JP2011167792A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2011167792A
JP2011167792A JP2010033212A JP2010033212A JP2011167792A JP 2011167792 A JP2011167792 A JP 2011167792A JP 2010033212 A JP2010033212 A JP 2010033212A JP 2010033212 A JP2010033212 A JP 2010033212A JP 2011167792 A JP2011167792 A JP 2011167792A
Authority
JP
Japan
Prior art keywords
layer
thin
tool
hard coating
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010033212A
Other languages
Japanese (ja)
Inventor
Takahito Tabuchi
貴仁 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010033212A priority Critical patent/JP2011167792A/en
Publication of JP2011167792A publication Critical patent/JP2011167792A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool whose hard coating layer exerts excellent wear resistance under a high speed cutting condition of a heat resistant alloy such as an Ni-based alloy, a Co-based alloy. <P>SOLUTION: In the surface coated cutting tool in which a hard coating layer of an alternately laminated structure of multilayer regions alternately laminated with thin layers A with 1-50 nm layer thickness and thin layers B with 1-50 nm layer thickness and single layer regions constructed of a single layer with 100-500 nm layer thickness is formed on the surface of a base body of the tool by vapor deposition, the thin layer A is a layer [Ti<SB>1-X</SB>Si<SB>X</SB>] N (wherein X is 0.01-0.30 in terms of atomic ratio), the thin layer B is a layer [Ti<SB>1-Y</SB>V<SB>Y</SB>] N (wherein Y is 0.40-0.70 in terms of atomic ratio), and the single layer is constructed of a layer of a same kind as that of the thin layer A or the thin layer B. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool that exhibits excellent wear resistance with a hard coating layer even when heat-resistant alloys such as Ni-base alloys and Co-base alloys are cut under high-speed cutting conditions with high heat generation. (Hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills, miniature drills, solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, and the solid type A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、具体的な被覆工具としては、例えば、特許文献1に示されるように、炭化タングステン(以下、WCで示す)基超硬合金で構成された工具基体の表面に、硬質被覆層として種類Aの一次部分的層と種類Bの二次部分的層の交互積層からなる硬質被覆層を形成し、さらに、上記種類Aの一次部分的層を交互積層構造(例えば、TiN−AlN,HfC−NbO,ZrCN−TaN,VN−BN,Al2O3−TiCN,TiAlN−TiNの組み合わせからなる交互積層構造)で構成し、上記種類Bの二次部分的層を単一層(例えば、TiN,TiC,SiC,TaCN)で構成した被覆工具(以下、従来被覆工具という)が知られており、この被覆工具は、耐溶着性、耐摩耗性に優れることが知られている。
また、特許文献2〜4に示されるように、WC基超硬合金からなる工具基体の表面に、複層構造の硬質被覆層を形成した被覆工具において、複層構造を構成する一つの層として、TiとSi系の複合窒化物層(以下、(Ti,Si)N層という)を設けることも知られており、(Ti,Si)N層によって、高温硬さ、耐酸化性が向上することも知られている。
Further, as a specific coated tool, for example, as shown in Patent Document 1, a type A as a hard coating layer is formed on the surface of a tool base made of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide. A hard coating layer composed of alternating primary partial layers of type B and secondary partial layers of type B, and further forming the primary partial layer of type A in an alternately laminated structure (for example, TiN-AlN, HfC-NbO). , ZrCN—TaN, VN—BN, Al 2 O 3 —TiCN, TiAlN—TiN, and a secondary partial layer of the above type B as a single layer (eg, TiN, TiC, SiC, TaCN) ) Is known (hereinafter referred to as a conventional coated tool), and this coated tool is known to have excellent welding resistance and wear resistance.
Moreover, as shown in Patent Documents 2 to 4, in a coated tool in which a hard coating layer having a multilayer structure is formed on the surface of a tool base made of a WC-base cemented carbide, as one layer constituting the multilayer structure It is also known to provide a composite nitride layer of Ti and Si (hereinafter referred to as (Ti, Si) N layer), and the (Ti, Si) N layer improves high-temperature hardness and oxidation resistance. It is also known.

そして、前記特許文献1〜4に示される被覆工具は、例えば、蒸着形成する硬質被覆層の種類に応じた成分組成を有する複数のカソード電極(蒸発源)を配置したアークイオンプレーティング装置において、装置内に工具基体を装入し、装置内を窒素ガス反応雰囲気とし、また、加熱した状態で、複数のカソード電極(蒸発源)とアノード電極との間に、順次、アーク放電を発生させ、上記工具基体には、バイアス電圧を印加した条件で成膜することにより、工具基体の表面に、交互積層構造、あるいは、複層構造の硬質被覆層を蒸着形成することにより製造されることも知られている。   And the coating tool shown by the said patent documents 1-4 is an arc ion plating apparatus which has arrange | positioned the several cathode electrode (evaporation source) which has a component composition according to the kind of hard coating layer to carry out vapor deposition, for example, A tool base is inserted into the apparatus, the inside of the apparatus is set to a nitrogen gas reaction atmosphere, and in a heated state, arc discharge is sequentially generated between a plurality of cathode electrodes (evaporation sources) and anode electrodes, It is also known that the above-mentioned tool base is manufactured by forming a film under conditions where a bias voltage is applied, and vapor-depositing a hard coating layer having an alternately laminated structure or a multilayer structure on the surface of the tool base. It has been.

