(6)ポリアミドポリマーを溶融紡出し、引張強度が9.0〜11.5cN/dtexのポリアミド繊維を得る多段延伸において、紡出糸を前段で150℃未満の温度で全延伸倍率の25〜60%の延伸倍率で延伸し、引き続く後段で150℃以上の温度で残りの延伸を行い、次いで、熱弛緩処理を行って巻き取ることを特徴とする上記(1)項記載のポリアミド繊維の製造方法。
(1) The total fineness is 100 to 700 dtex, the tensile strength is 9.0 to 11.5 cN / dtex, the hook strength is 11.0 cN / dtex or more, and the push bending flexibility is 1.3 × 10 −4 cN / dtex or less. Polyamide fiber characterized by being.
(2) The polyamide fiber as described in (1) above, wherein a tensile strength is 11.0 cN / dtex or more in a high-speed tensile test with a tensile speed of 10 m / sec.
(3) The boiling water shrinkage S is 4 to 11%, the heat shrinkage stress σ is 0.25 to 0.66 cN / dtex, and these relationships satisfy the following formula (1) Item or the polyamide fiber according to item (2).
(0.0569 × S + 0.013) <σ <(0.0569 × S + 0.033)
(4) The polyamide fiber according to any one of (1) to (3) above, wherein the polymer chain breakage index DG represented by the following formula is in the range of 4 to 15.
DG = exp (1.613 × 10 2 /(N+C)+2.715)−VR
N: Fiber end amino group concentration (mmol / kg)
C: Terminal carboxyl group concentration of the fiber (mmol / kg)
VR: Formic acid relative viscosity of fiber (5) A fabric for an air bag comprising the polyamide fiber according to any one of (1) to (4) above.
(6) In a multistage drawing in which a polyamide polymer is melt-spun to obtain a polyamide fiber having a tensile strength of 9.0 to 11.5 cN / dtex, the spinning yarn is set at a temperature of less than 150 ° C. at a temperature of less than 150 ° C. and a total draw ratio of 25-60 %, And the remaining stretch is performed at a subsequent stage at a temperature of 150 ° C. or higher, followed by thermal relaxation treatment and winding up. The method for producing a polyamide fiber according to (1) above .

本発明によれば、エアバッグ用織物をコンパクトに整形できるため、モジュールへの収納を容易にするとともに折り畳み部の織糸の機械的特性、柔軟性により高速展開性、耐バースト性に優れたエアバッグ用織物を提供することができる。   According to the present invention, since the airbag fabric can be compactly shaped, it is easy to store in the module, and the mechanical characteristics and flexibility of the woven yarn in the folded portion make the air superior in high-speed deployability and burst resistance. Bag fabrics can be provided.

本発明のポリアミド繊維を製造する設備の一例を示す説明図。Explanatory drawing which shows an example of the equipment which manufactures the polyamide fiber of this invention. 押し曲げ柔軟度測定用サンプル例を示す説明図。Explanatory drawing which shows the example of a sample for a press bending flexibility measurement. 展開性、および耐バースト性評価用の模擬バッグ形状例を示す説明図。Explanatory drawing which shows the example of a simulation bag shape for unfoldability and burst resistance evaluation.

本発明について、以下具体的に説明する。本発明のポリアミド繊維を構成するポリマーとしては、ナイロン6、ナイロン66、ナイロン12、ナイロン46およびナイロン6とナイロン66の共重合などが用いられる。中でもナイロン6、ナイロン66が耐衝撃性、耐熱性の面からより好ましい。かかるポリマーには、原糸の製造工程や加工工程での生産性、あるいは特性改善のために、通常使用されている各種添加剤を含んでも良い。例えば熱安定剤、酸化防止剤、光安定剤、平滑剤、帯電防止剤、可塑剤、増粘剤、顔料、難燃剤などを含有せしめることができる。熱安定剤としては、ヨウ素、臭素などのハロゲン化物をポリマーに対し、適当量含有させると良い。   The present invention will be specifically described below. As the polymer constituting the polyamide fiber of the present invention, nylon 6, nylon 66, nylon 12, nylon 46, copolymer of nylon 6 and nylon 66, and the like are used. Of these, nylon 6 and nylon 66 are more preferable in terms of impact resistance and heat resistance. Such polymers may contain various commonly used additives in order to improve the productivity and properties of the raw yarn manufacturing process and processing process. For example, a heat stabilizer, an antioxidant, a light stabilizer, a smoothing agent, an antistatic agent, a plasticizer, a thickener, a pigment, a flame retardant, and the like can be included. As the heat stabilizer, a proper amount of a halide such as iodine or bromine is preferably added to the polymer.

また、該ポリマー末端にあたるアミノ基、カルボキシル基は、末端アミノ基が20〜80mmol/kgであることが好ましい。より好ましくは30〜70mmol/kgである。末端アミノ基が20mmol/kg未満の場合には、ポリマーの溶融粘度が高く、製糸工程にて安定な吐出条件が得られず、弱糸、および細糸が発生しやすいといった不具合をもたらす場合がある。一方、末端アミノ基が80mmol/kgを超える場合は、エアバッグとして好適な機械的特性が得られないばかりか、耐バースト性が劣る場合がある。末端カルボキシル基は40〜80mmol/kgであることが好ましい。より好ましくは45〜70mmol/kgである。末端カルボキシル基が40mmol/kg未満の場合は、一般的に高重合度ポリマーであり、延伸過程で著しく高い張力となるため、擦過による糸切れを生じやすく、生産性に支障をきたす場合がある。一方、末端カルボキシル基が80mmol/kgを超える場合は、コーティングなどの加工過程において、ポリマー中の分子緩和が促進され、本発明の意図するエアバッグ用織物の熱的特性が得られない場合がある。ナイロンポリマーは基本的に末端アミノ基濃度と末端カルボキシル基濃度がほぼ同等であるが、重合時にジアミンを加えれば末端アミノ基濃度を高めることができ、ジカルボン酸を加えれば末端カルボキシル基濃度を高めることができる。たとえば、ナイロン66ポリマーであれば、原料モノマーであるヘキサメチレンジアミンアジペート中和塩にジアミンモノマーであるヘキサメチレンジアミンを添加して重合すれば末端アミノ基濃度を高めることができる。   Moreover, it is preferable that the terminal amino group is 20-80 mmol / kg as for the amino group and carboxyl group which correspond to this polymer terminal. More preferably, it is 30-70 mmol / kg. When the terminal amino group is less than 20 mmol / kg, the melt viscosity of the polymer is high, and stable discharge conditions cannot be obtained in the spinning process, which may cause problems such as weak yarns and fine yarns. . On the other hand, when the terminal amino group exceeds 80 mmol / kg, mechanical properties suitable for an airbag cannot be obtained, and burst resistance may be inferior. The terminal carboxyl group is preferably 40 to 80 mmol / kg. More preferably, it is 45-70 mmol / kg. When the terminal carboxyl group is less than 40 mmol / kg, it is generally a polymer with a high degree of polymerization, and the tension becomes extremely high during the stretching process. Therefore, yarn breakage is likely to occur due to abrasion, which may impair productivity. On the other hand, when the terminal carboxyl group exceeds 80 mmol / kg, molecular relaxation in the polymer is promoted during processing such as coating, and the thermal characteristics of the airbag fabric intended by the present invention may not be obtained. . Nylon polymers have basically the same terminal amino group concentration and terminal carboxyl group concentration. However, the addition of diamine during polymerization can increase the terminal amino group concentration, and the addition of dicarboxylic acid increases the terminal carboxyl group concentration. Can do. For example, in the case of nylon 66 polymer, the terminal amino group concentration can be increased by adding and polymerizing hexamethylenediamine as a diamine monomer to the hexamethylenediamine adipate neutralized salt as a raw material monomer.

エアバッグ用織物を構成する本発明のポリアミド繊維の総繊度は100〜700dtex、好ましくは150〜600dtex、より好ましくは200〜470dtex、さらに好ましくは210〜360dtexの範囲にあるものが、織物の機械的強度と折り畳み性、収納性などの機能面のバランスから好ましい。すなわち100dtex未満では折り畳み性、収納性は好ましいが、機械的強度が不足する場合があり、700dtexを越えると折り畳み性が損なわれ、収納性において不利となる場合がある。   The total fineness of the polyamide fiber of the present invention constituting the airbag fabric is 100 to 700 dtex, preferably 150 to 600 dtex, more preferably 200 to 470 dtex, still more preferably 210 to 360 dtex. It is preferable from the balance of functions such as strength, foldability, and storage. That is, if it is less than 100 dtex, the foldability and the storage property are preferable, but the mechanical strength may be insufficient. If it exceeds 700 dtex, the foldability may be impaired and the storage property may be disadvantageous.

また、単糸繊度は1〜7dtex、好ましくは1.5〜6dtex、より好ましくは2.5〜5.7dtex、さらに好ましくは3.3〜4.9dtexの範囲にあることが織物の軽量化、収納性を向上させるために重要である。さらに、単糸繊度を適正にすることにより、織物の平坦性も改善され、エアバッグを展開する際のような高差圧下においても低通気性が得られる。単糸繊度が1dtex未満では糸の生産性に問題がある場合があり、7dtexを越えると織物が堅く、折り畳み性、収納性の面で問題が生ずる場合がある。   In addition, the single yarn fineness is 1 to 7 dtex, preferably 1.5 to 6 dtex, more preferably 2.5 to 5.7 dtex, and still more preferably 3.3 to 4.9 dtex. This is important for improving storage. Furthermore, by making the single yarn fineness appropriate, the flatness of the woven fabric is also improved, and low air permeability can be obtained even under a high differential pressure such as when an airbag is deployed. If the single yarn fineness is less than 1 dtex, there may be a problem in the productivity of the yarn, and if it exceeds 7 dtex, the fabric is stiff and there may be a problem in terms of foldability and storage.

