JP2011163106A - Control device of motor - Google Patents

Control device of motor Download PDF

Info

Publication number
JP2011163106A
JP2011163106A JP2010047100A JP2010047100A JP2011163106A JP 2011163106 A JP2011163106 A JP 2011163106A JP 2010047100 A JP2010047100 A JP 2010047100A JP 2010047100 A JP2010047100 A JP 2010047100A JP 2011163106 A JP2011163106 A JP 2011163106A
Authority
JP
Japan
Prior art keywords
electric motor
inertia
angular acceleration
inertial body
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010047100A
Other languages
Japanese (ja)
Other versions
JP2011163106A5 (en
Inventor
Hideaki Yoshimatsu
英昭 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HY KK
Original Assignee
HY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HY KK filed Critical HY KK
Priority to JP2010047100A priority Critical patent/JP2011163106A/en
Publication of JP2011163106A publication Critical patent/JP2011163106A/en
Publication of JP2011163106A5 publication Critical patent/JP2011163106A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of a motor, which can obtain a good operation feeling while controlling angular acceleration not to be increased excessively even for a small inertia, in driving of the inertia to change greatly corresponding to an operation state and a loading state. <P>SOLUTION: The control device of a motor to be driven through a drive system with the inertia smaller than that of an inertia body, includes an operation means or a loading means to change in the inertia magnitude depending on the operation state or the loading state, wherein the maximum value of the angular acceleration of the motor is limited to a predetermined value not higher than the angular acceleration for accelerating the minimum value of the inertia body with an output torque from the motor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、油圧ショベルの旋回や車両の走行のような、大きな慣性負荷を駆動する電動機の制御装置に関する。  The present invention relates to a control device for an electric motor that drives a large inertia load such as turning of a hydraulic excavator or traveling of a vehicle.

油圧ショベルの旋回において、エネルギー損失の少ない電動機による電動駆動方式が採用されている。電動駆動で走行するホイールローダや電気自動車も商品化されている。電動駆動方式は、電動機を減速させるときに発電機機能として制動エネルギーを回生できるという利点もある。  In the swing of a hydraulic excavator, an electric drive system using an electric motor with little energy loss is adopted. Wheel loaders and electric vehicles that run on electric drive have been commercialized. The electric drive system also has an advantage that braking energy can be regenerated as a generator function when the motor is decelerated.

しかしながら、油圧ショベルの旋回では、作業姿勢や負荷の大小に応じて旋回慣性が大きく変化するため、旋回慣性が小さい際には、旋回最大トルクで加減速を行うと角加速度が大きくなりすぎて急加速し、操作感覚が悪くなるという問題がある。  However, when turning a hydraulic excavator, the turning inertia changes greatly depending on the working posture and the load, so when the turning inertia is small, if acceleration / deceleration is performed with the maximum turning torque, the angular acceleration becomes too large and suddenly increases. There is a problem that it accelerates and the operation feeling becomes worse.

また、車両の走行では、電動機による加減速が大きすぎると、駆動輪がスリップして走行が不安定になるという問題がある。  Further, when the vehicle is traveling, if the acceleration / deceleration by the electric motor is too large, there is a problem that the driving wheel slips and the traveling becomes unstable.

このような問題を解消するために、慣性が変化した際の操作感覚改善を目的として、油圧ショベルの旋回電動駆動で、慣性体を作動させるときの旋回加速度を調整する手段が提案されている(例えば、特許文献1参照)。あるいは、走行車両で、駆動輪のスリップを検出して、スリップしないように、あるいは最適なスリップ率となるように駆動力を制御する手段が提案されている(例えば、特許文献2参照)。  In order to solve such a problem, a means for adjusting the turning acceleration when the inertial body is actuated by the turning electric drive of the hydraulic excavator has been proposed for the purpose of improving the operational feeling when the inertia changes ( For example, see Patent Document 1). Alternatively, there has been proposed a means for detecting slipping of driving wheels in a traveling vehicle and controlling the driving force so as not to slip or to achieve an optimum slip rate (see, for example, Patent Document 2).

特開2009−68197号公報JP 2009-68197 A 特開2008−167624号公報JP 2008-167624 A

特許文献1に記載されたものは、旋回加速度を設定する調整ボリュームを設けて、オペレータが調整ボリュームを使って好みの旋回加速度を選んで設定できるようにして、レバー操作量に応じた旋回の速度制御を行うとともに設定した加速度で加速できるようにしているので、旋回慣性が小さい場合に旋回角加速度が大きくなりすぎて操作感覚が悪くなるという問題を解決することができる。しかし、作業状態によって旋回加速度の設定を頻繁に切り換えるのは、オペレータにとって煩雑で実用的ではない。設定をいずれかの値に固定して変更しなければ、それは発明の趣旨にそぐわない訳であるが、作業状態の変化に関わらず加速度が一定になって、作業状態の変化を感じにくいという問題がある。  The device disclosed in Patent Document 1 is provided with an adjustment volume for setting the turning acceleration so that the operator can select and set a favorite turning acceleration by using the adjustment volume, and the turning speed according to the lever operation amount. Since control is performed and acceleration can be performed with the set acceleration, the problem that the turning angular acceleration becomes too large and the operational feeling becomes worse when the turning inertia is small can be solved. However, it is complicated and impractical for the operator to frequently change the setting of the turning acceleration depending on the work state. Unless the setting is fixed to any value and changed, it does not fit the spirit of the invention, but the acceleration is constant regardless of the change in the work state, and it is difficult to feel the change in the work state. is there.

特許文献2に記載されたものは、走行路面と駆動輪との最大摩擦係数を取得して、スリップを生じることのない出力可能な最大駆動力を算出し、スリップを検出して、スリップの有無によって駆動力を変えて制御することにより、走行の安定性と適切な加速性を確保している。しかし、駆動輪と路面のスリップを検出するための高性能な車速センサあるいは車体加速度センサが必要になってコスト高になるという問題がある。また、スリップ率による最大摩擦係数の変化を利用して制御を行うと、スリップによって駆動輪が摩耗するという問題や、氷雪道路の発進時にスリップを許容して走行不安定を起こすという問題が生じる。  In Patent Document 2, the maximum friction coefficient between the traveling road surface and the drive wheels is obtained, the maximum driving force that can be output without causing the slip is calculated, the slip is detected, and the presence or absence of the slip is detected. By controlling by changing the driving force, the stability of driving and proper acceleration are ensured. However, there is a problem that a high-performance vehicle speed sensor or a vehicle body acceleration sensor for detecting a slip between the driving wheel and the road surface is required, resulting in an increase in cost. In addition, when the control is performed by utilizing the change in the maximum friction coefficient due to the slip ratio, there arises a problem that the drive wheels are worn by the slip, and a problem that the slip is allowed when starting on an icy and snowy road and the running becomes unstable.

そこで、本発明の課題は、作業状態や載荷状態に応じて旋回慣性が大きく変化する油圧ショベルの旋回駆動に適用すると、旋回角加速度の設定を切り換える必要が無くて、旋回慣性が小さい場合には角加速度が大きくなり過ぎず、作業状態に応じて角加速度も変化して、良好な操作感覚が得られる電動機の制御装置を提供することである。あるいは、車両の走行駆動に適用すると、高価な車速センサや車体加速度センサを必要とせずに、駆動輪のスリップを抑制して加速や減速ができる電動機の制御装置を提供することである。  Therefore, when the present invention is applied to the turning drive of a hydraulic excavator whose turning inertia greatly changes depending on the working state and the loaded state, it is not necessary to switch the setting of turning angular acceleration, and the turning inertia is small. It is an object of the present invention to provide a motor control device in which the angular acceleration does not become excessively large and the angular acceleration changes according to the work state, and a good operational feeling can be obtained. Alternatively, when applied to driving of a vehicle, there is provided an electric motor control device that can accelerate and decelerate by suppressing slipping of drive wheels without requiring an expensive vehicle speed sensor or vehicle body acceleration sensor.

前記の課題を解決するために、本発明は、駆動される慣性体の慣性より小さい慣性を有する駆動系を介して慣性体を駆動する電動機の回転を、操作量を可変とする操作端の操作によって制御し、前記操作端の操作量を検出する操作検出手段と、前記電動機の回転を検出する回転検出手段と、前記操作検出手段と前記回転検出手段の各検出値に基づいて前記電動機を制御する電動機制御手段とを備えた電動機の制御装置において、前記慣性体は作業状態あるいは載荷状態で慣性の大きさが変化する作業手段あるいは載荷手段を含み、前記電動機の加速あるいは減速を行う際に、前記電動機の角加速度の最大値を、前記電動機の出力トルクによって前記慣性体の最小値を加速する角加速度以下の所定の値に制限することを特徴とする構成を採用した。  In order to solve the above-mentioned problems, the present invention provides an operation of operating the operating end to change the operation amount of the rotation of the electric motor that drives the inertial body through a drive system having an inertia smaller than the inertia of the driven inertial body. And an operation detecting means for detecting the operation amount of the operating end, a rotation detecting means for detecting the rotation of the electric motor, and controlling the electric motor based on detection values of the operation detecting means and the rotation detecting means. In the motor control device comprising the motor control means, the inertial body includes a work means or a loading means whose magnitude of inertia changes in a working state or a loaded state, and when accelerating or decelerating the motor, A configuration is adopted in which the maximum value of the angular acceleration of the electric motor is limited to a predetermined value equal to or less than the angular acceleration that accelerates the minimum value of the inertial body by the output torque of the electric motor. .

また、前記の課題を解決するために、本発明は、前記電動機の角加速度の最大値を、前記電動機の最大出力トルクによって前記慣性体の慣性の最小値を加速する角加速度以下の所定の値に制限することを特徴とする構成を採用した。  In order to solve the above problem, the present invention provides a predetermined value equal to or less than an angular acceleration at which the maximum value of angular acceleration of the electric motor is accelerated by the maximum output torque of the electric motor to minimize the minimum value of inertia of the inertial body. The structure characterized by limiting to is adopted.

前記電動機で駆動する慣性体は、油圧ショベルの旋回体および旋回体に搭載される作業装置からなる慣性体とすることができる。  The inertial body driven by the electric motor can be an inertial body composed of a swing body of a hydraulic excavator and a work device mounted on the swing body.

前記電動機で駆動する慣性体は、駆動輪の摩擦で駆動力を得て走行する走行体とすることができる。  The inertial body driven by the electric motor can be a traveling body that travels by obtaining a driving force by friction of driving wheels.

本発明の電動機の制御装置は、駆動される慣性体の慣性より小さい慣性を有する駆動系を介して慣性体を駆動する電動機の回転を、操作量を可変とする操作端の操作によって制御し、前記操作端の操作量を検出する操作検出手段と、前記電動機の回転を検出する回転検出手段と、前記操作検出手段と前記回転検出手段の各検出値に基づいて前記電動機を制御する電動機制御手段とを備えた電動機の制御装置において、前記慣性体は作業状態あるいは載荷状態で慣性の大きさが変化する作業手段あるいは載荷手段を含み、前記電動機の加速あるいは減速を行う際に、前記電動機の角加速度の最大値を、前記電動機の出力トルクによって前記慣性体の最小値を加速する角加速度以下の所定の値に制限することを特徴とする構成を採用することにより、油圧ショベルの旋回駆動に適用すると、作業姿勢や負荷の大小に応じて旋回慣性が小さい場合にも、旋回加速や減速の際の角加速度が大きくなりすぎず、急激な加速をせずに良好な操作感覚を得ることができるという効果がある。  The motor control device of the present invention controls the rotation of the electric motor that drives the inertial body via a drive system having an inertia smaller than the inertia of the driven inertial body by operating the operation end with a variable operation amount, Operation detection means for detecting the operation amount of the operation end, rotation detection means for detecting rotation of the electric motor, and electric motor control means for controlling the electric motor based on detection values of the operation detection means and the rotation detection means. The inertial body includes working means or loading means whose magnitude of inertia changes in a working state or a loaded state, and when the motor is accelerated or decelerated, an angle of the motor By adopting a configuration in which the maximum value of acceleration is limited to a predetermined value equal to or less than the angular acceleration that accelerates the minimum value of the inertial body by the output torque of the electric motor. When applied to the swing drive of a hydraulic excavator, even when the swing inertia is small depending on the working posture and load, the angular acceleration during swing acceleration and deceleration does not become too large, and it is good without sudden acceleration There is an effect that a sense of operation can be obtained.

車両の走行駆動に適用すると、高価な車速センサや車体加速度センサを必要とせずに、駆動輪のスリップを抑制して加速や減速ができる。駆動輪のスリップを抑制することにより、駆動輪の摩耗の低減や、氷雪道路発進時の走行不安定を防止することができるという効果がある。  When applied to vehicle driving, it is possible to accelerate and decelerate by suppressing slipping of driving wheels without requiring an expensive vehicle speed sensor or vehicle body acceleration sensor. By suppressing the slip of the drive wheel, there are effects that it is possible to reduce the wear of the drive wheel and to prevent running instability when starting on an icy and snowy road.

また、本発明の電動機の制御装置は、前記電動機の角加速度の最大値を、前記電動機の最大出力トルクによって前記慣性体の慣性の最小値を加速する角加速度以下の所定の値に制限することを特徴とする構成を採用することにより、油圧ショベルの旋回作動などのように、操作レバーをフル操作して電動機の最大出力トルクが短時間に出力しても、小さな旋回慣性の加速や減速の際の角加速度が大きくなりすぎず、慣性の大きさに応じて角加速度も変化して、良好な操作感覚を得ることができるという効果がある。  In the motor control device of the present invention, the maximum value of the angular acceleration of the motor is limited to a predetermined value equal to or less than the angular acceleration that accelerates the minimum value of inertia of the inertial body by the maximum output torque of the motor. By adopting a configuration that features a small swing inertia acceleration and deceleration even when the operation lever is fully operated and the maximum output torque of the motor is output in a short time, such as a swing operation of a hydraulic excavator. The angular acceleration at the time does not become too large, and the angular acceleration also changes according to the magnitude of inertia, so that an excellent operational feeling can be obtained.

以下、図面に基づき、本発明の実施形態を説明する。図1は、本発明に係る電動機の制御装置を組み込んだ油圧ショベルを示す。この油圧ショベルは、クローラ式の下部走行体31と、下部走行体31に図示しない旋回ベアリングで旋回自在に結合された上部旋回体32と、この上部旋回体32の前部に装着された掘削アタッチメント33とから成る。掘削アタッチメント33は、ブーム34、アーム35およびバケット36と、これらを作動させるブームシリンダ34a、アームシリンダ35aおよびバケットシリンダ36aを具備している。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a hydraulic excavator incorporating an electric motor control device according to the present invention. The hydraulic excavator includes a crawler-type lower traveling body 31, an upper revolving body 32 that is pivotably coupled to the lower traveling body 31 by a revolving bearing (not shown), and a drilling attachment that is attached to a front portion of the upper revolving body 32. 33. The excavation attachment 33 includes a boom 34, an arm 35 and a bucket 36, and a boom cylinder 34a, an arm cylinder 35a and a bucket cylinder 36a for operating them.

旋回の慣性体は、上部旋回体32と掘削アタッチメント33、および、バケット36内の土砂などから構成され、掘削アタッチメント33の状態とバケット36内の土砂などの有無や量により変化する。ブームシリンダ34a、アームシリンダ35a、バケットシリンダ36aを完全に伸張させて、かつ、バケット36内に何も入っていない場合に、前記慣性体の慣性はほぼ最小になる。狭い場所で旋回する場合に、掘削アタッチメントが周囲の物にあたらないようにするための作業姿勢である。バケット36が旋回半径の大きな位置にあって、内部に最大の重量物が入っていると、前記慣性体の慣性は最大になる。  The inertial body of the swing is composed of the upper swing body 32, the excavation attachment 33, and the earth and sand in the bucket 36, and changes depending on the state of the excavation attachment 33 and the presence and amount of the earth and sand in the bucket 36. When the boom cylinder 34a, the arm cylinder 35a, and the bucket cylinder 36a are fully extended and nothing is contained in the bucket 36, the inertia of the inertial body is almost minimized. This is a work posture for preventing the excavation attachment from hitting surrounding objects when turning in a narrow place. If the bucket 36 is at a position where the turning radius is large and a maximum weight is contained therein, the inertia of the inertial body is maximized.

上部旋回体32には、図示しないエンジンや、エンジン駆動によって駆動される図示しない油圧ポンプなどの油圧駆動装置と、発電機5、バッテリやキャパシタ等の蓄電装置7、および、図3に示すように、上部旋回体32を旋回作動させる電動機1と減速機41が搭載されている。減速機構の最終段では、減速機41の図示しない出力軸ピニオンが図示しない旋回ベアリングのインターナルギヤと噛み合って最終段減速機42を構成し、上部旋回体32を旋回させる。減速機41の内部のバックラッシュに比べて、最終段減速機42の出力軸ピニオンと旋回ベアリングのインターナルギヤとの間のバックラッシュはかなり大きな値である。油圧ポンプの吐出油は、図示しない走行用油圧モータとブーム34、アーム35およびバケット36の各シリンダ34a、35a、36aに、それぞれ図示しない制御弁を介して供給される。また、発電機5の電力は、図2に示すようにコンバータ6で電圧、電流が制御されて蓄電装置7に蓄えられるとともに、後述するインバータ4を介して電動機1に供給される。電動機1は永久磁石を回転子とする永久磁石式モータであり、本発明に係る電動機の制御装置は、この電動機1を制御して上部旋回体32を旋回作動させるものである。  The upper swing body 32 includes an unillustrated engine, a hydraulic drive device such as an unillustrated hydraulic pump driven by the engine drive, a power storage device 7 such as a generator 5, a battery, and a capacitor, and as shown in FIG. The electric motor 1 and the speed reducer 41 that turn the upper swing body 32 are mounted. In the final stage of the speed reduction mechanism, an output shaft pinion (not shown) of the speed reducer 41 meshes with an internal gear of a swing bearing (not shown) to form the final stage speed reducer 42, and the upper swing body 32 is turned. Compared with the backlash inside the reduction gear 41, the backlash between the output shaft pinion of the final stage reduction gear 42 and the internal gear of the slewing bearing is a considerably large value. The oil discharged from the hydraulic pump is supplied to a traveling hydraulic motor (not shown) and the cylinders 34a, 35a, 36a of the boom 34, arm 35 and bucket 36 via control valves (not shown). Further, as shown in FIG. 2, the power of the generator 5 is controlled by the converter 6 so that the voltage and current are controlled and stored in the power storage device 7, and also supplied to the electric motor 1 via the inverter 4 described later. The electric motor 1 is a permanent magnet type motor having a permanent magnet as a rotor, and the electric motor control device according to the present invention controls the electric motor 1 to rotate the upper swing body 32.

図2は、本発明に係わる前記電動機1の制御装置の構成を示すブロック図である。この制御装置は、操作端2の操作量Xを検出する操作検出手段2aと、電動機1の角速度Nを検出する回転検出手段1aと、これらの検出された操作端2の操作量Xと電動機1の角速度Nから、電動機1の出力トルクの目標値Toを演算する演算手段としてのコントローラ3と、発電機5または蓄電装置から供給される電力に対して、電動機1の出力トルクをコントローラ3で演算された目標トルクToに制御する電動機制御手段としてのインバータ4とで構成されている。油圧ショベルの旋回の場合には操作端2は操作レバーであり、車両の走行の場合には操作端2はペダルである。  FIG. 2 is a block diagram showing the configuration of the control device for the electric motor 1 according to the present invention. The control device includes an operation detection unit 2a that detects an operation amount X of the operation end 2, a rotation detection unit 1a that detects an angular velocity N of the electric motor 1, and the detected operation amount X of the operation end 2 and the electric motor 1. The controller 3 as a calculation means for calculating the target value To of the output torque of the electric motor 1 from the angular velocity N of the motor and the controller 3 calculates the output torque of the electric motor 1 with respect to the electric power supplied from the generator 5 or the power storage device. And an inverter 4 as motor control means for controlling the target torque To. When the excavator is turning, the operation end 2 is an operation lever, and when the vehicle is traveling, the operation end 2 is a pedal.

コントローラ3による演算と制御は、操作量Xと電動機1の角速度Nとに応じた電動機1のトルク制御でも良いし(例えば、WO2008/041395)、あるいは、操作量Xと電動機1の角速度Nとに応じた電動機1の角速度制御でも良い(例えば、特開2001−10783)。インバータ4の信号変換回路4aで目標トルク信号Toを目標電流信号Ioに変換し、電流制御回路4bで電動機1への出力電流Iを目標電流Ioとするようにフィードバック制御する。  The calculation and control by the controller 3 may be torque control of the electric motor 1 according to the operation amount X and the angular velocity N of the electric motor 1 (for example, WO2008 / 041395), or the operation amount X and the angular velocity N of the electric motor 1 may be adjusted. The corresponding angular velocity control of the electric motor 1 may be used (for example, Japanese Patent Application Laid-Open No. 2001-10783). The signal conversion circuit 4a of the inverter 4 converts the target torque signal To into the target current signal Io, and the current control circuit 4b performs feedback control so that the output current I to the motor 1 becomes the target current Io.

図5は、本発明に係わる電動機1の出力トルクと角加速度の関係を示すグラフである。駆動系の慣性モーメントは、電動機1と減速機41および最終段減速機42のそれぞれの回転部分の慣性モーメントの総和である。前記慣性体の最小慣性モーメントは、前記駆動系の慣性モーメントの数倍から10倍程度の大きさであり、前記慣性体の最大慣性モーメントは、前記慣性体の最小慣性モーメントの数倍程度の大きさである。直線Cは前記駆動系の慣性を加速する際の特性、直線Dは前記慣性体の最小慣性を加速する際の特性、直線Eは前記慣性体の最大慣性を加速する際の特性を示す。損失などを考慮しなければ、角加速度は慣性モーメントに反比例し加速トルクに比例するので、同一のトルクで加速する場合には、慣性モーメントが小さいほど角加速度は大きくなる。前記慣性体の加速は、油圧ショベルの作業状態などに応じて、前記直線Dと前記直線Eの間で行われる。  FIG. 5 is a graph showing the relationship between the output torque and the angular acceleration of the electric motor 1 according to the present invention. The inertial moment of the drive system is the sum of the inertial moments of the rotating portions of the electric motor 1, the speed reducer 41, and the final stage speed reducer 42. The minimum inertia moment of the inertial body is about several to ten times the inertial moment of the drive system, and the maximum inertial moment of the inertial body is about several times the minimum inertia moment of the inertial body. That's it. A straight line C represents a characteristic for accelerating the inertia of the drive system, a straight line D represents a characteristic for accelerating the minimum inertia of the inertial body, and a straight line E represents a characteristic for accelerating the maximum inertia of the inertial body. If the loss is not taken into account, the angular acceleration is inversely proportional to the moment of inertia and proportional to the acceleration torque. Therefore, when accelerating with the same torque, the smaller the moment of inertia, the larger the angular acceleration. The inertial body is accelerated between the straight line D and the straight line E according to the working state of the excavator.

例えば、電動機1の出力トルクがT1の場合には、前記駆動系の角加速度は最終的にα11となる。電動機1から前記駆動系が順に加速して減速機41の内部の歯車が順にかみ合い、前記出力軸ピニオンと前記旋回ベアリングのインターナルギヤがかみ合って、その後で前記慣性体の駆動が開始される。前記慣性体の慣性が最小の場合には、角加速度α21で加速し、前記慣性体の慣性が最大の場合には角加速度α31で加速する。  For example, when the output torque of the electric motor 1 is T1, the angular acceleration of the drive system is finally α11. The drive system is accelerated in order from the electric motor 1, the gears inside the speed reducer 41 are sequentially engaged, the output shaft pinion and the internal gear of the slewing bearing are engaged, and then the inertial body is started to be driven. When the inertia of the inertial body is minimum, acceleration is performed at an angular acceleration α21, and when the inertia of the inertial body is maximum, acceleration is performed at an angular acceleration α31.

油圧ショベルの旋回の場合には、操作レバーはフル操作する場合が多く、そうすると電動機1の出力トルクは最大値Tmaxが出力される。前記駆動系の慣性は、図3の領域をはみ出して急加速して、最終段減速機42の出力軸ピニオンと旋回ベアリングのインターナルギヤ高速でぶつかってショックが発生する。そして、最終段減速機42の出力軸ピニオンと旋回ベアリングのインターナルギヤがかみ合うと、前記慣性体の慣性が最小の場合には、角加速度α2mで加速し、前記慣性体の慣性が最大の場合には角加速度α3mで加速する。角速度が最大値になるまでの時間は、前記慣性体の慣性が最大の場合には数秒かかるが、前記慣性体の慣性が最小値の場合には1秒以下となって、加速が急すぎて、オペレータにとって操作感覚が悪い。  In the case of turning of the hydraulic excavator, the operation lever is often fully operated, and as a result, the output torque of the electric motor 1 is output at the maximum value Tmax. The inertia of the drive system suddenly accelerates beyond the region shown in FIG. 3, and a shock is generated when the output shaft pinion of the final stage reduction gear 42 and the internal gear of the swing bearing collide at high speed. When the output shaft pinion of the final stage reduction gear 42 and the internal gear of the slewing bearing mesh with each other, when the inertia of the inertial body is minimum, the inertial body is accelerated with an angular acceleration α2m, and the inertial body of the inertial body is maximum. Is accelerated with an angular acceleration α3 m. The time until the angular velocity reaches the maximum value takes several seconds when the inertia of the inertial body is maximum, but is less than 1 second when the inertia of the inertial body is minimum, and the acceleration is too rapid. The operation feeling is bad for the operator.

本発明では、電動機1の角加速度の最大値を、前記慣性体の慣性が最小の場合の加速特性を示す直線Dよりも角加速度が小さい直線Aに制限する。直線Aは電動機1の出力トルクに応じて比例関係に定められている。そうすると、電動機1の全ての出力トルクに対して直線Aよりも大きな角加速度は出力されず、操作感覚が向上する。操作端2が急操作された場合にも、電動機1の最大出力トルクTmaxの場合の角加速度も最大値がα0mに制限され、急激な加速が抑制されて操作感覚が大きく向上する。最終段減速機42の出力軸ピニオンの加速が大幅に小さな値になるので、旋回ベアリングのインターナルギヤにぶつかる際の歯面速度が遅くなって、ショックが大幅に低減するという付帯効果も生じる。  In the present invention, the maximum value of the angular acceleration of the electric motor 1 is limited to the straight line A having a smaller angular acceleration than the straight line D indicating the acceleration characteristic when the inertia of the inertial body is minimum. The straight line A is determined in proportion to the output torque of the electric motor 1. If it does so, an angular acceleration larger than the straight line A will not be output with respect to all the output torques of the electric motor 1, and an operation feeling will improve. Even when the operation end 2 is suddenly operated, the maximum value of the angular acceleration in the case of the maximum output torque Tmax of the electric motor 1 is also limited to α0 m, and rapid acceleration is suppressed, so that the operational feeling is greatly improved. Since the acceleration of the output shaft pinion of the final stage speed reducer 42 becomes a significantly small value, the tooth surface speed when hitting the internal gear of the slewing bearing becomes slow, and the incidental effect that the shock is greatly reduced also occurs.

電動機1の角加速度の最大値を、前記慣性体の慣性が最小の場合の加速特性を示す直線Dよりも小さい直線Bに制限することも可能である。直線Bは電動機1の出力トルクに無関係に一定の値αbに定められていて、αbは直線Dの最大角速度α2mよりも小さな値である。そうすると、電動機1の角加速度がαbよりも大きくなった場合に角加速度がαbに制限される。操作端2が急操作された場合には、電動機1の出力トルクが大きくなると角加速度の最大値がαbに制限されて、急激な加速が無くなって操作感覚が大きく向上する。  It is also possible to limit the maximum value of the angular acceleration of the electric motor 1 to a straight line B that is smaller than the straight line D indicating the acceleration characteristic when the inertia of the inertial body is minimum. The straight line B is set to a constant value αb irrespective of the output torque of the electric motor 1, and αb is a value smaller than the maximum angular velocity α2m of the straight line D. Then, when the angular acceleration of the electric motor 1 becomes larger than αb, the angular acceleration is limited to αb. When the operation end 2 is suddenly operated, when the output torque of the electric motor 1 is increased, the maximum value of the angular acceleration is limited to αb, so that rapid acceleration is eliminated and the operational feeling is greatly improved.

図6に、本発明に係わる操作量Xと電動機1の角速度Nとに応じた電動機1のトルク制御を行う場合の制御フローチャートを示す。S101で操作量X(t)を計測し、S102で電動機の回転速度N(t)を計測する。S103で、計測したX(t)とN(t)とから、予めメモリに記憶したマップを使って電動機1の目標トルクTo(t)を演算する。S104で、時刻tの角速度N(t)と1サンプリングタイムΔtだけ前の時刻(t−1)の角速度N(t−1)とから、角加速度α(t)を演算する。S105で、演算された角加速度が最大角加速度αmaxより小さいかどうかを判定する。YESであれば、S107で、前段で演算されたTo(t)を出力する。NOであれば、S106で、前段で演算されたTo(t)から予め定めた補正値ΔTを減算してTo(t)を計算し直し、S107で出力する。ここで、最大角加速度αmaxは、直線Aあるいは直線Bで定義されている。  FIG. 6 shows a control flowchart in the case of performing torque control of the electric motor 1 according to the operation amount X and the angular velocity N of the electric motor 1 according to the present invention. In S101, the operation amount X (t) is measured, and in S102, the rotational speed N (t) of the electric motor is measured. In S103, the target torque To (t) of the electric motor 1 is calculated from the measured X (t) and N (t) using a map stored in advance in the memory. In S104, the angular acceleration α (t) is calculated from the angular velocity N (t) at time t and the angular velocity N (t−1) at time (t−1) which is one sampling time Δt before. In S105, it is determined whether the calculated angular acceleration is smaller than the maximum angular acceleration αmax. If YES, in S107, To (t) calculated in the previous stage is output. If NO, in S106, a predetermined correction value ΔT is subtracted from To (t) calculated in the previous stage to recalculate To (t) and output in S107. Here, the maximum angular acceleration αmax is defined by a straight line A or a straight line B.

図7に、本発明に係わる操作量Xと電動機1の角速度Nとに応じた電動機1の速度制御を行う場合の制御フローチャートを示す。S201で操作量X(t)を計測し、S202で電動機1の回転速度N(t)を計測する。S203で、計測したX(t)から、予めメモリに記憶したマップを使って電動機1の目標角速度No(t)を演算する。S204で、時刻tの角速度N(t)と1サンプリングタイムΔtだけ前の時刻(t−1)の角速度N(t−1)とから、角加速度α(t)を演算する。S205で、演算された角加速度が最大角加速度αmaxより小さいかどうかを判定する。YESであれば、S207で、前段で演算されたNo(t)を出力する。NOであれば、S206で、1サンプリングタイム前の角速度N(t−1)から最大角加速度αmaxを使って目標角速度No(t)を計算し直し、S207で出力する。S208で角速度偏差ΔN(t)を演算する。S209で、予めメモリに保存した関係式を使って、角速度偏差から目標トルクTo(t)を演算し、S210で出力する。  FIG. 7 shows a control flowchart in the case where the speed control of the electric motor 1 is performed according to the operation amount X and the angular speed N of the electric motor 1 according to the present invention. In S201, the operation amount X (t) is measured, and in S202, the rotational speed N (t) of the electric motor 1 is measured. In S203, the target angular velocity No (t) of the electric motor 1 is calculated from the measured X (t) using a map stored in advance in the memory. In S204, the angular acceleration α (t) is calculated from the angular velocity N (t) at time t and the angular velocity N (t−1) at time (t−1) that is one sampling time Δt before. In S205, it is determined whether the calculated angular acceleration is smaller than the maximum angular acceleration αmax. If YES, in step S207, No (t) calculated in the previous stage is output. If NO, the target angular velocity No (t) is recalculated using the maximum angular acceleration αmax from the angular velocity N (t−1) one sampling time before in S206, and is output in S207. In S208, the angular velocity deviation ΔN (t) is calculated. In step S209, the target torque To (t) is calculated from the angular velocity deviation using the relational expression stored in advance in the memory, and is output in step S210.

図4は、電動走行車両の走行駆動装置と動力伝達を示した図である。前記走行駆動装置の駆動系の慣性モーメントは、電動機1と変速機・減速機52および駆動輪53のそれぞれの回転部分の慣性モーメントの総和である。走行体51に電動機1と変速機・減速機52、駆動輪53が搭載され、順に動力が伝達される。慣性体は、走行体51と走行体51に乗車する人や載荷物によって構成される(以降、それらを全て含めて走行体51とする)。走行体51の慣性は、前記走行駆動系の慣性よりも桁違いに大きい。駆動輪53の回転は摩擦を介して接地面54に伝達され、走行体51が走行する。駆動輪の回転速度と走行体の走行速度が同一であればスリップはしていない。駆動輪がスリップして、駆動輪の回転速度と走行体の走行速度が異なるということは、駆動輪の加速に走行体の加速が追いつかないということである。走行体の加速度よりも駆動輪の加速度を小さくするか同一にすれば、駆動輪はスリップしない。  FIG. 4 is a diagram showing a travel drive device and power transmission of an electric travel vehicle. The moment of inertia of the drive system of the travel drive device is the sum of the moments of inertia of the rotating portions of the electric motor 1, the transmission / reduction gear 52, and the drive wheels 53. The electric motor 1, the transmission / reduction gear 52, and the drive wheels 53 are mounted on the traveling body 51, and the power is transmitted in order. The inertial body is composed of the traveling body 51, a person who rides on the traveling body 51, and a load (hereinafter, all of them are referred to as the traveling body 51). The inertia of the traveling body 51 is orders of magnitude greater than the inertia of the traveling drive system. The rotation of the drive wheel 53 is transmitted to the ground contact surface 54 through friction, and the traveling body 51 travels. If the rotational speed of the driving wheel and the traveling speed of the traveling body are the same, no slipping occurs. The fact that the driving wheel slips and the rotational speed of the driving wheel and the traveling speed of the traveling body differ from each other means that the acceleration of the traveling body cannot catch up with the acceleration of the driving wheel. If the acceleration of the driving wheel is made smaller or the same as that of the traveling body, the driving wheel will not slip.

電動機1による駆動輪53の加速は、駆動輪53と接地面54との摩擦がゼロとすると図5の直線Cとなるが、実際には摩擦があるので、直線Cよりも小さな角加速度となる。本発明の電動機の制御装置は、前記直線Cよりも小さな角加速度で、さらに、前記走行駆動系の最小慣性の角加速度である直線Dよりも小さな角加速度である直線Aに沿って加速されるので、駆動輪54がスリップする可能性が大きく減少する。  The acceleration of the drive wheel 53 by the electric motor 1 becomes a straight line C in FIG. 5 when the friction between the drive wheel 53 and the ground contact surface 54 is zero. However, since there is actually a friction, the angular acceleration is smaller than the straight line C. . The motor control device according to the present invention is accelerated along a straight line A that is smaller in angular acceleration than the straight line C, and is smaller in angular acceleration than the straight line D that is the minimum inertial angular acceleration of the travel drive system. Therefore, the possibility that the drive wheel 54 slips is greatly reduced.

走行車両に乗車する人や載荷物の質量を、走行車両に搭載したロードセルや荷重センサで計測して、走行体1の質量を推定することができる。あるいは、実走行での電動機1の出力トルクと角加速度を計測して、走行体1の質量を推定する方法もある(特許文献2)。走行体1の質量から走行体1の慣性モーメントは演算できるので、「角加速度=トルク÷慣性モーメント」の関係から、演算した慣性モーメントの値と同じか少し大きな値を使って直線Aの傾きを定めることにより、より確実に駆動輪のスリップを抑制することが可能になる。  The mass of the traveling body 1 can be estimated by measuring the mass of a person or a load loaded on the traveling vehicle with a load cell or a load sensor mounted on the traveling vehicle. Alternatively, there is a method of estimating the mass of the traveling body 1 by measuring the output torque and angular acceleration of the electric motor 1 in actual traveling (Patent Document 2). Since the inertial moment of the traveling body 1 can be calculated from the mass of the traveling body 1, the slope of the straight line A can be calculated by using a value that is the same as or slightly larger than the calculated inertial moment from the relationship of “angular acceleration = torque / inertia moment”. By determining, it becomes possible to more reliably suppress the slip of the drive wheel.

上述した実施形態では、電動機1の出力トルクによって前記慣性体の最小値を加速する角加速度以下の所定の値を、原点を通る直線A、あるいは、値が一定の直線Bとしたが、その二つの直線の組み合わせでも良く、あるいは、複数の直線の組み合わせでも良く、あるいは、曲線でもよい。  In the above-described embodiment, the predetermined value equal to or lower than the angular acceleration for accelerating the minimum value of the inertial body by the output torque of the electric motor 1 is the straight line A passing through the origin or the straight line B having a constant value. It may be a combination of two straight lines, a combination of a plurality of straight lines, or a curve.

本発明に係る電動機の制御装置を組み込んだ油圧ショベルを示す側面図The side view which shows the hydraulic excavator incorporating the control apparatus of the electric motor which concerns on this invention 図1の油圧ショベルに組み込まれた電動機の制御装置の構成を示すブロック図The block diagram which shows the structure of the control apparatus of the electric motor integrated in the hydraulic shovel of FIG. 図1油圧ショベルの旋回駆動系の動力伝達を示す図1 is a diagram showing the power transmission of the swing drive system of the hydraulic excavator 電動走行車両の走行駆動系の動力伝達を示す図The figure which shows the power transmission of the traveling drive system of an electric traveling vehicle 本発明に係わる電動機の所定の角加速度を求めるアルゴリズムを示すグラフThe graph which shows the algorithm which calculates | requires the predetermined angular acceleration of the electric motor concerning this invention 図2のコントローラ内で電動機の角加速度を所定の値以下に制限する制御のフロー図Flow chart of control for limiting the angular acceleration of the motor to a predetermined value or less in the controller of FIG. 図2のコントローラ内で電動機の角加速度を所定の値以下に制限する制御の別のフロー図FIG. 2 is another flowchart of control for limiting the angular acceleration of the motor to a predetermined value or less in the controller of FIG.

1 電動機
1a 回転検出手段
2 操作端
2a 操作検出手段
3 コントローラ
4 インバータ
4a 信号変換回路
4b 電流制御回路
5 発電機
6 コンバータ
7 蓄電装置
31 下部走行体
32 上部旋回体
33 作業アタッチメント
34 ブーム
34a ブームシリンダ
35 アーム
35a アームシリンダ
36 バケット
36a バケットシリンダ
37 コンバータ
41 減速機
42 最終段減速機
51 走行体
52 変速機・減速機
53 駆動輪
54 接地面
DESCRIPTION OF SYMBOLS 1 Electric motor 1a Rotation detection means 2 Operation end 2a Operation detection means 3 Controller 4 Inverter 4a Signal conversion circuit 4b Current control circuit 5 Generator 6 Converter 7 Power storage device 31 Lower traveling body 32 Upper turning body 33 Work attachment 34 Boom 34a Boom cylinder 35 Arm 35a Arm cylinder 36 Bucket 36a Bucket cylinder 37 Converter 41 Reduction gear 42 Final stage reduction gear 51 Traveling body 52 Transmission / reduction gear 53 Drive wheel 54 Ground plane

Claims (4)

駆動される慣性体の慣性より小さい慣性を有する駆動系を介して慣性体を駆動する電動機の回転を、操作量を可変とする操作端の操作によって制御し、前記操作端の操作量を検出する操作検出手段と、前記電動機の回転を検出する回転検出手段と、前記操作検出手段と前記回転検出手段の各検出値に基づいて前記電動機を制御する電動機制御手段とを備えた電動機の制御装置において、前記慣性体は作業状態あるいは載荷状態で慣性の大きさが変化する作業手段あるいは載荷手段を含み、前記電動機の加速あるいは減速を行う際に、前記電動機の角加速度の最大値を、前記電動機の出力トルクによって前記慣性体の最小値を加速する角加速度以下の所定の値に制限することを特徴とする電動機の制御装置。  The rotation of the electric motor that drives the inertial body through a drive system having an inertia smaller than the inertia of the driven inertial body is controlled by the operation of the operation end that makes the operation amount variable, and the operation amount of the operation end is detected An electric motor control device comprising: an operation detection unit; a rotation detection unit that detects rotation of the electric motor; and an electric motor control unit that controls the electric motor based on detection values of the operation detection unit and the rotation detection unit. The inertial body includes a working unit or a loading unit whose magnitude of inertia changes in a working state or a loaded state, and when accelerating or decelerating the motor, the maximum value of the angular acceleration of the motor is An electric motor control device, wherein an output torque limits a minimum value of the inertial body to a predetermined value equal to or less than an angular acceleration for accelerating. 前記電動機の角加速度の最大値を、前記電動機の最大出力トルクによって前記慣性体の慣性の最小値を加速する角加速度以下の所定の値に制限することを特徴とする請求項1に記載の電動機の制御装置。  2. The electric motor according to claim 1, wherein the maximum value of the angular acceleration of the electric motor is limited to a predetermined value equal to or less than the angular acceleration that accelerates the minimum value of inertia of the inertial body by the maximum output torque of the electric motor. Control device. 前記慣性体は、建設機械の旋回体および旋回体に搭載される作業装置からなることを特徴とする請求項1から2のいずれかに記載の電動機の制御装置。  3. The motor control device according to claim 1, wherein the inertial body includes a swing body of a construction machine and a work device mounted on the swing body. 前記慣性体は、駆動輪の摩擦で駆動力を得て走行する走行体であることを特徴とする請求項1に記載の電動機の制御装置。  The motor control device according to claim 1, wherein the inertial body is a traveling body that travels by obtaining a driving force by friction of driving wheels.
JP2010047100A 2010-02-12 2010-02-12 Control device of motor Pending JP2011163106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047100A JP2011163106A (en) 2010-02-12 2010-02-12 Control device of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047100A JP2011163106A (en) 2010-02-12 2010-02-12 Control device of motor

Publications (2)

Publication Number Publication Date
JP2011163106A true JP2011163106A (en) 2011-08-25
JP2011163106A5 JP2011163106A5 (en) 2013-03-21

Family

ID=44594120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047100A Pending JP2011163106A (en) 2010-02-12 2010-02-12 Control device of motor

Country Status (1)

Country Link
JP (1) JP2011163106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163155A (en) * 2013-02-26 2014-09-08 Sumitomo (Shi) Construction Machinery Co Ltd Electrically-driven slewing work machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054581A1 (en) * 2004-11-17 2006-05-26 Komatsu Ltd. Swing control device and construction machinery
JP2009068197A (en) * 2007-09-11 2009-04-02 Kobelco Contstruction Machinery Ltd Slewing control device of electric slewing work machine
JP2009127296A (en) * 2007-11-22 2009-06-11 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Swing drive control unit and construction machinery including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054581A1 (en) * 2004-11-17 2006-05-26 Komatsu Ltd. Swing control device and construction machinery
JP2009068197A (en) * 2007-09-11 2009-04-02 Kobelco Contstruction Machinery Ltd Slewing control device of electric slewing work machine
JP2009127296A (en) * 2007-11-22 2009-06-11 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Swing drive control unit and construction machinery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163155A (en) * 2013-02-26 2014-09-08 Sumitomo (Shi) Construction Machinery Co Ltd Electrically-driven slewing work machine

Similar Documents

Publication Publication Date Title
JP4946733B2 (en) Swivel control device and work machine equipped with the same
EP2275606B1 (en) Rotation control device and working machine therewith
JP5913592B2 (en) Construction machinery
JP5420324B2 (en) Swivel drive control device and construction machine including the same
JP4515369B2 (en) Drive control device for construction machinery
JP6125272B2 (en) Electric swivel work machine
JP2010133469A (en) Working vehicle
JP5031718B2 (en) Swivel drive control device and construction machine including the same
JP5095361B2 (en) Swivel drive control device and construction machine including the same
JP5844377B2 (en) Construction machine and control method for turning electric motor
JP5298861B2 (en) Swing control device for work machine
JP4294086B2 (en) Electric motor control device
JP4611370B2 (en) Swivel drive control device and construction machine including the same
JP4745322B2 (en) Swivel drive control device and construction machine including the same
JP2010150898A (en) Swivelling drive controller and construction machine including the same
JP2011163106A (en) Control device of motor
JP2009127193A (en) Swing drive control unit and construction machinery including the same
JP5139257B2 (en) Swivel drive control device and construction machine including the same
JP2011001736A (en) Turning control device for construction machine
JP2009232673A (en) Controller of electric motor
JP5814835B2 (en) Excavator
JP7472761B2 (en) Swing control device and work machine
JP4725903B2 (en) Electric motor control device
JP2010150897A (en) Swivelling drive controller and construction machine including the same
JP2009263887A (en) Electrohydraulic drive device of construction machine

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126