特許第4185172号明細書Japanese Patent No. 4185172 特開2000−334606号公報JP 2000-334606 A 特開2000−334607号公報JP 2000-334607 A 特開2008−162009号公報JP 2008-162009 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化の傾向にあり、さらに、各種の被削材に対する切削工具の汎用化も求められているが、上記特許文献1〜4に示される被覆工具においては、これを、鋼や鋳鉄等の通常条件の切削に用いた場合には特段の問題は生じないが、例えば、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合には、被削材である耐熱合金の熱伝導率が低く、切削熱によって切削工具の刃先の表面温度が高くなるため、交互積層構造あるいは複層構造を構成する硬質被覆層の層間剥離が生じ、その結果、硬質被覆層の耐摩耗性が十分に発揮されず、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. Although generalization of cutting tools for various work materials is also required, in the coated tools shown in Patent Documents 1 to 4, when this is used for cutting under normal conditions such as steel and cast iron, Although no particular problem occurs, for example, when used for high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys, the heat conductivity of the heat-resistant alloy that is the work material is low, Since the surface temperature of the cutting edge of the cutting tool is increased by the cutting heat, delamination of the hard coating layer constituting the alternately laminated structure or the multilayer structure occurs, and as a result, the wear resistance of the hard coating layer is not fully exhibited. , Use in a relatively short time The leads to life is the status quo.

そこで、本発明者等は、上述のような観点から、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いたような場合にも、溶着の発生、層間剥離が生じることなく、硬質被覆層がすぐれた耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った。   In view of the above, the present inventors, from the above-mentioned viewpoints, do not cause the occurrence of welding or delamination even when used for high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys. In order to develop a coated tool that exhibits excellent wear resistance without any hard coating layer, we have conducted intensive research.

上記の従来の被覆工具の交互積層、複層の一つの層を構成する(Ti,Si)N層においては、Ti成分には高温靭性、高温強度を向上させる作用があり、また、Si成分は耐酸化性を向上させ、酸化による層の硬度低下を抑制することから、交互積層、複層の一つの層として(Ti,Si)N層を備えることにより、通常の切削条件では、耐酸化性、耐摩耗性の改善が見られる。
しかし、上記(Ti,Si)N層は、靭性に劣り、しかも、潤滑性も充分でないため、Ni基合金、Co基合金等の耐熱合金の高速切削においては、切刃表面温度が高温になるため、チッピング、欠損等の異常損傷を発生しやすく、また、(Ti,Si)N層が交互積層構造の一つの層を構成している場合、硬質被覆層内にはその層厚が増大するほど内部応力(歪み)が蓄積されるようになるが、この内部応力(歪み)が切削加工時の高熱によって開放される際に、交互積層を構成する各層間での剥離が生じ易くなるという問題点があった。
In the alternate layering of the above-mentioned conventional coated tools, in the (Ti, Si) N layer constituting one layer of the multilayer, the Ti component has the effect of improving the high temperature toughness and the high temperature strength, and the Si component is In order to improve the oxidation resistance and suppress the decrease in the hardness of the layer due to oxidation, by providing the (Ti, Si) N layer as one of the alternate layers and multiple layers, the oxidation resistance under normal cutting conditions There is an improvement in wear resistance.
However, since the (Ti, Si) N layer is inferior in toughness and has insufficient lubricity, the cutting edge surface temperature becomes high in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys. Therefore, abnormal damage such as chipping and defects is likely to occur, and when the (Ti, Si) N layer constitutes one layer of an alternately laminated structure, the layer thickness increases in the hard coating layer. The internal stress (strain) accumulates more and more, but when this internal stress (strain) is released by high heat at the time of cutting, peeling between the layers constituting the alternate stack is likely to occur. There was a point.

そこで、本発明者等は、交互積層構造を構成する層材質についてさらに詳細に検討したところ、従来のように、硬質被覆層を規則的な交互積層構造として構成するのではなく、硬質被覆層を、(Ti,Si)N層からなる薄層Aと、(Ti,V)N層からなる薄層Bとが交互に積層されている複層領域と、(Ti,Si)N層または(Ti,V)N層のいずれかの単一層からなる単層領域とで構成するとともに、上記複層領域と単層領域との交互積層構造として硬質被覆層を構成したところ、以下のような知見を得たのである。   Therefore, the present inventors have examined the layer material constituting the alternate laminated structure in more detail, and as in the past, the hard coating layer is not constituted as a regular alternating laminated structure, but the hard coating layer is formed. , (Ti, Si) N layers, and (Ti, V) N layers or (Ti, Si) N layers or (Ti, Si) N layers, , V) When composed of a single layer region consisting of any one of the N layers and a hard coating layer as an alternate laminated structure of the multilayer region and the single layer region, the following knowledge is obtained. I got it.

すなわち、(Ti,Si)N層からなる薄層Aと、(Ti,V)N層からなる薄層Bとが交互に積層されている硬質被覆層の複層領域では、それぞれの層の粒の粗大化が防止され、膜強度が向上するとともに、すぐれた耐酸化性、高硬度、高靭性、高潤滑性を備え、さらに、薄層Aと薄層Bとの交互積層構造が、クラックの伝播・進展を防止することで、耐チッピング性、耐欠損性、耐摩耗性が向上する。
これに加えて、硬質被覆層中には、(Ti,Al)N層または(Ti,V)N層の単一層からなる単層領域が形成されたことによって、層厚の増大にしたがって複層領域に蓄積された内部応力(歪み)は、単層領域の存在によって緩和されるようになるため、硬質被覆層全体としては、大きな内部応力(歪み)が発生することはなく、その結果として、Ni基合金、Co基合金等の耐熱合金の高速切削において、層間剥離の発生が抑制されるようになることを見出したのである。
That is, in the multilayer region of the hard coating layer in which the thin layer A composed of (Ti, Si) N layers and the thin layer B composed of (Ti, V) N layers are alternately laminated, the grains of the respective layers In addition to improving the film strength, it has excellent oxidation resistance, high hardness, high toughness, and high lubricity, and the alternate laminated structure of thin layer A and thin layer B By preventing propagation and progress, chipping resistance, chipping resistance and wear resistance are improved.
In addition to this, in the hard coating layer, a single layer region composed of a single layer of (Ti, Al) N layer or (Ti, V) N layer is formed. Since the internal stress (strain) accumulated in the region is relieved by the presence of the single layer region, the hard coating layer as a whole does not generate large internal stress (strain), and as a result, It has been found that the occurrence of delamination is suppressed in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys.