引張強度は9.0〜11.5cN/dtex、好ましくは9.5〜11.0cN/dtex、より好ましくは9.5〜10.5cN/dtexである。強度が9.0cN/dtex未満であると、本発明の意図した機械的特性が得られず、産業資材用繊維としては不十分であり、また、11.5cN/dtexを超える強度においては、糸条品位、例えば毛羽、その発生頻度から、紡糸収率の低下を招いたり、後加工における製織トラブルの原因になったりする。   The tensile strength is 9.0 to 11.5 cN / dtex, preferably 9.5 to 11.0 cN / dtex, more preferably 9.5 to 10.5 cN / dtex. If the strength is less than 9.0 cN / dtex, the intended mechanical properties of the present invention cannot be obtained, and the resulting fiber is insufficient as a fiber for industrial materials. In addition, the yarn exceeds 11.5 cN / dtex. Depending on the line quality, for example, fluff, and the frequency of occurrence thereof, the spinning yield may be reduced, or weaving trouble may occur in post-processing.

本発明のポリアミド繊維は基本的に製織して用いるものであるが、近年では、織密度を高くした高密度織物が機械的特性、低通気性に優れるなどの理由から産業資材用途、特にエアバッグ用織物に多く用いられている。高密度織物の場合、織密度を極限まで高めていっても、エアバッグのバースト圧力は向上し難い。織糸糸条同士が近接して絡み合い拘束しあって引っ張られるためである。この場合、ポリアミド繊維の引掛強度が11cN/dtex以上、好ましくは11.5cN/dtex以上、さらに好ましくは12cN/dtex以上であることが高密度織物に適している。引掛強度が高いことでエアバッグのバースト圧力の向上に寄与する。引掛強度は実際上18cN/dtex以下である。   The polyamide fiber of the present invention is basically used after weaving. However, in recent years, high-density fabrics with high woven density have excellent mechanical properties and low air permeability, and are therefore used for industrial materials, particularly airbags. It is often used for textiles. In the case of a high-density woven fabric, even if the woven density is increased to the limit, the burst pressure of the airbag is difficult to improve. This is because the yarn yarns are pulled in close proximity, entangled and constrained. In this case, it is suitable for a high-density fabric that the polyamide fiber has a catching strength of 11 cN / dtex or more, preferably 11.5 cN / dtex or more, more preferably 12 cN / dtex or more. High hook strength contributes to improving the burst pressure of the airbag. The hook strength is practically 18 cN / dtex or less.

ここで、高密度織物とは、カバーファクターが1500以上のものを指す。本発明のエアバッグ用織物のカバーファクターは、低通気性の観点から、1500〜2500、好ましくは1550〜2225、より好ましくは1600〜2180、さらに好ましくは1700〜2100であるのが良い。カバーファクターが1500より小さいと織物の引張強度や引裂強度が低くなり好ましくない。またカバーファクターが2500を超えると、織物の剛性が高くなり、折り畳み性を悪化させ、収納性を損なう場合がある。ここでカバーファクターとは、経糸総繊度をD1(dtex)、経糸密度をN1(本/2.54cm)、緯糸総繊度をD2(dtex)、緯糸密度をN2(本/2.54cm)とすると、√(D1)×N1+√(D2)×N2で表される。   Here, the high-density fabric refers to a fabric having a cover factor of 1500 or more. The cover factor of the airbag fabric of the present invention may be 1500 to 2500, preferably 1550 to 2225, more preferably 1600 to 2180, and still more preferably 1700 to 2100, from the viewpoint of low air permeability. If the cover factor is less than 1500, the tensile strength and tear strength of the fabric are lowered, which is not preferable. On the other hand, when the cover factor exceeds 2500, the woven fabric has high rigidity, which may deteriorate the foldability and impair the storage property. Here, the cover factor means that the total warp fineness is D1 (dtex), the warp density is N1 (line / 2.54 cm), the total weft fineness is D2 (dtex), and the weft density is N2 (line / 2.54 cm). , √ (D1) × N1 + √ (D2) × N2.

一方、織物における変形追随性に富んだ柔軟性を得る上で重要な要素は、該織物を構成する織糸の押し曲げ柔軟度である。本発明におけるポリアミド繊維は押し曲げ柔軟度が1.3×10-4cN/dtex以下、好ましくは、1.2×10-4cN/dtex以下、さらに好ましくは1.15×10-4cN/dtex以下である。所望する機械的特性を満足しつつ、かつ柔軟な織物を得るには、上記押し曲げ柔軟度を満足することが好適である。従来、ポリアミド繊維は高延伸比の製糸条件で、高配向とすることによって高強力となすため、高強力であれば引張特性は高剛性となる特性があった。したがって、高強力繊維による高強力織物では十分に柔軟な織物を得ることができなかった。しかしながら、織物を構成する織糸の押し曲げ柔軟度が低ければ変形追随性に富んだ柔軟性が得られ、折畳まれたエアバッグが展開する速度を速くすることができる。高強力ポリアミド繊維では押し曲げ柔軟度は実質的に0.5×10-4cN/dtex以上である。 On the other hand, an important factor in obtaining the flexibility of the woven fabric rich in deformation followability is the bending flexibility of the woven yarn constituting the woven fabric. The polyamide fiber in the present invention has a push-bending flexibility of 1.3 × 10 −4 cN / dtex or less, preferably 1.2 × 10 −4 cN / dtex or less, more preferably 1.15 × 10 −4 cN / d. dtex or less. In order to obtain a flexible fabric while satisfying the desired mechanical properties, it is preferable to satisfy the above-described degree of bending flexibility. Conventionally, polyamide fibers are made to have high strength by high orientation under yarn production conditions with a high draw ratio. Therefore, if the strength is high, the tensile properties have high rigidity. Therefore, a sufficiently strong fabric cannot be obtained with a high-strength fabric made of high-strength fibers. However, if the push-bending flexibility of the woven yarn constituting the woven fabric is low, flexibility with excellent deformation followability can be obtained, and the speed at which the folded airbag is deployed can be increased. For high-strength polyamide fibers, the bending flexibility is substantially 0.5 × 10 −4 cN / dtex or more.

また、沸騰水収縮率Sが4〜11%であり、熱収縮応力σが0.25〜0.66cN/dtexであることが好ましく、これら2つの値の関係において、σの値が以下の式の範囲であることが好ましい。
(0.0569×S+0.013)<σ<(0.0569×S+0.033)
これらの特性は原糸の熱処理を伴う後加工における寸法安定性に関係し、製織した際には、得られる織物の形態、機械的特性、低通気性、並びに織構造が任意の方向に引張られた際の経糸と緯糸のずれ、および織糸と縫糸間の目開きといったエアバッグの展開作動時の各種挙動に関係する。熱応力が低すぎなければ、沸水収縮率によって、加工後の織糸のクリンプがつきすぎて織物の応力に対する歪応答が大きくなりすぎたり、そのために織物の低通気が阻害されるようなことがなく、また、縫目の開きが大きくなったり、縫目の通気が大きくなるような事象になることがないため、エアバッグの耐圧性が低下するようなことが無い。また、熱応力が高すぎなければ、沸水収縮率によって、織物加工中に経緯のクリンプバランスが大きく崩れて、経緯の一方向に応力集中し、縫目部分の一方向が破断してエアバッグの耐圧性が低下するようなことがない。
Further, the boiling water shrinkage S is preferably 4 to 11%, and the heat shrinkage stress σ is preferably 0.25 to 0.66 cN / dtex. In the relationship between these two values, the value of σ is expressed by the following formula: It is preferable that it is the range of these.
(0.0569 × S + 0.013) <σ <(0.0569 × S + 0.033)
These properties are related to the dimensional stability in post-processing with heat treatment of the raw yarn. When weaving, the shape of the resulting fabric, mechanical properties, low air permeability, and the weaving structure are pulled in any direction. This relates to various behaviors during the deployment operation of the airbag, such as the deviation between the warp and the weft at the time of opening, and the opening between the woven yarn and the sewing thread. If the thermal stress is not too low, the boiling water shrinkage rate may cause the processed yarn to be crimped too much and the strain response to the fabric stress will be too great, which may impede the fabric's low airflow. In addition, there is no event that the opening of the seam increases or the air flow of the seam increases, so that the pressure resistance of the airbag does not decrease. Also, if the thermal stress is not too high, the crimp balance of the background greatly collapses during textile processing due to the boiling water shrinkage, stress concentrates in one direction of the weft, one direction of the seam part breaks, and the airbag The pressure resistance is not reduced.

沸騰水収縮率が11%、熱収縮応力が0.66cN/dtexを越える場合は、熱処理加工中に過度の収縮が発生し、製織条件による経糸および緯糸の織物中のアンバランスを大きく拡大し、縫製目開きを誘発し、耐バースト性が劣る場合がある。沸騰水収縮率が4%未満、熱収縮応力が0.25cN/dtex未満の場合は、機械的特性が本発明の意図するものとは異なり、耐バースト性に問題が生じる可能性がある。   When the boiling water shrinkage rate is 11% and the heat shrinkage stress exceeds 0.66 cN / dtex, excessive shrinkage occurs during the heat treatment, greatly increasing the unbalance in the woven fabric of warp and weft due to the weaving conditions, It may induce seam opening and may have poor burst resistance. When the boiling water shrinkage is less than 4% and the heat shrinkage stress is less than 0.25 cN / dtex, the mechanical properties are different from those intended by the present invention, which may cause a problem in burst resistance.

