JP2011152520A - Filter medium and filter using the same - Google Patents

Filter medium and filter using the same Download PDF

Info

Publication number
JP2011152520A
JP2011152520A JP2010016345A JP2010016345A JP2011152520A JP 2011152520 A JP2011152520 A JP 2011152520A JP 2010016345 A JP2010016345 A JP 2010016345A JP 2010016345 A JP2010016345 A JP 2010016345A JP 2011152520 A JP2011152520 A JP 2011152520A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
filter
filter medium
pressure loss
fine fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010016345A
Other languages
Japanese (ja)
Inventor
Yuuko Takagi
由扶子 高木
Ryoichi Togashi
良一 富樫
Naotaka Yamaga
直貴 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010016345A priority Critical patent/JP2011152520A/en
Publication of JP2011152520A publication Critical patent/JP2011152520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low pressure-loss filter maximally suppressing the increase of pressure loss due to disturbance of a pleat shape, in a pleat filter. <P>SOLUTION: The filter medium is manufactured by a lamination method minimizing the tension applied to fine fiber nonwoven fabric, keeping curling of a laminated filter medium at 80 mm or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気清浄に用いられる濾材に関する。   The present invention relates to a filter medium used for air cleaning.

空気清浄に使用されるフィルターでは、使用時の圧力損失を小さくし、高い捕集効率および長寿命を得るために、濾材にプリーツ加工(山谷折り)を施すものが主流となっている。また、近年、家庭用空気清浄機用途では、空気清浄機のファンの回転数を抑え省エネ・静音効果を得るために、フィルターの低圧損化が強く求められている。フィルターの圧力損失は、用いる濾材自身の圧力損失と、構造(例えば、プリーツ形状)による圧力損失からなる。後者の構造による圧力損失について、プリーツ加工を施した濾材では、プリーツ形状の変形によって濾過に有効に用いられる濾材面積が減少し、フィルターの圧力損失を上昇させることは既に分かっており、プリーツの間隔を保持し隣接するプリーツ同士の密着による濾材面積の減少を防ぐため、プリーツ間にセパレータを設ける方法や、風の流れによるプリーツ形状の変形を防ぐため、濾材の剛性を上げる方法が検討されている。その他にも、フィルターのプリーツ形状とフィルターの圧力損失に関して、山谷形状の鈍角化を防ぐ方法(特許文献1)、プリーツ形状の山部に筋をつけて加工する方法(特許文献2)などが提案されている。本発明者らは、プリーツ形状の変形がフィルターの圧力損失に及ぼす影響について詳細に検討し、濾材のカール度の上昇とプリーツ形状の変形に相互関係があることを見出し、さらには、プリーツ形状の変形を改善すべく鋭意検討した結果、本発明に至った。例えば、特許文献3には耐カール性に優れる濾材が提案されているが、メルトブローン不織布の両側に混繊スパンボンド不織布を積層する必要がある。また、特許文献4に記載の濾材を2gf/cmの張力で積層した際のカール度は80mm以上となった。   In the filter used for air cleaning, in order to reduce the pressure loss at the time of use and to obtain a high collection efficiency and a long life, the filter medium is pleated (Yamatani fold). In recent years, in air cleaner applications for home use, in order to reduce the number of rotations of the fan of the air cleaner and obtain an energy saving / silent effect, a low pressure loss of the filter is strongly demanded. The pressure loss of the filter is composed of the pressure loss of the filter medium itself and the pressure loss due to the structure (for example, pleated shape). Regarding the pressure loss due to the latter structure, it is already known that in the case of a pleated filter medium, the area of the filter medium effectively used for filtration decreases due to the deformation of the pleat shape, and the pressure loss of the filter increases. In order to prevent the reduction of the filter medium area due to the close contact between adjacent pleats, a method of providing a separator between the pleats and a method of increasing the rigidity of the filter medium to prevent deformation of the pleat shape due to the flow of wind are being studied. . In addition, regarding the pleat shape of the filter and the pressure loss of the filter, a method for preventing obtuse of the valley shape (Patent Document 1), a method for processing a pleated shape with a streak (Patent Document 2), etc. are proposed. Has been. The present inventors have studied in detail the effect of deformation of the pleat shape on the pressure loss of the filter, found that there is a correlation between the increase in the curl degree of the filter medium and the deformation of the pleat shape. As a result of intensive studies to improve the deformation, the present invention has been achieved. For example, Patent Document 3 proposes a filter medium having excellent curl resistance, but it is necessary to laminate a mixed fiber spunbond nonwoven fabric on both sides of a meltblown nonwoven fabric. Further, the curl degree when the filter medium described in Patent Document 4 was laminated with a tension of 2 gf / cm was 80 mm or more.

特開2000−107526号公報JP 2000-107526 A 特開2007−50342号公報JP 2007-50342 A 国際公開第2007/138733号パンフレットInternational Publication No. 2007/138733 Pamphlet 特開2009−28718号公報JP 2009-28718 A

本発明の課題は、プリーツ形状の変形が発生しにくい濾材を提供することである。   An object of the present invention is to provide a filter medium in which deformation of a pleat shape hardly occurs.

本発明は、プリーツフィルターにおけるプリーツ形状を詳細に検討することで、プリーツ形状と濾材のカール度の間に相関があることを見出し、フィルター用濾材として用いる複数の不織布を積層する場合に、プリーツ形状の乱れによる圧力損失の上昇を極力抑えるため、細繊維不織布へ与える張力を極力小さくした積層方法により製作されたカール度が80mm以下の積層濾材を提供するものである。   The present invention has found that there is a correlation between the pleat shape and the curl degree of the filter medium by examining the pleat shape in the pleat filter in detail, and when laminating a plurality of nonwoven fabrics used as filter media for the filter, the pleat shape In order to suppress the increase in pressure loss due to the disturbance of the sheet as much as possible, a laminated filter medium having a curl degree of 80 mm or less manufactured by a lamination method in which the tension applied to the fine fiber nonwoven fabric is made as small as possible is provided.

本発明によれば、濾材のカール度を80mm以下にすることで、プリーツ形状の乱れを抑え、ひいては圧力損失を抑えたフィルターを提供することができる。   According to the present invention, by setting the curling degree of the filter medium to 80 mm or less, it is possible to provide a filter that suppresses the pleat shape disorder and consequently suppresses the pressure loss.

本発明の濾材を用いた直線的なプリーツ形状の断面図の例である。It is an example of a sectional view of a straight pleat shape using the filter medium of the present invention. 濾材のカール度が80mmより大きい変形したプリーツ形状の断面図の例である。It is an example of a pleated-shaped cross-sectional view in which the filter medium has a degree of curl greater than 80 mm.

本発明における濾材は、1層以上の細繊維不織布と1層以上の補強用不織布を積層したものである。不織布の原料としては、木綿、麻、羊毛などの天然繊維、レーヨン、キュプラなどの再生繊維、アセテート、プロミックスなどの半合成繊維、ナイロン、ポリエステル、アクリル系、ビニロン、ポリ塩化ビニル、ビニリデン、ポリオレフィン系、ポリウレタン、ポリクラール、フルオロカーボン系、ノボロイド系などの合成繊維、ガラス繊維、炭素繊維、アルミナ繊維、シリコンカーバイド繊維、スラグ繊維、金属繊維などの無機繊維、その他に木材パルプを用いることができる。   The filter medium in the present invention is obtained by laminating one or more layers of fine fiber nonwoven fabric and one or more layers of reinforcing nonwoven fabric. Non-woven fabric materials include natural fibers such as cotton, hemp, and wool, regenerated fibers such as rayon and cupra, semi-synthetic fibers such as acetate and promix, nylon, polyester, acrylic, vinylon, polyvinyl chloride, vinylidene, and polyolefin. Wood pulp can be used for synthetic fibers such as fiber, polyurethane, polyclar, fluorocarbon, and novoloid, inorganic fibers such as glass fiber, carbon fiber, alumina fiber, silicon carbide fiber, slag fiber, and metal fiber.

不織布としては、乾式法 、湿式法を用いることができ、例えば、スパンボンド法 、メルトブロー法、フラッシュ紡糸法、サーマルボンド法 、ケミカルボンド法 、ニードルパンチ法 、スパンレース法(水流絡合法)、エアレイド法等を用いることができる。細繊維不織布として、前述の不織布の原料を用いることができる。これらの中でも、ポリオレフィン系を主体とするものがエレクトレット性能を発揮する点から好ましく、ポリプロピレンがより好ましい。また、微細なダストを捕集するためのメルトブロー不織布や分割繊維を構成繊維として用いた不織布といった微細な繊維からなる不織布を用いることが好ましい。繊維径は、用途に応じた捕集効率を満たせれば、特に限定しないが、例えば、0.001μm〜30μmを用いることができる。また、集塵性能を高めるために、濾材表面に10−10〜10−7C/cm程度の電荷を有するエレクトレット処理も施すことも好ましい。例えば、帯電性の良いポリプロピレンを主原料とし、ヒンダードアミンを添加したメルトブロー不織布や、ポリブテン−1とポリプロピレンからなる複合繊維メルトブロー不織布をコロナ放電によりエレクトレット処理したものなどを用いることができる。 As the nonwoven fabric, a dry method or a wet method can be used. For example, a spun bond method, a melt blow method, a flash spinning method, a thermal bond method, a chemical bond method, a needle punch method, a spun lace method (a hydroentanglement method), an airlaid method. The law etc. can be used. The raw material of the above-mentioned nonwoven fabric can be used as the fine fiber nonwoven fabric. Among these, those mainly composed of polyolefin are preferable from the viewpoint of exhibiting electret performance, and polypropylene is more preferable. Moreover, it is preferable to use the nonwoven fabric which consists of fine fibers, such as the melt blown nonwoven fabric for collecting fine dust, and the nonwoven fabric which used the division | segmentation fiber as a constituent fiber. Although a fiber diameter will not be specifically limited if the collection efficiency according to a use is satisfy | filled, For example, 0.001 micrometer-30 micrometers can be used. Moreover, in order to improve dust collection performance, it is also preferable to perform the electret process which has an electric charge of about 10 < -10 > -10 < -7 > C / cm < 2 > on the filter medium surface. For example, a melt-blown nonwoven fabric made of polypropylene with good chargeability and a hindered amine added, or a composite fiber melt-blown nonwoven fabric made of polybutene-1 and polypropylene subjected to electret treatment by corona discharge can be used.

補強用不織布として、前述の不織布の原料を用いることができるが、剛性を出すため、ビニロン繊維を含むことが好ましい。また、ビニロン繊維は比較的高価なため、ビニロン繊維に加え、ポリエステル繊維やパルプなど比較的安価な繊維を含むことがより好ましい。製造方法としては、特に限定しないが、水流絡合不織布繊維や接着不織布やバインダー接着不織布等を用いることができる。繊維径が細繊維不織布よりも大きいものが好ましく、例えば10〜100μmを用いることができる。   Although the raw material of the above-mentioned nonwoven fabric can be used as the reinforcing nonwoven fabric, it is preferable to include vinylon fibers in order to increase rigidity. In addition, since vinylon fibers are relatively expensive, it is more preferable to include relatively inexpensive fibers such as polyester fibers and pulp in addition to vinylon fibers. Although it does not specifically limit as a manufacturing method, A hydroentangled nonwoven fabric fiber, an adhesive nonwoven fabric, a binder adhesion nonwoven fabric, etc. can be used. Those having a fiber diameter larger than that of the fine fiber nonwoven fabric are preferable, and for example, 10 to 100 μm can be used.

また、プリーツ形状を保持するため、濾材を補強する役割を持つため、JIS L−1096 ガーレ法による剛軟度がMD(Machine Direction機械方向)方向で350mg以上、CD(Cross Machine Direction 機械方向と直交する方向)方向で100mg以上であることが好ましい。例えば、ビニロン繊維とポリエステル繊維の混合繊維をバインダーで固定したケミカルボンド不織布や、ビニロン繊維、ポリエステル繊維、パルプからなる湿式抄紙法による不織布を用いることができる。   In addition, because it retains the pleat shape, it has the role of reinforcing the filter medium, so the bending resistance according to JIS L-1096 Gurley method is 350 mg or more in the MD (Machine Direction machine direction) direction, CD (Cross Machine Direction) orthogonal to the machine direction. Direction) is preferably 100 mg or more. For example, a chemical bond non-woven fabric in which a mixed fiber of vinylon fiber and polyester fiber is fixed with a binder, or a non-woven fabric by a wet papermaking method made of vinylon fiber, polyester fiber, and pulp can be used.

濾材は、細繊維不織布を1層以上に積層したものと、補強用不織布を1層以上に積層したものを積層する。積層方法としては、接着パウダーや溶融ホットメルト接着剤による濾材間の接着がある。接着パウダーとしては、熱融着型接着パウダーや湿気硬化型接着パウダー等がある。不織布の片面に接着パウダーを塗布し、もう一方の不織布と積層する。接着パウダーを散布する不織布としては、不織布の細孔が接着パウダーよりも大きいと接着パウダーが不織布を抜け落ちるため、細孔が小さい不織布へ散布することが好ましい。また、補強用不織布が細繊維不織布よりも低融点で有る場合、融点差を利用して熱ロール、熱エンボス等の接着剤を介しない熱処理で積層することも可能である。   The filter medium is formed by laminating one or more fine fiber nonwoven fabrics and one laminating reinforcing nonwoven fabrics in one or more layers. As a laminating method, there is adhesion between filter media using adhesive powder or a molten hot melt adhesive. Examples of the adhesive powder include a heat fusion adhesive powder and a moisture curable adhesive powder. Adhesive powder is applied to one side of the non-woven fabric and laminated with the other non-woven fabric. As the nonwoven fabric to which the adhesive powder is sprayed, it is preferable to spray the nonwoven fabric with small pores because the adhesive powder falls off the nonwoven fabric when the pores of the nonwoven fabric are larger than the adhesive powder. In addition, when the reinforcing nonwoven fabric has a lower melting point than the fine fiber nonwoven fabric, it can be laminated by heat treatment without using an adhesive such as a hot roll or hot embossing by utilizing the difference in melting point.

本発明は、1層以上の細繊維不織布と1層以上の補強用不織布の積層時に細繊維不織布へかかる張力を制御することにより、カール度が0〜80mmの濾材を提供できる。カール度は、積層加工時の流れ方向と2辺が平行となるように25cm角に濾材をサンプリングし、80℃の恒温槽に60秒間濾材を入れ、加熱した後、細繊維不織布を上向きとした状態で、室温(20℃)に3分間静置し、その後、平坦な台の上に細繊維不織布を下向きとして濾材を置き、台から最も離れた部分の距離を測定した数値とした。単位はmmである。   The present invention can provide a filter medium having a curl degree of 0 to 80 mm by controlling the tension applied to the fine fiber nonwoven fabric when laminating one or more layers of fine fiber nonwoven fabric and one or more layers of reinforcing nonwoven fabric. The curl is sampled in a 25 cm square so that the flow direction at the time of laminating is parallel to the two sides, put the filter medium in a constant temperature bath at 80 ° C. for 60 seconds, heated, and then the fine fiber nonwoven fabric faced upward. In this state, it was allowed to stand at room temperature (20 ° C.) for 3 minutes, and then the filter medium was placed on a flat table with the fine fiber nonwoven fabric facing downward, and the distance of the part farthest from the table was measured. The unit is mm.

本発明の濾材の製造方法では、積層工程で細繊維不織布へ負荷する張力が重要であり、細繊維不織布の伸び率により異なってくるが、工程内での伸び率が0.5〜1.2%となるように設定することが好ましい。0.5%よりも小さいと積層時にシワが入りやすく、1.2%よりも大きいとカール度が80mmを上回りやすい。特に細繊維不織布の110℃加熱時の伸び率が大きい不織布を用いた多層濾材において、張力制御は重要となる。伸び率とは、不織布の流れ方向に予め20cmの線をマーキングし、積層後に20cmの線を再度測定し下記式にて求める。   In the method for producing the filter medium of the present invention, the tension applied to the fine fiber nonwoven fabric in the lamination step is important and varies depending on the elongation rate of the fine fiber nonwoven fabric, but the elongation rate in the process is 0.5 to 1.2. It is preferable to set to be%. If it is less than 0.5%, wrinkles are likely to occur during lamination, and if it is more than 1.2%, the curl degree tends to exceed 80 mm. In particular, tension control is important in a multilayer filter medium using a nonwoven fabric having a large elongation when heated at 110 ° C. for a fine fiber nonwoven fabric. The elongation percentage is obtained by marking a 20 cm line in advance in the flow direction of the nonwoven fabric, measuring the 20 cm line again after lamination, and calculating the following equation.

伸び率[%]=(A1−A0)/A0×100
A0;積層前の20cm線の実測値
A1;積層後の20cm線の実測値
本発明の濾材は、細繊維不織布が熱可塑性樹脂を用いると、加熱により伸び率が大きくなる傾向があるため、熱融着性接着パウダーを用いるようなラミネート工程で加熱工程がある場合は、加熱時の伸び率が1.0〜1.2%とするように張力制御しなければならない。例えば、細繊維不織布としてMD方向およびCD方向の引張張力(JIS L−1096 ストリップ法)が10〜15N/5cm、MD方向の引張伸度が10〜15%、CD方向の引張伸度(JIS L−1096 ストリップ法)が50〜70%のポリプロピレン100%のメルトブロー不織布を、補強用不織布として、MD方向およびCD方向の引っ張り張力が100〜150N/5cm、MD方向の引張伸度が5〜10%、CD方向の引張伸度が20%以下の湿式抄紙不織布を熱可塑性樹脂を用いて貼りあわせる場合、0.9〜5N/mの張力が好ましく、より好ましくは0.9〜3N/m、さらに好ましくは0.9〜1.5N/mである。
Elongation [%] = (A1-A0) / A0 × 100
A0: Measured value of 20 cm line before lamination A1: Measured value of 20 cm line after lamination The filter medium of the present invention tends to increase in elongation rate by heating when a thin fiber nonwoven fabric uses a thermoplastic resin. When there is a heating process in a laminating process using a fusible adhesive powder, the tension must be controlled so that the elongation during heating is 1.0 to 1.2%. For example, as a fine fiber nonwoven fabric, the tensile tension in the MD direction and the CD direction (JIS L-1096 strip method) is 10-15 N / 5 cm, the tensile elongation in the MD direction is 10-15%, and the tensile elongation in the CD direction (JIS L). −1096 Strip method) 50% to 70% polypropylene 100% melt blown nonwoven fabric as a reinforcing nonwoven fabric, tensile tension in MD direction and CD direction is 100 to 150 N / 5 cm, tensile elongation in MD direction is 5 to 10% When a wet papermaking nonwoven fabric with a tensile elongation in the CD direction of 20% or less is bonded using a thermoplastic resin, a tension of 0.9 to 5 N / m is preferable, more preferably 0.9 to 3 N / m, Preferably it is 0.9-1.5 N / m.

本発明の濾材のカール度は0〜80mmが好ましく、より好ましくは0〜50mm、さらに好ましくは0〜30mmである。   The curl degree of the filter medium of the present invention is preferably 0 to 80 mm, more preferably 0 to 50 mm, and still more preferably 0 to 30 mm.

本発明の濾材を用いた場合、プリーツ加工を施した際のプリーツ形状が直線に近くなり、プリーツ形状の変形により濾過に有効に用いられる濾材面積の減少を抑制することができる(図1)。一方、濾材のカール度が80mmより大きい場合、プリーツ加工を施した際のプリーツ形状が濾材の反りと同じ方向に湾曲し、プリーツ形状が変形することにより濾材面積が減少し、フィルターの圧力損失が上昇してしまう(図2)。   When the filter medium of the present invention is used, the pleat shape when the pleating process is performed is close to a straight line, and the reduction of the filter medium area effectively used for filtration can be suppressed by deformation of the pleat shape (FIG. 1). On the other hand, when the curl degree of the filter medium is larger than 80 mm, the pleat shape when the pleating process is performed is curved in the same direction as the warp of the filter medium, and the pleat shape is deformed, so that the filter medium area is reduced and the pressure loss of the filter is reduced. It will rise (Fig. 2).

また、プリーツ形状の変形を防ぐために、プリーツ形状を固定する方法として、樹脂を塗布する場合や櫛を用いる場合があるが、濾材全面を固定するとフィルターの通気性が損なわれるため、固定は部分的に行われることが一般的である。そのため、固定されている部分のプリーツ形状は直線的であるが、濾材のカール度が80mm以上の場合は、固定されていない部分は、プリーツ形状が変形し、フィルターの構造圧力損失が上昇してしまう。   In addition, in order to prevent deformation of the pleat shape, there are cases where resin is applied or a comb is used as a method for fixing the pleat shape. It is common for this to be done. Therefore, the pleated shape of the fixed part is linear, but when the curl degree of the filter medium is 80 mm or more, the pleated shape of the unfixed part is deformed and the structural pressure loss of the filter increases. End up.

以下、実施例によって本発明を更に詳細に詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することを妨げない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail in detail, the following Example does not restrict | limit this invention and does not prevent changing and implementing in the range which does not deviate from the meaning of this invention.

[測定方法]
(1)濾材のカール度
濾材の端末から50cm以上、耳端から10cm以上離れた位置で且つ、巾方向と垂直・水平となる位置で、積層加工時の流れ方向と2辺が平行となるように25cm×25cmのサンプルを3枚採取した。サンプルを80℃の恒温槽に60秒間入れ、加熱した後、細繊維不織布を上向きとした状態で、室温(20℃)に3分間静置し、その後、平坦な台の上に細繊維不織布を下向きとして濾材を置き、台から最も離れた部分のキョリを測定しカール度とした。単位はmmである。
[Measuring method]
(1) Curling degree of the filter medium At a position 50 cm or more away from the end of the filter medium and 10 cm or more away from the edge of the filter medium, and at a position that is vertical / horizontal to the width direction, the flow direction at the time of lamination processing is parallel to the two sides. Three samples of 25 cm × 25 cm were collected. The sample is placed in a constant temperature bath at 80 ° C. for 60 seconds, heated, and then left to stand at room temperature (20 ° C.) for 3 minutes with the fine fiber nonwoven fabric facing upward, and then the fine fiber nonwoven fabric is placed on a flat table. The filter medium was placed face down, and the portion of the part farthest from the table was measured to determine the degree of curl. The unit is mm.

(2)濾材の目付
シートから1m幅×1m長さの試験片を採取し、直示天秤を用いて秤量し、得られた値を目付(g/m)とした。
(2) A test piece having a width of 1 m and a length of 1 m was collected from the basis weight sheet of the filter medium, and weighed using a direct balance, and the obtained value was defined as a basis weight (g / m 2 ).

(3)濾材の平均繊維径
シートの任意の場所から、1cm×1cmの測定サンプルを12個採取し、走査型電子顕微鏡(SEM)を用い、採取したサンプルから繊維表面写真(倍率:2000倍)を各1枚ずつ、計12枚を撮影した。続いて、計測ソフトを用い、写真の中の繊維直径がはっきり確認できるものについてすべて測定し、平均した値を平均繊維径とした。
(3) Twelve 1 cm × 1 cm measurement samples were collected from any place on the average fiber diameter sheet of the filter medium, and a fiber surface photograph (magnification: 2000 times) from the collected samples using a scanning electron microscope (SEM) A total of 12 images were taken one by one. Subsequently, the measurement software was used to measure all the fiber diameters in the photograph that can be clearly confirmed, and the average value was taken as the average fiber diameter.

(4)濾材の捕集効率[%]
平面状の濾材を有効間口面積0.1m2のホルダーにセットし、面風速12m/minで空気を通過させ、フィルター上流および下流の粒径0.3μmの大気塵粉塵数をパーティクルカウンター(RION社製、型式:KC−01D)で測定し、次式より算出した。
捕集効率(%)=1−(下流粒子数/上流粒子数)×100 。
(4) Filter media collection efficiency [%]
A flat filter medium is set in a holder having an effective frontage area of 0.1 m 2 , air is passed at a surface wind speed of 12 m / min, and the number of atmospheric dust particles with a particle size of 0.3 μm upstream and downstream of the filter is measured by a particle counter (RION). Manufactured, model: KC-01D), and calculated from the following formula.
Collection efficiency (%) = 1− (number of downstream particles / number of upstream particles) × 100.

(5)濾材の圧力損失ΔP1[Pa]
平面状の濾材を有効間口面積0.1m2のホルダーにセットし、面風速6.5m/minで空気を通過させ、フィルター上下流の圧力差を差圧計で測定した。
(5) Pressure loss ΔP1 [Pa] of the filter medium
A flat filter medium was set in a holder having an effective frontage area of 0.1 m 2 , air was passed at a surface wind speed of 6.5 m / min, and the pressure difference between the upstream and downstream of the filter was measured with a differential pressure gauge.

(6)フィルターの圧力損失
JIS B 9908(2001)形式3試験法に準じた評価機器にフィルターをセットし、濾材貫通風速2.6m/minで空気を流し、フィルターの圧力損失(ΔP2)を求めた。
(6) Pressure loss of the filter Set the filter on the evaluation device according to JIS B 9908 (2001) Type 3 test method, and flow air at a filter medium through-air velocity of 2.6 m / min to obtain the pressure loss (ΔP2) of the filter. It was.

(7)構造圧力損失比率
濾材の圧力損失ΔP1より、濾材貫通風速2.6m/minでの濾材の圧力損失ΔP1’を次式より算出した。
ΔP1’= ΔP1×(25.0/4.5)
構造圧力損失比率Aを次式により算出した。
A[%]=(ΔP2―ΔP1’)/ΔP2×100。
(7) Structural pressure loss ratio From the pressure loss ΔP1 of the filter medium, the pressure loss ΔP1 ′ of the filter medium at a filter medium through-wind speed of 2.6 m / min was calculated from the following equation.
ΔP1 ′ = ΔP1 × (25.0 / 4.5)
The structural pressure loss ratio A was calculated by the following formula.
A [%] = (ΔP2−ΔP1 ′) / ΔP2 × 100.

[実施例1]
(濾材)
細繊維不織布として、ポリプロピレン(MI=800)にトリアジン系化合物であるキマソーブ944(チバガイギー製)を1質量%添加したものを使用し、直径が0.3mmおよび0.6mmの吐出孔を1個おきに一直線上に配置した口金(孔ピッチ:1.6mm、孔数:94ホール、幅:150mm)を用いて、メルトブロー法により、ポリマー吐出量80g/分、ノズル温度270℃、エア圧力0.045MPaの条件で噴射し、捕集コンベア速度を調整することによって目付が25g/m、平均繊維径2.57μmの不織布シートを得た。得られた不織布シートを逆浸透膜濾過水が供給される水槽の水面に沿って走行させながら、その表面にスリット状の吸引ノズルを当接させて水を吸引することにより浸透処理し、次いで水切り後に80℃で20分熱風乾燥することにより、エレクトレット化されたメルトブロー不織布を得た。この細繊維不織布は、捕集効率99.92%、圧力損失51.3Pa、厚み0.12mmであった。補強用不織布として、ポリエステル短繊維45質量%、レーヨン短繊維重量55%によって構成される繊維群をカードマシンを用いて不織布に加工し、アクリル樹脂バインダーを繊維全体の25質量%付着し、目付52.0g/mの単繊維樹脂加工不織布を得た。貼り合わせ加工として、細繊維不織布にエチレン・酢酸ビニル共重合体パウダーを6g/m分均一に散布し、加熱してパウダーを溶融させ、補強用不織布と貼り合わせを行い、濾材を得た。貼り合わせ時の細繊維不織布にかかる張力は3.3N/mとなるように調整した。濾材の圧力損失は、56.3Pa、濾材のカール度は62mmであった。
(ユニット化)
レシプロ機を用い濾材をスリット幅198mm、山高さ30mmにプリーツ加工した。
プリーツした濾材を山数81山でカットし、成形濾材とした。成形濾材の端面と枠体(不織布枠)を熱可塑性樹脂によって接着し、フィルターサイズが280mm×200mm×32mmであるフィルターを得た。
(評価)
得られたフィルターの構造圧力損比率は32%であった(ΔP2=33.3Pa、ΔP1’=22.6Pa)。
[Example 1]
(Filter material)
As the fine fiber nonwoven fabric, polypropylene (MI = 800) to which 1% by mass of triazine compound Kimasorb 944 (manufactured by Ciba Geigy) is added is used, and every other discharge hole having a diameter of 0.3 mm and 0.6 mm is used. And a nozzle (hole pitch: 1.6 mm, number of holes: 94 holes, width: 150 mm) and a polymer discharge rate of 80 g / min, nozzle temperature of 270 ° C., air pressure of 0.045 MPa The nonwoven fabric sheet having a basis weight of 25 g / m 2 and an average fiber diameter of 2.57 μm was obtained by spraying under the above conditions and adjusting the collection conveyor speed. While the obtained non-woven sheet is run along the water surface of the water tank to which the reverse osmosis membrane filtered water is supplied, the slit-like suction nozzle is brought into contact with the surface to suck water and then drains. Later, hot-air drying was performed at 80 ° C. for 20 minutes to obtain an electret melt blown nonwoven fabric. This fine fiber nonwoven fabric had a collection efficiency of 99.92%, a pressure loss of 51.3 Pa, and a thickness of 0.12 mm. As a reinforcing non-woven fabric, a fiber group composed of 45% polyester short fiber and 55% rayon short fiber weight is processed into a non-woven fabric using a card machine, and an acrylic resin binder is adhered to 25% by mass of the entire fiber, and the basis weight is 52. A single fiber resin processed nonwoven fabric of 0.0 g / m 2 was obtained. As the bonding process, ethylene / vinyl acetate copolymer powder was uniformly sprayed on a fine fiber nonwoven fabric for 6 g / m 2 min, heated to melt the powder, and bonded to the reinforcing nonwoven fabric to obtain a filter medium. The tension applied to the fine fiber nonwoven fabric at the time of bonding was adjusted to 3.3 N / m. The pressure loss of the filter medium was 56.3 Pa, and the curl degree of the filter medium was 62 mm.
(Unitization)
Using a reciprocating machine, the filter medium was pleated to a slit width of 198 mm and a peak height of 30 mm.
The pleated filter medium was cut at 81 peaks to obtain a molded filter medium. The end face of the molded filter medium and the frame (nonwoven fabric frame) were bonded with a thermoplastic resin to obtain a filter having a filter size of 280 mm × 200 mm × 32 mm.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 32% (ΔP2 = 33.3 Pa, ΔP1 ′ = 22.6 Pa).

[実施例2]
(濾材)
実施例1と同様のものを用いた。
(ユニット化)
ロータリー機を用い濾材をスリット幅198mm、山高さ30mmにプリーツ加工した後、ビード機を用い、線上のホットメルト樹脂(非晶質オレフィン共重合体;42wt%、結晶性ポリブチレン;8wt%、粘着付与樹脂;50wt%、軟化点140℃、160℃における溶融粘度3000mPa)を間欠塗布することによるセパレータ加工を施し、山数113山でカットし、成形濾材とした。成形濾材の端面と枠体(不織布枠)を熱可塑性樹脂によって接着し、フィルターサイズが452mm×200mm×32mmであるフィルターを得た。
(評価)
得られたフィルターの構造圧力損比率は25%であった(ΔP2=30.1Pa、ΔP1’=22.6Pa)。
[Example 2]
(Filter material)
The same one as in Example 1 was used.
(Unitization)
Using a rotary machine, the filter medium was pleated to a slit width of 198 mm and a peak height of 30 mm, and then using a bead machine, hot melt resin on the line (amorphous olefin copolymer; 42 wt%, crystalline polybutylene; 8 wt%, tackified) The resin was subjected to separator processing by intermittent application of 50 wt%, melt viscosity at 140 ° C., 160 ° C. and melt viscosity of 3000 mPa), and was cut at 113 peaks to obtain a molded filter medium. The end face of the molded filter medium and the frame (nonwoven fabric frame) were bonded with a thermoplastic resin to obtain a filter having a filter size of 452 mm × 200 mm × 32 mm.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 25% (ΔP2 = 30.1 Pa, ΔP1 ′ = 22.6 Pa).

[実施例3]
(濾材)
細繊維不織布は、コンベア速度を調整して、目付を30.0g/mとする以外は、実施例1と同様にした。細繊維不織布は、平均繊維径2.66μm、圧力損失68.0Pa、厚み0.15mmであった。短繊維不織布および貼り合わせ加工は、実施例1と同様とした。濾材の圧力損失は、68.0Pa、カール度は42mmであった。
[Example 3]
(Filter material)
The fine fiber nonwoven fabric was the same as in Example 1 except that the conveyor speed was adjusted to make the basis weight 30.0 g / m 2 . The fine fiber nonwoven fabric had an average fiber diameter of 2.66 μm, a pressure loss of 68.0 Pa, and a thickness of 0.15 mm. The short fiber nonwoven fabric and the bonding process were the same as in Example 1. The filter medium had a pressure loss of 68.0 Pa and a curl degree of 42 mm.

(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は42%であった(ΔP2=38.2Pa、ΔP1’=27.3Pa)。
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 42% (ΔP2 = 38.2 Pa, ΔP1 ′ = 27.3 Pa).

[実施例4]
(濾材)
貼り合わせ時の細繊維不織布にかかる張力を1.6N/mとなるように調整する以外は、実施例3と同様の貼り合わせ加工を行い、濾材を得た。濾材は、圧力損失68.1Pa、カール度は27mmであった。
[Example 4]
(Filter material)
Except adjusting the tension concerning the fine fiber nonwoven fabric at the time of bonding so that it might become 1.6 N / m, the same bonding process as Example 3 was performed, and the filter medium was obtained. The filter medium had a pressure loss of 68.1 Pa and a curl degree of 27 mm.

(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は24%であった(ΔP2=36.1Pa、ΔP1’=27.3Pa)。
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 24% (ΔP2 = 36.1 Pa, ΔP1 ′ = 27.3 Pa).

[実施例5]
(濾材)
細繊維不織布は実施例1と同様のものを用いた。補強用不織布として、繊維長24mmのポリエステル繊維85質量%(繊度1.3dtexのものを10質量%、繊度3dtexのものを30質量%、繊度6dtexのものを45質量%)、繊度17dtex、繊維長12mmのビニロン繊維10質量%、パルプ5質量%から構成される繊維群を湿式抄紙法にて不織布に加工し、ガラス転移点40℃のスチレン・アクリル樹脂バインダーを繊維全体の25質量%付着することにより、目付42g/m2の補強用不織布を得た。貼り合わせ加工は、貼り合わせ時の細繊維不織布にかかる張力を1.6N/mとなるように調整する以外は、実施例1と同様の貼り合わせ加工を行い、濾材を得た。濾材は、圧力損失56.3Pa、カール度は61mmであった。
[Example 5]
(Filter material)
The same thin fiber non-woven fabric as in Example 1 was used. As a reinforcing non-woven fabric, 85% by mass of polyester fiber having a fiber length of 24 mm (10% by mass with a fineness of 1.3 dtex, 30% by mass with a fineness of 3 dtex, 45% by mass with a fineness of 6 dtex), a fineness of 17 dtex, and a fiber length A fiber group composed of 10% by mass of 12 mm vinylon fiber and 5% by mass of pulp is processed into a non-woven fabric by a wet papermaking method, and a styrene / acrylic resin binder having a glass transition point of 40 ° C. is adhered to 25% by mass of the whole fiber. Thus, a reinforcing nonwoven fabric having a basis weight of 42 g / m 2 was obtained. The bonding process was performed in the same manner as in Example 1 except that the tension applied to the fine fiber nonwoven fabric during bonding was adjusted to 1.6 N / m to obtain a filter medium. The filter medium had a pressure loss of 56.3 Pa and a curl degree of 61 mm.

(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は32%であった(ΔP2=33.2Pa、ΔP1’=22.6Pa)。
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 32% (ΔP2 = 33.2 Pa, ΔP1 ′ = 22.6 Pa).

[実施例6]
(濾材)
ノズル温度260℃、エア圧力0.040MPaとし、コンベア速度を調整すること以外は実施例1と同様にして目付20.0g/mの細繊維不織布を得た。この細繊維不織布は、捕集効率99.98%、圧力損失57.0Pa、厚み0.10mmであった。補強用不織布および貼り合わせ加工は実施例1と同様とした。濾材は、圧力損失62.0Pa、カール度は63mmであった。
[Example 6]
(Filter material)
A fine fiber nonwoven fabric having a basis weight of 20.0 g / m 2 was obtained in the same manner as in Example 1 except that the nozzle temperature was 260 ° C. and the air pressure was 0.040 MPa, and the conveyor speed was adjusted. This fine fiber nonwoven fabric had a collection efficiency of 99.98%, a pressure loss of 57.0 Pa, and a thickness of 0.10 mm. The reinforcing nonwoven fabric and the bonding process were the same as in Example 1. The filter medium had a pressure loss of 62.0 Pa and a curl degree of 63 mm.

(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は33%であった(ΔP2=36.9Pa、ΔP1’=24.9Pa)。
[実施例7]
(濾材)
細繊維不織布を3層貼り合わせ加工し、その後補強用不織布を貼り合わせ加工する以外は実施例1と同様の方法で濾材を得た。
濾材は、圧力損失60.0Pa、カール度は70mmであった。
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 33% (ΔP2 = 36.9 Pa, ΔP1 ′ = 24.9 Pa).
[Example 7]
(Filter material)
A filter medium was obtained in the same manner as in Example 1 except that three layers of fine fiber nonwoven fabrics were bonded together, and then a reinforcing nonwoven fabric was bonded.
The filter medium had a pressure loss of 60.0 Pa and a curl degree of 70 mm.

(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は35%であった(ΔP2=37.1Pa、ΔP1’=24.1Pa)。
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 35% (ΔP2 = 37.1 Pa, ΔP1 ′ = 24.1 Pa).

[比較例1]
(濾材)
実施例1と同様の細繊維不織布および補強用不織布を用い、貼り合わせ時に細繊維不織布にかかる張力が27N/mとなるように調整した。濾材のカール度を測定したところ、カール度は90mmであった。
(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は42%であった(ΔP2=38.2Pa、ΔP1’=22.1Pa)。
[Comparative Example 1]
(Filter material)
The same fine fiber nonwoven fabric and reinforcing nonwoven fabric as in Example 1 were used, and the tension applied to the fine fiber nonwoven fabric during bonding was adjusted to 27 N / m. When the curl degree of the filter medium was measured, the curl degree was 90 mm.
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 42% (ΔP2 = 38.2 Pa, ΔP1 ′ = 22.1 Pa).

[比較例2]
(濾材)
比較例1と同様の濾材を用いた。
(ユニット化)
実施例2と同様にした。
(評価)
得られたフィルターの構造圧力損比率は40%であった(ΔP2=36.8Pa、ΔP1’=22.1Pa)。
[Comparative Example 2]
(Filter material)
The same filter medium as in Comparative Example 1 was used.
(Unitization)
Same as Example 2.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 40% (ΔP2 = 36.8 Pa, ΔP1 ′ = 22.1 Pa).

[比較例3]
(濾材)
実施例3と同様の細繊維不織布および補強用不織布を用い、貼り合わせ時に細繊維不織布にかかる張力が27N/mとなるように調整した。濾材のカール度を測定したところ、カール度は87mmであり、ほぼ円に近い状態となった。
(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は41%であった(ΔP2=44.9Pa、ΔP1’=26.5Pa)。
[Comparative Example 3]
(Filter material)
The same fine fiber nonwoven fabric and reinforcing nonwoven fabric as in Example 3 were used, and the tension applied to the fine fiber nonwoven fabric during bonding was adjusted to 27 N / m. When the curl degree of the filter medium was measured, the curl degree was 87 mm, which was almost a circle.
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 41% (ΔP2 = 44.9 Pa, ΔP1 ′ = 26.5 Pa).

[比較例4]
(濾材)
実施例4と同様の細繊維不織布および補強用不織布を用い、貼り合わせ時に細繊維不織布にかかる張力が27N/mとなるように調整した。濾材のカール度を測定したところ、カール度は88mmであり、ほぼ円に近い状態となった。
(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は42%であった(ΔP2=47.1Pa、ΔP1’=27.3Pa)。
[Comparative Example 4]
(Filter material)
The same fine fiber nonwoven fabric and reinforcing nonwoven fabric as in Example 4 were used, and the tension applied to the fine fiber nonwoven fabric during bonding was adjusted to 27 N / m. When the degree of curl of the filter medium was measured, the degree of curl was 88 mm, which was almost a circle.
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 42% (ΔP2 = 47.1 Pa, ΔP1 ′ = 27.3 Pa).

[比較例5]
(濾材)
実施例5と同様の細繊維不織布および補強用不織布を用い、貼り合わせ時に細繊維不織布にかかる張力が27N/mとなるように調整した。濾材のカール度を測定したところ、カール度は87mmであり、ほぼ円に近い状態となった。
(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は44%であった(ΔP2=40.3Pa、ΔP1’=22.6Pa)。
[Comparative Example 5]
(Filter material)
The same fine fiber nonwoven fabric and reinforcing nonwoven fabric as in Example 5 were used, and the tension applied to the fine fiber nonwoven fabric during bonding was adjusted to 27 N / m. When the curl degree of the filter medium was measured, the curl degree was 87 mm, which was almost a circle.
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 44% (ΔP2 = 40.3 Pa, ΔP1 ′ = 22.6 Pa).

[比較例6]
(濾材)
実施例6と同様の細繊維不織布および補強用不織布を用い、貼り合わせ時に細繊維不織布にかかる張力が27N/mとなるように調整した。濾材のカール度を測定したところ、カール度は87mmであり、ほぼ円に近い状態となった。
(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は48%であった(ΔP2=47.9Pa、ΔP1’=24.9Pa)。
[Comparative Example 6]
(Filter material)
The same fine fiber nonwoven fabric and reinforcing nonwoven fabric as in Example 6 were used, and the tension applied to the fine fiber nonwoven fabric during bonding was adjusted to 27 N / m. When the curl degree of the filter medium was measured, the curl degree was 87 mm, which was almost a circle.
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 48% (ΔP2 = 47.9 Pa, ΔP1 ′ = 24.9 Pa).

[比較例7]
(濾材)
実施例7と同様の細繊維不織布および補強用不織布を用い、貼り合わせ時に細繊維不織布にかかる張力が27N/mとなるように調整した。濾材のカール度を測定したところ、カール度は87mmであり、ほぼ円に近い状態となった。
(ユニット化)
実施例1と同様にした。
(評価)
得られたフィルターの構造圧力損比率は50%であった(ΔP2=48.1Pa、ΔP1’=24.1Pa)。
[Comparative Example 7]
(Filter material)
The same fine fiber nonwoven fabric and reinforcing nonwoven fabric as in Example 7 were used, and the tension applied to the fine fiber nonwoven fabric during bonding was adjusted to 27 N / m. When the curl degree of the filter medium was measured, the curl degree was 87 mm, which was almost a circle.
(Unitization)
Same as Example 1.
(Evaluation)
The structural pressure loss ratio of the obtained filter was 50% (ΔP2 = 48.1 Pa, ΔP1 ′ = 24.1 Pa).

本発明による濾材は、ビル空調用、クリーンルーム用、家庭空気清浄機用、車載用、機器用などの空気清浄用途のプリーツフィルターに好ましく使用される。   The filter medium according to the present invention is preferably used for a pleated filter for air purification use such as for building air conditioning, for clean rooms, for home air purifiers, for vehicles, and for equipment.

Claims (3)

1層以上の細繊維不織布と1層以上の補強用不織布をラミネートした濾材であって、カール度が0〜80mmであることを特徴とする濾材。 A filter medium obtained by laminating one or more layers of fine fiber nonwoven fabric and one or more layers of reinforcing nonwoven fabric, and having a curl degree of 0 to 80 mm. 積層樹脂として、熱可塑性樹脂あるいは熱硬化性樹脂を用いたことを特徴とする請求項1に記載の濾材。 The filter medium according to claim 1, wherein a thermoplastic resin or a thermosetting resin is used as the laminated resin. 請求項1記載の濾材にプリーツ加工を施したフィルター。 A filter obtained by pleating the filter medium according to claim 1.
JP2010016345A 2010-01-28 2010-01-28 Filter medium and filter using the same Pending JP2011152520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016345A JP2011152520A (en) 2010-01-28 2010-01-28 Filter medium and filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016345A JP2011152520A (en) 2010-01-28 2010-01-28 Filter medium and filter using the same

Publications (1)

Publication Number Publication Date
JP2011152520A true JP2011152520A (en) 2011-08-11

Family

ID=44538860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016345A Pending JP2011152520A (en) 2010-01-28 2010-01-28 Filter medium and filter using the same

Country Status (1)

Country Link
JP (1) JP2011152520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075731A (en) * 2017-12-21 2019-07-01 재단법인 포항산업과학연구원 Filter for high temperature and method for manufacturing of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075731A (en) * 2017-12-21 2019-07-01 재단법인 포항산업과학연구원 Filter for high temperature and method for manufacturing of the same
KR102600147B1 (en) * 2017-12-21 2023-11-07 재단법인 포항산업과학연구원 Filter for high temperature and method for manufacturing of the same

Similar Documents

Publication Publication Date Title
US8206481B2 (en) HEPA (H-10) performance synthetic nonwoven and nanofiber composite filter media
JP6172924B2 (en) Manufacturing method of nonwoven fabric substrate for air filter or mask
JP5539877B2 (en) Improved pleated nanoweb structure
US8034146B2 (en) Filter element, method of manufacture and use
JP6264438B2 (en) Air filter medium, filter pack, and air filter unit
US9186608B2 (en) Process for forming a high efficiency nanofiber filter
US20080060328A1 (en) Filter and filter media
JPWO2005107920A1 (en) Air filter material
JP2015183327A (en) Melt-blown nonwoven fabric and composite filter medium
JP5918641B2 (en) Pleated air filter media and pleated air filter unit
JP5080753B2 (en) Filter element, manufacturing method and usage thereof
JP7177394B2 (en) COMPOSITE STRUCTURE, MANUFACTURING METHOD THEREOF, AND FILTER MEDIUM CONTAINING THE COMPOSITE STRUCTURE
JP2014151299A (en) Filter material for filter and air filter
JP2002018216A (en) Filter
JP2010082596A (en) Filter medium for air filter, manufacturing method therefor, and air filter using the same
JP2011152520A (en) Filter medium and filter using the same
JP2014176798A (en) Method for use of filter element, filter frame, and filtration device
JP2002001020A (en) Filtering medium
JP4737039B2 (en) Filter nonwoven fabric for air intake
JP4556318B2 (en) Heat resistant fabric and filter comprising the same
CN112252047B (en) Electrostatic filter cotton with improved performance, preparation method and application thereof
JP7415919B2 (en) Filter media and filter units
JP2015187325A (en) Flame retardant support body
JP6143503B2 (en) Filter element and manufacturing method thereof
JP2018023913A (en) Air filter