この発明は、上記の知見に基づいてなされたものであって、
「 工具基体表面に硬質被覆層が蒸着形成された表面被覆切削工具において、
上記硬質被覆層は、1〜50nmの層厚の薄層Aと1〜50nmの層厚の薄層Bとが交互に積層された複層領域と、100〜500nmの層厚の単一層からなる単層領域とを備え、しかも、上記硬質被覆層は、上記複層領域と上記単層領域との交互積層構造として構成され、さらに、
(a)上記薄層Aは、
組成式:[Ti1−XSi]N
で表した場合、Xは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層からなり、
(b)上記薄層Bは、
組成式:[Ti1−Y]N
で表した場合、Yは0.40〜0.70(但し、原子比)を満足するTiとVの複合窒化物層からなり、
(c)上記単一層は、
組成式:[Ti1−XSi]N
で表した場合、Xは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層、または、
組成式:[Ti1−Y]N
で表した場合、Yは0.40〜0.70(但し、原子比)を満足するTiとVの複合窒化物層の何れかからなる、
ことを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
"In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool substrate,
The hard coating layer includes a multilayer region in which thin layers A having a thickness of 1 to 50 nm and thin layers B having a thickness of 1 to 50 nm are alternately stacked, and a single layer having a thickness of 100 to 500 nm. And the hard coating layer is configured as an alternately laminated structure of the multilayer region and the single layer region,
(A) The thin layer A is
Formula: [Ti 1-X Si X ] N
X is composed of a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, atomic ratio),
(B) The thin layer B is
Composition formula: [Ti 1-Y V Y ] N
Y is composed of a composite nitride layer of Ti and V that satisfies 0.40 to 0.70 (however, the atomic ratio),
(C) The single layer is
Formula: [Ti 1-X Si X ] N
X is a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, the atomic ratio), or
Composition formula: [Ti 1-Y V Y ] N
Y is composed of any one of Ti and V composite nitride layers satisfying 0.40 to 0.70 (however, atomic ratio).
A surface-coated cutting tool characterized by that. "
It has the characteristics.

この発明の被覆工具の硬質被覆層について、以下に説明する。   The hard coating layer of the coated tool of this invention is demonstrated below.

複層領域の薄層A((Ti,Si)N層):
薄層B((Ti,Al)N層)と交互に積層されてこの発明の硬質被覆層の複層領域を形成する(Ti,Si)N層からなる薄層Aは、Si成分によって、すぐれた耐酸化性を有するため、Ni基合金、Co基合金等の耐熱合金の高速切削における高温下においても、すぐれた高硬度を維持する。
(Ti,Si)N層からなる薄層Aを、
組成式:[Ti1−XSi]N
で表した場合、Xは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層からなるが、Siの含有割合を示すXの値(但し、原子比)が、0.01未満であると、薄層Aの有する高温硬さが不十分となり、一方、Xの値が0.30を超えると、薄層Aの高温靭性、高温強度が低下するようになることから、Xの値は、0.01〜0.30(但し、原子比)と定めた。
Thin layer A ((Ti, Si) N layer) in the multilayer region:
The thin layer A composed of the (Ti, Si) N layers, which are alternately stacked with the thin layers B ((Ti, Al) N layers) to form the multilayer region of the hard coating layer of the present invention, is excellent due to the Si component. Because of its high oxidation resistance, excellent high hardness is maintained even at high temperatures in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys.
A thin layer A composed of a (Ti, Si) N layer,
Formula: [Ti 1-X Si X ] N
X is composed of a composite nitride layer of Ti and Si satisfying 0.01 to 0.30 (however, atomic ratio), but the value of X indicating the content ratio of Si (however, atomic ratio) However, if it is less than 0.01, the high-temperature hardness of the thin layer A will be insufficient. On the other hand, if the value of X exceeds 0.30, the high-temperature toughness and high-temperature strength of the thin layer A will decrease. Therefore, the value of X was set to 0.01 to 0.30 (however, the atomic ratio).

複層領域の薄層B((Ti,Al)N層):
薄層A((Ti,Si)N層)と交互に積層されてこの発明の硬質被覆層の複層領域を形成する(Ti,Al)N層からなる薄層Bは、靭性および潤滑性にすぐれることから、薄層Aと交互に積層されることにより、云わば、薄層Aに相対的に不足する特性を補完すると同時に、複層領域の強度を高め、さらに、層間密着性を高める。
(Ti,V)N層からなる薄層Bを、
組成式:[Ti1−Y]N
で表した場合、Yは0.40〜0.70(但し、原子比)を満足するTiとVの複合窒化物層であり、Vの含有割合を示すYの値(但し、原子比)が、0.40未満であると、薄層Bの靭性および潤滑性が不十分となり、一方、Yの値が0.70を超えると、薄層Bの高温硬さが低下するので、Yの値は、0.40〜0.70(但し、原子比)と定めた。
Thin layer B ((Ti, Al) N layer) in the multilayer region:
The thin layer B composed of the (Ti, Al) N layer, which is alternately laminated with the thin layer A ((Ti, Si) N layer) to form the multilayer region of the hard coating layer of the present invention, has improved toughness and lubricity. Since it is excellent, by alternately laminating with the thin layer A, so to speak, it complements the relatively lacking characteristics of the thin layer A, and at the same time, increases the strength of the multilayer region and further improves the interlayer adhesion. .
A thin layer B composed of a (Ti, V) N layer,
Composition formula: [Ti 1-Y V Y ] N
Y is a composite nitride layer of Ti and V that satisfies 0.40 to 0.70 (however, atomic ratio), and the value of Y (however, atomic ratio) indicating the content ratio of V is If the value is less than 0.40, the toughness and lubricity of the thin layer B become insufficient. On the other hand, if the value of Y exceeds 0.70, the high-temperature hardness of the thin layer B decreases. Was defined as 0.40 to 0.70 (however, atomic ratio).

薄層A、薄層Bの層厚:
薄層Aと薄層Bとを交互に積層して構成した複層領域では、それぞれの層が隣接して組成の異なる層を形成することにより、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上するが、上記薄層A及び薄層Bのそれぞれの層厚が1nm未満では、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する上記のすぐれた特性を発揮することができず、一方、それぞれの層厚が50nmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Bのそれぞれの層厚を、1〜50nmと定めた。
また、薄層Aと薄層Bとを交互に積層した複層領域は、その領域厚みが0.01μm未満では、薄層Aの備える高硬度を充分発揮して耐摩耗性の向上を図ることができず、一方、その領域厚みが0.5μmを超えると、チッピング、欠損を発生しやすくなるので、薄層Aと薄層Bとを交互に積層した複層領域の領域厚みは、0.01〜0.5μmであることが望ましい。
Layer thickness of thin layer A and thin layer B:
In the multi-layer region formed by alternately laminating the thin layer A and the thin layer B, each layer is adjacent to each other to form a layer having a different composition, thereby preventing the growth of particle growth of each layer. As a result, the particles are made finer, the film strength is improved, and crack propagation and progress are prevented by this laminated structure, so that the chipping resistance and chipping resistance are improved. When each layer thickness of the layer B is less than 1 nm, it is difficult to clearly form each thin layer as having a predetermined composition, and the above-described excellent characteristics possessed by each thin layer cannot be exhibited. On the other hand, if the thickness of each layer exceeds 50 nm, the film strength is reduced due to the coarsening of the particles, so that the chipping resistance and chipping resistance are reduced. 1 to 50 nm.
In addition, the multi-layer region in which the thin layer A and the thin layer B are alternately laminated, when the region thickness is less than 0.01 μm, sufficiently exhibits the high hardness provided by the thin layer A to improve the wear resistance. On the other hand, if the thickness of the region exceeds 0.5 μm, chipping and defects are likely to occur. Therefore, the region thickness of the multilayer region in which the thin layers A and B are alternately laminated is 0. It is desirable that it is 01-0.5 micrometer.

単層領域:
単層領域は、上記薄層Aと同一の成分組成の単一層、あるいは、の成分・組成は、前記薄層Bと同一の成分組成の単一層で構成するが、硬質被覆層中におけるすべての単層領域が、薄層Aと同一材種の単一層、あるいは、薄層Bと同一材種の単一層で形成されていなければならないわけではなく、例えば、工具基体側の単層領域薄層Aと同一材種の単一層で構成され、また、硬質被覆層の表層側では、薄層Aと同一材種の単一層で単層領域が構成されていてもよい。
すなわち、層厚方向に沿って形成されている単層領域は、薄層Aと同一材種で、あるいは、薄層Bと同一材種で、単一層として構成されていれば良い。
この単層領域は、その材種に応じた所定の作用効果を備える(例えば、薄層Aと同一材種であれば、高硬度、耐酸化性を備え、また、薄層Bと同一材種であれば、高靭性、高潤滑性を備える)が、このような作用効果に加えて、単層領域の存在は、複層領域において増大蓄積された内部応力(歪み)を、この単層領域で緩和するという点で大きな技術的な意義があり、また、切削加工時に硬質被覆層に加わった衝撃力を、この単層領域で緩和する作用もある。
したがって、硬質被覆層全体としては、その内部に大きな内部応力(歪み)が形成されることはなく、その結果として、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削においても、層間剥離の発生が抑制される。
ただ、単層領域の領域厚さが100nm未満の場合、内部応力の緩和作用、衝撃力の緩和作用が十分期待できず、一方、その厚さが500nmを超えると、硬質被覆層全体として耐酸化性、高温硬さが低下するようになることから、単層領域の領域厚さは、100〜500nmと定めた。
Single layer area:
The single layer region is composed of a single layer having the same component composition as that of the thin layer A, or the component / composition of the single layer region is composed of a single layer having the same component composition as that of the thin layer B. The single layer region does not have to be formed of a single layer of the same material type as the thin layer A or a single layer of the same material type as the thin layer B. For example, a single layer region thin layer on the tool base side It is comprised by the single layer of the same material type as A, and the single layer area | region may be comprised by the single layer of the same material type as the thin layer A in the surface layer side of a hard coating layer.
That is, the single-layer region formed along the layer thickness direction may be the same material type as the thin layer A or the same material type as the thin layer B and may be configured as a single layer.
This single layer region has a predetermined effect according to the material type (for example, if it is the same material type as the thin layer A, it has high hardness and oxidation resistance, and the same material type as the thin layer B). In addition to such operational effects, the presence of a single layer region increases the internal stress (strain) accumulated in the multilayer region, and this single layer region has high toughness and high lubricity. It has a great technical significance in terms of mitigating the impact, and also has the effect of mitigating the impact force applied to the hard coating layer during the cutting process in this single layer region.
Therefore, no large internal stress (strain) is formed in the hard coating layer as a whole, and as a result, even in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys. The occurrence of delamination is suppressed.
However, when the thickness of the single-layer region is less than 100 nm, the internal stress relaxation action and impact force relaxation action cannot be sufficiently expected. On the other hand, when the thickness exceeds 500 nm, the hard coating layer as a whole is resistant to oxidation. Therefore, the region thickness of the single layer region is determined to be 100 to 500 nm.

硬質被覆層の層厚:
上記複層領域と上記単層領域との交互積層として構成される硬質被覆層は、その全体層厚が0.3μm未満であると、長期の使用に亘ってすぐれた切削性能を十分に発揮できず、一方、全体層厚が5μmを超えると、チッピング、欠損等を発生しやすくなることから、硬質被覆層の全体層厚は、0.3〜5μmとすることが望ましい。
Hard coating layer thickness:
The hard coating layer configured as an alternate lamination of the multilayer region and the single layer region can sufficiently exhibit excellent cutting performance over a long period of use when the overall layer thickness is less than 0.3 μm. On the other hand, if the total layer thickness exceeds 5 μm, chipping, defects and the like are likely to occur. Therefore, the total layer thickness of the hard coating layer is preferably 0.3 to 5 μm.

この発明の表面被覆切削工具は、硬質被覆層が、薄層Aと薄層Bとが交互に積層された複層領域と、単一層からなる単層領域との交互積層構造として構成されていることにより、複層領域ではそれぞれの薄層の膜強度が向上し、薄層Aによりすぐれた耐酸化性、高硬度を、また、薄層Bにより高靭性、高潤滑性を備え、さらに、クラックの伝播・進展が抑制されることで、耐チッピング性、耐欠損性、耐摩耗性が改善されるとともに、これに加えて、単層領域の存在によって、特に複層領域で形成・蓄積しやすい内部応力(歪み)が緩和されることによって、これに起因して発生する層間剥離が防止され、さらに、切削加工時に加わる機械的衝撃をも緩和することができるので、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合、長期に亘ってすぐれた切削性能を発揮するのである。   In the surface-coated cutting tool of the present invention, the hard coating layer is configured as an alternately laminated structure of a multilayer region where thin layers A and thin layers B are alternately laminated and a single layer region consisting of a single layer. In the multilayer region, the film strength of each thin layer is improved, the thin layer A has excellent oxidation resistance and high hardness, the thin layer B has high toughness and high lubricity, and cracks Suppressing the propagation and progress of the material improves chipping resistance, chipping resistance, and wear resistance, and in addition to this, the presence of a single layer region makes it particularly easy to form and accumulate in multiple layer regions. Since the internal stress (strain) is alleviated, delamination caused by this can be prevented, and the mechanical impact applied during the cutting process can also be alleviated. High speed cutting with high heat generation of heat-resistant alloys such as When used in the processing is to exert excellent cutting performance over a long period of time.

硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming a hard coating layer is shown, (a) is a schematic plan view, and (b) is a schematic front view. この発明の被覆工具の硬質被覆層の断面模式図である。It is a cross-sectional schematic diagram of the hard coating layer of the coating tool of this invention.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.02のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−5を形成した。 As raw material powders, WC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the composition shown in Table 1. The mixture is wet mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour. After the sintering, honing of R: 0.02 was applied to the cutting edge portion to form tool bases A-1 to A-5 made of a WC-based cemented carbide having a chip shape of ISO standard / CNMG120408.

(a)ついで、上記の工具基体A−1〜A−5のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった(Ti,Si)N層形成用Ti−Si合金、対向する他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった(Ti,V)N層形成用Ti−V合金を前記回転テーブルを挟んで配置する。
なお、Ti−Si合金からなるカソード電極(蒸発源)は薄層A、単層領域の蒸着形成に用い、Ti−V合金からなるカソード電極(蒸発源)は、薄層B、単層領域の蒸着形成に用いる。
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、例えば、Ti−Si合金(あるいはTi−V合金)カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄する。
(c)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で、6〜48rpmの速度で自転しながら、同時に、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する工具基体に−80Vの直流バイアス電圧を印加し、例えば、Ti−V合金カソード電極とアノード電極との間に120Aの電流を流してアーク放電を発生させ、同時に、回転テーブルを挟んでTi−V合金カソード電極に相対向して配置したTi−Si合金カソード電極とアノード電極との間に120Aの電流を流してアーク放電を発生させ、Ti−V合金カソード電極近傍に位置する工具基体には薄層Bを、また、Ti−Si合金カソード電極近傍に位置する工具基体には薄層Aを蒸着し、ついで、回転テーブルが回転することによって、薄層Bが蒸着された工具基体に対しては薄層Aを蒸着し、薄層Aが蒸着された工具基体に対しては薄層Bを蒸着し、同様にして、薄層Aと薄層Bとを交互に繰り返し蒸着することにより、工具基体の表面に、表2、3に示される目標組成および目標層厚の薄層Aと薄層Bとを交互に積層した複層領域を形成する。
(d)ついで、装置内に反応ガスとして窒素ガスを導入し2Paの反応雰囲気を維持したまま、前記回転テーブル上で6〜48rpmの速度で自転しながら、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する複層領域が形成された工具基体に、−150Vの直流バイアス電圧を印加し、Ti−V合金カソード電極(あるいはTi−Si合金カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって該工具基体の表面に、表2、3に示される目標組成および目標層厚の単層領域を蒸着形成する。
(e)ついで、上記(c)、(d)を、目標とする硬質被覆層の全体層厚になるまで交互に繰り返し行うことにより、
図2に示される複層領域と単層領域との交互積層構造からなる硬質被覆層を有する、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具としての本発明被覆チップ1〜10をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-5 is ultrasonically cleaned in acetone and dried, and the center on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the shaft, each cathode electrode (evaporation source) has a component composition corresponding to the target composition shown in Table 2 (Ti, Si) ) N-layer forming Ti-Si alloy, (Ti, V) N-layer forming Ti- having a component composition corresponding to the target composition shown in Table 2, respectively, as the opposite cathode electrode (evaporation source) A V alloy is disposed across the rotary table.
A cathode electrode (evaporation source) made of a Ti—Si alloy is used for vapor deposition formation of a thin layer A and a single layer region, and a cathode electrode (evaporation source) made of a Ti—V alloy is made of a thin layer B and a single layer region. Used for vapor deposition.
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool substrate that rotates while rotating on the rotary table is −1000 V A DC bias voltage is applied, for example, a current of 100 A is passed between a cathode electrode and an anode electrode of a Ti—Si alloy (or Ti—V alloy) to generate an arc discharge, and the tool base surface is bombarded. .
(C) Next, while introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 2 Pa, while rotating on the rotary table at a speed of 6 to 48 rpm, at the same time, the rotation center axis of the rotary table A DC bias voltage of −80 V is applied to a tool base that rotates (revolves) at a speed of 1 to 8 rpm around it, for example, a current of 120 A flows between a Ti—V alloy cathode electrode and an anode electrode to cause arc discharge. At the same time, a current of 120 A is passed between the Ti—Si alloy cathode electrode and the anode electrode, which are arranged opposite to the Ti—V alloy cathode electrode with the rotary table interposed therebetween, and arc discharge is generated. A thin layer B is deposited on the tool base located near the V alloy cathode electrode, and a thin layer A is deposited on the tool base located near the Ti-Si alloy cathode electrode. By rotating the rotary table, the thin layer A is deposited on the tool base on which the thin layer B is deposited, and the thin layer B is deposited on the tool base on which the thin layer A is deposited. Then, the thin layer A and the thin layer B are alternately deposited repeatedly, so that the thin layer A and the thin layer B having the target composition and the target layer thickness shown in Tables 2 and 3 are alternately formed on the surface of the tool substrate. A multilayer region laminated on the substrate is formed.
(D) Next, nitrogen gas is introduced as a reaction gas into the apparatus, and while rotating at a speed of 6 to 48 rpm on the rotary table while maintaining a reaction atmosphere of 2 Pa, 1 around the rotation center axis of the rotary table. A DC bias voltage of −150 V is applied to a tool base on which a multilayer region that rotates (revolves) at a speed of ˜8 rpm is applied, and a Ti—V alloy cathode electrode (or a Ti—Si alloy cathode electrode) and an anode electrode During this period, an electric current of 100 A is applied to generate an arc discharge, so that a single layer region having a target composition and a target layer thickness shown in Tables 2 and 3 is deposited on the surface of the tool substrate.
(E) Next, by repeating the above (c) and (d) alternately until the target total thickness of the hard coating layer is reached,
The present invention coated tips 1 to 10 as the present invention coated tool of the throwaway tip shape defined in ISO / CNMG120408, which has a hard coating layer composed of an alternately laminated structure of a multilayer region and a single layer region shown in FIG. Each was manufactured.

比較の目的で、これら工具基体A−1〜A−5を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表4に示される目標組成に対応した成分組成をもったTi−V合金及びTi−Si合金を装着し、
まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極のTi−Si合金(あるいはTi−V合金)カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、例えば、前記Ti−V合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,V)N層を蒸着形成し、
ついで、前記Ti−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,Si)N層を蒸着形成し、
上記の(Ti,V)N層と(Ti,Si)N層の蒸着形成を交互に繰り返すことにより、
表4に示される目標組成および目標層厚の交互積層からなる硬質被覆層を有する、ISO・CNMG120408に規定するスローアウエイチップ形状の比較被覆工具としての比較被覆チップ1〜10をそれぞれ製造した。
For the purpose of comparison, these tool bases A-1 to A-5 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. As a source), a Ti-V alloy and a Ti-Si alloy each having a component composition corresponding to the target composition shown in Table 4 are mounted,
First, while evacuating the interior of the apparatus and maintaining the vacuum at 0.5 Pa or less, the interior of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and Ti of the cathode electrode -Si alloy (or Ti-V alloy) A current of 100 A is passed between the cathode electrode and the anode electrode to generate an arc discharge, whereby the tool base surface is bombarded,
Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and the bias voltage applied to the tool base is lowered to −100 V, for example, a cathode electrode and an anode electrode of the Ti—V alloy, Arc discharge is generated during the process, and the (Ti, V) N layer having the target composition and target layer thickness shown in Table 4 is formed on the surface of the tool base by vapor deposition.
Next, an arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Si alloy, and the (Ti, Si) N layer having the target composition and target layer thickness shown in Table 4 is formed on the surface of the tool base. Vapor deposition,
By alternately repeating the deposition formation of the above (Ti, V) N layer and (Ti, Si) N layer,
Comparative coated tips 1 to 10 as a comparative coated tool in the form of a throwaway tip defined in ISO · CNMG120408, each having a hard coating layer composed of alternately laminated target compositions and target layer thicknesses shown in Table 4, were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および比較被覆チップ1〜10について、
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 100 m/min.、
切り込み: 1.5 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのNi基合金の乾式高速断続切削加工試験(通常の切削速度は、30m/min.)、
被削材:質量%で、Co−23%Cr−6%Mo−2%Ni−1%Fe−0.6%Si−0.4%Cの組成を有するCo基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 80 m/min.、
切り込み: 1.5 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのCo基合金の乾式高速断続切削加工試験(通常の切削速度は、25m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 10 and the comparative coated chips 1 to 10 are as follows.
Work Material: Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al-0.3% by mass% Four longitudinally-grooved round bars at equal intervals in the length direction of a Ni-based alloy having a composition of Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 100 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Ni-based alloy under the above conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: Equal intervals in the length direction of Co-based alloy having a composition of Co-23% Cr-6% Mo-2% Ni-1% Fe-0.6% Si-0.4% C in mass% 4 fluted round bars,
Cutting speed: 80 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Co-based alloy under the following conditions (cutting condition B) (normal cutting speed is 25 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

Figure 2011167792
Figure 2011167792

Figure 2011167792
Figure 2011167792

Figure 2011167792
Figure 2011167792

Figure 2011167792
Figure 2011167792

Figure 2011167792
Figure 2011167792

原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 6 was added to the composition shown in FIG. 6 and added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round tool sintered body for forming a tool base is formed, and further, a diameter of the cutting edge portion × length is 10 mm × 22 mm and a twist angle is 45 degrees by grinding from the round bar sintered body. Made of WC-based cemented carbide with a 4-flute square shape Tool substrate (end mill) C-1~C-4 were prepared, respectively.

ついで、これらの工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表7に示される目標組成および目標層厚の、薄層Aと薄層Bとが交互に積層された複層領域、および、単層領域との交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool bases (end mills) C-1 to C-4 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. A multi-layer region in which thin layers A and B are alternately laminated, and a single-layer region having the target composition and target layer thickness shown in Table 7 along the layer thickness direction under the same conditions as in Example 1. The coated end mills 1 to 8 of the present invention as the coated tool of the present invention were produced by vapor-depositing a hard coating layer having an alternately laminated structure.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−4の表面に、表8に示される目標組成および目標層厚の(Ti,V)N層と(Ti,Si)N層との交互積層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆エンドミル1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-4 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the (Ti, V) N layer having the target composition and target layer thickness shown in Table 8 is formed on the surface of the tool base (end mill) C-1 to C-4 ( Comparative coating end mills 1 to 8 as comparative coating tools were manufactured by vapor-depositing a hard coating layer composed of alternating layers of Ti, Si) N layers.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の板材、
切削速度: 40 m/min.、
溝深さ(切り込み): 2.5 mm、
テーブル送り: 100 mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度および溝深さは、それぞれ、25m/min.および1.2mm)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7、8にそれぞれ示した。
Next, for the present invention coated end mills 1-8 and comparative coated end mills 1-8,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2 Ni-base alloy plate material having a composition of% Al-0.7% Mn-0.4% Si,
Cutting speed: 40 m / min. ,
Groove depth (cut): 2.5 mm,
Table feed: 100 mm / min,
Ni-base alloy dry high-speed grooving test under the conditions (normal cutting speed and groove depth are 25 m / min. And 1.2 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 7 and 8, respectively.

Figure 2011167792
Figure 2011167792

Figure 2011167792
Figure 2011167792

Figure 2011167792
Figure 2011167792

上記の実施例2で製造した丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが8mm×48mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−4をそれぞれ製造した。   Using the round bar sintered body manufactured in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming portion is 8 mm x 48 mm and the helix angle is 30 degrees by grinding. WC base cemented carbide tool bases (drills) D-1 to D-4 each having a two-blade shape were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成および目標層厚の、薄層Aと薄層Bとが交互に積層された複層領域、および、単層領域との交互積層構造からなる上部層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. A multilayer region in which thin layers A and thin layers B are alternately laminated with the target composition and target layer thickness shown in Table 9 along the layer thickness direction under the same conditions as in Example 1 above. And this invention covering drill 1-8 as this invention covering tool was manufactured by carrying out vapor deposition formation of the upper layer which consists of an alternate lamination structure with a single layer field, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−4の表面に、表10に示される目標組成および目標層厚の(Ti,V)N層と(Ti,Si)N層との交互積層構造からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆ドリル1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. In the plating apparatus, under the same conditions as in Example 1, the target compositions and target layer thicknesses (Ti, V) shown in Table 10 are formed on the surfaces of the tool bases (drills) D-1 to D-4. Comparative coating drills 1 to 8 as comparative coating tools were manufactured by vapor-depositing a hard coating layer having an alternately laminated structure of N layers and (Ti, Si) N layers.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 50 m/min.、
送り: 0.25 mm/rev、
穴深さ: 20 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、25m/min.および0.12mm/rev)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表9、10にそれぞれ示した。
Next, for the present invention coated drills 1-8 and comparative coated drills 1-8,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-based alloy plate having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 50 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 20 mm,
Wet high-speed drilling test of Ni-based alloy under the following conditions (normal cutting speed and feed are 25 m / min. And 0.12 mm / rev, respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2011167792
Figure 2011167792

