JP2011163640A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2011163640A
JP2011163640A JP2010026196A JP2010026196A JP2011163640A JP 2011163640 A JP2011163640 A JP 2011163640A JP 2010026196 A JP2010026196 A JP 2010026196A JP 2010026196 A JP2010026196 A JP 2010026196A JP 2011163640 A JP2011163640 A JP 2011163640A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
cross
heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026196A
Other languages
Japanese (ja)
Other versions
JP4947162B2 (en
Inventor
Kazuhiko Machida
和彦 町田
Tomoaki Ando
智朗 安藤
Osamu Aoyanagi
治 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010026196A priority Critical patent/JP4947162B2/en
Publication of JP2011163640A publication Critical patent/JP2011163640A/en
Application granted granted Critical
Publication of JP4947162B2 publication Critical patent/JP4947162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger that includes a heat transfer promoter sufficiently improving heat transfer performance, and is manufactured in a simple manner. <P>SOLUTION: The heat exchanger includes: two inner pipes 103 through which a refrigerant flows; an outer pipe 105 provided outside of the pipes, and forming a fluid flow passage together with the inner pipes 103 therebetween, through which water flows; and the heat transfer promoter 90 for reducing a flow passage cross-sectional area S1 of the fluid flow passage. The heat transfer promoter 90 is fixed linearly coming into contact with each of the two inner pipes 103 along in the longitudinal direction so that a minimum clearance Δt2 defined between the heat transfer promoter 90 and the outer pipe 105 becomes substantially equal to a minimum clearance Δt1 defined between the two inner pipes 103 and the outer pipe 105, thereby improving the heat transfer performance and also the insertion properties of the heat transfer promoter 90, and thus the heat exchanger having high heat transfer performance is manufactured in a simple manner. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空調装置、給湯装置等の機器に用いられ、特にヒートポンプ式の給湯機等のように、水等の流体と冷媒等の二種の流体を熱交換させるための熱交換器に関するものである。   The present invention relates to a heat exchanger for exchanging heat between a fluid such as water and two kinds of fluids such as a refrigerant, such as a heat pump type hot water heater, etc. It is.

従来、この種の熱交換器としては、内部に冷媒用流路が形成された内管と、内管の外側に設けられ内管との間に水用流路を形成する外管とから構成された二重管式のものがある。さらに、熱交換器の水用流路に伝熱促進体を挿入したものもある(例えば、特許文献1、2参照)。   Conventionally, this type of heat exchanger is composed of an inner pipe in which a refrigerant flow path is formed and an outer pipe that is provided outside the inner pipe and forms a water flow path between the inner pipe and the inner pipe. There is a double tube type. Furthermore, there is a heat transfer accelerator inserted into the water flow path of the heat exchanger (see, for example, Patent Documents 1 and 2).

特許文献1には、伝熱促進体として変位可能なワイヤを用い、ワイヤの変位により水用流路を流れる水を乱流状態とし、熱伝達性能を向上させる方法が開示されている。   Patent Document 1 discloses a method for improving heat transfer performance by using a displaceable wire as a heat transfer promoting body and making the water flowing through the water flow channel turbulent by the displacement of the wire.

特許文献2には、外管と内管とに密着させた補助管を用い、内管の伝熱面積を増加させ、熱伝達性能を向上させる方法が開示されている。   Patent Document 2 discloses a method for improving heat transfer performance by using an auxiliary tube that is in close contact with an outer tube and an inner tube, increasing the heat transfer area of the inner tube.

特開2009−115429号公報JP 2009-115429 A 特開2002−162177号公報JP 2002-162177 A

しかしながら、特許文献1における構成では、ワイヤが外管や内管に対し変位可能であるため、伝熱促進体が外管の内面にあたって引っかかったり、変形したりする。このため、十分に乱流促進できず、熱伝達性能の向上が得られないという課題を有していた。   However, in the configuration of Patent Document 1, since the wire can be displaced with respect to the outer tube and the inner tube, the heat transfer promoting body is caught or deformed on the inner surface of the outer tube. For this reason, it has a problem that turbulent flow cannot be sufficiently promoted and heat transfer performance cannot be improved.

特許文献2における構成では、外管に、補助管と内管とを挿入したのち、補助管を内管と外管に密着させるために、引き抜き、押し出し、プレスなどの後加工が必要となり、組立性が悪いという課題を有していた。   In the configuration in Patent Document 2, after the auxiliary tube and the inner tube are inserted into the outer tube, post-processing such as drawing, extruding, pressing, etc. is required to bring the auxiliary tube into close contact with the inner tube and the outer tube. It had the problem that the nature was bad.

本発明は、上記従来の課題を解決するもので、十分な熱伝達性能の向上が得られる伝熱促進体を備え、容易に製造できる熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a heat exchanger that includes a heat transfer promoting body capable of sufficiently improving heat transfer performance and can be easily manufactured.

上記従来の課題を解決するために、本発明の熱交換器は、内部に第1流体流路を形成する2本の内管と、2本の内管の外側に設けられ、2本の内管との間に第2流体流路を形成する外管と、第2流体流路の流路断面積を減少させる伝熱促進体とを備え、伝熱促進体は、外管との最小隙間が、2本の内管と外管との最小隙間と略同等となるように、2本の内管のそれぞれと長手方向に沿って線状に接触して固定されたものである。   In order to solve the above-described conventional problems, a heat exchanger according to the present invention is provided inside two inner pipes that form a first fluid flow path inside and two inner pipes. An outer pipe that forms a second fluid flow path between the pipe and a heat transfer promoting body that reduces the cross-sectional area of the second fluid flow path, and the heat transfer promoting body has a minimum gap with the outer pipe Are fixed in contact with each of the two inner tubes in a linear manner along the longitudinal direction so as to be substantially equal to the minimum gap between the two inner tubes and the outer tube.

本発明の熱交換器は、内管に固定された伝熱促進体により第2流体流路の流路断面積を減少させ、熱伝達性能を向上させるとともに、熱交換器の製造時には、外管に内管と伝熱促進体とを容易に挿入できるので、組み立て性が向上する。   The heat exchanger of the present invention reduces the cross-sectional area of the second fluid flow path by the heat transfer promoting body fixed to the inner pipe, improves the heat transfer performance, and at the time of manufacturing the heat exchanger, the outer pipe Since the inner tube and the heat transfer facilitator can be easily inserted, the assemblability is improved.

本発明の実施の形態1における熱交換器の斜視図The perspective view of the heat exchanger in Embodiment 1 of this invention 同実施の形態1における熱交換器の管断面図Cross-sectional view of the heat exchanger according to the first embodiment 本発明の実施の形態2における熱交換器の斜視図The perspective view of the heat exchanger in Embodiment 2 of this invention 本発明の実施の形態3における熱交換器の斜視図The perspective view of the heat exchanger in Embodiment 3 of this invention 同実施の形態3における熱交換器の管断面図Tube cross-sectional view of heat exchanger in the third embodiment 同実施の形態4における熱交換器の管断面図Cross section of the heat exchanger tube in the fourth embodiment

第1の発明は、内部に第1流体流路を形成する2本の内管と、2本の内管の外側に設けられ、2本の内管との間に第2流体流路を形成する外管と、第2流体流路の流路断面積を減少させる伝熱促進体とを備え、伝熱促進体は、外管との最小隙間が、2本の内管と外管との最小隙間と略同等となるように、2本の内管のそれぞれと長手方向に沿って線状に接触して固定されたものである。   1st invention is provided in the outer side of two inner pipes which form a 1st fluid flow path inside, and two inner pipes, and forms a 2nd fluid flow path between two inner pipes And a heat transfer promoting body that reduces the cross-sectional area of the second fluid flow path, and the heat transfer promoting body has a minimum gap between the two inner pipes and the outer pipe. The two inner tubes are fixed in contact with each other in a linear manner along the longitudinal direction so as to be substantially equal to the minimum gap.

かかる構成とすることにより、第1の発明の熱交換器は、熱交換器の使用時には、第2流体流路を流れる流体の流速が増し乱流促進されるため、熱伝達性能の向上が可能であるとともに、熱交換器の製造時の外管に内管と伝熱促進体とを挿入するのが容易で、後加工も不要なために、組み立て性が向上する。   With this configuration, the heat exchanger according to the first aspect of the invention can improve the heat transfer performance because the flow velocity of the fluid flowing through the second fluid flow path is increased and the turbulence is promoted when the heat exchanger is used. In addition, it is easy to insert the inner tube and the heat transfer facilitator into the outer tube at the time of manufacturing the heat exchanger, and the post-processing is unnecessary, so that the assembling property is improved.

第2の発明は、第1の発明の伝熱促進体を、2本の内管とともに螺旋状に絡み合うように捻って固定するものである。   2nd invention twists and fixes the heat-transfer promoter of 1st invention so that it may be intertwined spirally with two inner tubes.

かかる構成とすることにより、ねじられた内管と伝熱促進体とに沿って、第2流体流路を流れる流体が旋回流となって流れることによる伝熱促進と、伝熱促進体が第2流体流路の流路断面積を減少させることにより、第2流体流路を流れる流体の流速が増して乱流促進することによる伝熱促進の2つの作用により、熱伝達性能の向上が可能である。また、伝熱促進体を内管とともにねじることで固定しているので、ろう付け溶接などによる固定方法に比べて、容易に製造できる。   By adopting such a configuration, the heat transfer promotion by the fluid flowing in the second fluid flow path as a swirling flow along the twisted inner tube and the heat transfer promotion body, By reducing the cross-sectional area of the two-fluid flow path, the heat transfer performance can be improved by two actions of promoting heat transfer by increasing the flow velocity of the fluid flowing through the second fluid flow path and promoting turbulent flow. It is. Further, since the heat transfer promoting body is fixed by twisting together with the inner tube, it can be easily manufactured as compared with a fixing method by brazing welding or the like.

第3の発明は、第1から第2の発明の伝熱促進体が、第2流体流路の流路断面積を減少させる主要部と、主要部より断面積が小さい端部とを有することにより、伝熱促進体の端部の挿入性がさらに向上するため、容易に製造できる。   In a third invention, the heat transfer promoting body of the first to second inventions has a main part for reducing the cross-sectional area of the second fluid channel and an end part having a smaller cross-sectional area than the main part. Thereby, since the insertability of the edge part of a heat-transfer promoter is further improved, it can manufacture easily.

第4の発明は、第1から第2の発明の伝熱促進体の断面形状を略円形とすることにより、一般的に入手し易い円形の物(例えば市販の銅管)をそのまま利用できるので、伝熱促進体の具現化に際して特別な加工を施す必要もなく、容易に製造できる。   In the fourth invention, since the cross-sectional shape of the heat transfer promoting body of the first to second inventions is substantially circular, a generally easily available circular object (for example, a commercially available copper tube) can be used as it is. In addition, it is not necessary to perform special processing when realizing the heat transfer promoting body, and it can be easily manufactured.

第5の発明は、第1から第2の発明の伝熱促進体の断面形状を略楕円形とすることにより、第4の発明における略円形の場合よりも、挿入性を良好に保ちつつ伝熱促進体の断面積が大きくとれるので、第2流体流路の流路断面積をより小さくでき、更なる乱流促進がなされる。   In the fifth aspect of the present invention, the cross-sectional shape of the heat transfer promoting body of the first to second aspects of the invention is substantially elliptical, so that the insertion property is kept better than that of the substantially circular shape in the fourth aspect of the invention. Since the cross-sectional area of the heat promoting body can be increased, the cross-sectional area of the second fluid flow path can be further reduced, and further turbulence can be promoted.

第6の発明は、第1から第2の発明の伝熱促進体の断面形状を略扇形とすることにより、第5の発明における略円形の場合よりも、挿入性を良好に保ちつつ伝熱促進体の断面積が大きくとれるので、第2流体流路の流路断面積をより小さくでき、更なる乱流促進がなされる。   In the sixth aspect of the present invention, the cross-sectional shape of the heat transfer promoting body of the first to second aspects is substantially fan-shaped, so that heat transfer is maintained while maintaining better insertability than in the case of the substantially circular shape in the fifth aspect. Since the cross-sectional area of the promoting body can be increased, the flow path cross-sectional area of the second fluid flow path can be further reduced, and further turbulence can be promoted.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の一部を切除し、一部を切欠いた斜視図であり、図2は熱交換器の管断面図である。
(Embodiment 1)
FIG. 1 is a perspective view in which a part of the heat exchanger according to Embodiment 1 of the present invention is cut away and partly cut away, and FIG. 2 is a cross-sectional view of the tube of the heat exchanger.

図1に示すように、熱交換器1は、二重管式の熱交換器であり、内部を二酸化炭素が流れる冷媒用流路102(本発明の第1流体流路)を形成する内管103と、2本の内管103の外側に設けられ、内管103との間に水が流れる水用流路104(本発明の第2流体流路)を形成する銅製の外管105とから構成されている。   As shown in FIG. 1, the heat exchanger 1 is a double-pipe heat exchanger, and an inner pipe that forms a refrigerant flow path 102 (first fluid flow path of the present invention) through which carbon dioxide flows. 103 and a copper outer pipe 105 provided outside the two inner pipes 103 and forming a water flow path 104 (second fluid flow path of the present invention) through which water flows between the inner pipes 103. It is configured.

図2に示すように、内管103は、銅製の冷媒管106と、冷媒管106の外周に設けられた銅製の漏洩検知管107とから構成されている。   As shown in FIG. 2, the inner tube 103 includes a copper refrigerant tube 106 and a copper leakage detection tube 107 provided on the outer periphery of the refrigerant tube 106.

なお、漏洩検知管107の内面には、配管方向に沿って多数の漏洩検知溝(図示せず)が形成されており、漏洩検知溝内には空気層が形成されている。さらに、漏洩検知溝は外部に接続されており、内管103または外管105から漏洩した二酸化炭素や水を、漏洩検知溝を介して外部に漏出させ、万一、二酸化炭素や水が漏れた場合でも、二酸化炭素と水とが混合するのを防止している。   A large number of leak detection grooves (not shown) are formed on the inner surface of the leak detection pipe 107 along the piping direction, and an air layer is formed in the leak detection grooves. Furthermore, the leak detection groove is connected to the outside, and carbon dioxide and water leaked from the inner tube 103 or the outer tube 105 are leaked to the outside through the leak detection groove, and by any chance carbon dioxide or water leaks. Even in this case, carbon dioxide and water are prevented from mixing.

水用流路104には、同じ外径の内管103を2本併設し、さらにその内管103に併設して2本の伝熱促進体90が配置されている。伝熱促進体90は、外管105との最小隙間Δt2が、内管103と外管105との最小隙間Δt1と略同等となるように、2本の内管103外面に、伝熱促進体90の長手方向に沿って線状に接触して固定されている。なお、最小隙間Δt1は、例えば、外管105の内径が約11mmの場合には、約0.2〜0.5mmとなる。伝熱促進体90の固定方法としては、ろう付け溶接などが用いられる。また、伝熱促進体90の両端部の側面は塞がっており、伝熱促進体90の内部には水は流れないようになっている。   In the water flow path 104, two inner pipes 103 having the same outer diameter are provided side by side, and two heat transfer promoting bodies 90 are further provided adjacent to the inner pipe 103. The heat transfer facilitator 90 is provided on the outer surfaces of the two inner pipes 103 so that the minimum gap Δt2 between the outer pipe 105 and the minimum gap Δt1 between the inner pipe 103 and the outer pipe 105 is substantially equal. It is fixed in linear contact along the longitudinal direction of 90. Note that the minimum gap Δt1 is, for example, about 0.2 to 0.5 mm when the inner diameter of the outer tube 105 is about 11 mm. As a method for fixing the heat transfer promoting body 90, brazing welding or the like is used. Further, the side surfaces of both end portions of the heat transfer promoting body 90 are closed, so that water does not flow inside the heat transfer promoting body 90.

以上のように構成された熱交換器は、水用流路104を水が流れ、冷媒用流路102を二酸化炭素が流れることで、水と二酸化炭素との熱交換を行う。   The heat exchanger configured as described above exchanges heat between water and carbon dioxide when water flows through the water flow path 104 and carbon dioxide flows through the refrigerant flow path 102.

このような熱交換器の熱伝達性能を向上させるには、冷媒用流路102の流路断面積は、そこを流れる二酸化炭素に最適な流路断面積とし、水用流路104の流路断面積は、そこを流れる水に最適な流路断面積とすることが望ましい。しかし、冷媒用流路102の流路断面積は、内管103の内径により決まり、水用流路104の流路断面積は、外管105の内径と内管103の外径により決まるため、冷媒用流路102を最適化すると、水用流路104の流路断面積は大きくなりすぎる場合がある。このような場合には、水用流路104の流路断面積を減少させることで最適な流路断面積とすることができる。   In order to improve the heat transfer performance of such a heat exchanger, the flow path cross-sectional area of the refrigerant flow path 102 is set to be the optimal flow path cross-sectional area for carbon dioxide flowing therethrough, and the flow path of the water flow path 104 It is desirable that the cross-sectional area be an optimum channel cross-sectional area for the water flowing therethrough. However, the flow passage cross-sectional area of the refrigerant flow passage 102 is determined by the inner diameter of the inner tube 103, and the flow passage cross-sectional area of the water flow passage 104 is determined by the inner diameter of the outer tube 105 and the outer diameter of the inner tube 103. If the coolant channel 102 is optimized, the channel cross-sectional area of the water channel 104 may become too large. In such a case, an optimum channel cross-sectional area can be obtained by reducing the channel cross-sectional area of the water channel 104.

本実施の形態では、水用流路104には、2本の内管103と併設して2本の伝熱促進体90を配置したので、水用流路104の流路断面積S1を小さくでき、最適な流路断面積に近づく。これにより、水の流速が増し乱流促進されるため、冷媒用流路102を流れる二酸化炭素の熱を効率よく、内管103を介して水に伝達させることができる。   In the present embodiment, since the two heat transfer promoting bodies 90 are disposed alongside the two inner pipes 103 in the water channel 104, the channel cross-sectional area S1 of the water channel 104 is reduced. And approaches the optimal flow path cross-sectional area. Thereby, since the flow rate of water is increased and turbulent flow is promoted, the heat of carbon dioxide flowing through the refrigerant flow path 102 can be efficiently transmitted to the water via the inner pipe 103.

一方、このような熱交換器を製造する際には、外管105に、内管103と伝熱促進体90とを挿入して製造するが、伝熱促進体90と外管105との最小隙間Δt2は、内管103と外管105との最小隙間Δt1と略同等の隙間を確保している。これにより、伝熱促進体90を設けてない場合と同様に、容易に挿入でき、熱交換器の組み立て性が向上する。また、内管103に固定された伝熱促進体90を外管105に挿入するので、外管105に内管103を挿入した後に、伝熱促進体90を固定する後加工が不要となり、熱
交換器の組み立て性が向上する。
On the other hand, when manufacturing such a heat exchanger, the outer tube 105 is manufactured by inserting the inner tube 103 and the heat transfer facilitator 90, but the minimum of the heat transfer facilitator 90 and the outer tube 105 is produced. The gap Δt2 ensures a gap substantially equal to the minimum gap Δt1 between the inner tube 103 and the outer tube 105. Thereby, it can insert easily like the case where the heat-transfer promoter 90 is not provided, and the assembly property of a heat exchanger improves. Further, since the heat transfer promoting body 90 fixed to the inner tube 103 is inserted into the outer tube 105, after the inner tube 103 is inserted into the outer tube 105, post-processing for fixing the heat transfer promoting body 90 is not necessary, The assembly of the exchanger is improved.

かかる構成とすることにより、本実施の形態の熱交換器は、熱伝達性能の向上が可能であるとともに、熱交換器の製造時の組み立て性が向上する。   By adopting such a configuration, the heat exchanger according to the present embodiment can improve heat transfer performance and improve assemblability when the heat exchanger is manufactured.

なお、このような伝熱促進体90は、略円形の断面形状を有する場合には、その断面部直径D1は、内管103の外径Dの約0.65倍となる。このとき、伝熱促進体90がない場合に対して、流路断面積S1は0.74倍に減少することから、水流速は約1.35倍に増加する。したがって、水側熱伝達率は水流速の0.8乗に比例すると仮定すると、この場合の水側熱伝達率は、伝熱促進体90がない場合に対して1.27倍の伝熱促進が行われる。   In addition, when such a heat transfer promotion body 90 has a substantially circular cross-sectional shape, the cross-sectional diameter D1 is approximately 0.65 times the outer diameter D of the inner tube 103. At this time, the flow passage cross-sectional area S1 decreases 0.74 times as compared to the case where there is no heat transfer promoting body 90, so the water flow velocity increases about 1.35 times. Accordingly, assuming that the water-side heat transfer coefficient is proportional to the 0.8th power of the water flow velocity, the water-side heat transfer coefficient in this case is 1.27 times the heat transfer promotion compared to the case where the heat transfer promoting body 90 is not provided. Is done.

また、本実施の形態では、一般的に入手し易い円形の長尺物(例えば市販の銅管)をそのまま利用できるので、伝熱促進体90の具現化に際して特別な加工を施す必要もなく、簡単な製作で熱交換器を実現できるという副次的な効果も得られる。   Further, in the present embodiment, since it is possible to use a circular elongated object that is generally easily available (for example, a commercially available copper tube) as it is, it is not necessary to perform special processing when realizing the heat transfer promoting body 90, A secondary effect that a heat exchanger can be realized by simple manufacturing is also obtained.

(実施の形態2)
図3は、同実施の形態2における熱交換器の一部を切除し、一部を切欠いた斜視図である。本実施の形態においては、実施の形態1と異なる点のみ説明する。
(Embodiment 2)
FIG. 3 is a perspective view in which a part of the heat exchanger according to the second embodiment is cut away and a part thereof is cut away. In the present embodiment, only differences from the first embodiment will be described.

図3に示すように、本実施の形態では、2本の略円形の断面形状を有した伝熱促進体91は、2本の内管103とともに、互いに螺旋状に絡み合うようにねじり合わされ固定されている。また、その螺旋の中心が、外管105の軸心とほぼ同軸となるように外管105に内包されている。   As shown in FIG. 3, in this embodiment, two heat transfer promoting bodies 91 having a substantially circular cross-sectional shape are twisted and fixed together with two inner tubes 103 so as to be intertwined in a spiral shape. ing. The center of the spiral is enclosed in the outer tube 105 so as to be substantially coaxial with the axis of the outer tube 105.

かかる構成とすることにより、ねじられた内管103と伝熱促進体91に沿って水が旋回流となって流れることによる伝熱促進と、伝熱促進体91によって流路断面積を小さくなり乱流促進することによる伝熱促進の2つの作用によって、より伝熱促進ができる。   With this configuration, heat transfer is promoted by the water flowing in a swirling flow along the twisted inner tube 103 and the heat transfer promoting body 91, and the channel cross-sectional area is reduced by the heat transfer promoting body 91. Heat transfer can be further enhanced by the two effects of promoting heat transfer by promoting turbulent flow.

さらに、伝熱促進体91を固定する方法として、内管103とともにねじることで固定しているので、ろう付け溶接などによる固定方法に比べて、容易に熱交換器を製作できる。また、ねじることで固定しても、実施の形態1と同様に、伝熱促進体91と外管105との最小隙間は、内管103と外管105との最小隙間と略同等の隙間を確保しているので、伝熱促進体91を設けてない場合と同様の挿入性を維持しつつ、伝熱促進効果を引き出すことができる。このため、高い熱交換能力が得られる熱交換器を、容易に製造できる。   Further, since the heat transfer promoting body 91 is fixed by twisting together with the inner tube 103, the heat exchanger can be easily manufactured as compared with the fixing method by brazing welding or the like. Further, even if fixed by twisting, the minimum gap between the heat transfer promoting body 91 and the outer pipe 105 is substantially the same as the minimum gap between the inner pipe 103 and the outer pipe 105 as in the first embodiment. Since it has ensured, the heat transfer promotion effect can be pulled out, maintaining the same insertion property as the case where the heat transfer promotion body 91 is not provided. For this reason, the heat exchanger from which a high heat exchange capability is obtained can be manufactured easily.

(実施の形態3)
図4は、同実施の形態3における熱交換器の一部を切除し、一部を切欠いた斜視図である。本実施の形態においては、実施の形態1と異なる点のみ説明する。
(Embodiment 3)
FIG. 4 is a perspective view in which a part of the heat exchanger according to the third embodiment is cut away and a part thereof is cut away. In the present embodiment, only differences from the first embodiment will be described.

図4に示すように、本実施の形態では、2本の伝熱促進体92は、主要部92bと端部92aからなる。主要部92bは、外管105との最小隙間が、内管103と外管105との最小隙間と略同等となるように、2本の内管103外面のそれぞれに、主要部92bの長手方向に沿って線状に接触して固定されている。一方、端部92aは、主要部92bより断面積が小さくなっている。このため、外管105と端部92aとの最小隙間は、内管103と外管105との最小隙間より大きくなっている。   As shown in FIG. 4, in the present embodiment, the two heat transfer promoting bodies 92 are composed of a main portion 92b and an end portion 92a. The main portion 92b has a longitudinal direction of the main portion 92b on each of the outer surfaces of the two inner tubes 103 so that the minimum clearance between the outer tube 105 and the minimum clearance between the inner tube 103 and the outer tube 105 is substantially the same. Is fixed in contact with the line. On the other hand, the end portion 92a has a smaller cross-sectional area than the main portion 92b. For this reason, the minimum gap between the outer tube 105 and the end portion 92 a is larger than the minimum gap between the inner tube 103 and the outer tube 105.

かかる構成とすることにより、伝熱促進体92の主要部92bで、水用流路104の流路断面積S1を小さくできる。これにより、水の流速が増し乱流促進されるため、冷媒用
流路102を流れる二酸化炭素の熱を効率よく、内管103を介して水に伝達させることができる。
With this configuration, the channel cross-sectional area S1 of the water channel 104 can be reduced at the main portion 92b of the heat transfer promoting body 92. Thereby, since the flow rate of water is increased and turbulent flow is promoted, the heat of carbon dioxide flowing through the refrigerant flow path 102 can be efficiently transmitted to the water via the inner pipe 103.

さらに、端部92aでは、内管103と外管105との最小隙間以上の隙間を確保しているので、内管103とともに伝熱促進体92の端部92aを外管105に挿入する際の挿入性がさらに向上する。このため、高い熱交換能力が得られる熱交換器を、容易に製造できる。   Further, since the end 92 a has a clearance that is equal to or larger than the minimum clearance between the inner tube 103 and the outer tube 105, the end 92 a of the heat transfer promoting body 92 is inserted into the outer tube 105 together with the inner tube 103. Insertability is further improved. For this reason, the heat exchanger from which a high heat exchange capability is obtained can be manufactured easily.

(実施の形態4)
図5は、同実施の形態4における熱交換器の管断面図である。実施の形態3と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 4)
FIG. 5 is a tube cross-sectional view of the heat exchanger in the fourth embodiment. About the same structure as Embodiment 3, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

伝熱促進体としての楕円促進体93は略楕円形なる断面形状を有し、2本の内管103とともに、互いに螺旋状にねじり合わされ固定されている。   The elliptical accelerator 93 as a heat transfer accelerator has a substantially elliptical cross-sectional shape, and is twisted together and fixed together with the two inner tubes 103.

かかる構成とすることにより、楕円促進体93によって、外管105への挿入性を良好に保ちつつ、水用流路104の流路断面積S2を実施の形態3よりも更に小さくすることが出来る。   By adopting such a configuration, the ellipsoidal accelerator 93 can further reduce the channel cross-sectional area S2 of the water channel 104 than in the third embodiment while maintaining good insertability into the outer tube 105. .

この場合、楕円促進体93断面部の楕円における長辺側の直径(長直径と呼ぶ)D2Lは内管103の外径Dの約0.96倍であり、楕円の短辺側の直径(短直径と呼ぶ)D2Sは内管103の外径Dの約0.62倍となる。このとき、楕円促進体93がない場合に対して、流路断面積S2は0.64倍に減少し、水流速は約1.56倍に増加する。   In this case, the long side diameter (referred to as the long diameter) D2L of the ellipse in the cross section of the ellipse accelerator 93 is about 0.96 times the outer diameter D of the inner tube 103, and the short side diameter (short) D2S (referred to as the diameter) is approximately 0.62 times the outer diameter D of the inner tube 103. At this time, the channel cross-sectional area S2 is reduced by 0.64 times and the water flow velocity is increased by about 1.56 times compared to the case where the ellipsoidal accelerator 93 is not provided.

したがって、水側熱伝達率が水流速の0.8乗に比例すると仮定すると、楕円促進体93を2本挿入した時の水側熱伝達率は、楕円促進体93がない場合に対して1.43倍になり実施の形態2よりも更に伝熱促進されることとなる。   Therefore, assuming that the water-side heat transfer coefficient is proportional to the 0.8th power of the water flow velocity, the water-side heat transfer coefficient when two ellipsoidal accelerators 93 are inserted is 1 compared to the case where the ellipsoidal accelerator 93 is not provided. .43 times and heat transfer is further promoted than in the second embodiment.

さらに、楕円促進体93と外管105との最小隙間は、内管103と外管105との最小隙間と略同等の隙間を確保しているので、楕円促進体93を設けてない場合と同様の挿入性を維持しつつ、伝熱促進効果を引き出すことができる。このため、高い熱交換能力が得られる熱交換器を、容易に製造できる。   Furthermore, since the minimum gap between the ellipsoidal accelerator 93 and the outer tube 105 is substantially the same as the minimum gap between the inner tube 103 and the outer tube 105, it is the same as when the ellipse promoter 93 is not provided. The heat transfer promoting effect can be brought out while maintaining the insertion property. For this reason, the heat exchanger from which a high heat exchange capability is obtained can be manufactured easily.

(実施の形態5)
図5は、同実施の形態5における熱交換器の管断面図である。実施の形態4と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 5)
FIG. 5 is a pipe cross-sectional view of the heat exchanger in the fifth embodiment. About the same structure as Embodiment 4, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

伝熱促進体としての扇形促進体94は略扇形なる断面形状を有し、2本の内管103とともに、互いに螺旋状にねじり合わされ固定されている。   A fan-shaped accelerator 94 as a heat transfer accelerator has a substantially fan-shaped cross section, and is twisted together and fixed together with the two inner tubes 103.

かかる構成とすることにより、扇形促進体94によって、外管105への挿入性を良好に保ちつつ、水用流路104の流路断面積S3を実施の形態4よりも更に小さくでき乱流促進を大幅に可能とするものである。   By adopting such a configuration, the fan-shaped promotion body 94 can maintain the insertability to the outer tube 105 well, and can further reduce the channel cross-sectional area S3 of the water channel 104 compared with the fourth embodiment, thereby promoting turbulence. Is greatly possible.

この場合、扇形促進体94断面部の扇の半径D3は内管103の外径Dの約0.76倍、扇形の中心角は約110度となる。このとき、扇形促進体94がない場合に対して、流路断面積S3は0.57倍に減少し、水流速は約1.75倍に増加する。したがって、水側熱伝達率が水流速の0.8乗に比例すると仮定すると、扇形促進体93を2本挿入した時の水側熱伝達率は、扇形促進体94がない場合に対して1.56倍になり実施の形態3よりも更に伝熱促進されることとなる。   In this case, the sector radius D3 of the cross section of the sectoral accelerator 94 is about 0.76 times the outer diameter D of the inner tube 103, and the sectoral central angle is about 110 degrees. At this time, the channel cross-sectional area S3 is reduced by 0.57 times and the water flow velocity is increased by about 1.75 times as compared with the case where there is no fan-shaped promotion body 94. Therefore, assuming that the water-side heat transfer coefficient is proportional to the 0.8th power of the water flow velocity, the water-side heat transfer coefficient when two fan-shaped accelerators 93 are inserted is 1 compared to the case where the fan-shaped accelerator 94 is not provided. The heat transfer is further accelerated than in the third embodiment.

さらに、扇形促進体93と外管105との最小隙間は、内管103と外管105との最小隙間と略同等の隙間を確保しているので、楕円促進体93を設けてない場合と同様の挿入性を維持しつつ、伝熱促進効果を引き出すことができる。このため、高い熱交換能力が得られる熱交換器を、容易に製造できる。   Furthermore, since the minimum clearance between the fan-shaped promotion body 93 and the outer tube 105 is substantially the same as the minimum clearance between the inner tube 103 and the outer tube 105, the same as in the case where the elliptical promotion body 93 is not provided. The heat transfer promoting effect can be brought out while maintaining the insertion property. For this reason, the heat exchanger from which a high heat exchange capability is obtained can be manufactured easily.

なお、以上の実施の形態では、伝熱促進体90〜92、楕円促進体93、扇形促進体94の本数を2本としているが、1本もしくは3本以上の本数としても同様の作用効果を期待することができる。また、外管105、内管103を銅製としたが、少なくともいずれか一方を真鍮、ステンレス、耐食性を持った鉄、アルミ合金等を材料として構成しても、同様の作用効果が期待できる。伝熱促進体90〜92、楕円促進体93、扇形促進体94の材料としては、銅、真鍮、ステンレス、アルミ合金などの金属材料や、架橋ポリエチレンなどの樹脂材料を採用できる。   In the above embodiment, the number of the heat transfer promoting bodies 90 to 92, the elliptical promoting body 93, and the sector shaped promoting body 94 is two, but the same effect can be obtained even if the number is one or three or more. You can expect. Further, although the outer tube 105 and the inner tube 103 are made of copper, similar effects can be expected if at least one of them is made of brass, stainless steel, corrosion-resistant iron, aluminum alloy, or the like. As materials for the heat transfer promoting bodies 90 to 92, the elliptical promoting body 93, and the sector shaped promoting body 94, metal materials such as copper, brass, stainless steel, and aluminum alloy, and resin materials such as crosslinked polyethylene can be employed.

伝熱促進体90〜92、楕円促進体93、扇形促進体94は、必ずしも水用流路の全長にわたって挿入する必要はなく、部分的に挿入することで、局所的に伝熱促進させる構成としてもよい。   The heat transfer promoting bodies 90 to 92, the ellipse promoting body 93, and the fan shaped promoting body 94 do not necessarily need to be inserted over the entire length of the water flow path. Also good.

また、冷媒用流路を流れる冷媒を二酸化炭素としたが、ハイドロカーボン系やHFC系(R410A等)の冷媒、あるいはこれらの代替冷媒とすることも同様の作用効果が期待できる。   Further, although the refrigerant flowing through the refrigerant flow path is carbon dioxide, a similar effect can be expected by using a hydrocarbon or HFC (R410A or the like) refrigerant or an alternative refrigerant thereof.

以上のように、本発明にかかる熱交換器は、製造時の組み立て性を向上させつつ、熱交換能力を向上させることができるもので、冷媒として二酸化炭素を用いた超臨界ヒートポンプ式給湯器や、暖房用ブラインを加熱する超臨界ヒートポンプ装置、さらには、家庭用、業務用の空気調和機、あるいはヒートポンプによる乾燥機能を具備した洗濯乾燥機、穀物貯蔵倉庫等のヒートポンプ機器の他に、燃料電池等の熱交換用途にも適用できる。   As described above, the heat exchanger according to the present invention can improve the heat exchanging ability while improving the assembling property at the time of manufacture, and includes a supercritical heat pump type water heater using carbon dioxide as a refrigerant, In addition to heat pump devices such as supercritical heat pump devices for heating brine for heating, air conditioners for home use and commercial use, washing dryers equipped with a drying function using heat pumps, grain storage warehouses, etc., fuel cells It can also be applied to heat exchange applications such as.

1 熱交換器
90、91、92 伝熱促進体
93 楕円促進体
94 扇形促進体
102 冷媒用流路
103 内管
104 水用流路
105 外管
DESCRIPTION OF SYMBOLS 1 Heat exchanger 90, 91, 92 Heat transfer promotion body 93 Elliptical promotion body 94 Fan-shaped promotion body 102 Refrigerant flow path 103 Inner pipe 104 Water flow path 105 Outer pipe

Claims (6)

内部に第1流体流路を形成する2本の内管と、前記2本の内管の外側に設けられ、前記2本の内管との間に第2流体流路を形成する外管と、前記第2流体流路の流路断面積を減少させる伝熱促進体とを備え、前記伝熱促進体は、前記外管との最小隙間が、前記2本の内管と前記外管との最小隙間と略同等となるように、前記2本の内管のそれぞれと長手方向に沿って線状に接触して固定されたことを特徴とする熱交換器。 Two inner pipes forming a first fluid flow path therein, an outer pipe provided outside the two inner pipes and forming a second fluid flow path between the two inner pipes; A heat transfer facilitator that reduces the cross-sectional area of the second fluid flow path, and the heat transfer facilitator has a minimum gap between the outer pipe and the two inner pipes and the outer pipe. A heat exchanger characterized by being fixed in linear contact with each of the two inner pipes in the longitudinal direction so as to be substantially the same as the minimum gap. 前記伝熱促進体は、前記2本の内管とともに螺旋状に絡み合うように捻って固定されたことを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the heat transfer promoting body is twisted and fixed so as to be intertwined with the two inner tubes in a spiral shape. 前記伝熱促進体は、前記第2流体流路の流路断面積を減少させる主要部と、前記主要部より断面積が小さい端部とを有することを特徴とする請求項1または2に記載の熱交換器。 The said heat-transfer promoter has a main part which reduces the flow-path cross-sectional area of the said 2nd fluid flow path, and an edge part whose cross-sectional area is smaller than the said main part, The Claim 1 or 2 characterized by the above-mentioned. Heat exchanger. 前記伝熱促進体の断面が略円形であることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a cross section of the heat transfer promoting body is substantially circular. 前記伝熱促進体の断面が略楕円形であることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a cross section of the heat transfer promoting body is substantially elliptical. 前記伝熱促進体の断面が略扇形であることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a cross section of the heat transfer promoting body is substantially fan-shaped.
JP2010026196A 2010-02-09 2010-02-09 Heat exchanger Expired - Fee Related JP4947162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026196A JP4947162B2 (en) 2010-02-09 2010-02-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026196A JP4947162B2 (en) 2010-02-09 2010-02-09 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2011163640A true JP2011163640A (en) 2011-08-25
JP4947162B2 JP4947162B2 (en) 2012-06-06

Family

ID=44594545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026196A Expired - Fee Related JP4947162B2 (en) 2010-02-09 2010-02-09 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4947162B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120008A (en) * 2011-12-07 2013-06-17 Panasonic Corp Heat exchanger
WO2015107970A1 (en) * 2014-01-17 2015-07-23 シーアイ化成株式会社 Heat transfer tube for heat exchanger and heat exchanger
RU173387U1 (en) * 2016-11-15 2017-08-24 Общество с ограниченной ответственностью "Прогресс" SECTIONAL COIL HEAT EXCHANGER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144351A (en) * 1974-05-09 1975-11-20
JPS6213229A (en) * 1985-07-10 1987-01-22 Mitsubishi Electric Corp Manufacture of heat exchanger
JPS63197975A (en) * 1987-02-12 1988-08-16 Ricoh Co Ltd Recorder
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2003156294A (en) * 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd Duplex tube heat exchanger, its manufacturing method and secondary refrigerant type air conditioner using duplex tube heat exchanger
JP2007064514A (en) * 2005-08-29 2007-03-15 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144351A (en) * 1974-05-09 1975-11-20
JPS6213229A (en) * 1985-07-10 1987-01-22 Mitsubishi Electric Corp Manufacture of heat exchanger
JPS63197975A (en) * 1987-02-12 1988-08-16 Ricoh Co Ltd Recorder
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2003156294A (en) * 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd Duplex tube heat exchanger, its manufacturing method and secondary refrigerant type air conditioner using duplex tube heat exchanger
JP2007064514A (en) * 2005-08-29 2007-03-15 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120008A (en) * 2011-12-07 2013-06-17 Panasonic Corp Heat exchanger
WO2015107970A1 (en) * 2014-01-17 2015-07-23 シーアイ化成株式会社 Heat transfer tube for heat exchanger and heat exchanger
JP2015135210A (en) * 2014-01-17 2015-07-27 シーアイ化成株式会社 Heat transfer tube for heat exchanger and heat exchanger
RU173387U1 (en) * 2016-11-15 2017-08-24 Общество с ограниченной ответственностью "Прогресс" SECTIONAL COIL HEAT EXCHANGER

Also Published As

Publication number Publication date
JP4947162B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP6172950B2 (en) Double tube for heat exchanger
KR101608996B1 (en) Heat exchanger
KR20040050853A (en) Double-pipe heat exchanger
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP4947162B2 (en) Heat exchanger
JP6211313B2 (en) Triple tube heat exchanger
WO2011162170A1 (en) Double tube for heat exchanger
JP2012007771A (en) Heat exchanger
JP2010038429A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2009264644A (en) Heat exchanger
JP5157617B2 (en) Heat exchanger
JP7199842B2 (en) water heat exchanger, gas cooler
JP2005030619A (en) Double tube, and double tube type heat exchanger using it
JP2012007773A (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
WO2012017777A1 (en) Double pipe for heat exchanger
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP2010112565A (en) Heat exchanger
JP5533328B2 (en) Heat exchanger
JP2010210137A (en) Heat exchanger
JP5431210B2 (en) Heat transfer tube and heat exchanger
JP2010032183A (en) Heat exchanger
JP2006078017A (en) Tube type heat exchanger and water heater with this
JP2010249472A (en) Heat exchanger and heat pump water heater using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4947162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees