JP2011152324A - 脳内物質測定用電極 - Google Patents

脳内物質測定用電極 Download PDF

Info

Publication number
JP2011152324A
JP2011152324A JP2010016619A JP2010016619A JP2011152324A JP 2011152324 A JP2011152324 A JP 2011152324A JP 2010016619 A JP2010016619 A JP 2010016619A JP 2010016619 A JP2010016619 A JP 2010016619A JP 2011152324 A JP2011152324 A JP 2011152324A
Authority
JP
Japan
Prior art keywords
electrode
brain
substance
needle
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010016619A
Other languages
English (en)
Inventor
Yasuaki Einaga
泰明 栄長
Naoko Mitani
尚子 三谷
Kenji Yoshimi
建二 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Juntendo University
Original Assignee
Keio University
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Juntendo University filed Critical Keio University
Priority to JP2010016619A priority Critical patent/JP2011152324A/ja
Publication of JP2011152324A publication Critical patent/JP2011152324A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】ヒトを含む大型動物の脳に刺入しても折れない十分な強度を有し、かつ高感度に脳内物質を測定できる微小電極を提供する。
【解決手段】高強度金属針の表面に3〜8%ホウ素原料混入ダイヤモンドが蒸着してなり、直径0.01〜0.3mm、長さ0.02〜2.0mmの微小針状電極部を有する脳内物質測定用電極。
【選択図】図1

Description

本発明は、哺乳類の脳内に刺入して脳内アミン等の脳内物質の変動等の電気化学的測定に有用な脳内物質測定用電極及びそれを用いた脳内物質変動の測定法に関する。
脳内アミン量は、各種中枢神経系疾患に深く関与しており、その変動をモニターすることは疾患の診断だけでなく、疾患や脳内アミンの機能を研究する上で極めて重要である。脳内アミンの測定法としては、脳組織ホモジネート除蛋白液のHPLC解析、マイクロダイアリシス法等があるが、これらの手段では秒単位で変動する被験体の行動に追随した高速では脳内アミン変動を測定できない。一方、微小電極を脳内に刺入又は留置して電気化学的に脳内アミンの変動を測定する手段は、オンタイムで脳内アミン濃度の変動が高速測定できる点で有用である。
脳内アミン測定用の電極としては、脳内に刺入できるカーボンファイバー電極を用いてげっ歯の脳内ドパミンを測定する技術が報告されている(非特許文献1及び2)。しかし、カーボンファイバーは折れやすく、操作上の困難を伴う。また、電極が折れた場合、その断片が脳内に残存してしまい、摘出する方法は無く安全上好ましくない。これに対し、タングステン針の表面に1%ホウ素混入ダイヤモンドを蒸着した電気化学測定用電極が報告されている(非特許文献3)。
Kawagoe KT, Zimmerman JB, and Wightman RM. Principles of voltammetry and microelectrode surface states. J Neurosci Methods 48: 225-240, 1993. Phillips PE, Stuber GD, Heien ML, Wightman RM, and Carelli RM. Subsecond dopamine release promotes ***e seeking. Nature 422: 614-618, 2003. Suzuki A, Ivandini TA, Yoshimi K, Fujishima A, Oyama G, Nakazato T, Hattori N, Kitazawa S, and Einaga Y. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal Chem 79: 8608-8615, 2007. Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE. Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg. 2003 Sep;99(3):489-95.
しかしながら、タングステン針の表面に1%ホウ素混入ダイヤモンドを蒸着した微小電極の感度は十分でなく、強い電気刺激により強制的に放出させた脳内アミンの測定には使用できても、生理的な条件での高感度測定が要求される場合に適用できるものではなかった。また、物理的強度とサイズにおいてマウスのような小実験動物に使用できても、サルやヒトのような大きな脳に適用できるものではなかった。
従って本発明の課題は、ヒトを含む大型動物の脳に刺入しても折れない十分な強度を有し、かつ高感度に脳内物質を測定できる微小電極を提供することにある。
そこで本発明者は、脳内で折れない十分な強度と高感度とを両立すべく種々検討した結果、高強度金属針の表面に高濃度ホウ素混入ダイヤモンドを蒸着し、電極として作用する部分を直径0.01〜0.3mm、長さ0.02〜2.0mmの微小針状とし、それ以外の部分を絶縁部とすれば、大型動物の脳内に刺入しても折れ難く、かつ高感度で脳内物質の測定が可能であり、かつ操作性も良好であることを見出し、本発明を完成した。
すなわち、本発明は、高強度金属針の表面に3〜8%ホウ素原料混入ダイヤモンドが蒸着してなり、直径0.01〜0.3mm、長さ0.02〜2.0mmの微小針状電極部を有することを特徴とする脳内物質測定用電極を提供するものである。
また、本発明は、上記電極を脳内に刺入し、定電位アンペロメトリー及びサイクリックボルタメトリーにより脳内物質の変動を測定することを特徴とする脳内物質変動の測定方法を提供するものである。
本発明の電極は、微小でありながら、高い強度と高い感度を併せ持っており、ヒトを含む哺乳動物の脳内に刺入しても折れることなく、長時間の脳内物質測定を可能とする。従って、本発明の電極は、モノアミン系の障害により社会生活が困難な患者を支援するため、脳内モノアミン変動を日常的にモニターするための医療用電極となり得る。また、大型動物を用いた脳疾患を治療するための薬理学的、生理学的研究に用いるための研究用電極にもなり得る。
うつ病患者の脳内セロトニン変動を医師や家族が知ることができれば、自殺を未然に防ぐことができる。また、パニック障害の患者がモノアミンレベルの上昇を知り職場の同僚に知らせることができれば無理のない社会復帰の助けとなる。近年、脳神経系の治療において、患者脳の直接解剖学的観察を可能としたMRI診察技術の寄与は計り知れない。さらに、脳内に電極を留置し刺激する脳深部刺激(DBS)治療法までも急速に普及している(非特許文献4)。従って、治療効果が明らかであれば、侵襲的脳手術でさえもパーキンソン病患者が喜んで受け入れるという実績が積み上げられつつあり、本発明の電極を用いた脳内記録電極の植え込みも現実的な治療法の一つとなりうる。
本発明電極先端部の一形態の概略図である。先端部0.5mmを残してガラス絶縁した例(上)、及び先端部1mmを残してカシュー樹脂絶縁した例(下)を示す。 金属針表面にダイヤモンドを蒸着する工程の概略図である。 in−vitroでのドパミン検出試験装置構成の概略図である。 アンペロメトリー法によるin−vitroでのドパミン検出試験結果である。 サイクリックボルタメトリー法によるin−vitroでのドパミン検出試験結果である。 電極部露出部分の長さのin−vitroでのドパミン検出感度およびノイズに与える影響の試験結果である。 アンペロメトリー法によるin−vivoでのドパミン検出試験結果例である。 実験用ニホンザル頭部にマニピュレーターを設置し全長15cmに延長したダイヤモンド電極を脳内に刺入した実験の外観を示す。 アンペロメトリー法によるサル報酬応答の結果である。
本発明の電極の電極部は、高強度金属針の表面に3〜8%ホウ素原料混入ダイヤモンドが蒸着してなり、直径0.01〜0.3mm、長さ0.02〜2.0mmの微小針状である。ここで高強度金属としては、タングステン、モリブデンが用いられるが、タングステンが強度、安全性、ダイヤモンド成長の基板となる等の点で特に好ましい。当該高強度金属針の長さは着脱により調節可能で、特に10〜20cm程度に延長可能とすることが電極マニピュレーター操作性の点で好ましい。
本発明の電極の電極部は、上記10cm以上の高強度金属針の先端部長さ0.02〜2.0mm部分であるのが好ましく、さらに先端部長さ0.2〜2.0mm部分、特に先端部長さが0.3〜0.7mm部分であるのが好ましい。なお、高強度金属針の電極部以外の部分は、樹脂により絶縁されているのが好ましい。
本発明の電極円錐形先端部の直径は、脳内への刺入性、測定物質との反応性の点から、0.01〜0.3mmであり、特に0.1〜0.2mmが好ましい。
本発明の電極は、高強度金属針の先端部長さ0.02〜2.0mm部分が高ホウ素原料混入(原料仕込みとして3〜8%ホウ素原料)ダイヤモンドで蒸着されている。原料ホウ素原料混入量が3%未満では、測定感度が十分でない。より好ましいホウ素原料混入率は4〜8%であり、特に好ましくは5%程度である。
高強度金属針の先端部へのホウ素原料混入ダイヤモンドの蒸着処理は、700〜900℃で2〜12時間行えばよい。本発明においては、まずタングステンへの接着性に優れる0.5〜2%低ホウ素原料混入ダイヤモンドで蒸着し、その表面にさらに高感度の3〜8%高ホウ素原料混入ダイヤモンドで蒸着するのが、高強度と高感度の両者を達成するうえで、特に好ましい。タングステン面から電極表面へのホウ素濃度の上昇は二段階、多段階、あるいは連続的でもよい。さらに、まず0.5〜1.5%ホウ素原料混入ダイヤモンドで蒸着し、その表面にさらに4〜6%ホウ素原料混入ダイヤモンドで蒸着するのが特に好ましい。
このような二重、段階的あるいは連続的にホウ素濃度を高めた蒸着処理により、金属表面に均一に高ホウ素混入ダイヤモンドが蒸着できるが、さらに感度を向上させ、正確な測定を可能とするため、内部金属の露出部分を樹脂の点状塗布により充填するのが好ましい。前記蒸着処理により点状に金属が露出することがあり、かかる露出部の樹脂塗布硬化により、点状に絶縁部が生じるが、測定感度は向上する。
本発明電極における電極部以外の部分は、樹脂塗布により絶縁するのが、操作性、測定感度の点で好ましい。絶縁に用いられる樹脂は、特に制限されないが、エポキシ樹脂、カシュー塗料、パリレン樹脂等が好ましい。電極部以外の部分は、前記高強度金属でもよいし、さらに表面を絶縁したステンレス管、銅線を接続して用いてもよい。電極全体の長さは、延長管の着脱により調節可能で、マニピュレーターにおける操作性の点から10〜20cm程度に延長可能であることが好ましい。
本発明の微小電極を用いれば、組織を侵襲することなく、脳内に刺入でき、また脳内に留置もできるため、長時間の脳内物質濃度の変動をモニターできる。即可能な脳内物質としては、ドパミン、ノルアドレナリン、セロトニン等の脳内アミンの他、アスコルビン酸、アデノシンが挙げられる。
測定手段としては、本発明電極を脳内に刺入し、参照電極及び対電極を用いたボルタメトリーにより行うのが好ましい。ここで参照電極及び対電極としては銀塩化銀電極、金線等が用いられる。さらに本発明においては、非特許文献3においてはパルスボルタメトリー法により測定し50Hz100発という強い刺激に対する応答をようやく検出できるものだったが、アンペロメトリー(図4)およびサイクリックボルタメトリー(図5)を利用することで大幅に感度が高まり、これらの手法では高ホウ素の効果とあいまって40nMのドパミンすら検出可能となっている。電位を一定にした定電位アンペロメトリーにより測定するのがより好ましい。ここで定電位アンペロメトリーとは、銀塩化銀に対し0.5〜1.0Vにダイヤモンド電極を保つことによりドパミンの酸化電流を検出する手法である。定電位アンペロメトリーにより、脳内アミンがより高感度で特に高速で測定できる。パルスボルタメトリー、サイクリックボルタメトリーといった電位を変動させる手法であれば、サンプリング頻度においてアンペロメトリーに劣るが分子を選別して測定するのに有利である。
次に実施例を挙げて本発明を詳細に説明する。
実施例1
直径0.3mm長さ3cmの細いタングステン針表面に5%ホウ素原料混入ダイヤモンド(BDD)を蒸着させ、先端部以外を絶縁した(図1)。まずタングステンロッドを針状とするため先端部分を2M水酸化ナトリウム(NaOH)中3Vクロノアンペロメトリ(CA)により電解研磨し、先端経を約10〜20μm、テーパー角3.8度とした。その後、酸化皮膜を除去するためにフッ化水素(HF)中に20分浸漬した。あるいは同様の形態の加工品(有明マテリアル株式会社)を使用した.タングステン表面におけるダイヤモンド層成長を促進するため、ダイヤモンドパウダーをイソプロパノール中で90分間核付け処理した。針状に成型した金属針を水素プラズマ中に置き、一方で炭素源及びホウ素源を含む溶液を水素ガスによりバブリングすることで気化させ、これを水素プラズマ中に導入することで表面にダイヤモンド層を形成させる。すなわち、作成したタングステン針をプラズマ装置中(ASTeX Corp.図2)で水素流量300sscm、プラズマ出力2500W、圧力60Torr、ステージ温度700〜900℃にてダイヤモンド層を蒸着した。初め5時間は1%ホウ素仕込み(トリメトキシボラン4.05mL/アセトン50mL)、続く5時間は5%ホウ素仕込み(トリメトキシボラン18.5mL/アセトン40mL)で二段生成させた。1%ホウ素時間を短縮した場合はアンペロメトリーに使用可能な電極ができなかった(表1)。BDD微小電極を作成した先端1mm以外をエポキシ樹脂及びカシュー塗料を用いて絶縁し、安定した電気化学センサーとして使用できる形状に成型した(図1)。先端から1.0mmの範囲を除いてエポキシ樹脂(セメダイン1565)を塗布し先端を電極として確保した。ダイヤモンド層には多くの場合微小な穴があり、タングステン面が露出して電気化学計測に大きな障害となる。ダイヤモンド剥離部分を実体顕微鏡下に探索し、剥離部分にエポキシ樹脂を点状に塗布し絶縁した。
軸部の絶縁処理は、当初は外径0.75mmのガラス管にダイヤモンド針を入れて隙間をエポキシ樹脂で封入した(図1上)。さらに細く仕上げるために、BDD針をアセトンにて脱脂の後カシュー塗料による絶縁を試み、好成績を得た(図1下)。サル用マニピュレーターにて操作可能な長さを得るために、24Gステンレス管に接続し圧着、全長15cmに加工したうえで電気的に導通を確保した。タングステン針及びステンレス管軸部にカシュー塗料を塗布し絶縁した。カシュー塗料のみでは脳組織との摩擦が生じる先端部の強度が充分でなく、またエポキシ樹脂は滴状になりやすく長い軸に均一に塗布するのは困難であった(表1)。
実施例2
BDD微小電極は中性燐酸緩衝液(PBS)中のドパミンを高感度で検出可能であった(図3、4、5)。銀塩化銀電極を参照電極及び対電極とし、電極を+600mVに保持した定電位アンペロメトリーを用いた(図3、4)。図3では、中性燐酸緩衝液(PBS)が流れる噴水中に電極を浸漬しポテンショスタット及び記録用コンピュータに接続し電気化学測定を行い、試験化合物を含むPBS液に流路を切り替えることができる。図3にアンペロメトリー法によるin−vitroでのドパミン検出試験結果を示す。ドパミンを40、200、1000nM含む液に順次切り替え、測定電流の変動を測定した(図4)。また、反応分子の電位依存性を同定可能なサイクリックボルタメトリー(−0.2V to 1.5V、400V/s)による検出も可能であった(図5)。図5では、ドパミンを40、200、1000nM含む液に順次切り替え、測定電流の変動を測定した。
実施例3
同一の微小電極の部分を段階的に絶縁塗装して比較した。
2本の5%ホウ素混入微小電極の結果の平均を表2及び図6に示す。
0.6V定電位アンペロメトリー及びFSCV(−0.2 to 1.5V)により1000nMドパミンによる振幅のその直前のノイズ標準偏差SDに対する比率をS/N比とした。
良好なS/N比を得るためには長さ0.3mm以上必要であった反面、電極露出部が長いと流速変動に対するノイズ電流が生じやすい性質が見られた。従って、電極長は0.2〜2.0mm、特に0.3〜0.7mmが好ましいことがわかった。
実施例4
脳内での測定が可能であるか検証するために、本電極をマウス脳線条体に刺入し電気刺激によりドパミン放出を生じさせたところ、それをリアルタイムで検出可能であった(図7、表3)。図7では、ドパミン神経路を電気刺激した際の線条体における電流変動を示す。横軸0秒の時点から30Hz12発電気刺激を与えた。表3では、ドパミン神経路(MFB)を30Hz刺激パルス数による検出電流をS/N比で示し、ダイヤモンド電極アンペロメトリー(BDD−ampero)及び同時に行った従来法カーボンファイバーによるサイクリックボルタメトリー法(cf−FSCV)と比較した。
実施例5
大型脳における利用を検証するために、サル線条体に刺入し(図8)ジュースを報酬として中脳ドパミン神経を活動せしめたところ(Schultz W.Behavioral dopamine signals.Trends Neurosci. 2007 May;30(5):203-10.)、報酬予告信号後のドパミン放出を検出可能であった(図9)。

Claims (9)

  1. 高強度金属針の表面に3〜8%ホウ素原料混入ダイヤモンドが蒸着してなり、直径0.01〜0.3mm、長さ0.02〜2.0mmの微小針状電極部を有することを特徴とする脳内物質測定用電極。
  2. 針状電極部の長さが0.2〜2.0mmである請求項1記載の脳内物質測定用電極。
  3. 高強度金属針の表面に0.5〜2%ホウ素原料混入ダイヤモンドが蒸着し、その表面に3〜8%ホウ素原料混入ダイヤモンドが蒸着している請求項1又は2記載の脳内物質測定用電極。
  4. 微小針状電極部の内部金属の点状露出部分が樹脂の点状塗布により充填されている請求項1〜3のいずれか1項記載の脳内物質測定用電極。
  5. 全長が10cm以上であり、先端部の微小電極部以外が樹脂塗布により絶縁されたものである請求項1〜4のいずれか1項記載の脳内物質測定用電極。
  6. 高強度金属がタングステンである請求項1〜5のいずれか1項記載の脳内物質測定用電極。
  7. 脳内物質が脳内アミンである請求項1〜6のいずれか1項記載の脳内物質測定用電極。
  8. 脳内刺入用電極である請求項1〜7のいずれか1項記載の脳内物質測定用電極。
  9. 請求項1〜8のいずれか1項記載の電極を脳内に刺入し、定電位アンペロメトリー又はサイクリックボルタメトリーにより脳内物質の変動を測定することを特徴とする脳内物質変動の測定方法。
JP2010016619A 2010-01-28 2010-01-28 脳内物質測定用電極 Pending JP2011152324A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016619A JP2011152324A (ja) 2010-01-28 2010-01-28 脳内物質測定用電極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016619A JP2011152324A (ja) 2010-01-28 2010-01-28 脳内物質測定用電極

Publications (1)

Publication Number Publication Date
JP2011152324A true JP2011152324A (ja) 2011-08-11

Family

ID=44538716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016619A Pending JP2011152324A (ja) 2010-01-28 2010-01-28 脳内物質測定用電極

Country Status (1)

Country Link
JP (1) JP2011152324A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208259A (ja) * 2012-03-30 2013-10-10 Keio Gijuku ダイヤモンド微小電極を用いた還元型グルタチオンの測定装置
WO2013162990A1 (en) * 2012-04-27 2013-10-31 The Ohio State University System for regulating endogenous neuromodulatory agent levels
JP2015039544A (ja) * 2013-08-22 2015-03-02 学校法人慶應義塾 ダイヤモンドマイクロ電極を用いた生体内pH測定装置及び方法
WO2018230660A1 (ja) 2017-06-16 2018-12-20 学校法人慶應義塾 残留塩素測定方法及び残留塩素測定装置
JP2020514727A (ja) * 2017-01-31 2020-05-21 エレメント シックス テクノロジーズ リミテッド ダイヤモンドベース電気化学センサー

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261600A (ja) * 2003-03-03 2004-09-24 Greatbatch-Hittman Inc 植え込み型電極用低分極コーティング
JP2006068403A (ja) * 2004-09-03 2006-03-16 Tohoku Univ 張り合わせ法に基づくマルチ神経電極アレイ
JP2006230955A (ja) * 2005-02-28 2006-09-07 Tohoku Univ 神経インプラント装置
JP2006334106A (ja) * 2005-06-01 2006-12-14 Nippon Medical School 双極刺激電極
JP2007000484A (ja) * 2005-06-27 2007-01-11 National Institute Of Advanced Industrial & Technology 針一体型バイオセンサー
WO2008004010A2 (en) * 2006-07-07 2008-01-10 Lectus Therapeutics Limited Apparatus and methods
JP2009300342A (ja) * 2008-06-17 2009-12-24 Keio Gijuku バイオセンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261600A (ja) * 2003-03-03 2004-09-24 Greatbatch-Hittman Inc 植え込み型電極用低分極コーティング
JP2006068403A (ja) * 2004-09-03 2006-03-16 Tohoku Univ 張り合わせ法に基づくマルチ神経電極アレイ
JP2006230955A (ja) * 2005-02-28 2006-09-07 Tohoku Univ 神経インプラント装置
JP2006334106A (ja) * 2005-06-01 2006-12-14 Nippon Medical School 双極刺激電極
JP2007000484A (ja) * 2005-06-27 2007-01-11 National Institute Of Advanced Industrial & Technology 針一体型バイオセンサー
WO2008004010A2 (en) * 2006-07-07 2008-01-10 Lectus Therapeutics Limited Apparatus and methods
JP2009300342A (ja) * 2008-06-17 2009-12-24 Keio Gijuku バイオセンサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208259A (ja) * 2012-03-30 2013-10-10 Keio Gijuku ダイヤモンド微小電極を用いた還元型グルタチオンの測定装置
WO2013162990A1 (en) * 2012-04-27 2013-10-31 The Ohio State University System for regulating endogenous neuromodulatory agent levels
JP2015039544A (ja) * 2013-08-22 2015-03-02 学校法人慶應義塾 ダイヤモンドマイクロ電極を用いた生体内pH測定装置及び方法
JP2020514727A (ja) * 2017-01-31 2020-05-21 エレメント シックス テクノロジーズ リミテッド ダイヤモンドベース電気化学センサー
WO2018230660A1 (ja) 2017-06-16 2018-12-20 学校法人慶應義塾 残留塩素測定方法及び残留塩素測定装置

Similar Documents

Publication Publication Date Title
Bennet et al. A diamond-based electrode for detection of neurochemicals in the human brain
Muceli et al. Accurate and representative decoding of the neural drive to muscles in humans with multi‐channel intramuscular thin‐film electrodes
Hejazi et al. Hybrid diamond/carbon fiber microelectrodes enable multimodal electrical/chemical neural interfacing
Hashemi et al. Voltammetric detection of 5-hydroxytryptamine release in the rat brain
Zhang et al. Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson’s disease using nano-based microelectrode arrays
US9603522B2 (en) Detecting neurochemical or electrical signals within brain tissue
Shon et al. Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle
Halpern et al. Diamond electrodes for neurodynamic studies in Aplysia californica
Lama et al. Ultrafast detection and quantification of brain signaling molecules with carbon fiber microelectrodes
Fortin et al. Sampling phasic dopamine signaling with fast‐scan cyclic voltammetry in awake, behaving rats
Kim et al. Gold nanograin microelectrodes for neuroelectronic interfaces
JP2011152324A (ja) 脳内物質測定用電極
Castagnola et al. Electrochemical detection of exogenously administered melatonin in the brain
Hobbs et al. An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain
Yavich et al. In vivo voltammetry with removable carbon fibre electrodes in freely-moving mice: dopamine release during intracranial self-stimulation
Lu et al. PtNPt/MWCNT-PEDOT: PSS-modified microelectrode arrays for the synchronous dopamine and neural spike detection in rat models of sleep deprivation
JP6009794B2 (ja) ダイヤモンド微小電極を用いた還元型グルタチオンの測定装置
Lucio Boschen et al. Defining a path toward the use of Fast-scan cyclic voltammetry in human studies
Fu et al. Carbon-based fiber materials as implantable depth neural electrodes
US20200375509A1 (en) Diamond-containing electrodes for neurochemical detection
Amos et al. Reducing the sampling rate of biochemical measurements using fast-scan cyclic voltammetry for in vivo applications
Singh et al. SiC-C fiber electrode for biological sensing
CN111380932A (zh) 一种比率型离子选择性微电极阵列及其制备方法和应用
Ly Implementation of a biocircuit implants for neurotransmitter release during neuro-stimulation
Harris et al. A method for systematic electrochemical and electrophysiological evaluation of neural recording electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527