瞬間的なエアバッグ展開においては、該エアバッグを構成する織物、さらに該織物を構成する織糸の高速引張特性も非常に重要な要素である。引張速度が10m/秒である高速引張試験において、原糸の引張強度は11.0cN/dtex以上が好ましく、さらに好ましくは11.5cN/dtex以上、特に好ましくは12.0cN/dtex以上である。本発明のポリアミド繊維は、通常の引張速度における強度が9.0cN/dtex以上の高強度領域にあることから、繊維中の局所的な欠陥が、高速引張時において、破断の起点となり、引張速度が300mm/分程度の通常の引張試験では観測できない強度低下をもたらすことになる。高速引張試験において11cN/dtex以上の強度を有することは、該繊維をエアバッグ用織物に用いるのに好適である。高速引張試験の強度は実質的に18cN/dtex以下である。   In instantaneous airbag deployment, the high-speed tensile properties of the fabric constituting the airbag and the woven yarn constituting the fabric are also very important factors. In a high-speed tensile test with a tensile speed of 10 m / sec, the tensile strength of the raw yarn is preferably 11.0 cN / dtex or more, more preferably 11.5 cN / dtex or more, and particularly preferably 12.0 cN / dtex or more. Since the polyamide fiber of the present invention has a strength at a normal tensile speed in a high strength region of 9.0 cN / dtex or more, a local defect in the fiber becomes a starting point of breakage during high-speed tension, and the tensile speed However, this results in a decrease in strength that cannot be observed in a normal tensile test of about 300 mm / min. Having a strength of 11 cN / dtex or more in the high-speed tensile test is suitable for using the fiber for an airbag fabric. The strength of the high speed tensile test is substantially 18 cN / dtex or less.

本発明のエアバッグ用織物は、平組織、綾組織、朱子組織及びこれらの変形組織等を使用することができるが、これらに特に限定されるものではない。これらの織組織の中でも、織物コスト及びエアバッグの等方展開性の面から平組織が好ましく使用される。かかる織物としては、対称組織である必然性はなく、非対称組織であってもよい。ここでいう非対称組織とは、経糸と緯糸の間での関係を意味するものであり、例えば糸密度や組織の違い、つまり、平組織織物で経糸と緯糸の糸本数が異なるもの、経、緯の一方の糸種が異なるもの、経、緯の一方がリップストップや空羽組織になっているもの等の組織が異なるものを意味するものである。また、ジャカード織機で2重織物を製織し、袋織でエアバッグとなすものも良い。製織機は特に限定されるものではなく、ウォータージェットルーム、エアージェットルーム、レピアルームなどが用いられる。   The fabric for an airbag of the present invention can use a plain structure, a twill structure, a satin structure, a deformed structure thereof, and the like, but is not particularly limited thereto. Among these woven structures, a plain structure is preferably used from the viewpoint of the cost of the woven fabric and the isotropic development of the airbag. Such a woven fabric does not necessarily have a symmetrical structure, and may have an asymmetrical structure. The asymmetrical structure here means the relationship between the warp and the weft. For example, the difference in the yarn density or the structure, that is, the plain fabric has different numbers of warps and wefts, warp, weft This means that one of the yarn types is different, and that one of the warp and the weft has a different structure such as a ripstop or empty feather structure. Further, it is also possible to fabricate a double woven fabric with a jacquard loom and form an airbag with a bag weave. The weaving machine is not particularly limited, and a water jet room, an air jet room, a rapier room, or the like is used.

本発明のポリアミド繊維は溶融紡糸法によって製造することができる。図1はポリアミド繊維を製造する設備(2段延伸プロセス)の一例を示している。
溶融紡糸機に設けられた紡糸口金パック1から紡出された糸条2は直ちに冷風筒3から供給される0.5〜1.2m/秒の冷風により、冷却固化される。
The polyamide fiber of the present invention can be produced by a melt spinning method. FIG. 1 shows an example of equipment for producing polyamide fibers (two-stage drawing process).
The yarn 2 spun from the spinneret pack 1 provided in the melt spinning machine is immediately cooled and solidified by cold air of 0.5 to 1.2 m / second supplied from the cold air cylinder 3.

次いで、油剤付与ノズル4にて油剤を0.5〜2.0%付与された後、引取ロール5に捲回して引き取られる。ここで、付与される油剤は、水系であっても非水系であっても良いが、好ましくは非含水油剤であることが良い。好ましい油剤組成として、平滑剤成分としてアルキルエーテルエステル、界面活性剤成分として高級アルコールのアルキレンオキサイド付加物、極圧剤成分として有機ホスフェート塩等を鉱物油で希釈した非水系油剤を例示することができる。引取られた未延伸糸は、一旦巻き取られることなく、連続して延伸工程に供される。   Next, after 0.5 to 2.0% of the oil agent is applied by the oil agent applying nozzle 4, the oil agent is wound around the take-up roll 5 and taken up. Here, the applied oil agent may be aqueous or non-aqueous, but is preferably a non-hydrous oil. Preferred examples of the oil composition include an alkyl ether ester as a smoothing agent component, an alkylene oxide adduct of a higher alcohol as a surfactant component, and a non-aqueous oil agent in which an organic phosphate salt or the like is diluted with mineral oil as an extreme pressure agent component. . The undrawn yarn that has been taken up is continuously taken up without being wound up.

延伸プロセスは、多段延伸法が好ましい。紡出糸を延伸の前段で150℃未満の温度で全延伸倍率の25〜60%の延伸倍率で延伸し、引き続く後段で150℃以上の温度で残りの延伸を行い、次いで、熱弛緩処理を行って巻き取ることが好ましい。必要な引張強度を得るための全延伸倍率に対して、まず、150℃未満の低温で前段の延伸を行ない、引き続いて150℃以上の高温で後段の延伸を行ない、最後に構造固定の熱弛緩処理により張力緩和を経て巻き取る。前段の延伸も後段の延伸もそれぞれ多段の延伸でもよい。図示した延伸工程は、第1延伸ロール6、第2延伸ロール7、第3延伸ロール8、リラックスロール9を備え、各ロールにて所望の物性が得られるよう、順次糸条を捲回して延伸熱処理を行なう。延伸段数に特に決まりはないが、好ましくは2段延伸プロセス、より好ましくは3段延伸プロセスを用いる。通常、引取ロールと第1延伸ロール間では、軽度な緊張を保つ。ロール間の好ましい伸張率は0.5〜5 % の範囲である。引取りロールの表面温度は20〜50℃ が好ましい。2段延伸プロセスにおいて使用する延伸ロールは第1〜第3延伸ロールであり、それぞれのロール間の速度差を利用して糸条を延伸していく。延伸は第1延伸ロールと第2延伸ロール間、および第2延伸ロールと第3延伸ロール間にて行う。延伸プロセスは、150℃未満の低い温度領域で延伸する第1延伸ロールの温度が40℃ から150℃未満 、高い温度領域で延伸する第2延伸ロール、第3延伸ロールの温度はそれぞれ80〜230℃、150〜250℃とし、段階的に糸条の延伸を行なう。本発明においては、150℃未満の冷延伸においては、延伸倍率を全延伸倍率の25%〜60%に設定することが好ましい。たとえば、第1延伸ロールと第2延伸ロール間で糸条が150℃未満で行われる1段目の延伸を全延伸倍率の25%〜60%に設定すればよい。より好ましくは30〜50%である。引き続く150℃以上の熱延伸においては、目的とする強度を出すに足るような全延伸倍率に達するまで行えばよい。たとえば、1段目の冷延伸の後に第2延伸ロールと第3延伸ロール間で行われる2段目の延伸を残りの延伸倍率で実施すればよい。冷延伸が全延伸倍率の25%未満の場合は、全延伸倍率に対する熱延伸割合が相対的に高くなり、延伸による配向結晶化とロール加熱による熱結晶化が相俟って進行し、結果として強度が高い糸が得られなかったり、得られたとしても毛羽が多く、品質に問題があったりする場合がある。一方、60%を越える場合は、延伸初期に配向化が進み過ぎ、熱延伸時にポリアミド分子鎖に過度な緊張が生じて毛羽の発生を誘発することになる。さらには、繊維中で外層のみ配向して押し曲げ柔軟度が上がり過ぎてしまうことがある。したがって、これらの延伸技術は、前記特開平6−299411号公報ならびに特許第4166203号公報開示の技術とは明らかに相違する。さらに第3延伸ロールとリラックスロール間で適度な張力を維持しつつ、弛緩処理を行うことが好ましい。すなわち、第3延伸ロールとリラックスロール間では糸条に内在する応力ひずみを緩和するために10%以下0%以上、好ましくは10%以下2%以上の弛緩処理を施す。その際のリラックスロールの温度は50〜180℃の範囲にあることが好ましい。より好ましくは、70〜160℃、さらに好ましくは80〜150℃である。弛緩処理を施された糸条は巻取り機10にて巻き取られる。弛緩処理では熱延伸によって生じた歪みを取るだけで無く、延伸によって達成された構造を固定したり、非晶領域の配向を緩和させ熱収縮率を適度に調整することができる。製織工程における糸条のバラケを防止するため、リラックスロールと巻取り機の間で糸条に高圧流体を吹き付けて単糸交絡を付与し、糸条を集束させながら巻き取ってもよい。糸条を交絡させるための装置は公知の交絡付与装置(図示なし)を用いて何ら問題はない。引取りロールから最終延伸ロールすなわち上述の2段延伸プロセスの場合は第3ロールまでの全延伸倍率は、ポリマーの性状や紡出糸の紡出および冷却条件に依存するが、必要とする引張強度を発現する延伸倍率に設定するものであり、4.0倍から6.0倍が好ましい。   The stretching process is preferably a multistage stretching method. The spun yarn is stretched at a temperature lower than 150 ° C. at a temperature of less than 150 ° C. at a stretch ratio of 25 to 60% of the total stretch ratio, and the remaining stretch is performed at a temperature of 150 ° C. or higher at a subsequent subsequent stage, followed by heat relaxation treatment. It is preferable to go and wind up. For all the draw ratios to obtain the required tensile strength, first, the first stage is stretched at a low temperature of less than 150 ° C., the second stage is subsequently stretched at a high temperature of 150 ° C. or higher, and finally the thermal relaxation of the structure is fixed. It is wound after tension relaxation by treatment. Both the first-stage stretching and the latter-stage stretching may be multi-stage stretching. The illustrated drawing process includes a first drawing roll 6, a second drawing roll 7, a third drawing roll 8, and a relaxing roll 9, and the yarn is sequentially wound and drawn so that desired physical properties can be obtained with each roll. Heat treatment is performed. There are no particular restrictions on the number of stretching stages, but preferably a two-stage stretching process, more preferably a three-stage stretching process is used. Usually, slight tension is maintained between the take-up roll and the first drawing roll. The preferred elongation between rolls is in the range of 0.5-5%. The surface temperature of the take-up roll is preferably 20 to 50 ° C. The drawing rolls used in the two-stage drawing process are the first to third drawing rolls, and the yarn is drawn using the speed difference between the rolls. Stretching is performed between the first stretching roll and the second stretching roll and between the second stretching roll and the third stretching roll. In the stretching process, the temperature of the first stretching roll that stretches in a low temperature range of less than 150 ° C. is 40 ° C. to less than 150 ° C., and the temperature of the second stretching roll and the third stretching roll that stretch in a high temperature range are 80 to 230 respectively. The yarn is stretched stepwise at a temperature of 150 ° C. to 150 ° C. In the present invention, in cold drawing at less than 150 ° C., the draw ratio is preferably set to 25% to 60% of the total draw ratio. For example, the first stage of stretching performed between the first stretching roll and the second stretching roll at a yarn temperature of less than 150 ° C. may be set to 25% to 60% of the total stretching ratio. More preferably, it is 30 to 50%. In the subsequent thermal stretching at 150 ° C. or higher, it may be performed until reaching the total stretching ratio sufficient to obtain the desired strength. For example, the second stage stretching performed between the second stretching roll and the third stretching roll after the first stage cold stretching may be performed at the remaining stretching ratio. When the cold stretching is less than 25% of the total stretching ratio, the thermal stretching ratio with respect to the total stretching ratio is relatively high, and the orientation crystallization by stretching and the thermal crystallization by roll heating proceed together, and as a result In some cases, a high-strength yarn cannot be obtained, or even if it is obtained, there are many fluffs and there is a problem in quality. On the other hand, when it exceeds 60%, the orientation is excessively advanced at the initial stage of stretching, and excessive tension is generated in the polyamide molecular chain at the time of hot stretching to induce generation of fluff. In addition, only the outer layer may be oriented in the fiber, and the bending resistance may be excessively increased. Therefore, these stretching techniques are clearly different from the techniques disclosed in Japanese Patent Laid-Open No. Hei 6-299411 and Japanese Patent No. 4166203. Furthermore, it is preferable to perform the relaxation treatment while maintaining an appropriate tension between the third stretching roll and the relaxing roll. That is, a relaxation treatment of 10% or less and 0% or more, preferably 10% or less and 2% or more is performed between the third drawing roll and the relaxation roll in order to relieve stress strain inherent in the yarn. It is preferable that the temperature of the relaxation roll in that case exists in the range of 50-180 degreeC. More preferably, it is 70-160 degreeC, More preferably, it is 80-150 degreeC. The yarn subjected to the relaxation treatment is wound up by the winder 10. In the relaxation treatment, not only the strain caused by the thermal stretching can be removed, but also the structure achieved by the stretching can be fixed, the orientation of the amorphous region can be relaxed, and the thermal contraction rate can be adjusted appropriately. In order to prevent the yarn from being loosened in the weaving process, a high-pressure fluid may be sprayed on the yarn between the relax roll and the winder to give single yarn entanglement, and the yarn may be wound while being focused. There is no problem with the device for entanglement of the yarn using a known entanglement imparting device (not shown). The total draw ratio from the take-up roll to the final draw roll, that is, the third roll in the case of the above-mentioned two-stage draw process depends on the properties of the polymer and the spinning and cooling conditions of the spun yarn, but the required tensile strength Is set to a draw ratio that expresses the ratio, and is preferably 4.0 to 6.0 times.

本発明により得られる繊維は、以下の式で表されるポリマー鎖切断指数DGが4〜15の範囲であることが好ましい。
DG=exp(1.613×102/(N+C)+2.715)−VR
ただし、N:繊維の末端アミノ基濃度(mmol/kg)
C:繊維の末端カルボキシル基濃度(mmol/kg)
VR:繊維の蟻酸相対粘度
The fiber obtained by the present invention preferably has a polymer chain breakage index DG represented by the following formula in the range of 4 to 15.
DG = exp (1.613 × 10 2 /(N+C)+2.715)−VR
N: Fiber end amino group concentration (mmol / kg)
C: Terminal carboxyl group concentration of the fiber (mmol / kg)
VR: relative formic acid viscosity of the fiber

延伸工程において分子鎖切断することが高分子の構造欠陥となり、高速引張強度や引掛強度の低下をもたらすことを見出した。末端基濃度から求められる想定粘性よりも延伸後の粘性は低く、上記の式で表されるDGが15以下であれば分子鎖切断が少なく高速引張強度や引掛強度の低下が少ない。本発明の延伸方法により高延伸であってもDGを15以内に収めることができる。高延伸において完全に分子鎖切断を回避することは困難であり、DGは4以上となる。   It has been found that molecular chain scission in the stretching process results in a structural defect of the polymer, resulting in a decrease in high-speed tensile strength and hook strength. The viscosity after stretching is lower than the assumed viscosity determined from the end group concentration. If DG represented by the above formula is 15 or less, molecular chain scission is small, and high-speed tensile strength and catching strength are not decreased. DG can be kept within 15 even with high stretching by the stretching method of the present invention. It is difficult to completely avoid molecular chain breakage at high stretching, and DG is 4 or more.

次に、本発明を実施例に基づいて説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、本明細書および実施例にて用いる物性の定義、測定方法は次の通りである。
(1)蟻酸相対粘度VR
繊維をジクロロメチレンで脱脂し、試料4.5gを濃度8.4wt%になるように、90%蟻酸に十分溶解した後、ウベローデ粘度計を用いて、水温25℃の環境下に10分放置後、該溶液の落下時間を測定した。溶媒の落下時間を同一の方法にて評価し、以下の式に基づいてVRを求めた。
VR=試料の落下時間(秒)/溶媒の落下時間(秒)
Next, although this invention is demonstrated based on an Example, this invention is not limited only to these Examples. In addition, the definition of a physical property used in this specification and an Example, and a measuring method are as follows.
(1) Formic acid relative viscosity VR
The fiber is degreased with dichloromethylene, and 4.5 g of the sample is sufficiently dissolved in 90% formic acid so that the concentration becomes 8.4 wt%, and then left for 10 minutes in an environment at a water temperature of 25 ° C. using an Ubbelohde viscometer. The drop time of the solution was measured. The falling time of the solvent was evaluated by the same method, and VR was determined based on the following formula.
VR = sample drop time (seconds) / solvent drop time (seconds)

(2)末端アミノ基濃度
繊維をジクロロメチレンで脱脂し、試料6gを小数点以下3桁まで正確に秤量し、これを90%フェノール水溶液50ccに溶解する。完全溶解後、溶液温度を25℃に安定させ、0.05N−塩酸水溶液でpH3まで滴定する。この時の0.05N塩酸水溶液の滴下量を記録し、以下の計算式にてポリマー1kg当たりの末端アミノ基濃度(mmol/kg)を算出する。
末端アミノ基濃度=A×F×50/B
A:滴定に要した0.05N−塩酸水溶液(ml)
F:0.05N−塩酸水溶液のファクター
B:ポリマー重量(g)
(2) Terminal amino group concentration The fiber is degreased with dichloromethylene, and 6 g of the sample is accurately weighed to 3 digits after the decimal point, and dissolved in 50 cc of 90% aqueous phenol. After complete dissolution, the solution temperature is stabilized at 25 ° C. and titrated to pH 3 with 0.05N aqueous hydrochloric acid. The dripping amount of 0.05N hydrochloric acid aqueous solution at this time is recorded, and the terminal amino group concentration (mmol / kg) per kg of the polymer is calculated by the following formula.
Terminal amino group concentration = A × F × 50 / B
A: 0.05N hydrochloric acid aqueous solution (ml) required for titration
F: Factor of 0.05N aqueous hydrochloric acid B: Polymer weight (g)

(3)末端カルボキシル基濃度
繊維をジクロロメチレンで脱脂し、試料6gを小数点以下3桁まで正確に秤量し、これを170℃のベンジルアルコール50ccに溶解する。完全溶解後、ベンジルアルコール1リットル、フェノールフタレイン5g、酢酸銅0.5g、二酸化チタン12gから調整された指示薬を0.3ml添加する。その後、0.1N−NaOHエチレングリコール溶液を滴下し、液色が紅色を呈した時点で終了する。この時の0.1N−NaOHエチレングリコール溶液滴下量を記録し、以下の計算式にてポリマー1Kg当たりの末端カルボキシル基濃度(mmol/kg)を算出する。
末端カルボキシル基濃度=C×F×100/B
C:滴定に要した0.1N−NaOHエチレングリコール溶液(ml)
F:0.05N−塩酸水溶液のファクター
B:ポリマー重量(g)
(3) Terminal carboxyl group concentration The fiber is degreased with dichloromethylene, and 6 g of the sample is accurately weighed to 3 digits after the decimal point, and dissolved in 50 cc of benzyl alcohol at 170 ° C. After complete dissolution, 0.3 ml of an indicator adjusted from 1 liter of benzyl alcohol, 5 g of phenolphthalein, 0.5 g of copper acetate and 12 g of titanium dioxide is added. Then, 0.1N-NaOH ethylene glycol solution is dripped and it complete | finishes when the liquid color turns red. The dripping amount of the 0.1N NaOH NaOH solution at this time is recorded, and the terminal carboxyl group concentration (mmol / kg) per 1 kg of the polymer is calculated by the following formula.
Terminal carboxyl group concentration = C × F × 100 / B
C: 0.1N-NaOH ethylene glycol solution (ml) required for titration
F: Factor of 0.05N aqueous hydrochloric acid B: Polymer weight (g)

(4)総繊度
JIS L 1017 8.3記載の方法で測定した。
(5)単糸繊度
JIS L 1017 8.3記載の方法で求めた総繊度を、糸条を構成する単糸フィラメントの本数で除して求めた。
(6)引張強度
JIS L 1017 8.5記載の方法で測定した引張強さを総繊度で除して求めた。
(4) Total fineness It measured by the method of JISL10178.3.
(5) Single yarn fineness The total fineness obtained by the method described in JIS L 1017 8.3 was obtained by dividing by the number of single yarn filaments constituting the yarn.
(6) Tensile strength It was obtained by dividing the tensile strength measured by the method described in JIS L 1017 8.5 by the total fineness.

(7)高速引張強度
島津製作所製高速引張試験機ハイドロショットHITS−T10を用い、引張速度10m/秒、試料長125mmにて引張強さを測定した。得られた引張強さを総繊度で除して高速引張強度を求めた。なお、試料の準備については、JIS L 1017 6記載の方法にて実施した。
(7) High-speed tensile strength Tensile strength was measured using a high-speed tensile tester Hydroshot HITS-T10 manufactured by Shimadzu Corporation at a tensile speed of 10 m / sec and a sample length of 125 mm. The obtained tensile strength was divided by the total fineness to obtain high-speed tensile strength. In addition, about the preparation of a sample, it implemented by the method of JISL10176.

(8)引掛強度
JIS L 1013 8.7記載の方法で測定した引掛強さを総繊度で除して求めた。
(9)押し曲げ柔軟度
図2に示すように、繊維糸条を0.5g/dtexの張力下で同一平面に11cm幅に並列に並べて両端を固定した試料を作った。総繊度が235dtexの場合では100本程度である。把持長30mmで糸条の両端を把持して垂直に圧縮試験機に保持し、糸条の上端を把持するクロスヘッドを2mm/秒で押し下げて糸条の両端を繊維軸方向で接近させた。接近による繊維の屈曲の応力を最大荷重0.5Nのロードセルで測定し、糸条が屈曲した際の降伏圧力を並べた本数と総繊度との積にて除した値を押し曲げ柔軟度(cN/dtex)とし、柔軟度の指標とした。試行は5回行い、その平均値を用いた。
(8) Hatch strength The hook strength measured by the method described in JIS L 1013 8.7 was divided by the total fineness.
(9) Push-bending flexibility As shown in FIG. 2, a sample was prepared in which fiber yarns were arranged in parallel on the same plane at a width of 11 cm under a tension of 0.5 g / dtex and both ends were fixed. When the total fineness is 235 dtex, it is about 100. The both ends of the yarn were gripped at a grip length of 30 mm and held vertically in the compression tester, and the crosshead that grips the upper end of the yarn was pushed down at 2 mm / second to bring both ends of the yarn closer in the fiber axis direction. The bending stress due to the approach was measured with a load cell with a maximum load of 0.5 N, and the value obtained by dividing the yield pressure when the yarn was bent by the product of the number of aligned yarns and the total fineness was pushed and bent (cN / Dtex) as an index of flexibility. The trial was performed 5 times and the average value was used.

(10)沸騰水収縮率
JIS L 1017 8.14記載の方法で測定した。
(11)熱収縮応力σ
東洋精機製作所製コードレオテスターを用い、昇温に伴う収縮応力を測定した。試料長は250mm、昇温は25℃から250℃まで行った。なお、昇温速度80℃/分にて実施した。測定における最大収縮応力をσとした。
(10) Boiling water shrinkage rate Measured by the method described in JIS L 1017 8.14.
(11) Thermal shrinkage stress σ
Using a cord leo tester manufactured by Toyo Seiki Seisakusho, the shrinkage stress accompanying the temperature rise was measured. The sample length was 250 mm, and the temperature was raised from 25 ° C to 250 ° C. The temperature increase rate was 80 ° C./min. The maximum shrinkage stress in the measurement was σ.

(12)展開性
直径30cmが確保できる円形状に織物を裁断し、これを2枚貼りあわせるかたちで模擬バッグを縫製した。図3(a)に示すように、該バッグには100mm×80mmのガス導入口を設け、導入口のバッグ貼りあわせ箇所の一部を筒状になったガス噴出口に挿入し、ガスが漏れないように密閉固定した。次に、図3(b)〜(d)に示すように、ガス導入口を中心とし、左右に半円状に広がる模擬バッグを中心に向かいそれぞれが重ならないように畳んだ後、ガス導入口の反対側から導入口側に向かい10cm間隔で3回折り畳んだ。展開性評価は、バッグ内に7.5MPaの圧縮ヘリウムガスを一気に導入させた際のバッグ内圧が最大となった時点を展開完了点とし、その到達時間から展開性を評価した。なお、試行は3回とし、展開完了時間はその平均値を用いた。
(12) Developability A woven fabric was cut into a circular shape capable of securing a diameter of 30 cm, and a simulated bag was sewn in the form of bonding two sheets together. As shown in FIG. 3 (a), the bag is provided with a gas introduction port of 100 mm × 80 mm, and a part of the bag attachment portion of the introduction port is inserted into a cylindrical gas outlet, and gas leaks. It was hermetically sealed so as not to Next, as shown in FIGS. 3 (b) to 3 (d), the gas introduction port is centered on the simulated bag that extends in a semicircular shape from side to side, and folded so as not to overlap each other. Folded 3 times at 10 cm intervals from the opposite side to the inlet side. In the evaluation of deployability, the deployability was evaluated from the arrival time at the time when the bag internal pressure was maximized when 7.5 MPa of compressed helium gas was introduced into the bag at once. The trial was performed three times, and the average value was used for the development completion time.

(13)耐バースト性
展開性評価を15MPaの高圧圧縮ガスで実施し、バッグを概観検査した結果、次の基準にて耐バースト性を評価した。
○:バースト(破裂)、縫製目開きともになし
△:縫製目開きあり
×:バースト
(13) Burst resistance The expansibility evaluation was carried out with a high-pressure compressed gas of 15 MPa. As a result of an overview inspection of the bag, the burst resistance was evaluated according to the following criteria.
○: Neither burst (rupture) nor seam opening △: With seam opening ×: Burst

[実施例1]
蟻酸相対粘度VRが82であるペレット状のナイロン66ポリマーを温度295℃にてエクストルーダー式押出機を用いて融解させ、その後、図1に示した製造設備を用いて紡糸した。スピンヘッドにて溶融ポリマーを300℃に均温化させた後、スピンヘッドから表1に示す総繊度となるようにギアポンプにて計量し、紡糸口金パックより紡出させた。紡出されたポリマーは冷風により冷却固化され、糸条を形成させた。固化した糸条に油剤を付与した後、一旦巻き取ることなく引取りローラで引取った。引取った糸条を引取りローラと第1延伸ロール間で1%ストレッチをかけ、第1延伸ロールと第2延伸ローラ間で2.0倍の1段目の延伸を、第2延伸ロールと第3延伸ローラ間でさらに2.65倍の2段目の延伸を行った。延伸後の糸条は第3延伸ローラとリラックスローラ間で3%弛緩処理を施した後、交絡付与装置にて適度な交絡を付与した後、巻取り機にて巻取った。引取りロール、第1延伸ロール、第2延伸ロール、第3延伸ロール、リラックスロールの温度はそれぞれ、非加熱、60℃、210 ℃、220℃、150℃であり、糸条のローラへの捲回数は1 回、2 回、3 回、3 回、4 回とした。この時の総延伸倍率は5.3倍である。得られたナイロン66原糸の評価結果を表1に示した。
さらに、得られたナイロン66原糸を500m/分の速度で整経し、次いで津田駒製ウォータージェットルーム(ZW303)を用いて、経糸及び緯糸の織密度を73本×73本に合わせ、回転速度800rpmで製織し織物を得た。得られた織物はそのまま100℃の乾燥ゾーンを通過させた。得られた織物に公知の方法にて20g/m2となるように、シリコーンコートを施した後エアバッグを縫製し、展開試験ならびに耐バースト試験等に用いた。得られた結果を表1に併せて示す。
[Example 1]
A pellet-like nylon 66 polymer having a formic acid relative viscosity VR of 82 was melted using an extruder-type extruder at a temperature of 295 ° C., and then spun using the production equipment shown in FIG. The melted polymer was soaked at 300 ° C. with a spin head, then measured from a spin head with a gear pump so as to have the total fineness shown in Table 1, and spun from a spinneret pack. The spun polymer was cooled and solidified with cold air to form a yarn. After applying an oil agent to the solidified yarn, it was taken up with a take-up roller without being wound once. The drawn yarn is stretched by 1% between the take-up roller and the first drawing roll, and the first drawing of 2.0 times between the first drawing roll and the second drawing roller is drawn with the second drawing roll. The second drawing was further extended by 2.65 times between the third drawing rollers. The stretched yarn was subjected to a 3% relaxation treatment between the third stretching roller and the relaxation roller, and then given an appropriate entanglement with an entanglement applying device, and then wound with a winder. The temperatures of the take-up roll, the first drawing roll, the second drawing roll, the third drawing roll, and the relaxation roll are unheated, 60 ° C., 210 ° C., 220 ° C., and 150 ° C., respectively. The number of times was 1, 2, 3, 3, and 4. The total draw ratio at this time is 5.3 times. Table 1 shows the evaluation results of the obtained nylon 66 raw yarn.
Furthermore, warp the obtained nylon 66 yarn at a speed of 500 m / min, and then adjust the weave density of the warp and weft to 73 × 73 using a water jet loom (ZW303) manufactured by Tsudakoma. A woven fabric was obtained by weaving at a speed of 800 rpm. The obtained woven fabric was directly passed through a drying zone at 100 ° C. The resulting woven fabric was coated with a silicone coat so as to be 20 g / m 2 by a known method, and then an airbag was sewn and used for a development test and a burst resistance test. The obtained results are also shown in Table 1.

[実施例2]
蟻酸相対粘度VRが85であるペレット状のナイロン66ポリマーを表1に示す総繊度となるよう実施例1と同様に溶融紡糸した。引取った糸条を引取りローラと第1延伸ロール間で1%ストレッチをかけ、第1延伸ロールと第2延伸ローラ間で2.0倍の1段目の延伸を、第2延伸ロールと第3延伸ローラ間で2.57倍の2段目の延伸を行った。延伸後の糸条は第3延伸ローラとリラックスローラ間で7%弛緩処理を施した後、交絡付与装置にて適度な交絡を付与した後、巻取り機にて巻取った。引取りロール、第1延伸ロール、第2延伸ロール、第3延伸ロール、リラックスロールの温度はそれぞれ、非加熱、60℃、210 ℃、220℃、180℃であり、糸条のローラへの捲回数は実施例1と同様にした。この時の総延伸倍率は5.14倍である。得られたナイロン66原糸の評価結果を表1に示した。
さらに、得られたナイロン66原糸を用いて、経糸及び緯糸の織密度は60本×60本としたことを除いて実施例1と同様に製織し、織物を得た。得られた織物を用いて、実施例1と同様にエアバッグを縫製し、展開試験ならびに耐バースト試験等を行なった。得られた結果を表1に併せて示す。
[Example 2]
A pellet-like nylon 66 polymer having a formic acid relative viscosity VR of 85 was melt-spun in the same manner as in Example 1 so that the total fineness shown in Table 1 was obtained. The drawn yarn is stretched by 1% between the take-up roller and the first drawing roll, and the first drawing of 2.0 times between the first drawing roll and the second drawing roller is drawn with the second drawing roll. A second stage stretching of 2.57 times was performed between the third stretching rollers. The stretched yarn was subjected to a 7% relaxation treatment between the third stretching roller and the relaxation roller, and then given an appropriate entanglement with an entanglement applying device, and then wound with a winder. The temperatures of the take-up roll, the first drawing roll, the second drawing roll, the third drawing roll, and the relaxing roll are unheated, 60 ° C., 210 ° C., 220 ° C., and 180 ° C., respectively. The number of times was the same as in Example 1. The total draw ratio at this time is 5.14 times. Table 1 shows the evaluation results of the obtained nylon 66 raw yarn.
Furthermore, using the obtained nylon 66 raw yarn, weaving was performed in the same manner as in Example 1 except that the weaving density of warps and wefts was 60 × 60 to obtain a woven fabric. Using the obtained woven fabric, an airbag was sewn in the same manner as in Example 1, and a deployment test and a burst resistance test were performed. The obtained results are also shown in Table 1.

[実施例3]
表1に示す総繊度となるように、実施例2と同様の溶融紡糸をした。第3延伸ローラの温度を160℃にし、リラックスローラ間で5%弛緩処理を施した以外は実施例1と同様の延伸処理を行った。得られたナイロン66原糸の評価結果を表1に示した。
さらに、得られたナイロン66原糸を用いて、経糸及び緯糸の織密度は49本×49本としたことを除いて実施例1と同様に製織し、織物を得た。得られた織物を用いて、実施例1と同様にエアバッグを縫製し、展開試験ならびに耐バースト試験等を行なった。得られた結果を表1に併せて示す。
[Example 3]
The same melt spinning as in Example 2 was performed so that the total fineness shown in Table 1 was obtained. The same stretching process as in Example 1 was performed except that the temperature of the third stretching roller was 160 ° C. and a 5% relaxation process was performed between the relaxing rollers. Table 1 shows the evaluation results of the obtained nylon 66 raw yarn.
Further, using the obtained nylon 66 raw yarn, weaving was performed in the same manner as in Example 1 except that the weaving density of warps and wefts was 49 × 49 to obtain a woven fabric. Using the obtained woven fabric, an airbag was sewn in the same manner as in Example 1, and a deployment test and a burst resistance test were performed. The obtained results are also shown in Table 1.

[比較例1]
蟻酸相対粘度VRが85であるペレット状のナイロン66ポリマーを表1に示す総繊度となるように、実施例1と同様に溶融紡糸した。第1延伸ロールと第2延伸ローラ間で3.4倍の1段目の延伸を、第2延伸ロールと第3延伸ローラ間で1.56倍の2段目の延伸を行い、第3延伸ローラとリラックスローラ間で7%弛緩処理を施し、第3延伸ロール温度が230℃で、リラックスロール温度が210℃としたことを除いて、実施例1と同様の延伸処理を行なった。この時の総延伸倍率は5.30倍である。得られたナイロン66原糸の評価結果を表1に示した。
さらに、得られたナイロン66原糸を用いて実施例1と同様に製織し、織物を得た。得られた織物を用いて、実施例1と同様にエアバッグを縫製し、展開試験ならびに耐バースト試験等を行なった。得られた結果を表1に併せて示す。展開速度が遅く、沸騰水収縮率に比べ熱収縮応力が高くバランスが悪いため、耐バースト性評価後のバッグには縫製部の目開きが観察された。
[Comparative Example 1]
A pellet-like nylon 66 polymer having a formic acid relative viscosity VR of 85 was melt-spun in the same manner as in Example 1 so that the total fineness shown in Table 1 was obtained. The first drawing of 3.4 times is stretched between the first drawing roll and the second drawing roller, the second drawing of 1.56 times is carried out between the second drawing roll and the third drawing roller, and the third drawing. A 7% relaxation treatment was performed between the roller and the relaxation roller, and the same stretching treatment as in Example 1 was performed except that the third stretching roll temperature was 230 ° C. and the relaxing roll temperature was 210 ° C. The total draw ratio at this time is 5.30 times. Table 1 shows the evaluation results of the obtained nylon 66 raw yarn.
Further, using the obtained nylon 66 yarn, weaving was performed in the same manner as in Example 1 to obtain a woven fabric. Using the obtained woven fabric, an airbag was sewn in the same manner as in Example 1, and a deployment test and a burst resistance test were performed. The obtained results are also shown in Table 1. Since the unfolding speed was low and the heat shrinkage stress was high and the balance was poor compared to the boiling water shrinkage rate, the opening of the bag after the burst resistance evaluation was observed.

[比較例2]
蟻酸相対粘度VRが94であるペレット状のナイロン66ポリマーを温度295℃にてエクストルーダー式押出機を用いて融解させ、その後、スピンヘッドにて310℃に均温化させた。スピンヘッドから表1に示す総繊度となるようにギアポンプにて計量し、紡糸口金パックより紡出させた。紡出されたポリマーは、冷風により、冷却固化され、糸条を形成させた。固化した糸条に油剤を付与した後、一旦巻き取ることなく引取りローラで引取った。引取った糸条を引取りローラと第1延伸ロール間で3%ストレッチをかけ、第1延伸ロールと第2延伸ローラ間で3.8倍の1段目の延伸を、第2延伸ロールと第3延伸ローラ間でさらに1.4倍の2段目の延伸を行った。延伸後の糸条は第3延伸ローラとリラックスローラ間で3%弛緩処理を施した後、交絡付与装置にて適度な交絡を付与した後、巻取り機にて巻取った。引取りロール、第1延伸ロール、第2延伸ロール、第3延伸ロール、リラックスロールの温度はそれぞれ、非加熱、60℃、210 ℃、210℃、150℃であり、糸条のローラへの捲回数は1 回、2 回、3 回、3 回、4 回とした。この時の総延伸倍率は5.32倍である。得られたナイロン66原糸の評価結果を表1に示した。
さらに、得られたナイロン66原糸を500m/分の速度で整経し、次いで津田駒製ウォータージェットルーム(ZW303)を用いて、経糸及び緯糸の織密度を60本×60本に合わせ、回転速度800rpmで製織し織物を得た。得られた織物はそのまま100℃の乾燥ゾーンを通過させた。得られた織物に公知の方法にて20g/m2となるようシリコーンコートを施した後エアバッグを縫製し、展開試験ならびに耐バースト試験に用いた。得られた結果を表1に併せて示す。展開速度が遅く、耐バースト性評価後のバッグには縫製部を起点としたバーストが確認された。
[Comparative Example 2]
A pellet-like nylon 66 polymer having a formic acid relative viscosity VR of 94 was melted using an extruder-type extruder at a temperature of 295 ° C., and then soaked at 310 ° C. with a spin head. It measured with the gear pump so that it might become the total fineness shown in Table 1 from the spin head, and it spun from the spinneret pack. The spun polymer was cooled and solidified with cold air to form a yarn. After applying an oil agent to the solidified yarn, it was taken up with a take-up roller without being wound once. The taken yarn is stretched by 3% between the take-up roller and the first drawing roll, and the first drawing of 3.8 times between the first drawing roll and the second drawing roller is drawn with the second drawing roll. Further, the second drawing of 1.4 times was performed between the third drawing rollers. The stretched yarn was subjected to a 3% relaxation treatment between the third stretching roller and the relaxation roller, and then given an appropriate entanglement with an entanglement applying device, and then wound with a winder. The temperatures of the take-up roll, the first drawing roll, the second drawing roll, the third drawing roll, and the relaxing roll are unheated, 60 ° C., 210 ° C., 210 ° C., and 150 ° C., respectively. The number of times was 1, 2, 3, 3, and 4. The total draw ratio at this time is 5.32. Table 1 shows the evaluation results of the obtained nylon 66 raw yarn.
Further, warp the obtained nylon 66 yarn at a speed of 500 m / min, and then adjust the weave density of warp and weft to 60 × 60 using a water jet loom (ZW303) manufactured by Tsudakoma and rotate it. A woven fabric was obtained by weaving at a speed of 800 rpm. The obtained woven fabric was directly passed through a drying zone at 100 ° C. A silicone coat was applied to the obtained woven fabric by a known method so as to be 20 g / m 2, and then an airbag was sewed and used for a development test and a burst resistance test. The obtained results are also shown in Table 1. The unfolding speed was slow, and bursts starting from the sewing part were confirmed in the bag after the burst resistance evaluation.

[比較例3]
比較例2と同様、表1に示す総繊度になるように、ナイロン66ポリマーを溶融紡糸した。引取りローラで引取った糸条を第1延伸ロールとの間で1%ストレッチをかけ、第1延伸ロールと第2延伸ローラ間で3.3倍の1段目の延伸を、第2延伸ロールと第3延伸ローラ間でさらに1.4倍の2段目の延伸を行った。この時の総延伸倍率は4.62倍である。延伸後の糸条は第3延伸ローラとリラックスローラ間で7%弛緩処理を施した後、交絡付与装置にて適度な交絡を付与した後、巻取り機にて巻取った。引取りロール、第1延伸ロール、第2延伸ロール、第3延伸ロール、リラックスロールの温度はそれぞれ、非加熱、60℃、210 ℃、230℃、200℃であり、糸条のローラへの捲回数は1 回、2 回、3 回、3 回、4 回とした。得られたナイロン66原糸の評価結果を表1に示した。
さらに、得られたナイロン66原糸を500m/分の速度で整経し、次いで津田駒製ウォータージェットルーム(ZW303)を用いて、経糸及び緯糸の織密度を49本×49本に合わせ、回転速度800rpmで製織し織物を得た。得られた織物はそのまま100℃の乾燥ゾーンを通過させた。得られた織物に公知の方法にて20g/m2となるようシリコーンコートを施した後エアバッグを縫製し、展開試験ならびに耐バースト試験に用いた。得られた結果を表1に併せて示す。展開速度が遅く、引張強力に劣るため高圧条件には耐えられずバッグバーストも確認された。
[Comparative Example 3]
Similar to Comparative Example 2, nylon 66 polymer was melt-spun so that the total fineness shown in Table 1 was obtained. The yarn taken up by the take-up roller is stretched by 1% between the first drawing roll and the first drawing of 3.3 times between the first drawing roll and the second drawing roller. The second stage stretching of 1.4 times was further performed between the roll and the third stretching roller. The total draw ratio at this time is 4.62. The stretched yarn was subjected to a 7% relaxation treatment between the third stretching roller and the relaxation roller, and then given an appropriate entanglement with an entanglement applying device, and then wound with a winder. The temperatures of the take-up roll, the first drawing roll, the second drawing roll, the third drawing roll, and the relaxation roll are unheated, 60 ° C., 210 ° C., 230 ° C., and 200 ° C., respectively. The number of times was 1, 2, 3, 3, and 4. Table 1 shows the evaluation results of the obtained nylon 66 raw yarn.
Further, warp the obtained nylon 66 yarn at a speed of 500 m / min, and then adjust the weft density of the warp and weft to 49 × 49 using a water jet loom (ZW303) manufactured by Tsudakoma and rotate it. A woven fabric was obtained by weaving at a speed of 800 rpm. The obtained woven fabric was directly passed through a drying zone at 100 ° C. A silicone coat was applied to the obtained woven fabric by a known method so as to be 20 g / m 2, and then an airbag was sewed and used for a development test and a burst resistance test. The obtained results are also shown in Table 1. Since the deployment speed was slow and the tensile strength was inferior, it could not withstand high pressure conditions, and bag burst was also confirmed.

Figure 2011168919
Figure 2011168919

本発明のポリアミド繊維およびその織物は、産業資材分野、特にエアバッグ用原糸または織物として好適に利用できる。   The polyamide fiber of the present invention and the woven fabric thereof can be suitably used in the industrial material field, in particular, as an air bag yarn or woven fabric.

1 紡糸口金パック
2 糸条
3 冷風筒
4 油剤付与ノズル
5 引取ロール
6 第1延伸ロール
7 第2延伸ロール
8 第3延伸ロール
9 リラックスロール
10 巻取り機
DESCRIPTION OF SYMBOLS 1 Spinneret pack 2 Yarn 3 Cold wind cylinder 4 Oil agent provision nozzle 5 Take-up roll 6 1st extending roll 7 2nd extending roll 8 3rd extending roll 9 Relaxing roll 10 Winding machine

Claims (6)

総繊度が100〜700dtex、引張強度が9.0〜11.5cN/dtex、引掛強度が11.0cN/dtex以上、および押し曲げ柔軟度が1.3×10-4cN/dtex以下であることを特徴とするポリアミド繊維。 The total fineness is 100 to 700 dtex, the tensile strength is 9.0 to 11.5 cN / dtex, the hook strength is 11.0 cN / dtex or more, and the push bending flexibility is 1.3 × 10 −4 cN / dtex or less. Polyamide fiber characterized by 引張速度が10m/秒である高速引張試験において、引張強度が11.0cN/dtex以上であることを特徴とする請求項1記載のポリアミド繊維。   2. The polyamide fiber according to claim 1, wherein a tensile strength is 11.0 cN / dtex or more in a high-speed tensile test in which a tensile speed is 10 m / second. 沸騰水収縮率Sが4〜11%であり、熱収縮応力σが0.25〜0.66cN/dtexであり、これらの関係が次式を満たすことを特徴とする請求項1または2に記載のポリアミド繊維。
(0.0569×S+0.013)<σ<(0.0569×S+0.033)
The boiling water shrinkage rate S is 4 to 11%, the heat shrinkage stress σ is 0.25 to 0.66 cN / dtex, and these relationships satisfy the following formulas: Polyamide fiber.
(0.0569 × S + 0.013) <σ <(0.0569 × S + 0.033)
以下の式で表されるポリマー鎖切断指数DGが4〜15の範囲であることを特徴とする請求項1〜3のいずれか一項に記載のポリアミド繊維。
DG=exp(1.613×102/(N+C)+2.715)−VR
ただし、N:繊維の末端アミノ基濃度(mmol/kg)
C:繊維の末端カルボキシル基濃度(mmol/kg)
VR:繊維の蟻酸相対粘度
The polyamide fiber according to any one of claims 1 to 3, wherein a polymer chain breakage index DG represented by the following formula is in a range of 4 to 15.
DG = exp (1.613 × 10 2 /(N+C)+2.715)−VR
N: Fiber end amino group concentration (mmol / kg)
C: Terminal carboxyl group concentration of the fiber (mmol / kg)
VR: relative formic acid viscosity of the fiber
請求項1〜4のいずれか一項に記載のポリアミド繊維から構成されていることを特徴とするエアバッグ用織物。   An airbag fabric comprising the polyamide fiber according to any one of claims 1 to 4. ポリアミドポリマーを溶融紡出し、引張強度が9.0〜11.5cN/dtexのポリアミド繊維を得る多段延伸において、紡出糸を前段で150℃未満の温度で全延伸倍率の25〜60%の延伸倍率で延伸し、引き続く後段で150℃以上の温度で残りの延伸を行い、次いで、熱弛緩処理を行って巻き取ることを特徴とする請求項1記載のポリアミド繊維の製造方法。   In multi-stage drawing to obtain a polyamide fiber having a tensile strength of 9.0 to 11.5 cN / dtex by melt-spinning polyamide polymer, the drawn yarn is drawn at a temperature of less than 150 ° C. at a temperature of less than 150 ° C. at a stretch ratio of 25 to 60%. The method for producing a polyamide fiber according to claim 1, wherein the polyamide fiber is stretched at a magnification ratio, subsequently stretched at a subsequent stage at a temperature of 150 ° C. or higher, and then subjected to a thermal relaxation treatment and wound.
JP2010033848A 2010-02-18 2010-02-18 Polyamide fiber and airbag fabric Active JP5646860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033848A JP5646860B2 (en) 2010-02-18 2010-02-18 Polyamide fiber and airbag fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033848A JP5646860B2 (en) 2010-02-18 2010-02-18 Polyamide fiber and airbag fabric

Publications (2)

Publication Number Publication Date
JP2011168919A true JP2011168919A (en) 2011-09-01
JP5646860B2 JP5646860B2 (en) 2014-12-24

Family

ID=44683317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033848A Active JP5646860B2 (en) 2010-02-18 2010-02-18 Polyamide fiber and airbag fabric

Country Status (1)

Country Link
JP (1) JP5646860B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084322A1 (en) * 2011-12-07 2013-06-13 旭化成せんい株式会社 Synthetic fiber
WO2013084326A1 (en) * 2011-12-07 2013-06-13 旭化成せんい株式会社 Polyamide fiber and airbag fabric
KR20160135827A (en) * 2014-05-28 2016-11-28 아사히 가세이 가부시키가이샤 Base fabric for airbag and airbag
WO2022097094A1 (en) * 2020-11-06 2022-05-12 Inv Performance Materials, Llc Airbag fabrics
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176750A (en) * 1990-11-13 1992-06-24 Toray Ind Inc Base cloth for air bag
JPH0633336A (en) * 1992-07-10 1994-02-08 Bridgestone Corp Base cloth for air-bag
JPH06306728A (en) * 1993-04-21 1994-11-01 Toray Ind Inc Base cloth for air bag
JPH08176963A (en) * 1994-10-25 1996-07-09 Asahi Chem Ind Co Ltd Polyhexamethylene adipamide fiber having high toughness and its production
JPH10168700A (en) * 1996-12-06 1998-06-23 Toray Ind Inc Ground fabric for air bag, air bag and their production
JPH10280230A (en) * 1997-04-09 1998-10-20 Mitsubishi Gas Chem Co Inc Polyamide fiber
JPH11129846A (en) * 1997-10-28 1999-05-18 Toray Ind Inc Base cloth for air bag and manufacture therefor
JP2002249952A (en) * 2001-02-26 2002-09-06 Asahi Kasei Corp Fabric and air bag
JP2005194682A (en) * 2003-12-30 2005-07-21 Hyosung Corp Polyamide fiber for uncoated airbag
WO2006009072A1 (en) * 2004-07-16 2006-01-26 Asahi Kasei Chemicals Corporation Base cloth for hollow-woven air bag and method for production thereof
JP2007254945A (en) * 2006-02-27 2007-10-04 Toray Ind Inc Polyamide fiber
JP2009243030A (en) * 2008-03-10 2009-10-22 Toray Ind Inc Airbag base cloth, airbag base thread, and its preparation process
JP2011058118A (en) * 2009-09-09 2011-03-24 Toray Ind Inc Base cloth for airbag and method for producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176750A (en) * 1990-11-13 1992-06-24 Toray Ind Inc Base cloth for air bag
JPH0633336A (en) * 1992-07-10 1994-02-08 Bridgestone Corp Base cloth for air-bag
JPH06306728A (en) * 1993-04-21 1994-11-01 Toray Ind Inc Base cloth for air bag
JPH08176963A (en) * 1994-10-25 1996-07-09 Asahi Chem Ind Co Ltd Polyhexamethylene adipamide fiber having high toughness and its production
JPH10168700A (en) * 1996-12-06 1998-06-23 Toray Ind Inc Ground fabric for air bag, air bag and their production
JPH10280230A (en) * 1997-04-09 1998-10-20 Mitsubishi Gas Chem Co Inc Polyamide fiber
JPH11129846A (en) * 1997-10-28 1999-05-18 Toray Ind Inc Base cloth for air bag and manufacture therefor
JP2002249952A (en) * 2001-02-26 2002-09-06 Asahi Kasei Corp Fabric and air bag
JP2005194682A (en) * 2003-12-30 2005-07-21 Hyosung Corp Polyamide fiber for uncoated airbag
WO2006009072A1 (en) * 2004-07-16 2006-01-26 Asahi Kasei Chemicals Corporation Base cloth for hollow-woven air bag and method for production thereof
JP2007254945A (en) * 2006-02-27 2007-10-04 Toray Ind Inc Polyamide fiber
JP2009243030A (en) * 2008-03-10 2009-10-22 Toray Ind Inc Airbag base cloth, airbag base thread, and its preparation process
JP2011058118A (en) * 2009-09-09 2011-03-24 Toray Ind Inc Base cloth for airbag and method for producing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919216B1 (en) * 2011-12-07 2018-11-15 아사히 가세이 셍이 가부시키가이샤 Polyamide fiber and airbag fabric
CN103597131A (en) * 2011-12-07 2014-02-19 旭化成纤维株式会社 Synthetic fiber
WO2013084322A1 (en) * 2011-12-07 2013-06-13 旭化成せんい株式会社 Synthetic fiber
US9845068B2 (en) 2011-12-07 2017-12-19 Asahi Kasei Fibers Corporation Synthetic fiber used for fabric
US9765449B2 (en) 2011-12-07 2017-09-19 Asahi Kasei Fibers Corporation Polyamide fiber and airbag fabric
CN103906867A (en) * 2011-12-07 2014-07-02 旭化成纤维株式会社 Polyamide fiber and airbag fabric
JPWO2013084326A1 (en) * 2011-12-07 2015-04-27 旭化成せんい株式会社 Polyamide fiber and airbag fabric
EP2789715A4 (en) * 2011-12-07 2015-05-20 Asahi Kasei Fibers Corp Polyamide fiber and airbag fabric
KR101586554B1 (en) * 2011-12-07 2016-01-18 아사히 가세이 셍이 가부시키가이샤 Synthetic fiber
KR101876611B1 (en) * 2011-12-07 2018-07-09 아사히 가세이 셍이 가부시키가이샤 Polyamide fiber and airbag fabric
JP5253685B1 (en) * 2011-12-07 2013-07-31 旭化成せんい株式会社 Synthetic fiber
WO2013084326A1 (en) * 2011-12-07 2013-06-13 旭化成せんい株式会社 Polyamide fiber and airbag fabric
KR20140007010A (en) * 2011-12-07 2014-01-16 아사히 가세이 셍이 가부시키가이샤 Synthetic fiber
KR20160135827A (en) * 2014-05-28 2016-11-28 아사히 가세이 가부시키가이샤 Base fabric for airbag and airbag
KR101881242B1 (en) * 2014-05-28 2018-07-23 아사히 가세이 가부시키가이샤 Base fabric for airbag and airbag
EP3150755A1 (en) 2014-05-28 2017-04-05 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
US10308209B2 (en) 2014-05-28 2019-06-04 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
US10773681B2 (en) 2014-05-28 2020-09-15 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags
WO2022097094A1 (en) * 2020-11-06 2022-05-12 Inv Performance Materials, Llc Airbag fabrics

Also Published As

Publication number Publication date
JP5646860B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5969999B2 (en) Polyamide fiber and airbag fabric
JP4618391B2 (en) Air bag base fabric, air bag yarn and method of manufacturing the same
JP3855775B2 (en) Coat airbag base fabric
JP5646860B2 (en) Polyamide fiber and airbag fabric
KR101575837B1 (en) Polyester fiber for airbag and preparation method thereof
JP5365272B2 (en) Fabric for airbag and method for producing fabric for airbag
JP5359714B2 (en) Airbag base fabric
JP2012502194A (en) Airbag fabric and method for producing the same
JP5916701B2 (en) Polyester raw yarn and method for producing the same
JP2007182646A (en) Flame-retardant ultrafine polyester fiber, method for producing the same and high-density woven fabric
JP2005194682A (en) Polyamide fiber for uncoated airbag
JP2007162187A (en) Non-coated woven fabric for airbag, coated woven fabric, method for producing the same and inflatable curtain airbag
JP2010174390A (en) Woven fabric for airbag, and method for producing the same
JP2009242958A (en) Extra-fine fiber multifilament and textile product for industrial material using the same
JP2004176221A (en) Ground fabric for coated air bag and method for producing the same
JP5564780B2 (en) Non-coated airbag fabric
KR101451192B1 (en) Polyethylene terephthalate filament for using air-bag
JP5741639B2 (en) Air bag yarn and method for producing air bag yarn
JP2006183205A (en) Base fabric for air bag
JP2011058132A (en) Base cloth for air bag and method for producing the same
KR101621934B1 (en) Polyester fiber for airbag and preparation method thereof
KR101553019B1 (en) Polyester fiber for airbag and preparation method thereof
JP2017222939A (en) Polyamide multifilament, method for producing the same, base cloth for airbag, and airbag
KR101718149B1 (en) Polyester fiber and preparation method thereof
JP2011042898A (en) Coated woven fabric for airbags

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141106

R150 Certificate of patent or registration of utility model

Ref document number: 5646860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350