Figure 2011167792
Figure 2011167792

この結果得られた本発明被覆工具としての本発明被覆チップ1〜10、本発明被覆エンドミル1〜8および本発明被覆ドリル1〜8の薄層Aと薄層Bとが交互に積層された複層領域および単層領域、さらに、比較被覆チップ1〜10、比較被覆エンドミル1〜8および比較被覆ドリル1〜8の薄層Aと薄層Bとの交互積層を構成する(Ti,V)N層と(Ti,Si)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result of the present invention, the coated chips 1 to 10, the coated end mills 1 to 8 and the coated drills 1 to 8 of the present invention coated tip 1-8 and the laminated layers A and B are alternately laminated. (Ti, V) N that constitutes the alternate lamination of the thin layer A and the thin layer B of the layer region and the single layer region, and the comparison coating tip 1 to 10, the comparison coating end mill 1 to 8, and the comparison coating drill 1 to 8 When the compositions of the layer and the (Ti, Si) N layer were measured by energy dispersive X-ray analysis using a transmission electron microscope, they showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表5、7〜10に示される結果から、本発明被覆工具は、その硬質被覆層が、薄層Aと薄層Bとが交互に積層された複層領域と、単一層からなる単層領域との交互積層構造として構成されていることにより、複層領域によって、耐チッピング性、耐欠損性、耐摩耗性が改善されるとともに、単層領域の存在によって、層間剥離が防止され、機械的衝撃の緩和が図られるので、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合、長期に亘ってすぐれた切削性能(特に、耐チッピング性、耐欠損性、耐剥離性、耐摩耗性)を発揮する。
これに対して、硬質被覆層が(Ti,V)N層と(Ti,Si)N層との交互積層のみで構成された、単層領域が存在しない比較被覆工具においては、Ni基合金、Co基合金等の耐熱合金の高速切削加工では、特に潤滑性、耐層間剥離性が十分でないために、チッピング、欠損、剥離の発生等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 and 7 to 10, the coated tool of the present invention has a hard coating layer in which a multi-layer region in which thin layers A and thin layers B are alternately laminated, and a single-layer region composed of a single layer. The multi-layered area improves chipping resistance, chipping resistance, and abrasion resistance, and the presence of the single-layered area prevents delamination and mechanically. Since the impact is mitigated, excellent cutting performance over a long period of time (especially chipping resistance and chipping resistance) when used in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys , Exfoliation resistance and wear resistance).
On the other hand, in the comparative coating tool in which the hard coating layer is configured only by the alternate lamination of the (Ti, V) N layer and the (Ti, Si) N layer and does not have a single layer region, the Ni-based alloy, In high-speed cutting of heat-resistant alloys such as Co-based alloys, it is clear that the service life is reached in a relatively short time due to chipping, chipping, peeling, etc. due to insufficient lubricity and delamination resistance. is there.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴うNi基合金、Co基合金等の耐熱合金の高速切削加工に用いた場合でも、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used for high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys with high heat generation as well as cutting of general steel and ordinary cast iron. Since it shows excellent cutting performance over a long period of time, it can satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

工具基体表面に硬質被覆層が蒸着形成された表面被覆切削工具において、
上記硬質被覆層は、1〜50nmの層厚の薄層Aと1〜50nmの層厚の薄層Bとが交互に積層された複層領域と、100〜500nmの層厚の単一層からなる単層領域とを備え、しかも、上記硬質被覆層は、上記複層領域と上記単層領域との交互積層構造として構成され、さらに、
(a)上記薄層Aは、
組成式:[Ti1−XSi]N
で表した場合、Xは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層からなり、
(b)上記薄層Bは、
組成式:[Ti1−Y]N
で表した場合、Yは0.40〜0.70(但し、原子比)を満足するTiとVの複合窒化物層からなり、
(c)上記単一層は、
組成式:[Ti1−XSi]N
で表した場合、Xは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層、または、
組成式:[Ti1−Y]N
で表した場合、Yは0.40〜0.70(但し、原子比)を満足するTiとVの複合窒化物層の何れかからなる、
ことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is vapor-deposited on the surface of a tool substrate,
The hard coating layer includes a multilayer region in which thin layers A having a thickness of 1 to 50 nm and thin layers B having a thickness of 1 to 50 nm are alternately stacked, and a single layer having a thickness of 100 to 500 nm. And the hard coating layer is configured as an alternately laminated structure of the multilayer region and the single layer region,
(A) The thin layer A is
Formula: [Ti 1-X Si X ] N
X is composed of a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, atomic ratio),
(B) The thin layer B is
Composition formula: [Ti 1-Y V Y ] N
Y is composed of a composite nitride layer of Ti and V that satisfies 0.40 to 0.70 (however, the atomic ratio),
(C) The single layer is
Formula: [Ti 1-X Si X ] N
X is a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, the atomic ratio), or
Composition formula: [Ti 1-Y V Y ] N
Y is composed of any one of Ti and V composite nitride layers satisfying 0.40 to 0.70 (however, atomic ratio).
A surface-coated cutting tool characterized by that.
JP2010033212A 2010-02-18 2010-02-18 Surface coated cutting tool Withdrawn JP2011167792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033212A JP2011167792A (en) 2010-02-18 2010-02-18 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033212A JP2011167792A (en) 2010-02-18 2010-02-18 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2011167792A true JP2011167792A (en) 2011-09-01

Family

ID=44682440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033212A Withdrawn JP2011167792A (en) 2010-02-18 2010-02-18 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2011167792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138306A (en) * 2015-09-04 2018-06-08 Osg株式会社 Hard film and hard film coating component
CN112368094A (en) * 2018-06-15 2021-02-12 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138306A (en) * 2015-09-04 2018-06-08 Osg株式会社 Hard film and hard film coating component
CN108138306B (en) * 2015-09-04 2020-01-03 Osg株式会社 Hard coating and hard coating-coated member
US10676810B2 (en) 2015-09-04 2020-06-09 Osg Corporation Hard coating and hard coating-covered member
CN112368094A (en) * 2018-06-15 2021-02-12 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
CN112368094B (en) * 2018-06-15 2023-07-21 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5459507B2 (en) Surface coated cutting tool
JP5459506B2 (en) Surface coated cutting tool
JP2011167793A (en) Surface coated cutting tool
JP2010207916A (en) Surface coated cutting tool
JP2011189473A (en) Surface coated cutting tool
JP2011235393A (en) Surface coated cutting tool
JP6331003B2 (en) Surface coated cutting tool
JP2012035377A (en) Surface-coated cutting tool
JP2010207918A (en) Surface coated cutting tool
JP2011189472A (en) Surface coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP2011167794A (en) Surface coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP2010207917A (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5445847B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP2012061555A (en) Surface coated cutting tool
JP2012061554A (en) Surface coated cutting tool
JP5488823B2 (en) Surface coated cutting tool
JP2011167792A (en) Surface coated cutting tool
JP2010137335A (en) Surface-coated cutting tool
JP2010137336A (en) Surface-coated cutting tool
JP2011189471A (en) Surface coated cutting tool
JP5975214B2 (en) Surface coated cutting tool
JP2016165787A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507