JP2011148664A - Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material - Google Patents

Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material Download PDF

Info

Publication number
JP2011148664A
JP2011148664A JP2010012935A JP2010012935A JP2011148664A JP 2011148664 A JP2011148664 A JP 2011148664A JP 2010012935 A JP2010012935 A JP 2010012935A JP 2010012935 A JP2010012935 A JP 2010012935A JP 2011148664 A JP2011148664 A JP 2011148664A
Authority
JP
Japan
Prior art keywords
hydrogen
generating material
hydrogen generating
metal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010012935A
Other languages
Japanese (ja)
Inventor
Nobuhisa Ishida
暢久 石田
Yoshiyuki Okano
誉之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010012935A priority Critical patent/JP2011148664A/en
Publication of JP2011148664A publication Critical patent/JP2011148664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generation material in which sintering is prevented, and which has higher reliability and durability. <P>SOLUTION: In the hydrogen generation material generating hydrogen by contact with water and generating water by contact with hydrogen, a hydrogen storage metal storing-releasing hydrogen by oxidation-reduction is used as a matrix, and at least one of substances selected from metals and metal oxides is added to the surface of the hydrogen storage metal by an ALD (Atomic Layer Deposition) process or an LPD (Liquid Phase Deposition) process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水素発生材、燃料電池及び水素発生材の製造方法に関する。   The present invention relates to a hydrogen generating material, a fuel cell, and a method for producing the hydrogen generating material.

水素は、例えば燃料電池に用いられているように、化学反応によってエネルギーを取り出すことが出来るが、その反応は水素と酸素とであるため、反応生成物は水のみとなる。従って、例えば石油や石炭などの燃料と違い、温室効果ガスである二酸化炭素を排出しないため、クリーンなエネルギー源として期待されている。   Hydrogen, for example, can extract energy by a chemical reaction as used in a fuel cell. However, since the reaction is hydrogen and oxygen, the reaction product is only water. Therefore, unlike fuels such as oil and coal, carbon dioxide, which is a greenhouse gas, is not emitted, so it is expected as a clean energy source.

期待される一方で、水素は常温では気体であり、爆発性があるため、貯蔵や輸送することが容易でない。これに対して、耐圧性などの信頼性を非常に高めたボンベに高圧の水素を物理的に充填して貯蔵・輸送する方法に加えて、特定の物質に化学的に水素を吸蔵させて貯蔵・輸送する方法が検討されている。   On the other hand, hydrogen is a gas at room temperature and explosive, so it is not easy to store or transport. On the other hand, in addition to the method of physically filling and storing and transporting high-pressure hydrogen in cylinders with extremely high pressure resistance and other reliability, storage is carried out by chemically storing hydrogen in specific substances. -Transportation methods are being studied.

上記の後者の方法に対して、特許文献1では、鉄又は酸化鉄を水素発生材とし、下記の式(1)に示す、
3Fe+4HO=Fe+4H・・・(1)
酸化還元反応を利用して水素の吸蔵、放出を行う方法が開示されている。水素発生材として鉄を使用した場合、酸化還元を繰り返すと鉄が凝集していくシンタリングが発生し、鉄の活性が急速に低下するという問題があった。これは鉄の活性を上げるために、鉄を微粒子化し、単位体積当たりの表面積を上げるほど、その分、反応性が向上し、より顕著にシンタリングが起こり、性能の劣化が激しいと考えられる。
In contrast to the latter method, in Patent Document 1, iron or iron oxide is used as a hydrogen generating material, and the following formula (1) is shown.
3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 (1)
A method for storing and releasing hydrogen using a redox reaction is disclosed. When iron is used as the hydrogen generating material, there is a problem in that sintering is caused by iron agglomeration when the oxidation and reduction are repeated, and the iron activity rapidly decreases. In order to increase the activity of iron, it is considered that the more the iron is finely divided and the surface area per unit volume is increased, the more the reactivity is improved, the more remarkable sintering occurs, and the deterioration of performance is severe.

このようなシンタリングの発生に対して特許文献1においては、特定の金属を物理混合、含侵又は共沈法によって鉄に添加することでシンタリングを防止している。   With respect to the occurrence of such sintering, in Patent Document 1, sintering is prevented by adding a specific metal to iron by physical mixing, impregnation or coprecipitation.

国際公開第2004/002881号International Publication No. 2004/002881

しかしながら、特許文献1に記載のシンタリング防止方法においては、鉄粒子の表面に添加した特定の金属が付着することで鉄同士の凝集を防止していると考えられるが、鉄微粒子に対して均一に、且つ、強固に特定の金属を添加することが困難である。このため、金属が添加されなかった鉄微粒子や、添加した金属が剥離してしまった鉄微粒子は凝集してしまい、シンタリングを十分に防止できないという課題があった。   However, in the sintering prevention method described in Patent Document 1, it is considered that the specific metal added to the surface of the iron particles adheres to prevent aggregation between the irons. In addition, it is difficult to add a specific metal firmly. For this reason, the iron fine particles to which no metal is added and the iron fine particles from which the added metal has been peeled are aggregated, and there is a problem that sintering cannot be prevented sufficiently.

本発明は、上記の課題を鑑みてなされたものであって、その目的とするところは、シンタリングが防止され、信頼性、耐久性がより高い水素発生材、この水素発生材を備えている燃料電池及び水素発生材の製造方法を提供することである。   The present invention has been made in view of the above problems, and the object of the present invention is to provide a hydrogen generating material that is prevented from sintering and has higher reliability and durability, and the hydrogen generating material. It is to provide a method for producing a fuel cell and a hydrogen generating material.

上記の課題は、以下の構成により解決される。   Said subject is solved by the following structures.

1.水の接触により水素を発生し、水素の接触により水を発生する水素発生材において、
酸化還元によって水素を吸蔵・放出できる水素吸蔵金属を母材とし、前記水素吸蔵金属の表面に、金属又は金属酸化物の少なくとも一方の物質がALD法又はLPD法を用いて添加されていることを特徴とする水素発生材。
1. In hydrogen generating materials that generate hydrogen by contact with water and generate water by contact with hydrogen,
A hydrogen storage metal capable of storing and releasing hydrogen by oxidation and reduction is used as a base material, and at least one of a metal and a metal oxide is added to the surface of the hydrogen storage metal using an ALD method or an LPD method. Characteristic hydrogen generating material.

2.添加されている前記物質は、SiOであることを特徴とする前記1に記載の水素発生材。 2. 2. The hydrogen generating material according to 1 above, wherein the substance added is SiO 2 .

3.前記水素吸蔵金属はFe又はMgであることを特徴とする前記1又は2に記載の水素発生材。   3. 3. The hydrogen generating material according to 1 or 2, wherein the hydrogen storage metal is Fe or Mg.

4.電解質膜と、
前記電解質膜の一方の面に形成された燃料極と、
前記電解質膜の他方の面に形成された空気極と、
発電により生成された水と反応させることにより酸化されて水素を発生し、発生した前記水素を前記燃料極に供給し、再生により生成された水素と反応させることにより還元されて水を発生し、発生した前記水を前記燃料極に供給する前記1から3の何れか一項に記載の水素発生材と、を有することを特徴とする燃料電池。
4). An electrolyte membrane;
A fuel electrode formed on one surface of the electrolyte membrane;
An air electrode formed on the other surface of the electrolyte membrane;
Oxygen is generated by reacting with water generated by power generation to generate hydrogen, the generated hydrogen is supplied to the fuel electrode, and water is generated by being reduced by reacting with hydrogen generated by regeneration, A hydrogen generating material according to any one of claims 1 to 3, wherein the generated water is supplied to the fuel electrode.

5.水の接触により水素を発生し、水素の接触により水を発生する水素発生材の製造方法において、
酸化還元によって水素を吸蔵・放出できる水素吸蔵金属を母材とし、前記水素吸蔵金属の表面に、金属又は金属酸化物の少なくとも一方の物質を、ALD法又はLPD法を用いて添加することを特徴とする水素発生材の製造方法。
5. In the method for producing a hydrogen generating material that generates hydrogen by contact with water and generates water by contact with hydrogen,
A hydrogen storage metal capable of storing and releasing hydrogen by oxidation and reduction is used as a base material, and at least one of a metal and a metal oxide is added to the surface of the hydrogen storage metal using an ALD method or an LPD method. A method for producing a hydrogen generating material.

6.添加されている前記物質は、SiOであることを特徴とする前記5に記載の水素発生材の製造方法。 6). 6. The method for producing a hydrogen generating material according to 5 above, wherein the substance added is SiO 2 .

7.前記水素吸蔵金属はFe又はMgであることを特徴とする前記5又は6に記載の水素発生材の製造方法。   7). The method for producing a hydrogen generating material according to 5 or 6, wherein the hydrogen storage metal is Fe or Mg.

本発明によれば、水素発生材においては、その母材である水素吸蔵金属の表面に、均一且つ強固に金属又は金属酸化物の少なくとも一方の物質を添加することができる。このため、シンタリングが防止され、信頼性、耐久性がより高い水素発生材、この水素発生材を備えている燃料電池及び水素発生材の製造方法を提供することができる。   According to the present invention, in the hydrogen generating material, at least one of a metal and a metal oxide can be uniformly and firmly added to the surface of the hydrogen storage metal that is the base material. Therefore, it is possible to provide a hydrogen generating material that is prevented from sintering and has higher reliability and durability, a fuel cell including the hydrogen generating material, and a method for manufacturing the hydrogen generating material.

実施形態における燃料電池の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell in embodiment. 実施形態における燃料電池で行われる発電動作と再生動作の流れを示す模式図である。It is a schematic diagram which shows the flow of the electric power generation operation | movement and regeneration operation | movement performed with the fuel cell in embodiment.

以下、図面に基づいて、本発明の実施の形態における燃料電池を説明する。尚、本発明は、該実施の形態に限られない。   Hereinafter, a fuel cell according to an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiment.

図1は、実施の形態における燃料電池10の概略構成を示す模式図である。燃料電池10は、電解質膜101、燃料極102、空気極103、水素発生材105、ヒータ107及びカバー部材110等から構成される。   FIG. 1 is a schematic diagram showing a schematic configuration of a fuel cell 10 according to an embodiment. The fuel cell 10 includes an electrolyte membrane 101, a fuel electrode 102, an air electrode 103, a hydrogen generating material 105, a heater 107, a cover member 110, and the like.

燃料電池10は、電解質膜101の両面に燃料極102と空気極103とを接合したMEA(Membrane Electrode Assembly:膜・電極接合体)構造である。   The fuel cell 10 has a MEA (Membrane Electrode Assembly) structure in which a fuel electrode 102 and an air electrode 103 are bonded to both surfaces of an electrolyte membrane 101.

燃料極102側には燃料極102に燃料ガスである水素を供給する本発明に係る水素発生材105が設けられ、空気極103側には空気極103に酸化剤ガスである空気を供給する空気流路121が形成されている。燃料としては水素、また、酸化剤ガスとしては酸素を含有するガスを用いることができ、本実施の形態においては、燃料、酸化剤ガスとしてそれぞれ水素、空気を用いる。   A hydrogen generating material 105 according to the present invention for supplying hydrogen as fuel gas to the fuel electrode 102 is provided on the fuel electrode 102 side, and air for supplying air as oxidant gas to the air electrode 103 is provided on the air electrode 103 side. A flow path 121 is formed. Hydrogen can be used as the fuel, and oxygen-containing gas can be used as the oxidant gas. In this embodiment, hydrogen and air are used as the fuel and the oxidant gas, respectively.

電解質膜101の材料としては、安定化イットリアジルコニウム(YSZ)を用いた固体酸化物電解質、ナフィオン(登録商標)やカチオン導電性、アニオン導電性の固体高分子電解質等を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。本実施の形態においては、酸素イオンを通す固体酸化物電解質を用いる。   As a material of the electrolyte membrane 101, a solid oxide electrolyte using stabilized yttria zirconium (YSZ), Nafion (registered trademark), a cation conductive, an anion conductive solid polymer electrolyte, or the like can be used. Without being limited to the above, any material may be used as long as it satisfies the characteristics as an electrolyte of a fuel cell, such as a material that allows hydrogen ions to pass through or a material that allows oxygen ions to pass. In this embodiment, a solid oxide electrolyte that passes oxygen ions is used.

電解質膜101の成膜方法としては、固体酸化物電解質の場合は、電気化学蒸着法(CVD−EVD法:Chemical Vapor Deposition−Electrochemical Vapor Deposition)、固体高分子電解質の場合は、塗布法等を用いることができる。   As a method for forming the electrolyte membrane 101, an electrochemical vapor deposition method (CVD-EVD method: Chemical Vapor Deposition-Electrochemical Vapor Deposition) is used in the case of a solid oxide electrolyte, and a coating method is used in the case of a solid polymer electrolyte. be able to.

燃料極102、空気極103は、以下が挙げられる。何れの電極も電解質膜101に接する触媒層(例えば白金黒或いは白金合金をカーボンブラックに担持させたもの)と触媒層に積層されたカーボンペーパ等の拡散電極から構成され、例えば蒸着法を用いて形成することができる。また、固体酸化物電解質の場合、好ましくは、燃料極102としてNi−FeサーメットやNi−YSZサーメット、空気極103としてLa−Mn−O系やLa−Co−Ce系の材料を蒸着、スパッタ、ディッピング又はALD等の方法を用いて成膜して形成することができる。   Examples of the fuel electrode 102 and the air electrode 103 include the following. Each electrode is composed of a catalyst layer in contact with the electrolyte membrane 101 (for example, platinum black or a platinum alloy supported on carbon black) and a diffusion electrode such as carbon paper laminated on the catalyst layer. Can be formed. In the case of a solid oxide electrolyte, preferably, Ni—Fe cermet or Ni—YSZ cermet is used as the fuel electrode 102, and La—Mn—O or La—Co—Ce material is used as the air electrode 103 by vapor deposition, sputtering, The film can be formed by using a method such as dipping or ALD.

(水素発生材)
水素発生材105は、発電動作による水素発生、再生(充電)動作による水素の吸蔵を繰り返してもシンタリングが防止され、発電動作による水素の発生、再生動作による水の発生がほとんど低下しない、信頼性、耐久性が高いものである。
(Hydrogen generating material)
The hydrogen generating material 105 is prevented from sintering even if hydrogen generation by the power generation operation and hydrogen occlusion by the regeneration (charging) operation are repeated, and the generation of hydrogen by the power generation operation and the generation of water by the regeneration operation hardly decrease. High durability and durability.

水素発生材105は、水素吸蔵金属を母材として、その表面に金属、若しくは、金属酸化物が添加されている。水素吸蔵金属は、水(水蒸気又は水蒸気を含むガスを含む)に接触することによる酸化、及び、水素に接触することによる還元によって水素を吸蔵・放出できるものであればよく、例えば、Ni、Fe、Pd、V、Mgやこれらを基材料とする合金が挙げられ、これらの内FeやMgが好ましい。   The hydrogen generating material 105 has a hydrogen storage metal as a base material, and a metal or metal oxide is added to the surface thereof. The hydrogen storage metal may be any metal that can store and release hydrogen by oxidation by contact with water (including water vapor or a gas containing water vapor) and reduction by contact with hydrogen. For example, Ni, Fe , Pd, V, Mg, and alloys based on these, Fe and Mg are preferred.

添加される金属、若しくは、金属酸化物は、例えば、金属では、Al、Rh、Cr、V、Moが挙げられ、金属酸化物ではSiO、TiOが挙げられ、これらの内SiOが好ましい。尚、水素吸蔵金属とこれに添加される金属若しくは金属酸化物とは、それらの組成が同じでない。 Examples of the metal or metal oxide to be added include Al, Rh, Cr, V, and Mo for the metal, and SiO 2 and TiO 2 for the metal oxide. Of these, SiO 2 is preferable. . The composition of the hydrogen storage metal and the metal or metal oxide added thereto are not the same.

水素発生材105の母材(水素吸蔵金属)は、その反応性を上げるために単位体積あたりの表面積を予め増加させておいてもよい。母材の単位体積あたりの表面積を増加させるためには、例えば母材を微粒子化させる。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕いたり、クラックを入れたり、酸やアルカリ、ブラスト加工等によって表面を荒らしてもよい。   In order to increase the reactivity of the base material (hydrogen storage metal) of the hydrogen generating material 105, the surface area per unit volume may be increased in advance. In order to increase the surface area per unit volume of the base material, for example, the base material is made fine particles. As a method for making fine particles, the surface may be roughened by crushing using a ball mill or the like, breaking a crack, acid, alkali, blasting, or the like.

次に、この微粒子とした母材の表面に金属、若しくは、金属酸化物を添加する。添加する方法は原子層堆積法(ALD法:Atomic Layer Deposition)、若しくは、液相析出法(LPD法:Liquid Phase Deposition)を用いる。   Next, a metal or metal oxide is added to the surface of the base material made into fine particles. As an addition method, an atomic layer deposition method (ALD method: Atomic Layer Deposition) or a liquid phase deposition method (LPD method: Liquid Phase Deposition) is used.

(ALD法)
ALD法は、例えば、Ni、Fe、Pb、V、Mgを母材に堆積する場合は、以下の〔1〕から〔4〕の工程を繰り返すことにより、一分子層分の成膜(添加)を行うことができる。
〔1〕基板表面をOH基で修飾する。
〔2〕不活性ガスを導入し余剰な原料分子と副生成物を取り除く。
〔3〕金属錯体を供給し、表面が飽和状態になるようにする。この際、反応温度は反応サイトと選択的に反応が起こる温度とする。
〔4〕不活性ガスを導入し余剰な金属錯体分子と副生成物を取り除く。
(ALD method)
In the ALD method, for example, when depositing Ni, Fe, Pb, V, and Mg on a base material, the following steps [1] to [4] are repeated to form a single molecular layer (addition). It can be performed.
[1] The substrate surface is modified with OH groups.
[2] An inert gas is introduced to remove excess raw material molecules and by-products.
[3] Supply a metal complex so that the surface is saturated. At this time, the reaction temperature is set to a temperature at which the reaction occurs selectively with the reaction site.
[4] An inert gas is introduced to remove excess metal complex molecules and by-products.

ALD法は材料表面で化学吸着が進むため、母材にこの方法を適用することで、母材の表面に効率よく均一且つ強固に生成物(金属、若しくは、金属酸化物)を添加できる。また、一般的な蒸着法やスパッタ法では、成膜粒子の進行方向に対して陰となる部分が生じるが、この陰の部分には成膜粒子が到達しにくく、成膜が困難である。これに対し、ALD法では、金属錯体の気相中で行うため、水素発生材となる母材全面に所望の金属、若しくは、金属酸化物を添加できる。   Since chemical adsorption proceeds on the material surface in the ALD method, a product (metal or metal oxide) can be efficiently and uniformly added to the surface of the base material by applying this method to the base material. Further, in a general vapor deposition method or sputtering method, a portion that is shaded with respect to the traveling direction of the film-forming particles is generated, but the film-forming particles do not easily reach the shaded portion, and film formation is difficult. On the other hand, since the ALD method is performed in a gas phase of a metal complex, a desired metal or metal oxide can be added to the entire base material serving as a hydrogen generating material.

(LPD法)
LPD法は、水溶液から金属酸化物薄膜を合成する方法の1つであって、金属のフッ化物を水溶液中に溶解しておき、フッ化イオン補足剤としてホウ酸を加えることで、母材表面に金属酸化膜を析出させる方法である。
(LPD method)
The LPD method is a method for synthesizing a metal oxide thin film from an aqueous solution, in which a metal fluoride is dissolved in an aqueous solution, and boric acid is added as a fluoride ion scavenger, whereby the surface of the base material is obtained. In this method, a metal oxide film is deposited.

より具体的には、
MF (x−2n)−+nHO=MO+xF+2nH・・・(2)
BO+4H+4F=HBF+3HO・・・・・・(3)
で表される式に従って反応が進む。まず、式(2)は酸化物の析出反応式を示しており、金属フルオロ錯体MF (x−2n)−の加水分解平衡反応系の式である。この水溶液にホウ酸を添加すると、式(3)の反応式によって溶液中のフッ化物イオンを取り込み、より安定なHBF(テトラフルオロホウ酸)が生成される。
More specifically,
MF x (x-2n) - + nH 2 O = MO n + xF - + 2nH + ··· (2)
H 3 BO 3 + 4H + + 4F = HBF 4 + 3H 2 O (3)
The reaction proceeds according to the formula First, formula (2) shows an oxide precipitation reaction formula, which is a formula of a hydrolysis equilibrium reaction system of metal fluoro complex MF x (x-2n)- . When boric acid is added to this aqueous solution, fluoride ions in the solution are taken in by the reaction formula of formula (3), and more stable HBF 4 (tetrafluoroboric acid) is generated.

これによって、溶液中のフッ化物イオンが減少する結果、式(2)の平衡反応は右辺側へと進行し、その結果、金属酸化物が母材表面に析出することになる。この方法は母材の表面で析出反応が起こり、また金属錯体の液相中で反応が起こるため、ALD法同様、母材の表面に効率よく全面に均一且つ強固に金属酸化物を添加できる。   As a result, the fluoride ion in the solution decreases, and as a result, the equilibrium reaction of Formula (2) proceeds to the right side, and as a result, the metal oxide is deposited on the surface of the base material. In this method, a precipitation reaction occurs on the surface of the base material, and a reaction occurs in the liquid phase of the metal complex. Therefore, like the ALD method, the metal oxide can be uniformly and firmly added to the surface of the base material efficiently and uniformly.

尚、上記のALD法又はLPD法において、母材の表面に形成される物質が酸化物等の化合物となっており、化合物となる前の物質単体にする必要がある、又は、することが好ましい場合は、例えば還元等の処理を施せばよい。   In the ALD method or the LPD method described above, the substance formed on the surface of the base material is a compound such as an oxide, and it is necessary or preferable that the substance be a simple substance before becoming a compound. In this case, for example, processing such as reduction may be performed.

本実施の形態の水素発生材105は、水素吸蔵金属の1つである鉄(Fe)を母材とし、この表面に金属酸化物であるSiOを添加したもので、燃料電池10に配置するために、粉体状態のものを型に入れて加圧成形し板形状の塊状態としている。 The hydrogen generating material 105 according to the present embodiment is made of iron (Fe), which is one of hydrogen storage metals, as a base material, and SiO 2 which is a metal oxide is added to the surface thereof. For this purpose, a powdery material is put into a mold and pressed to form a plate-like lump.

ここで、燃料電池10の説明に戻る。上記で説明した水素発生材105の水素を放出する放出面105aと燃料極102の水素が供給される供給面102aは、対向し図示しないビーズ等のスペーサにより一定の間隔で平行に配置され、水素発生材105の放出面105aは水素を面状に放出する。   Here, the description returns to the fuel cell 10. The discharge surface 105a for releasing hydrogen of the hydrogen generating material 105 described above and the supply surface 102a for supplying hydrogen of the fuel electrode 102 face each other and are arranged in parallel at regular intervals by spacers such as beads (not shown). The discharge surface 105a of the generating material 105 releases hydrogen in a planar shape.

具体的には、水素発生材105の全面に接して配置されたヒータ107により、水素発生材105全体の温度を一様に上昇させることで、放出面105aから水素を面状に放出させることができる。これにより、水素発生材105は、その放出面105aの略全面から水素を燃料極102の供給面102aの略全面に向けて放出することができる。   Specifically, the temperature of the entire hydrogen generating material 105 is uniformly increased by the heater 107 disposed in contact with the entire surface of the hydrogen generating material 105, whereby hydrogen can be discharged in a planar shape from the discharge surface 105a. it can. As a result, the hydrogen generating material 105 can release hydrogen from substantially the entire surface of the discharge surface 105 a toward the substantially entire surface of the supply surface 102 a of the fuel electrode 102.

また、水素発生材105の水素発生速度は、放出面105a上の位置に依らず、略一定になるようにする。具体的には熱化学平衡を用いる。水素発生材105の温度を昇降させると、平衡状態からのずれに応じた水素を発生させることができるので、ヒータ107を用いて水素発生材105全体の温度を均一にすることで、場所に依らず一定の速度で水素を発生させることができる。   Further, the hydrogen generation speed of the hydrogen generating material 105 is set to be substantially constant regardless of the position on the discharge surface 105a. Specifically, thermochemical equilibrium is used. When the temperature of the hydrogen generating material 105 is raised or lowered, hydrogen corresponding to the deviation from the equilibrium state can be generated. Therefore, by making the temperature of the entire hydrogen generating material 105 uniform by using the heater 107, it depends on the location. Therefore, hydrogen can be generated at a constant rate.

また、化学平衡を用いると、燃料極102と水素発生材105との間の空間部125の電池起動時の水素濃度を場所に依らず一定にしておくことでも、水素発生材105の水素発生速度を一定にすることができる。これは、電池起動時の水素濃度が場所に依らず一定であれば、電極から発生する電力が一定となる。つまり、水素の消費量も場所に依らず一定となる。この場合、消費された水素によって化学平衡がずれ、そのずれ量に応じた水素が新たに水素発生材105から発生する。水素の消費量が場所に依らず一定なので、水素発生材105からの水素発生速度も場所に依らず一定になる。   In addition, when chemical equilibrium is used, the hydrogen generation rate of the hydrogen generating material 105 can be obtained by keeping the hydrogen concentration at the time of battery activation in the space 125 between the fuel electrode 102 and the hydrogen generating material 105 constant regardless of the location. Can be made constant. This is because the electric power generated from the electrode is constant if the hydrogen concentration at the time of battery activation is constant regardless of the location. That is, the amount of hydrogen consumption is constant regardless of the location. In this case, chemical equilibrium is shifted due to the consumed hydrogen, and hydrogen corresponding to the shift amount is newly generated from the hydrogen generating material 105. Since the amount of hydrogen consumption is constant regardless of location, the rate of hydrogen generation from the hydrogen generating material 105 is also constant regardless of location.

尚、電池起動時の水素濃度を場所に依らず一定にする方法は、予め燃料極102と水素発生材105との間の空間部125に水素を封入しておけばよい。封入された水素は、自然に拡散し、封入された空間部125内での濃度が一定になる為、水素濃度を場所に依らず一定にすることができる。   In addition, the method of making the hydrogen concentration at the time of starting the battery constant regardless of the location may be that hydrogen is sealed in advance in the space 125 between the fuel electrode 102 and the hydrogen generating material 105. The encapsulated hydrogen diffuses naturally, and the concentration in the encapsulated space 125 becomes constant, so that the hydrogen concentration can be made constant regardless of the location.

これらにより、燃料極102の供給面102a全面に渡り均一な濃度の水素を供給することができるので、燃料極102で発生する起電力は、燃料極102の場所に依り異なることなく一定となる。その結果、起電力のばらつきによる出力の低下を抑え、燃料効率を高めることができる。また、水素発生材105の水素発生速度は、放出面105a上の位置に依らず、略一定なるようにしているので、起電力のばらつきによる出力の低下をさらに抑えることができ、燃料効率をより高めることができる。   Accordingly, hydrogen having a uniform concentration can be supplied over the entire supply surface 102 a of the fuel electrode 102, so that the electromotive force generated at the fuel electrode 102 is constant without depending on the location of the fuel electrode 102. As a result, a decrease in output due to variations in electromotive force can be suppressed, and fuel efficiency can be increased. Further, since the hydrogen generation speed of the hydrogen generating material 105 is made substantially constant regardless of the position on the discharge surface 105a, it is possible to further suppress a decrease in output due to variations in electromotive force, thereby further improving fuel efficiency. Can be increased.

尚、本実施形態においては、水素発生材105の水素を放出する放出面105aと燃料極102の水素が供給される供給面102aを対向させ一定の間隔で平行に配置する構成としたが、放出面105aと供給面102aを重ねて密着させる構成としてもよい。この場合、燃料極102の供給面102a全面に渡りより均一な濃度の水素を供給することができるので、起電力のばらつきによる出力の低下を確実に抑えることができ、燃料効率をより高めることができる。   In this embodiment, the discharge surface 105a for releasing hydrogen of the hydrogen generating material 105 and the supply surface 102a for supplying hydrogen of the fuel electrode 102 are opposed to each other and arranged in parallel at regular intervals. The surface 105a and the supply surface 102a may be overlapped and brought into close contact with each other. In this case, since hydrogen having a more uniform concentration can be supplied over the entire supply surface 102a of the fuel electrode 102, a decrease in output due to variations in electromotive force can be reliably suppressed, and fuel efficiency can be further increased. it can.

カバー部材110は燃料電池10を覆う容器であり、その空気極103側には、空気流路121に空気を供給する空気供給口122、余剰空気を排出する空気排出口123が設けられ、空気供給口122から空気を空気流路121に通すことで空気極103全体に空気が分散供給される。   The cover member 110 is a container that covers the fuel cell 10. An air supply port 122 that supplies air to the air flow path 121 and an air discharge port 123 that discharges excess air are provided on the air electrode 103 side. Air is distributedly supplied to the entire air electrode 103 by passing air from the opening 122 through the air flow path 121.

このような構成の燃料電池10は、水素発生材105から燃料極102に水素を分散供給し、空気流路121から空気極103に空気を分散供給することで生じる電気化学反応によって発電するものである。また、この時、水素発生材105の母材である鉄(Fe)は酸化され酸化鉄(Fe)へと変化し、水素発生材105に占める鉄(Fe)の割合が次第に低下していく。 The fuel cell 10 having such a configuration generates power by an electrochemical reaction that occurs when hydrogen is dispersedly supplied from the hydrogen generating material 105 to the fuel electrode 102 and air is dispersedly supplied from the air flow path 121 to the air electrode 103. is there. At this time, iron (Fe), which is the base material of the hydrogen generating material 105, is oxidized and changed to iron oxide (Fe 3 O 4 ), and the proportion of iron (Fe) in the hydrogen generating material 105 gradually decreases. To go.

燃料電池10の充電は、発電に伴い酸化が進行した水素発生材105を還元させ再生するものである。図1において、燃料極102と空気極103とに接続された負荷LDを切り離し、負荷LDに換わって、空気極103を正、燃料極102を負として直流電源200が接続される。   The charging of the fuel cell 10 is to reduce and regenerate the hydrogen generating material 105 that has been oxidized along with power generation. In FIG. 1, the load LD connected to the fuel electrode 102 and the air electrode 103 is disconnected, and instead of the load LD, the DC power supply 200 is connected with the air electrode 103 as positive and the fuel electrode 102 as negative.

具体的には、燃料電池10の充電は、酸化された水素発生材105(Fe)に、燃料電池10の発電時に生成された水(HO)を燃料電池10で電気分解させることにより生成される水素(H)を反応させることにより、酸化された水素発生材105を還元する。 Specifically, the fuel cell 10 is charged by electrolyzing water (H 2 O) generated during power generation of the fuel cell 10 into the oxidized hydrogen generating material 105 (Fe 3 O 4 ). By reacting hydrogen (H 2 ) generated by this, the oxidized hydrogen generating material 105 is reduced.

燃料電池10で行われる、発電動作、充電動作の詳細を、図2を用いて説明する。図2(a)〜図2(d)は、燃料電池10で行われる発電動作、再生動作の流れを示す模式図である。   Details of the power generation operation and the charging operation performed in the fuel cell 10 will be described with reference to FIG. FIG. 2A to FIG. 2D are schematic diagrams showing the flow of power generation operation and regeneration operation performed in the fuel cell 10.

(発電動作)
先ず、図2(a)に示すように、発電の初期状態として、燃料電池10の空間部125には、水素(H)が封入されている。
(Power generation operation)
First, as shown in FIG. 2A, hydrogen (H 2 ) is sealed in the space 125 of the fuel cell 10 as an initial state of power generation.

次に、図2(b)に示すように空気供給口122を開け、空気流路121を介して空気極103に空気を供給すると、燃料極102では、空間部125に封入されている水素(H)と空気極103でイオン化し電解質膜101を通過した酸素イオン(O2−)とで下記の式(4)に示す反応が生じ、電子(e)が発生し蓄積される。すなわち起電力が発生し発電する。燃料極102と空気極103の間に負荷LDを接続すると、燃料極102に蓄積された電子(e)は、空気極103に流れ負荷LDを駆動することができる。 Next, as shown in FIG. 2B, when the air supply port 122 is opened and air is supplied to the air electrode 103 via the air flow path 121, hydrogen ( The reaction shown in the following formula (4) occurs between H 2 ) and oxygen ions (O 2− ) ionized at the air electrode 103 and passed through the electrolyte membrane 101, and electrons (e ) are generated and accumulated. That is, an electromotive force is generated and power is generated. When a load LD is connected between the fuel electrode 102 and the air electrode 103, electrons (e ) accumulated in the fuel electrode 102 can flow to the air electrode 103 and drive the load LD.

+O2−→HO+2e (4)
また、この時、式(4)で示したように、燃料極102では水(HO)が生成される。生成された水(HO)は水素発生材105に供給され、水素発生材105では、供給された水(HO)により下記の式(5)に示す反応が生じ、水素(H)を発生する。そして、発生した水素(H)は燃料極102に供給され、燃料極102では、供給された水素(H)を酸化し発電することによって再び水(HO)が生成されるといった循環の利用形態となり発電動作が持続される。
H 2 + O 2− → H 2 O + 2e (4)
At this time, as shown by the equation (4), water (H 2 O) is generated at the fuel electrode 102. The generated water (H 2 O) is supplied to the hydrogen generating material 105. In the hydrogen generating material 105, the reaction shown in the following formula (5) occurs by the supplied water (H 2 O), and hydrogen (H 2 ). The generated hydrogen (H 2 ) is supplied to the fuel electrode 102, and the fuel electrode 102 circulates such that water (H 2 O) is generated again by oxidizing the supplied hydrogen (H 2 ) and generating electric power. The power generation operation is sustained.

4HO+3Fe→4H+Fe (5)
尚、この時、水素発生材105は、母材の鉄(Fe)が酸化され酸化鉄(Fe)へと変化し、水素発生材105に占める鉄(Fe)の割合が次第に低下していく。
4H 2 O + 3Fe → 4H 2 + Fe 3 O 4 (5)
At this time, the hydrogen generating material 105 is changed to iron oxide (Fe 3 O 4 ) by oxidizing the base iron (Fe), and the ratio of iron (Fe) in the hydrogen generating material 105 gradually decreases. To go.

このような状態で、図2(c)に示すように、空気供給口122を閉じ、空気極103への空気の供給を停止すると、発電を停止させることができる。この時、空間部125には、前述の式(4)、式(5)の反応によりそれぞれ生成された水(HO)、水素(H)が残留する。 In such a state, as shown in FIG. 2C, when the air supply port 122 is closed and the supply of air to the air electrode 103 is stopped, power generation can be stopped. At this time, water (H 2 O) and hydrogen (H 2 ) generated by the reactions of the above formulas (4) and (5) respectively remain in the space 125.

(再生動作)
燃料電池10が発電停止時、図2(c)に示した状態で、図2(d)に示すように、燃料電池10の燃料極102と空気極103の間に直流電源200を接続し、電圧を印加し通電すると、燃料極102では、空間部125に残留している水(HO)と通電により供給された電子(e)とで下記の式(6)に示す反応が生じ、電気分解により水素(H)が発生する。
(Playback operation)
When the power generation of the fuel cell 10 is stopped, a DC power source 200 is connected between the fuel electrode 102 and the air electrode 103 of the fuel cell 10 in the state shown in FIG. 2C, as shown in FIG. When a voltage is applied and energized, in the fuel electrode 102, a reaction shown in the following formula (6) occurs between water (H 2 O) remaining in the space 125 and electrons (e ) supplied by the energization. Then, hydrogen (H 2 ) is generated by electrolysis.

O+2e→H+O2− (6)
そして、発生した水素(H)は水素発生材105に供給され、水素発生材105では、供給された水素(H)により下記の式(7)に示す反応が生じ、水素発生材105中の酸化鉄(Fe)は還元され鉄(Fe)へと変化し、水素発生材105に占める鉄(Fe)の割合が次第に増加し、水素発生材105は再生される。
H 2 O + 2e → H 2 + O 2− (6)
Then, the generated hydrogen (H 2 ) is supplied to the hydrogen generating material 105, and in the hydrogen generating material 105, the reaction represented by the following formula (7) occurs due to the supplied hydrogen (H 2 ), and the hydrogen generating material 105 The iron oxide (Fe 3 O 4 ) is reduced to change to iron (Fe), the proportion of iron (Fe) in the hydrogen generating material 105 gradually increases, and the hydrogen generating material 105 is regenerated.

4H+Fe→4HO+3Fe (7)
この時、式(7)で示したように、水素発生材105では水(HO)が生成される。生成された水(HO)は燃料極102に供給され、燃料極102では、供給された水(HO)を電気分解することによって再び水素(H)が生成されるといった循環の利用形態となり再生動作が持続される。
4H 2 + Fe 3 O 4 → 4H 2 O + 3Fe (7)
At this time, as shown by the equation (7), the hydrogen generating material 105 generates water (H 2 O). The generated water (H 2 O) is supplied to the fuel electrode 102, and in the fuel electrode 102, hydrogen (H 2 ) is generated again by electrolyzing the supplied water (H 2 O). It becomes a usage form and the playback operation is continued.

上記の発電動作及び再生動作を繰り返すと、水素発生材105の母体である鉄(Fe)の酸化還元が繰り返されることになるが、本発明に係る水素発生材105は、鉄(Fe)の全面にこれまで説明した所望の金属、若しくは、金属酸化物を添加されている。   When the above power generation operation and regeneration operation are repeated, the oxidation (reduction) of iron (Fe), which is the base of the hydrogen generating material 105, is repeated. However, the hydrogen generating material 105 according to the present invention has the entire surface of iron (Fe). The desired metal or metal oxide described above is added.

このため、水素発生材105においては、シンタリングが良好に防止され、発電動作及び再生動作を繰り返しても、発電動作による水素の発生、再生動作による水素の吸蔵がほとんど低下しない信頼性、耐久性がより高い水素発生材となっている。このような水素発生材105を備えた燃料電池10は、良好な発電動作及び再生動作を行うことができる高い信頼性、耐久性を有することができる。   For this reason, in the hydrogen generating material 105, sintering is satisfactorily prevented, and even when the power generation operation and the regeneration operation are repeated, the generation of hydrogen due to the power generation operation and the storage of hydrogen due to the regeneration operation hardly decrease, and the durability. Is a higher hydrogen generating material. The fuel cell 10 provided with such a hydrogen generating material 105 can have high reliability and durability capable of performing good power generation operation and regeneration operation.

(実施例1)
市販の鉄粉をボールミルにて24時間粉砕したものを用意した。粉砕した鉄粉の表面にALD法を用いてSiOを添加した。具体的には、温度400℃の環境下で、鉄粉に対し、Si原料としてアミノシランを60Paで1秒間、酸化剤として5%オゾンを500Paで2秒間の噴射を1サイクルとし、これを20サイクル行い、厚みが約2nmのSiOを鉄粉表面に添加した。
Example 1
A commercially available iron powder was pulverized for 24 hours with a ball mill. SiO 2 was added to the surface of the pulverized iron powder using the ALD method. Specifically, in an environment of a temperature of 400 ° C., one cycle of injection of aminosilane as an Si raw material at 60 Pa for 1 second, and 5% ozone as an oxidizing agent at 500 Pa for 2 seconds in an environment of temperature 400 ° C. Then, SiO 2 having a thickness of about 2 nm was added to the iron powder surface.

上記のALD法によりSiOを添加した鉄粉に対し、350℃の水蒸気雰囲気中で1時間放置して酸化、同じく350℃の水素雰囲気中で1時間放置して還元、という一連の酸化還元反応を20回繰り返した。 A series of oxidation-reduction reactions in which the iron powder added with SiO 2 by the above ALD method is oxidized by leaving it in a steam atmosphere at 350 ° C. for 1 hour, and then reduced in a hydrogen atmosphere at 350 ° C. for 1 hour. Was repeated 20 times.

一連の酸化還元反応前後の鉄粉の表面積を比表面積分析装置(型式NOVA1000、Quantachrome Instruments社)を用いて測定し比較したところ、酸化還元反応後の鉄粉の表面積は、反応前に対して1%しか減少していないことが分かった。このことからシンタリングが十分に防止されていることが確認できた。   When the surface area of the iron powder before and after a series of oxidation-reduction reactions was measured and compared using a specific surface area analyzer (model NOVA1000, Quantachrome Instruments), the surface area of the iron powder after the oxidation-reduction reaction was 1 with respect to that before the reaction. It has been found that the percentage has decreased. From this, it was confirmed that sintering was sufficiently prevented.

(実施例2)
市販のMg粉をボールミルにて24時間粉砕したものを用意した。粉砕したMg粉の表面にLPD法を用いてSiOを添加した。具体的には、Si原料としては(NHSiFの水溶液を用いた。Mg粉を水溶液中に分散させ、ホウ酸(HBO)を加えてから24時間放置した後、Mg粉を溶液から取り出した。
(Example 2)
Commercially available Mg powder was pulverized for 24 hours with a ball mill. SiO 2 was added to the surface of the crushed Mg powder using the LPD method. Specifically, an aqueous solution of (NH 4 ) 2 SiF 6 was used as the Si raw material. Mg powder was dispersed in an aqueous solution, boric acid (H 3 BO 3 ) was added and allowed to stand for 24 hours, and then the Mg powder was taken out of the solution.

上記のLPD法によりSiOを添加したMg粉に対し、実施例1と同じ条件で一連の酸化還元反応を行った。 A series of oxidation-reduction reactions were performed on the Mg powder to which SiO 2 was added by the LPD method under the same conditions as in Example 1.

一連の酸化還元反応前後のMg粉の表面積を実施例1と同じ比表面積分析装置を用いて測定し比較したところ、酸化還元反応後のMg粉の表面積は、反応前に対して1.5%しか減少していないことが分かった。このことからシンタリングが十分に防止されていることが確認できた。   When the surface area of the Mg powder before and after the series of oxidation-reduction reactions was measured and compared using the same specific surface area analyzer as in Example 1, the surface area of the Mg powder after the oxidation-reduction reaction was 1.5% of that before the reaction. It turns out that it has only decreased. From this, it was confirmed that sintering was sufficiently prevented.

10 燃料電池
101 電解質膜
102 燃料極
102a 供給面
103 空気極
105 水素発生材
105a 放出面
107 ヒータ
110 カバー部材
121 空気流路
122 空気供給口
123 空気排出口
125 空間部
200 直流電源
LD 負荷
DESCRIPTION OF SYMBOLS 10 Fuel cell 101 Electrolyte membrane 102 Fuel electrode 102a Supply surface 103 Air electrode 105 Hydrogen generating material 105a Release surface 107 Heater 110 Cover member 121 Air flow path 122 Air supply port 123 Air discharge port 125 Space part 200 DC power supply LD Load

Claims (7)

水の接触により水素を発生し、水素の接触により水を発生する水素発生材において、
酸化還元によって水素を吸蔵・放出できる水素吸蔵金属を母材とし、前記水素吸蔵金属の表面に、金属又は金属酸化物の少なくとも一方の物質がALD法又はLPD法を用いて添加されていることを特徴とする水素発生材。
In hydrogen generating materials that generate hydrogen by contact with water and generate water by contact with hydrogen,
A hydrogen storage metal capable of storing and releasing hydrogen by oxidation and reduction is used as a base material, and at least one of a metal and a metal oxide is added to the surface of the hydrogen storage metal using an ALD method or an LPD method. Characteristic hydrogen generating material.
添加されている前記物質は、SiOであることを特徴とする請求項1に記載の水素発生材。 The hydrogen generating material according to claim 1, wherein the substance added is SiO 2 . 前記水素吸蔵金属はFe又はMgであることを特徴とする請求項1又は2に記載の水素発生材。   The hydrogen generating material according to claim 1, wherein the hydrogen storage metal is Fe or Mg. 電解質膜と、
前記電解質膜の一方の面に形成された燃料極と、
前記電解質膜の他方の面に形成された空気極と、
発電により生成された水と反応させることにより酸化されて水素を発生し、発生した前記水素を前記燃料極に供給し、再生により生成された水素と反応させることにより還元されて水を発生し、発生した前記水を前記燃料極に供給する請求項1から3の何れか一項に記載の水素発生材と、を有することを特徴とする燃料電池。
An electrolyte membrane;
A fuel electrode formed on one surface of the electrolyte membrane;
An air electrode formed on the other surface of the electrolyte membrane;
Oxygen is generated by reacting with water generated by power generation to generate hydrogen, the generated hydrogen is supplied to the fuel electrode, and water is generated by being reduced by reacting with hydrogen generated by regeneration, A hydrogen generating material according to any one of claims 1 to 3, wherein the generated water is supplied to the fuel electrode.
水の接触により水素を発生し、水素の接触により水を発生する水素発生材の製造方法において、
酸化還元によって水素を吸蔵・放出できる水素吸蔵金属を母材とし、前記水素吸蔵金属の表面に、金属又は金属酸化物の少なくとも一方の物質を、ALD法又はLPD法を用いて添加することを特徴とする水素発生材の製造方法。
In the method for producing a hydrogen generating material that generates hydrogen by contact with water and generates water by contact with hydrogen,
A hydrogen storage metal capable of storing and releasing hydrogen by oxidation and reduction is used as a base material, and at least one of a metal and a metal oxide is added to the surface of the hydrogen storage metal using an ALD method or an LPD method. A method for producing a hydrogen generating material.
添加されている前記物質は、SiOであることを特徴とする請求項5に記載の水素発生材の製造方法。 The method for producing a hydrogen generating material according to claim 5, wherein the substance added is SiO 2 . 前記水素吸蔵金属はFe又はMgであることを特徴とする請求項5又は6に記載の水素発生材の製造方法。   The method for producing a hydrogen generating material according to claim 5 or 6, wherein the hydrogen storage metal is Fe or Mg.
JP2010012935A 2010-01-25 2010-01-25 Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material Pending JP2011148664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012935A JP2011148664A (en) 2010-01-25 2010-01-25 Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012935A JP2011148664A (en) 2010-01-25 2010-01-25 Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material

Publications (1)

Publication Number Publication Date
JP2011148664A true JP2011148664A (en) 2011-08-04

Family

ID=44536045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012935A Pending JP2011148664A (en) 2010-01-25 2010-01-25 Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material

Country Status (1)

Country Link
JP (1) JP2011148664A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089396A (en) * 2011-10-17 2013-05-13 Konica Minolta Holdings Inc Secondary battery type fuel cell
JP2013089462A (en) * 2011-10-18 2013-05-13 Konica Minolta Holdings Inc Secondary battery type fuel cell
WO2013084733A1 (en) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 Fuel generator and secondary battery-type fuel cell system equipped with same
JP2013120639A (en) * 2011-12-06 2013-06-17 Konica Minolta Inc Fuel cell system
JP2014013742A (en) * 2012-07-03 2014-01-23 Hyundai Motor Company Co Ltd Method of manufacturing anode for fuel cell
EP2808930A4 (en) * 2012-01-24 2015-10-07 Konica Minolta Inc Secondary battery type fuel cell system
JP2021034240A (en) * 2019-08-26 2021-03-01 国立研究開発法人産業技術総合研究所 Electrode member for fuel cell and fuel cell
CN113753854A (en) * 2020-12-31 2021-12-07 厦门大学 Hydrogen storage fuel with straight hole structure and preparation method thereof
CN113764698A (en) * 2020-12-31 2021-12-07 厦门大学 Hydrogen storage fuel and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089396A (en) * 2011-10-17 2013-05-13 Konica Minolta Holdings Inc Secondary battery type fuel cell
JP2013089462A (en) * 2011-10-18 2013-05-13 Konica Minolta Holdings Inc Secondary battery type fuel cell
WO2013084733A1 (en) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 Fuel generator and secondary battery-type fuel cell system equipped with same
JP2013120639A (en) * 2011-12-06 2013-06-17 Konica Minolta Inc Fuel cell system
EP2789581A4 (en) * 2011-12-06 2015-09-09 Konica Minolta Inc Fuel generator and secondary battery-type fuel cell system equipped with same
EP2808930A4 (en) * 2012-01-24 2015-10-07 Konica Minolta Inc Secondary battery type fuel cell system
JP2014013742A (en) * 2012-07-03 2014-01-23 Hyundai Motor Company Co Ltd Method of manufacturing anode for fuel cell
JP2021034240A (en) * 2019-08-26 2021-03-01 国立研究開発法人産業技術総合研究所 Electrode member for fuel cell and fuel cell
JP7304066B2 (en) 2019-08-26 2023-07-06 国立研究開発法人産業技術総合研究所 Fuel cell electrode member and fuel cell
CN113753854A (en) * 2020-12-31 2021-12-07 厦门大学 Hydrogen storage fuel with straight hole structure and preparation method thereof
CN113764698A (en) * 2020-12-31 2021-12-07 厦门大学 Hydrogen storage fuel and preparation method thereof
CN113764698B (en) * 2020-12-31 2024-01-09 厦门大学 Hydrogen storage fuel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2011148664A (en) Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material
Li et al. Relating catalysis between fuel cell and metal-air batteries
Zhang et al. Dual-descriptor tailoring: the hydroxyl adsorption energy-dependent hydrogen evolution kinetics of high-valance state doped Ni3N in alkaline media
Wang et al. Nitrogen fixation reaction derived from nanostructured catalytic materials
Gao et al. Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress
Wang et al. Long‐term stability challenges and opportunities in acidic oxygen evolution electrocatalysis
Katsounaros et al. Oxygen electrochemistry as a cornerstone for sustainable energy conversion
Gayen et al. Oxidation state and oxygen-vacancy-induced work function controls bifunctional oxygen electrocatalytic activity
Watanabe et al. Overview of recent developments in oxygen reduction electrocatalysis
Abbasi et al. Low-temperature direct ammonia fuel cells: Recent developments and remaining challenges
Saveleva et al. Uncovering the stabilization mechanism in bimetallic ruthenium–iridium anodes for proton exchange membrane electrolyzers
Merino-Jiménez et al. Developments in direct borohydride fuel cells and remaining challenges
Nikolova et al. Electrocatalysts for bifunctional oxygen/air electrodes
WO2015064644A1 (en) Positive electrode for alkaline water electrolysis
Xi et al. Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles
Zhang et al. Insights into the dynamic evolution of defects in electrocatalysts
Hsu et al. Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications
Xu et al. Carbon black supported ultra-high loading silver nanoparticle catalyst and its enhanced electrocatalytic activity towards oxygen reduction reaction in alkaline medium
Wei et al. Insight into the boosted electrocatalytic oxygen evolution performance of highly hydrophilic nickel–iron hydroxide
JP4788847B2 (en) Fuel cell device
Li et al. First-principles study of the initial oxygen reduction reaction on stoichiometric and reduced CeO 2 (111) surfaces as a cathode catalyst for lithium–oxygen batteries
Adhikary et al. Remarkable performance of the unique Pd–Fe 2 O 3 catalyst towards EOR and ORR: non-Pt and non-carbon electrode materials for low-temperature fuel cells
Kim et al. Leveraging metal alloy-hybrid support interaction to enhance oxygen evolution kinetics and stability in proton exchange membrane water electrolyzers
Tay et al. Engineering Sn‐based catalytic materials for efficient electrochemical CO2 reduction to formate
Gao et al. Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide