JP2011146238A - Light guide plate, backlight unit, and display device - Google Patents

Light guide plate, backlight unit, and display device Download PDF

Info

Publication number
JP2011146238A
JP2011146238A JP2010005866A JP2010005866A JP2011146238A JP 2011146238 A JP2011146238 A JP 2011146238A JP 2010005866 A JP2010005866 A JP 2010005866A JP 2010005866 A JP2010005866 A JP 2010005866A JP 2011146238 A JP2011146238 A JP 2011146238A
Authority
JP
Japan
Prior art keywords
light
guide plate
groove
light guide
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010005866A
Other languages
Japanese (ja)
Other versions
JP5531629B2 (en
Inventor
Asako Fujii
愛沙子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010005866A priority Critical patent/JP5531629B2/en
Publication of JP2011146238A publication Critical patent/JP2011146238A/en
Application granted granted Critical
Publication of JP5531629B2 publication Critical patent/JP5531629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light guide plate stably mass-producible while materializing high front luminance and a uniform luminance distribution, and a backlight unit as well as a display device using the light guide plate. <P>SOLUTION: The light guide plate includes a light emitting surface 12 emitting light to an image display panel side, an opposite surface-of-light emitting surface 14 placed at an opposite side of the light-emitting surface, and at least a surface of a light-incident surface 16 nearly perpendicular to the former two surfaces. The opposite surface-of-light emitting surface 14 includes grooves 18 each consisting of a curved surface extended in parallel with the light-incident surface provided at intervals with each other. A cross section of each groove 18 has a different curvature of a curve showing a wall surface of the groove between an edge side and the deepest part side of the groove. Further, an angle made by a contact line at an edge part of the curve and the opposite surface-of-light emitting surface is more than 0° and less than 60°. Moreover, the grooves get deeper as they go away from a light source and have narrower groove intervals. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導光板、バックライトユニット及び表示装置に関する。   The present invention relates to a light guide plate, a backlight unit, and a display device.

近年、TFT(Thin Film Transistor)型液晶パネルやSTN(Super Twisted Nematic)型液晶パネルを使用した液晶ディスプレイ装置は、主としてOA分野のカラーノートパソコンを中心に商品化されている。この種のバックライト方式に採用されているバックライトユニットとしては、大別して冷陰極管(CCFL:Cold Cathode Fluorescent Lamp)等の光源ランプを、光透過性に優れたアクリル樹脂等からなる平板状の導光板内で多重反射させる「導光板ライトガイド方式」(いわゆる、エッジライト方式)と、導光板を用いずにCCFL等の光源ランプからの光で直接照明する「直下型方式」の2種類の方式がある。   In recent years, liquid crystal display devices using TFT (Thin Film Transistor) type liquid crystal panels and STN (Super Twisted Nematic) type liquid crystal panels have been commercialized mainly for color notebook personal computers in the OA field. The backlight unit used in this type of backlight system is roughly divided into a light source lamp such as a cold cathode fluorescent lamp (CCFL) and a flat plate made of acrylic resin with excellent light transmission. There are two types: “light guide plate light guide method” (so-called edge light method) that makes multiple reflections in the light guide plate, and “direct type” that directly illuminates with light from a light source lamp such as CCFL without using the light guide plate There is a method.

一方、直下型方式のバックライトは、導光板の利用が困難な大型の液晶テレビなどのディスプレイ装置に用いられている。直下型バックライト方式のディスプレイとしては、図12に示す液晶ディスプレイ装置が一般的に知られている。この液晶ディスプレイ装置は、表裏両面を偏光板101、103で挟んでなる液晶パネル102が上部に位置して配設され、液晶パネル102の下側面にCCFL等からなる光源105が配置される。更に、光源105の上面側には拡散板104のような光学シートが設けられている。また、光源105の背面には、光源105から液晶パネル102と反対方向に向かう光を液晶パネル102側に反射させるリフレクタ106が配置されている。よって、光源105から射出される光は拡散板104で拡散され、この拡散光を高効率で液晶パネル102の有効表示エリアに集光させる。   On the other hand, direct type backlights are used in display devices such as large liquid crystal televisions where it is difficult to use a light guide plate. A liquid crystal display device shown in FIG. 12 is generally known as a direct backlight type display. In this liquid crystal display device, a liquid crystal panel 102 having both front and back surfaces sandwiched between polarizing plates 101 and 103 is disposed at the upper portion, and a light source 105 made of CCFL or the like is disposed on the lower surface of the liquid crystal panel 102. Further, an optical sheet such as a diffusion plate 104 is provided on the upper surface side of the light source 105. In addition, on the back surface of the light source 105, a reflector 106 that reflects light traveling from the light source 105 in the opposite direction to the liquid crystal panel 102 toward the liquid crystal panel 102 is disposed. Therefore, the light emitted from the light source 105 is diffused by the diffusion plate 104, and the diffused light is condensed on the effective display area of the liquid crystal panel 102 with high efficiency.

「直下型方式」のディスプレイ装置に用いられている拡散板104は、液晶ディスプレイ装置の構成上、線状光源の光を散乱させ、且つ光源が透けて見えないことが求められる為、光散乱粒子が配合されており、近年の直下型方式の急増に合わせて種々の開発が行なわれてきた。その多くは、高透過、高拡散を目的とし、光散乱粒子の種類や粒径、配合量を線御するものであり、光散乱粒子としては、真球状粒子をしようしたものが報告されている。   The diffusion plate 104 used in the “direct type” display device is required to scatter the light from the linear light source and not to be seen through the light source due to the configuration of the liquid crystal display device. Has been blended, and various developments have been made in accordance with the recent rapid increase in direct type. Many of them are for the purpose of high transmittance and high diffusion, and control the kind, particle size, and blending amount of light scattering particles. As light scattering particles, those using true spherical particles have been reported. .

しかし、拡散板の光散乱粒子として真球状粒子のみを使用した場合、視野角を広げるような拡散特性となり、ランプイメージは明るい部分が広がった状態で確認され、比較的明るい部分と比較的暗い部分がストライプ状の輝度ムラとして視認できてしまう。この明るい部分と暗い部分の差を確認しにくいように光透過率を落とす為、正面輝度が低下するという問題があった。図12に示した液晶ディスプレイ装置でも、視野角制御は拡散板104の拡散性にのみ委ねられている為、その制御は難しく、液晶表示画面の中心は明るく、周辺に近いほど暗くなる特性は避けられない。従って、液晶表示画面を横から見たときの輝度低下が大きく、光の利用効率の低下を招いる為、種々の光学フィルムを拡散板の上に積層することで問題の解決が図られている。   However, when only spherical particles are used as the light scattering particles of the diffuser plate, the diffusion characteristics expand the viewing angle, and the lamp image is confirmed in a state where the bright part is spread, and the relatively bright part and the comparatively dark part. However, it can be visually recognized as striped luminance unevenness. Since the light transmittance is lowered so that it is difficult to confirm the difference between the bright part and the dark part, there is a problem that the front luminance is lowered. Also in the liquid crystal display device shown in FIG. 12, since the viewing angle control is left only to the diffusivity of the diffusion plate 104, it is difficult to control, and avoid the characteristic that the center of the liquid crystal display screen is bright and becomes darker as it is closer to the periphery. I can't. Therefore, when the liquid crystal display screen is viewed from the side, the luminance is greatly reduced and the light use efficiency is reduced. Therefore, various optical films are laminated on the diffusion plate to solve the problem. .

以上に述べた直下型方式のディスプレイ装置は、エッジライト方式に比べて、面全体を均一に照らし易い為、大型ディスプレイにおいて多く採用されてきたが、光源上に種々の光学シートを積層する構造が近年開発著しいディスプレイ装置の薄型化の阻害要因ともなる為、最近では大型ディスプレイにおいてもエッジライト方式が採用されつつある。   The direct type display device described above has been widely used in large displays because it easily illuminates the entire surface uniformly compared to the edge light method, but has a structure in which various optical sheets are stacked on a light source. In recent years, the edge light system is being adopted even in large-sized displays because it becomes a hindrance to thinning of display devices that have been developed in recent years.

エッジライト方式のバックライトユニットが搭載された液晶ディスプレイ装置としては、例えば図13に示すものが一般に知られている。この種の液晶ディスプレイ装置は、表裏両面を偏光板101、103で挟んでなる液晶パネル102が上部に位置して配設され、液晶パネル102の下側面に、略長方形の板状を呈するポリメチルメタクリレート(PMMA)やアクリル等の透明な基材からなる導光板117が配置されており、この導光板117の上面、即ち光射出面に拡散フィルム(拡散層)114が設けられている。更に、導光板117の下面に、導光板117に導入された光を効率よく液晶パネル102に向けて均一になるように散乱して反射される為の散乱反射パターン部(図示せず)が印刷などによって設けられると共に、散乱反射パターン部の下方に反射フィルム(反射層)118が設けられている。   As a liquid crystal display device on which an edge light type backlight unit is mounted, for example, the one shown in FIG. 13 is generally known. In this type of liquid crystal display device, a liquid crystal panel 102 in which both front and back surfaces are sandwiched between polarizing plates 101 and 103 is disposed at the upper part, and a polymethyl which has a substantially rectangular plate shape on the lower surface of the liquid crystal panel 102. A light guide plate 117 made of a transparent base material such as methacrylate (PMMA) or acrylic is disposed, and a diffusion film (diffusion layer) 114 is provided on the upper surface of the light guide plate 117, that is, the light emission surface. Further, a scattering reflection pattern portion (not shown) is printed on the lower surface of the light guide plate 117 so that the light introduced into the light guide plate 117 is efficiently scattered and reflected toward the liquid crystal panel 102. And a reflection film (reflection layer) 118 is provided below the scattering reflection pattern portion.

また、上記導光板117には、その短側部に光源ランプ116が設けられており、更に、光源ランプ116の光を効率よく導光板117に入射させるべく、光源ランプ116の背面側を覆うようにして高反射率のランプリフレクター115が設けられている。上記散乱反射パターン部は、白色である二酸化チタン(チタニア)粉末を透明な接着剤等の溶液に混合した混合物を、所定パターン、例えばドットパターンにて印刷し、乾燥・形成したものであり、導光板117内に入射した光に指向性を付与し、光射出面へと導くようになっており、高輝度化を図る為の工夫がなされている。   The light guide plate 117 is provided with a light source lamp 116 on the short side thereof, and further covers the back side of the light source lamp 116 so that the light from the light source lamp 116 is efficiently incident on the light guide plate 117. Thus, a lamp reflector 115 having a high reflectance is provided. The scattering reflection pattern portion is a mixture of white titanium dioxide (titania) powder mixed with a transparent adhesive solution or the like, printed in a predetermined pattern, for example, a dot pattern, dried, and formed. A directivity is imparted to the light incident on the light plate 117 and guided to the light exit surface, and a contrivance for increasing the brightness is made.

最近では、光利用効率を向上して更なる高輝度化を図るべく、図14に示すように、拡散フィルム114と液晶パネル102との間に、光集光機能を備えたプリズムフィルム(プリズム層)119、120を設けることが提案されている。このプリズムフィルム119、120は導光板117の光射出面から射出され、拡散フィルム114で拡散された光を高効率で液晶パネル102の有効表示エリアに集光させるものである。   Recently, a prism film (prism layer) having a light condensing function is provided between the diffusion film 114 and the liquid crystal panel 102 as shown in FIG. ) 119, 120 have been proposed. The prism films 119 and 120 are emitted from the light exit surface of the light guide plate 117 and concentrate the light diffused by the diffusion film 114 on the effective display area of the liquid crystal panel 102 with high efficiency.

また、正面輝度や面光源としての均一性を向上させる試みとして、導光板117の形状を光源から離れるほど薄肉化していく楔形にしたものや、所定の形状を付与した反光射出面に金属蒸着を行なったり、異屈折率素材を隣接させたりすることで反射パターンを印刷することの代替とする等の工夫が行なわれているが、やはり画像品位を保つ為には、光学シートの併用が必要になっている(特許文献1、2)。   In addition, as an attempt to improve the front luminance and uniformity as a surface light source, the light guide plate 117 is formed into a wedge shape that is thinned away from the light source, or metal deposition is performed on the light-emitting surface provided with a predetermined shape. Although it has been devised to replace the reflection pattern printing by making it adjacent or using different refractive index materials, it is necessary to use an optical sheet together to maintain image quality (Patent Documents 1 and 2).

これに対し、更なるディスプレイ装置の薄型化の要求だけではなく、部材点数の低減によるコスト削減にもつながるとして、導光板117の光射出面及び半光射出面の両面に所定の凹凸形状を付与することで、光学シートを積層するのと同様の効果を狙った導光板も開発されている。これらの導光板の作製方法としては、所望の形状を正確に成形する為、一般にレーザ切削や射出成形が採用されてきた。(特許文献3〜5)。   In contrast to this, not only the demand for further thinning of the display device but also the cost reduction due to the reduction in the number of members, a predetermined uneven shape is imparted to both the light emitting surface and the semi-light emitting surface of the light guide plate 117. Thus, a light guide plate aiming at the same effect as that of stacking optical sheets has been developed. As a method for producing these light guide plates, laser cutting or injection molding has been generally employed in order to accurately form a desired shape. (Patent Documents 3 to 5).

特開平11−174439JP-A-11-174439 特開2002−109931JP 2002-109931 A 特開平8−211388JP-A-8-212388 特開2002−113751JP 2002-113751 A 特開平10−282496JP-A-10-28296

しかしながら、レーザ切削や射出成形による成形は大量生産に向かなかったり、ウェルドライン等の外観不良により歩留まりが上がらなかったりする欠点がある。また、反光射出面に光反射層を設ける場合は、工程数やライン長が増加し、コストの観点で不利となる。   However, laser cutting and injection molding are disadvantageous in that they are not suitable for mass production and the yield does not increase due to poor appearance such as weld lines. In addition, when a light reflecting layer is provided on the light exit surface, the number of processes and the line length increase, which is disadvantageous from the viewpoint of cost.

一方、大量生産が可能で生産コストが抑えられることが知られている押出成形方法では、従来用いられてきた印刷や蒸着による反射層の付与や、光源から遠くなるほど厚みが薄くなるようなテーパーのかかった形状を作製することは不可能であった。   On the other hand, the extrusion method, which is known to be capable of mass production and reduce production costs, has been provided with a reflective layer by printing or vapor deposition that has been used in the past, and has a taper that decreases in thickness as it gets farther from the light source. It was impossible to produce such a shape.

本発明は、上記問題を鑑みてなされたものであり、安定した大量生産が可能であり、高い正面輝度と均一な輝度分布を実現する導光板、及び前記導光板を用いたバックライトユニット、並びに表示装置を提供することを目的とする。   The present invention has been made in view of the above problems, and can be stably mass-produced. A light guide plate that realizes high front luminance and uniform luminance distribution, a backlight unit using the light guide plate, and An object is to provide a display device.

上記目的を達成する為に、請求項1はエッジライト型の表示装置に用いられる、光源の照射光を画像表示パネル側に射出する導光板であって、熱可塑性樹脂からなる透明な矩形板状の押出一体成形品であり、画像表示パネルに対向して位置する、光を射出する光射出面と、前記画像表示パネルの反対側に位置する反光射出面と、前記光射出面と前記反光射出面に略垂直な光入射面を少なくとも一面有し、前記反光射出面に、曲面から構成される複数の溝が、前記光入射面と前記反光射出面の接合辺に平行に延在し、隣り合う溝が互いに離れて形成されていることを特徴とする導光板である。   In order to achieve the above object, claim 1 is a light guide plate used in an edge light type display device for emitting light emitted from a light source to the image display panel side, and is formed of a transparent rectangular plate made of a thermoplastic resin. A light emitting surface for emitting light, facing the image display panel, a reflection emitting surface located on the opposite side of the image display panel, the light emitting surface and the reflection emitting At least one light incident surface substantially perpendicular to the surface, and a plurality of grooves composed of curved surfaces extend in parallel to the joint side of the light incident surface and the anti-light exit surface, and are adjacent to each other. The light guide plate is characterized in that matching grooves are formed apart from each other.

また、請求項2は、前記溝の延在方向に垂直な面での前記溝の断面は、前記溝の前記光入射面に近い方の淵部から始まり、前記淵部から溝の最深部までの幅d1に対し70〜90%の幅を有する曲線を第1の曲線とし、前記淵部から前記最深部までの曲線のうち、前記第1の曲線以外の曲線を第2の曲線としたとき、前記第1の曲線の前記溝の淵部における接線と、前記反光射出面とのなす角度が0°より大きく60°未満であり、前記第1の曲線の曲率半径R1が前記第2の曲線の曲率半径R2よりも大きく、前記曲率半径の変異点が滑らかな連続性を有していることを特徴とする請求項1に記載の導光板である。   Further, according to a second aspect of the present invention, a cross section of the groove in a plane perpendicular to the extending direction of the groove starts from a flange portion closer to the light incident surface of the groove, and extends from the flange portion to the deepest portion of the groove. When a curve having a width of 70% to 90% with respect to the width d1 is a first curve, and a curve other than the first curve is a second curve among the curves from the buttocks to the deepest part The angle between the tangent to the groove of the first curve and the reflected light exit surface is greater than 0 ° and less than 60 °, and the radius of curvature R1 of the first curve is the second curve. 2. The light guide plate according to claim 1, wherein the curvature radius is larger than the curvature radius R <b> 2 and the variation point of the curvature radius has smooth continuity.

また、請求項3は、前記溝の断面は、前記溝の最深部を中心に左右対称であることを特徴とする請求項2に記載の導光板である。   According to a third aspect of the present invention, in the light guide plate according to the second aspect, the cross section of the groove is symmetrical with respect to the deepest portion of the groove.

また、請求項4は、前記溝の前記光入射面に近い方の淵部から溝の最深部までの幅d1と、前記溝の他方の淵部から前記溝の最深部までの幅d2との距離が、4<d1/d2<10 の関係を満たすことを特徴とする請求項2に記載の導光板である。   According to a fourth aspect of the present invention, a width d1 from the flange portion of the groove closer to the light incident surface to the deepest portion of the groove and a width d2 from the other flange portion of the groove to the deepest portion of the groove The light guide plate according to claim 2, wherein the distance satisfies a relationship of 4 <d1 / d2 <10.

また、請求項5は、前記隣り合う溝の間に、前記光射出面と略平行な略平面が存在することを特徴とする請求項1乃至4のいずれかに記載の導光板である。   A fifth aspect of the present invention is the light guide plate according to any one of the first to fourth aspects, wherein a substantially flat surface substantially parallel to the light exit surface is present between the adjacent grooves.

また、請求項6は、前記隣り合う溝の間の距離が、光源から遠ざかる程狭くなることを特徴とする請求項1乃至5のいずれかに記載の導光板である。   A sixth aspect of the present invention is the light guide plate according to any one of the first to fifth aspects, wherein the distance between the adjacent grooves becomes narrower as the distance from the light source increases.

また、請求項7は、前記溝の深さが、光源から遠ざかる程高くなることを特徴とする請求項1乃至6のいずれかに導光板である。   A seventh aspect of the present invention is the light guide plate according to any one of the first to sixth aspects, wherein the depth of the groove increases as the distance from the light source increases.

また、請求項8は、全光線透過率が90%以上であることを特徴とする請求項1乃至7のいずれかに記載の導光板である。   Moreover, Claim 8 is a light-guide plate in any one of Claim 1 thru | or 7 whose total light transmittance is 90% or more.

また、請求項9は、前記導光板を構成する熱可塑性樹脂がポリカーボネートであることを特徴とする請求項1乃至8のいずれかに記載の導光板である。   A ninth aspect of the present invention is the light guide plate according to any one of the first to eighth aspects, wherein the thermoplastic resin constituting the light guide plate is polycarbonate.

また、請求項10は、請求項1乃至9のいずれかに記載の導光板と、前記導光板の前記入射面に対向して備えられた少なくとも1つの光源とを有するバックライトユニットである。   A tenth aspect of the present invention is a backlight unit including the light guide plate according to any one of the first to ninth aspects and at least one light source provided to face the incident surface of the light guide plate.

また、請求項11は、前記光源がLEDであることを特徴とする請求項10に記載のバックライトユニットである。   The eleventh aspect is the backlight unit according to the tenth aspect, wherein the light source is an LED.

また、請求項12は、前記光源がCCFLであることを特徴とする請求項10に記載のバックライトユニットである。   The twelfth aspect of the present invention is the backlight unit according to the tenth aspect, wherein the light source is a CCFL.

また、請求項13は、請求項10乃至12のいずれかに記載のバックライトユニットと、画像表示パネルとを有する表示装置である。   A thirteenth aspect is a display device including the backlight unit according to any one of the tenth to twelfth aspects and an image display panel.

本発明によれば、安定した大量生産が可能であり、高い正面輝度と均一な輝度分布を実現する導光板、及び前記導光板を用いたバックライトユニット、並びに表示装置を提供することが可能となる。   According to the present invention, stable mass production is possible, and it is possible to provide a light guide plate that realizes high front luminance and uniform luminance distribution, a backlight unit using the light guide plate, and a display device. Become.

本発明に関わる導光板を示す斜視図The perspective view which shows the light-guide plate in connection with this invention 本発明に係わる導光板を示す断面模式図1FIG. 1 is a schematic sectional view showing a light guide plate according to the present invention. 本発明に係わる導光板を示す断面模式図2FIG. 2 is a schematic sectional view showing a light guide plate according to the present invention. 本発明に係わる導光板の溝の形状を説明する断面模式図11 is a schematic cross-sectional view illustrating the shape of a groove of a light guide plate according to the present invention. 本発明に係わる導光板の溝の形状を説明する断面模式図2FIG. 2 is a schematic cross-sectional view illustrating the shape of the groove of the light guide plate according to the present invention. 本発明に係わる導光板を示す断面模式図3FIG. 3 is a schematic sectional view showing a light guide plate according to the present invention. 本発明に係わる導光板の溝の形状を説明する断面模式図33 is a schematic cross-sectional view illustrating the shape of the groove of the light guide plate according to the present invention. 本発明に係わるバックライトユニットを示す俯瞰模式図1FIG. 1 is a schematic bird's-eye view showing a backlight unit according to the present invention. 本発明に係わる画像表示装置を示す俯瞰模式図1FIG. 1 is a schematic bird's-eye view showing an image display apparatus according to the present invention. 本発明に係わるバックライトユニットを示す俯瞰模式図2FIG. 2 is a schematic bird's-eye view showing a backlight unit according to the present invention. 本発明に係わる画像表示装置を示す俯瞰模式図2FIG. 2 is a schematic bird's-eye view showing an image display apparatus according to the present invention. 従来の直下型ディスプレイ装置を示す断面模式図11 is a schematic cross-sectional view showing a conventional direct display device. 従来のエッジライト型ディスプレイ装置を示す断面模式図2Cross-sectional schematic diagram showing a conventional edge light type display device 2 従来のエッジライト型ディスプレイ装置を示す断面模式図3Cross-sectional schematic diagram showing a conventional edge light type display device 3

以下、本発明の実施の形態について、詳細に説明する。なお、形状に関しては、図を元に説明するが、同様又は類似した機能を発揮する構成要素には全ての図面を通じて同一の参照符号を付し、重複する説明は省略する。また、各図は模式図であり、各部位の縮尺は実際とは一致しない。   Hereinafter, embodiments of the present invention will be described in detail. Note that the shape will be described with reference to the drawings, but the same or similar functions are denoted by the same reference numerals throughout the drawings, and redundant description will be omitted. Moreover, each figure is a schematic diagram, and the scale of each part does not correspond with the actual.

本発明に係る導光板は、図13に示すエッジライト型の表示装置等に用いられる導光板であり、図1にその一例を示す。
導光板10は熱可塑性樹脂からなる透明な矩形板状の押出一体成形品である。
The light guide plate according to the present invention is a light guide plate used in the edge light type display device shown in FIG. 13, and FIG. 1 shows an example thereof.
The light guide plate 10 is a transparent rectangular plate-like extruded integrally formed product made of a thermoplastic resin.

図1に示すように、導光板10は、画像表示パネル側に光を照射する光射出面12と、前記光射出面に対向する面である反光射出面14と、光源の光が入射する光入射面16を少なくとも一面有する。光入射面16は、光射出面12と反光射出面14に略垂直な面である。   As shown in FIG. 1, the light guide plate 10 includes a light exit surface 12 that irradiates light to the image display panel side, a counter light exit surface 14 that is a surface facing the light exit surface, and light from which light from a light source is incident. At least one entrance surface 16 is provided. The light incident surface 16 is a surface substantially perpendicular to the light emitting surface 12 and the anti-light emitting surface 14.

反光射出面14には、曲面で構成される溝18が、光入射面16と反光射出面14との間の接合辺11と平行に延在するように形成されている。即ち、溝18は反光射出面14が仰向けになるように(図1と上下逆に)置いたときに凹となる形状を構成している。
溝18は間隔をおいて互いに略平行に複数形成されている。即ち互いに隣り合う溝の間には略平面が存在する。
A groove 18 formed of a curved surface is formed on the counter light exit surface 14 so as to extend in parallel with the joint side 11 between the light incident surface 16 and the counter light exit surface 14. That is, the groove 18 forms a concave shape when placed so that the reflected light exit surface 14 is on its back (upside down in FIG. 1).
A plurality of grooves 18 are formed substantially in parallel with each other at an interval. That is, a substantially flat surface exists between adjacent grooves.

本実施の形態の導光板10に光入射面16から光源の光が入射すると、入射した光のうち、反光射出面14に到達した光は、反光射出面14で屈折、反射される。ここで、反光射出面14に曲面で構成される溝18を形成しているため、溝18で屈折、反射される光は、光の進行方向が多岐に亘ることとなる。   When light from the light source is incident on the light guide plate 10 of the present embodiment from the light incident surface 16, the light that reaches the anti-light exit surface 14 among the incident light is refracted and reflected by the anti-light exit surface 14. Here, since the groove | channel 18 comprised by a curved surface is formed in the reflected light emission surface 14, the light advancing direction will be diversified in the light refracted | refracted by the groove | channel 18 and reflected.

溝18に達して屈折する光は、溝から導光板外に射出され、リフレクタに向かって進む。そして、導光板下に配されたリフレクタによって再度導光板内に入射して光射出面に向かう。一方、溝18の境界面で全反射した光は、導光板内部を通って光射出面12側に向かう。
その結果、曲面で構成された溝18で屈折、反射された光は、光射出面の方々に散らばる。つまり、光射出面における輝度の均一化の面で利点がある。
The light that reaches the groove 18 and is refracted is emitted from the groove to the outside of the light guide plate and travels toward the reflector. Then, the light is again incident on the light guide plate by the reflector disposed below the light guide plate and travels toward the light exit surface. On the other hand, the light totally reflected at the boundary surface of the groove 18 passes through the inside of the light guide plate toward the light exit surface 12 side.
As a result, the light refracted and reflected by the groove 18 formed of a curved surface is scattered around the light exit surface. That is, there is an advantage in terms of uniform brightness on the light exit surface.

ここで、仮に、前記溝を平面で構成した場合、例えば溝の延在方向と垂直な面での断面図が三角形状である場合は、溝に到達して屈折または散乱する光の進行方向が限られる為、光射出面における輝度のムラが大きくなる点で不利である。   Here, if the groove is configured as a flat surface, for example, if the cross-sectional view in a plane perpendicular to the extending direction of the groove is triangular, the traveling direction of the light that reaches the groove and is refracted or scattered is Therefore, it is disadvantageous in that the luminance unevenness on the light exit surface becomes large.

また、溝18を、隣り合う溝と間隔をおいて略平行に形成したのは、複数の溝18を互いに交差するように形成した場合、反光射出面の最外面に先端が細くなる箇所が発生する為、傷が付きやすくなる危険性が高まる点で不利となるためである。また、平行な溝同士が接する配置は鋭角な箇所が生じるため耐擦傷性の面で不利となるためである。
これに対し、反光射出面側に溝18を隣り合う溝と間隔をおいて略平行に形成した場合、全ての溝間に略平面が存在し、最外面が略平面で構成されるため、耐擦傷性の面で有利である。
In addition, the groove 18 is formed to be substantially parallel to the adjacent groove with an interval. When the plurality of grooves 18 are formed so as to intersect with each other, a portion where the tip is narrowed on the outermost surface of the light emission surface occurs. Therefore, it is disadvantageous in that the risk of being easily scratched increases. Further, the arrangement in which the parallel grooves are in contact with each other is disadvantageous in terms of scratch resistance because an acute angle portion is generated.
On the other hand, when the groove 18 is formed on the side opposite to the light exit surface substantially in parallel with the adjacent groove, a substantially flat surface exists between all the grooves, and the outermost surface is constituted by a substantially flat surface. This is advantageous in terms of scratch resistance.

次に、反光射出面に設けられた溝の形状について詳細に説明する。図2、3、6は、本発明に係わる導光板を反光射出面14に設けられた溝18の延在方向と垂直な面で切った場合の断面模式図、図4、5、7は前記断面図の溝部分のみを拡大した模式図である。   Next, the shape of the groove provided on the reflected light exit surface will be described in detail. 2, 3, and 6 are schematic cross-sectional views when the light guide plate according to the present invention is cut along a plane perpendicular to the extending direction of the groove 18 provided on the reflection light exit surface 14, and FIGS. It is the schematic diagram which expanded only the groove part of sectional drawing.

図から分かる様に、反光射出面14に設けられた溝18は、光入射面16と反光射出面14との間の接合辺11と平行方向に延在している。これは、溝18の延在方向が、接合辺11に対して斜めであると、光入射面16に溝の開口部が存在しない配置とする為に、溝18を設けることができる範囲が導光板内部の一定の範囲に限られることとなるためである。導光板内部の一定範囲にのみ溝を形成する構成は、効果的に屈折若しくは散乱されない光の割合が増加したり、製造面においても押出成形による連続作製性の優位性を殺ぐことになったりする点で不利となる。   As can be seen from the figure, the groove 18 provided in the light exit surface 14 extends in a direction parallel to the joint side 11 between the light incident surface 16 and the light exit surface 14. This is because if the extending direction of the groove 18 is oblique with respect to the joint side 11, the range in which the groove 18 can be provided is introduced in order to provide an arrangement in which no groove opening exists on the light incident surface 16. This is because it is limited to a certain range inside the optical plate. The structure in which the groove is formed only within a certain range inside the light guide plate increases the proportion of light that is not effectively refracted or scattered, and also reduces the advantage of continuous fabrication by extrusion in terms of manufacturing. This is disadvantageous.

また、溝18の延在方向が接合辺11に対して斜めである場合、光射出面12における光入射面16に平行な線上での輝度に着目すると、前記線上の各点で光の屈折・散乱要因となる溝との距離が異なるため、射出光同士の干渉の仕方が異なり、光射出面における輝度の不均一化につながる点で不利となる。   Further, when the extending direction of the groove 18 is oblique with respect to the joint side 11, when attention is paid to the luminance on a line parallel to the light incident surface 16 on the light exit surface 12, the light is refracted at each point on the line. Since the distance to the groove, which is a scattering factor, is different, the way of interference between the emitted lights is different, which is disadvantageous in that it leads to uneven brightness on the light exit surface.

一方、反光射出面14に設けられた溝18が接合辺11と平行方向に延在していると、押出成形の連続作製性の有効に活用することが可能である。また、光射出面12における接合辺11に平行な線上での輝度に着目した時、前記線上の各点で光の屈折・散乱要因となる溝との距離が同一である為、射出光同士の干渉の仕方が均等となり、光射出面における輝度の均一化につながる点で有利である。   On the other hand, if the groove 18 provided on the reflection light exit surface 14 extends in a direction parallel to the joining side 11, it is possible to effectively utilize the continuous fabrication of extrusion molding. Further, when focusing on the luminance on a line parallel to the junction side 11 on the light exit surface 12, the distance from the groove that causes light refraction and scattering at each point on the line is the same. This is advantageous in that the way of interference becomes uniform, leading to uniform brightness on the light exit surface.

また、図2に示すように、溝18は、光入射面から離れる程、溝同士の間隔が狭くなるように形成されている。あるいは、図3に示すように、光入射面から離れる程、溝の深さが深くなるように形成されている。または、その両方の特徴を兼ね備えて形成されていてもよい。これは、光源から遠ざかる程、反光射出面の各点に到達する光の角度が浅くなったり、輝度が低下したりする為、何れの場所でも均一な溝が設けられていると、光射出面の光入射面から遠い位置程暗くなる点で不利となる為である。   Further, as shown in FIG. 2, the grooves 18 are formed such that the distance between the grooves becomes narrower as the distance from the light incident surface increases. Alternatively, as shown in FIG. 3, the depth of the groove increases as the distance from the light incident surface increases. Or you may form combining both the characteristics. This is because, as the distance from the light source increases, the angle of the light reaching each point of the reflection light emission surface becomes shallower or the brightness decreases, so if a uniform groove is provided in any place, the light emission surface This is because it becomes disadvantageous in that the position farther from the light incident surface becomes darker.

図2、3に示すように、光入射面から離れる程、前記溝同士の間隔が狭くなったり、溝の深さが深くなったり、その両方の特徴を兼ね備えていたりすると、角度が浅く、輝度が低下した光も効率的に散乱または屈折させ、光射出面側に光路を変更させることで、全面的に均一な輝度を提供する点で有利である。   As shown in FIGS. 2 and 3, when the distance between the grooves becomes narrower or the depth of the grooves becomes deeper as the distance from the light incident surface increases, the angle becomes shallower. It is advantageous in that uniform brightness can be provided over the entire surface by efficiently scattering or refracting the light with reduced light and changing the optical path toward the light exit surface.

次に、溝18の形状について、図4及び5を用いて詳細に説明する。
図4は、溝18の一つを溝18の延在方向に垂直な平面で切った場合の断面である。
図4に示すように、光入射面16に近い方の溝の淵部13aから始まり、淵部13aから溝の最深部13bまでの幅d1に対し70〜90%の幅を有する曲線13は、曲率半径R1を有している。そして、この曲線13の淵部13aにおける接線15と反光射出面14の略平面とがなす角度θは0°より大きく60°より小さい。
Next, the shape of the groove 18 will be described in detail with reference to FIGS.
FIG. 4 is a cross section when one of the grooves 18 is cut by a plane perpendicular to the extending direction of the groove 18.
As shown in FIG. 4, the curve 13 having a width of 70 to 90% with respect to the width d1 from the flange portion 13a to the deepest portion 13b of the groove starts from the flange portion 13a closer to the light incident surface 16. It has a radius of curvature R1. The angle θ formed by the tangent line 15 at the flange 13a of the curve 13 and the substantially plane of the reflected light exit surface 14 is larger than 0 ° and smaller than 60 °.

これに対し、曲率半径R1以外の部分であって、溝の最深部13bを中心に溝の全幅に対して10〜30%の幅を構成する曲線の曲率半径R2はR1よりも小さいことを特徴とする。   On the other hand, the curvature radius R2 of a curve that is a portion other than the curvature radius R1 and that forms a width of 10 to 30% with respect to the entire width of the groove centering on the deepest portion 13b of the groove is smaller than R1. And

そして、本実施の形態は、この曲線13は溝の最深点13bを中心に左右対称となっている。
この場合、図5に示すように、溝の淵部から溝の半幅d1に対して70〜90%(全幅d1×2に対して35〜45%)の範囲を範囲α、最深部13bを中心に溝の全幅に対して10〜30%の範囲を範囲βとする(α×2+β=100%)と、範囲βにおける曲率が、範囲αにおける曲率よりも小さい、即ち溝の最深部13b(図面の上方)が尖り気味な形状とする。
図5においては、溝18の形状を表すために半径R1の曲率円17と半径R2の曲率円19を併せて描画している。
In the present embodiment, the curve 13 is symmetrical with respect to the deepest point 13b of the groove.
In this case, as shown in FIG. 5, the range α is 70 to 90% with respect to the half width d1 of the groove (35 to 45% with respect to the full width d1 × 2), and the deepest portion 13b is the center. When the range of 10 to 30% of the entire width of the groove is defined as the range β (α × 2 + β = 100%), the curvature in the range β is smaller than the curvature in the range α, that is, the deepest portion 13b of the groove (drawing). (Above) is a sharp shape.
In FIG. 5, in order to represent the shape of the groove 18, a curvature circle 17 having a radius R1 and a curvature circle 19 having a radius R2 are drawn together.

このような形状とすることで、種々の形状の溝を組み合わせることなく、浅い角度で反光射出面に到達した光にも、深い角度で反光射出面に到達した光にも対応可能となる。   By adopting such a shape, it is possible to cope with light reaching the reflection exit surface at a shallow angle and light reaching the reflection exit surface at a deep angle without combining grooves of various shapes.

ここで、θを60°より小さくするとしたのは、θが60°以上になると、溝の壁面が立ちすぎて、ロスする光が多くなりすぎる点や溝の元にする版を作製し難い点で不利となる為である。θが0°の場合は溝が存在し得ないので、0°は不可である。   The reason why θ is smaller than 60 ° is that when θ is 60 ° or more, the wall surface of the groove rises too much, and the loss of light increases too much, or the plate based on the groove is difficult to produce. This is because it is disadvantageous. When θ is 0 °, no groove can be present, so 0 ° is not possible.

また、溝の最深部側と淵側の曲率半径が等しい、若しくは最深部側の曲率半径の方が大きく形成した場合は、溝18の最深部13b周辺(反光射出面を仰向けになるように置いたときに溝の底部)が平面とほぼ同等になる為、光の散乱や、屈折の観点で不利となる。また、α及びβの幅が上記範囲から逸脱していると、浅い角度で反光射出面に到達した光若しくは深い角度で反光射出面に到達した光のどちらかのロスが大きくなり、効率的に光射出面に向かう光量が減少する為、正面輝度の向上や輝度ムラの解消の観点で不利となる。   Further, when the radius of curvature of the deepest portion side of the groove is equal to the curvature radius of the heel side, or when the radius of curvature of the deepest portion side is formed larger, the periphery of the deepest portion 13b of the groove 18 (reverse light emission surface is placed face up The bottom of the groove is almost equal to the flat surface, which is disadvantageous in terms of light scattering and refraction. Also, if the widths of α and β deviate from the above range, the loss of either the light that reaches the light exit surface at a shallow angle or the light that reaches the light exit surface at a deep angle becomes large and efficiently. Since the amount of light traveling toward the light exit surface is reduced, it is disadvantageous in terms of improving front luminance and eliminating luminance unevenness.

一方、上記のようにθや曲率を規定し、溝の高さや密度を変えて並列させることで、少なくとも一面の光入射面から入射した光は、反光射出面に深い角度で到達しても、浅い角度で到達しても、光射出面から射出される際に正面輝度向上の面で有利な角度となるように散乱若しくは屈折される点で有利である。   On the other hand, by defining θ and curvature as described above, and changing the height and density of the grooves in parallel, even if light incident from at least one light incident surface reaches the anti-light exit surface at a deep angle, Even if it reaches at a shallow angle, it is advantageous in that it is scattered or refracted so as to have an advantageous angle in terms of improving the front luminance when emitted from the light exit surface.

更に、図6、図7に示すように、光射出面に略垂直な対向する二面の光入射面16a、16bを有する導光板の場合、溝18の断面が、最深部13bより光入射面16に近い側と、遠い側で形状が異なる左右非対称の溝を並列させてもよい。
溝18の断面の最深部13bから反光射出面の略平面に下ろした垂線と光入射面16に近い側の曲面の淵部との距離をd1、光入射面16に遠い側の曲面の淵部との距離をd2としたとき、以下の理由により、4<d1/d2<10 の不等式で表されることとする。
d1とd2の比が4:1を超えてd2が広い、即ちd1/d2≦4の場合は溝に対してより遠くに設置された光源からの入射光の影響が大きくなり、ローカルディミングの効果が低減する点で不利であり、d1とd2の比が10:1を超えてd2が狭い、即ちd1/d2≧10の場合は、溝の最深部の形状が細くなり過ぎて、版の作製が困難になる点で不利となる。これに対し、規定の範囲内であれば、製造の安定性と導光板としての性能を両立することが可能となる点で有利である。
Furthermore, as shown in FIGS. 6 and 7, in the case of a light guide plate having two light incident surfaces 16a and 16b facing each other substantially perpendicular to the light exit surface, the cross section of the groove 18 is more light incident than the deepest portion 13b. Left and right asymmetric grooves having different shapes on the side closer to 16 and the far side may be arranged in parallel.
The distance between the perpendicular line drawn from the deepest portion 13b of the cross section of the groove 18 to the substantially flat surface of the reflection light exit surface and the curved ridge portion on the side close to the light incident surface 16 is d1, and the curved ridge portion on the side far from the light incident surface 16 is. And d2 is expressed by an inequality of 4 <d1 / d2 <10 for the following reason.
When the ratio of d1 and d2 exceeds 4: 1 and d2 is wide, that is, d1 / d2 ≦ 4, the influence of incident light from a light source placed farther from the groove becomes larger, and the effect of local dimming In the case where the ratio of d1 and d2 exceeds 10: 1 and d2 is narrow, that is, d1 / d2 ≧ 10, the shape of the deepest part of the groove becomes too thin, and the plate is produced. Is disadvantageous in that it becomes difficult. On the other hand, if it is within the specified range, it is advantageous in that it is possible to achieve both the production stability and the performance as the light guide plate.

最深部13bより光源に近い幅d1の範囲では、幅d1に対して70〜90%の幅の淵部側の範囲α’と、残りの範囲β’とで曲率が異なる。
範囲α’を構成する曲面において、曲面淵部の接線と反光射出面14の略平面とがなす角度θが0°より大きく60°より小さく、かつ、曲率半径R1を有している。
そして、範囲β’を構成する曲面の曲率半径R2はR1よりも小さいことを特徴とする。
In the range of the width d1 closer to the light source than the deepest portion 13b, the curvature is different between the range α ′ on the heel side having a width of 70 to 90% of the width d1 and the remaining range β ′.
In the curved surface constituting the range α ′, the angle θ formed by the tangent to the curved flange and the substantially flat surface of the reflection light exit surface 14 is greater than 0 ° and smaller than 60 °, and has a radius of curvature R1.
The curvature radius R2 of the curved surface constituting the range β ′ is smaller than R1.

こうすることで、光入射面と平行な面で導光板を二分割したとき、光源に近い側の光入射面から入射する光のみが有効に光射出面に届くこととなり、光源をLEDとしてローカルディミングを行なう際に、不要な光が混ざることがなくなる点で有利となる。   By doing this, when the light guide plate is divided in two on a plane parallel to the light incident surface, only light incident from the light incident surface near the light source effectively reaches the light exit surface, and the light source is used as a local LED. This is advantageous in that unnecessary light is not mixed when dimming.

また、本発明に係わる導光板は、全光線透過率が90%以上であることを特徴とする。これは、全光線透過率が90%を下回ると、十分な輝度が得られず画像が暗くなる点で不利となる為である。物理的に全光線透過率が100%になることはありえず、全光線透過率が高いことで特に不利益は生じない為、全光線透過率の上限は設定していない。   The light guide plate according to the present invention is characterized in that the total light transmittance is 90% or more. This is because if the total light transmittance is less than 90%, a sufficient luminance cannot be obtained and the image becomes dark. The total light transmittance cannot be 100% physically, and since there is no particular disadvantage because the total light transmittance is high, the upper limit of the total light transmittance is not set.

本発明に係わる導光板の素材としては、例えば、アクリル樹脂、ポリスチレン(PS)樹脂、メタアクリルスチレン共重合体(MS)樹脂、ポリカーボネート(PC)樹脂、アクリロニトリルスチレン共重合体(AS)樹脂、シクロオレフィンポリマー(COP)、これらを成分とする共重合体若しくはこれらの樹脂の混合物を用いることができるが、耐熱性の観点から、薄型ディスプレイに組み込む際には、PC樹脂を用いることが好ましい。   Examples of the material of the light guide plate according to the present invention include acrylic resin, polystyrene (PS) resin, methacryl styrene copolymer (MS) resin, polycarbonate (PC) resin, acrylonitrile styrene copolymer (AS) resin, cyclohexane. An olefin polymer (COP), a copolymer containing these as a component, or a mixture of these resins can be used, but from the viewpoint of heat resistance, it is preferable to use a PC resin when incorporating into a thin display.

本発明に係わる導光板の作製方法としては、押出成形法が挙げられる。熱可塑性樹脂を加熱し、十分に溶融した状態でTダイから押出し、シーティングを行なう。その際、Tダイから吐出された樹脂を最初に挟み込む二つのロールの片方の表面に導光板成形後に所望する溝形状及び溝間の間隔に対応した凸形状を付与しておいたり、導光板成形後に所望する溝形状及び溝間の間隔に対応した凸形状を有する版を挿入して、前記版ともう片方のロールで吐出された樹脂を挟み込んだりすることで、一工程且つ短いタクトタイムで安定して反光射出面に溝を有する導光板を作製することが可能となる。これは、射出成形やレーザ加工にはない利点である。   An example of the method for producing the light guide plate according to the present invention is an extrusion molding method. The thermoplastic resin is heated, extruded from a T die in a sufficiently molten state, and sheeting is performed. At that time, the surface of one of the two rolls that first sandwich the resin discharged from the T die is given a convex shape corresponding to the desired groove shape and the interval between the grooves after forming the light guide plate, or forming the light guide plate Stable in one step and a short tact time by inserting a plate having a convex shape corresponding to the desired groove shape and the interval between the grooves later and sandwiching the resin discharged by the plate and the other roll. Thus, a light guide plate having a groove on the reflection light exit surface can be produced. This is an advantage not found in injection molding or laser processing.

図8、図10は本発明に係わる導光板10と、光源22と、反射板24を少なくとも具備したバックライトユニット20を、図9、図11は、本発明に係わるバックライトユニット20と、表示パネル26とを、少なくとも具備した表示装置30を示した俯瞰模式図である。バックライトユニット20、及び表示装置30に、必要があれば前記以外の部材を追加することは、当然可能である。また、光源22としては、図8、図9のようにCCFLのような線光源を用いても構わないし、図10、図11のようにLEDのような点光源を並べて使用しても構わない。   8 and 10 show the backlight unit 20 including at least the light guide plate 10, the light source 22, and the reflector 24 according to the present invention. FIGS. 9 and 11 show the backlight unit 20 and the display according to the present invention. It is the bird's-eye view schematic diagram which showed the display apparatus 30 which comprised the panel 26 at least. Of course, it is possible to add other members to the backlight unit 20 and the display device 30 if necessary. As the light source 22, a linear light source such as CCFL may be used as shown in FIGS. 8 and 9, or a point light source such as an LED may be used side by side as shown in FIGS. .

本発明の効果を示す為に、透明樹脂としてポリカーボネートを用い、反光射出面の形状を種々変化させて、厚み2mmの導光板を試作し、LEDを光源とした表示装置に設置し、正面輝度並びに面内の輝度均一性の比較を行なった。このとき、導光板の耐擦傷性及び量産性についても同時に評価した。
表1に評価を行った実施例の条件を示す。
In order to show the effects of the present invention, polycarbonate is used as a transparent resin, the shape of the reflection light exit surface is variously changed, a light guide plate having a thickness of 2 mm is prototyped, installed on a display device using an LED as a light source, In-plane brightness uniformity was compared. At this time, the scratch resistance and mass productivity of the light guide plate were also evaluated.
Table 1 shows the conditions of the evaluated examples.

Figure 2011146238
Figure 2011146238

各々の評価は、下記の基準に則り実施し、その結果を表2に示した。
正面輝度については、ディスプレイとして使用に堪える輝度が得られれば○、得られなければ×とした。また、輝度均一性については、面内で明暗ムラが見えなければ○、明暗ムラが見えたら×とした。また、耐擦傷性については、ハンドリング中に導光板表面に傷が生じなければ○、生じれば×とした。また、量産性については、安定した量産性が得られれば○、作製時間が掛かったり外観不良が生じたりするような量産阻害要因が見られれば×とした。
Each evaluation was performed according to the following criteria, and the results are shown in Table 2.
As for the front luminance, it was indicated as “◯” if a luminance sufficient for use as a display was obtained, and “X” if not obtained. In addition, regarding the brightness uniformity, “O” was obtained when no bright and dark unevenness was seen in the plane, and “X” was given when bright and dark unevenness was seen. In addition, the scratch resistance was evaluated as “O” if the surface of the light guide plate was not damaged during handling, and “X” if generated. In addition, mass production was evaluated as “◯” when stable mass productivity was obtained, and “X” when there was a mass production impediment such as production time taking or poor appearance.

Figure 2011146238
Figure 2011146238

表2に示したように、曲面からなり光入射面に平行な方向に延在する溝と溝間に存在する略平面からなる反光入射面を有する導光板であって、溝の淵部における溝を構成する曲面の接線と溝間に存在する略平面とがなす角度θが0°より大きく60°未満であり、かつ溝の淵部側の曲率半径をR1としたとき溝の最深部側の曲率R2がR1よりも小さく、また、全光線透過率が90%以上である導光板を、押出一体成形にて作成した時のみ、正面輝度、輝度均一化、耐擦傷性、量産性の全てを満たすことが確認された。また、光入射面が対向する二面からなる場合は、溝形状の左右非対称性が有効に作用することも確認された。表には載せていないが、光入射面から遠い溝ほど、深かったり、溝間の間隔が狭かったりすることで、より正面輝度や輝度均一性が向上した。作製方法の違いの比較として、射出成形とレーザ切削でもサンプルを作製したが、量産性に難があったため、形状を変化させた結果は載せていない。   As shown in Table 2, a light guide plate having a curved surface and a groove extending in a direction parallel to the light incident surface and a light incident surface composed of a substantially flat surface existing between the grooves, The angle θ formed by the tangent of the curved surface constituting the groove and the substantially flat surface existing between the grooves is greater than 0 ° and less than 60 °, and when the radius of curvature of the groove side of the groove is R1, Only when a light guide plate having a curvature R2 smaller than R1 and a total light transmittance of 90% or more is formed by extrusion integral molding, all of front brightness, uniform brightness, scratch resistance, and mass productivity are achieved. It was confirmed to meet. It was also confirmed that when the light incident surface is composed of two opposing surfaces, the left-right asymmetry of the groove shape acts effectively. Although not shown in the table, the front luminance and luminance uniformity were further improved by increasing the depth of the grooves farther from the light incident surface and by narrowing the interval between the grooves. As a comparison of the difference in production method, samples were produced by injection molding and laser cutting. However, since there was difficulty in mass productivity, the results of changing the shape are not listed.

本発明に係わる導光板、及び前記導光板を用いたバックライトユニット、並びに表示装置を用いることで、工程数や使用部材点数の削減を伴うディスプレイの薄型化が可能になり、産業上の利用に耐え得る。   By using the light guide plate according to the present invention, the backlight unit using the light guide plate, and the display device, it becomes possible to reduce the thickness of the display with a reduction in the number of steps and the number of members used, and for industrial use. I can stand it.

10……導光板、11……光入射面と反光射出面との間の接合辺、12……光射出面、13……溝の壁面を示す曲線、14……反光射出面、15……曲線13の接線、16……光入射面、17……曲率半径R1の円、18……溝、19……曲率半径R2の円、20……バックライトユニット、22……光源、24……リフレクタ、26……画像表示パネル、30……画像表示装置、101…偏光板、102…液晶パネル、103…偏光板、104…拡散板、105…光源ランプ(CCFL等)、106…リフレクタ、114…拡散フィルム、115…リフレクタ、116…光源ランプ、117…導光板、118…反射フィルム、119…プリズムフィルム、120…プリズムフィルム。 DESCRIPTION OF SYMBOLS 10 ... Light-guide plate, 11 ... Junction edge between light-incidence surface and reflection light emission surface, 12 ... Light emission surface, 13 ... Curve which shows the wall surface of a groove, 14 ... Reflection light emission surface, 15 ... Tangent line of curve 13, 16: light incident surface, 17: circle with radius of curvature R1, 18: groove, 19: circle with radius of curvature R2, 20: backlight unit, 22: light source, 24 ... Reflector 26... Image display panel 30. Image display device 101. Polarizing plate 102. Liquid crystal panel 103 103 Polarizing plate 104 Diffuser plate 105 Light source lamp (CCFL etc.) 106 Reflector 114 Diffusing film, 115 reflector, 116 light source lamp, 117 light guide plate, 118 reflecting film, 119 prism film, 120 prism film.

Claims (13)

エッジライト型の表示装置に用いられる、光源の照射光を画像表示パネル側に射出する導光板であって、
熱可塑性樹脂からなる透明な矩形板状の押出一体成形品であり、
画像表示パネルに対向して位置する、光を射出する光射出面と、
前記画像表示パネルの反対側に位置する反光射出面と、
前記光射出面と前記反光射出面に略垂直な光入射面を少なくとも一面有し、
前記反光射出面に、曲面から構成される複数の溝が、前記光入射面と前記反光射出面の接合辺に平行に延在し、隣り合う溝が互いに離れて形成されている、
ことを特徴とする導光板。
A light guide plate that is used in an edge light type display device and emits irradiation light of a light source to the image display panel side,
It is a transparent rectangular plate-shaped extruded integral product made of thermoplastic resin,
A light emitting surface for emitting light, located opposite to the image display panel;
A reflection exit surface located on the opposite side of the image display panel;
Having at least one light incident surface substantially perpendicular to the light exit surface and the anti-light exit surface;
A plurality of grooves composed of curved surfaces are formed on the reaction-light exit surface in parallel to the joint sides of the light-incident surface and the reaction-light exit surface, and adjacent grooves are formed apart from each other.
A light guide plate characterized by that.
前記溝の延在方向に垂直な面での前記溝の断面は、
前記溝の前記光入射面に近い方の淵部から始まり、前記淵部から溝の最深部までの幅d1に対し70〜90%の幅を有する曲線を第1の曲線とし、
前記淵部から前記最深部までの曲線のうち、前記第1の曲線以外の曲線を第2の曲線としたとき、
前記第1の曲線の前記溝の淵部における接線と、前記反光射出面とのなす角度が0°より大きく60°未満であり、
前記第1の曲線の曲率半径R1が前記第2の曲線の曲率半径R2よりも大きく、
前記曲率半径の変異点が滑らかな連続性を有している、
ことを特徴とする請求項1に記載の導光板。
The cross section of the groove in a plane perpendicular to the extending direction of the groove is
A curve having a width of 70 to 90% with respect to a width d1 from the flange portion to the deepest portion of the groove, starting from the flange portion closer to the light incident surface of the groove, is a first curve.
Among the curves from the buttocks to the deepest part, when the curve other than the first curve is a second curve,
An angle formed between a tangent line of the groove of the first curve and the reflected light exit surface is greater than 0 ° and less than 60 °;
A radius of curvature R1 of the first curve is larger than a radius of curvature R2 of the second curve,
The variation point of the radius of curvature has smooth continuity,
The light guide plate according to claim 1.
前記溝の断面は、前記溝の最深部を中心に左右対称であることを特徴とする請求項2に記載の導光板。   The light guide plate according to claim 2, wherein a cross section of the groove is symmetrical with respect to a deepest portion of the groove. 前記溝の前記光入射面に近い方の淵部から溝の最深部までの幅d1と、前記溝の他方の淵部から前記溝の最深部までの幅d2との距離が、4<d1/d2<10 の関係を満たすことを特徴とする請求項2に記載の導光板。   The distance between the width d1 of the groove closer to the light incident surface to the deepest part of the groove and the width d2 from the other flange of the groove to the deepest part of the groove is 4 <d1 / The light guide plate according to claim 2, wherein the relationship d2 <10 is satisfied. 前記隣り合う溝の間に、前記光射出面と略平行な略平面が存在することを特徴とする請求項1乃至4のいずれかに記載の導光板。   5. The light guide plate according to claim 1, wherein a substantially flat surface substantially parallel to the light exit surface exists between the adjacent grooves. 前記隣り合う溝の間の距離が、光源から遠ざかる程狭くなることを特徴とする請求項1乃至5のいずれかに記載の導光板。   The light guide plate according to claim 1, wherein a distance between the adjacent grooves becomes narrower as the distance from the light source increases. 前記溝の深さが、光源から遠ざかる程高くなることを特徴とする請求項1乃至6のいずれかに導光板。   The light guide plate according to claim 1, wherein the depth of the groove increases as the distance from the light source increases. 全光線透過率が90%以上であることを特徴とする請求項1乃至7のいずれかに記載の導光板。   The light guide plate according to claim 1, wherein the total light transmittance is 90% or more. 前記導光板を構成する熱可塑性樹脂がポリカーボネートであることを特徴とする請求項1乃至8のいずれかに記載の導光板。   The light guide plate according to claim 1, wherein the thermoplastic resin constituting the light guide plate is polycarbonate. 請求項1乃至9のいずれかに記載の導光板と、前記導光板の前記入射面に対向して備えられた少なくとも1つの光源とを有するバックライトユニット。   A backlight unit comprising: the light guide plate according to claim 1; and at least one light source provided to face the incident surface of the light guide plate. 前記光源がLEDであることを特徴とする請求項10に記載のバックライトユニット。   The backlight unit according to claim 10, wherein the light source is an LED. 前記光源がCCFLであることを特徴とする請求項10に記載のバックライトユニット。   The backlight unit according to claim 10, wherein the light source is a CCFL. 請求項10乃至12のいずれかに記載のバックライトユニットと、画像表示パネルとを有する表示装置。   A display device comprising the backlight unit according to claim 10 and an image display panel.
JP2010005866A 2010-01-14 2010-01-14 Backlight unit and display device Expired - Fee Related JP5531629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005866A JP5531629B2 (en) 2010-01-14 2010-01-14 Backlight unit and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005866A JP5531629B2 (en) 2010-01-14 2010-01-14 Backlight unit and display device

Publications (2)

Publication Number Publication Date
JP2011146238A true JP2011146238A (en) 2011-07-28
JP5531629B2 JP5531629B2 (en) 2014-06-25

Family

ID=44460924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005866A Expired - Fee Related JP5531629B2 (en) 2010-01-14 2010-01-14 Backlight unit and display device

Country Status (1)

Country Link
JP (1) JP5531629B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016025397A1 (en) * 2014-08-12 2016-02-18 Glo Ab Integrated back light unit including non-uniform light guide unit
WO2017087503A1 (en) * 2015-11-17 2017-05-26 Glo Ab Integrated back light unit
US10600354B2 (en) 2016-04-22 2020-03-24 Glo Ab Small pitch direct view display and method of making thereof
CN115016163A (en) * 2022-07-22 2022-09-06 悦创显视科技(深圳)有限公司 Side light leakage prevention structure of liquid crystal display screen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109928A (en) * 2000-09-27 2002-04-12 Yuka Denshi Co Ltd Light guide plate, and flat lighting device and liquid crystal display device using the same
JP2003317521A (en) * 2002-04-23 2003-11-07 Yuka Denshi Co Ltd Surface light source device and liquid crystal display device
JP2004171870A (en) * 2002-11-19 2004-06-17 Alps Electric Co Ltd Lighting system and liquid crystal display device
JP2005301016A (en) * 2004-04-14 2005-10-27 Yowa:Kk Light guide plate for backlight of liquid crystal display
JP2008020888A (en) * 2006-07-10 2008-01-31 Samsung Electronics Co Ltd Light guide plate and liquid crystal display device having the same
WO2008038754A1 (en) * 2006-09-29 2008-04-03 Toray Industries, Inc. Surface light source and liquid crystal display device using the same
JP3154854U (en) * 2008-08-26 2009-10-29 徐 雲恒Yun−Heng, Shiu Light guide plate structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109928A (en) * 2000-09-27 2002-04-12 Yuka Denshi Co Ltd Light guide plate, and flat lighting device and liquid crystal display device using the same
JP2003317521A (en) * 2002-04-23 2003-11-07 Yuka Denshi Co Ltd Surface light source device and liquid crystal display device
JP2004171870A (en) * 2002-11-19 2004-06-17 Alps Electric Co Ltd Lighting system and liquid crystal display device
JP2005301016A (en) * 2004-04-14 2005-10-27 Yowa:Kk Light guide plate for backlight of liquid crystal display
JP2008020888A (en) * 2006-07-10 2008-01-31 Samsung Electronics Co Ltd Light guide plate and liquid crystal display device having the same
WO2008038754A1 (en) * 2006-09-29 2008-04-03 Toray Industries, Inc. Surface light source and liquid crystal display device using the same
JP3154854U (en) * 2008-08-26 2009-10-29 徐 雲恒Yun−Heng, Shiu Light guide plate structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016025397A1 (en) * 2014-08-12 2016-02-18 Glo Ab Integrated back light unit including non-uniform light guide unit
WO2017087503A1 (en) * 2015-11-17 2017-05-26 Glo Ab Integrated back light unit
US10600354B2 (en) 2016-04-22 2020-03-24 Glo Ab Small pitch direct view display and method of making thereof
CN115016163A (en) * 2022-07-22 2022-09-06 悦创显视科技(深圳)有限公司 Side light leakage prevention structure of liquid crystal display screen

Also Published As

Publication number Publication date
JP5531629B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
EP2102702B1 (en) Diffuser-integrated prism sheet for backlight units and method of manufacturing the same
JP2012164583A (en) Light guide plate, surface light source device, and transmission type display device
JP5428313B2 (en) Light uniform element and backlight unit and display device using the same
JP5310213B2 (en) Light uniform element, backlight unit and display device
JP2010210882A (en) Optical sheet and display using the same
JP2010050003A (en) Surface illuminating device and image display apparatus
JP5531629B2 (en) Backlight unit and display device
JP2010262038A (en) Light deflection element and light diffusion plate
JP2015102579A (en) Light guide plate, backlight unit, and liquid crystal display device
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP4815930B2 (en) Light transmissive film, backlight device, and liquid crystal display device
JP5391798B2 (en) Backlight unit and display device
JP2011033643A (en) Optical path changing sheet, backlight unit and display device
JP5750834B2 (en) Light guide plate, backlight unit and display device
JP2014149967A (en) Light guide plate, backlight unit and image display device
JP5593653B2 (en) Light guide plate, backlight unit and display device
JP2014086245A (en) Light guide plate, backlight unit and display device
JP2008192589A (en) Backlight unit
JP4689543B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME
JP2010072556A (en) Optical equalizing element, optical sheet, backlight unit using the same, and display device
JP2012204136A (en) Light guide plate, backlight unit, and display device
JP5282500B2 (en) Optical element and backlight unit and display device using the same
JP5625261B2 (en) Optical sheet for brightness enhancement
JP5515543B2 (en) Optical sheet manufacturing apparatus and optical sheet manufacturing method
JP2007103322A (en) Illumination device, light control member equipped with it, and image display device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5531629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees