JP2011144966A - Compressor drive control device for air conditioner - Google Patents

Compressor drive control device for air conditioner Download PDF

Info

Publication number
JP2011144966A
JP2011144966A JP2010004357A JP2010004357A JP2011144966A JP 2011144966 A JP2011144966 A JP 2011144966A JP 2010004357 A JP2010004357 A JP 2010004357A JP 2010004357 A JP2010004357 A JP 2010004357A JP 2011144966 A JP2011144966 A JP 2011144966A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
winding
temperature
stagnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010004357A
Other languages
Japanese (ja)
Other versions
JP5506412B2 (en
Inventor
Akinori Hashimoto
暁範 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010004357A priority Critical patent/JP5506412B2/en
Publication of JP2011144966A publication Critical patent/JP2011144966A/en
Application granted granted Critical
Publication of JP5506412B2 publication Critical patent/JP5506412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a compressor drive control device for an air conditioner capable of reducing unnecessary electric power consumption as much as possible by enhancing accuracy of determining whether or not a refrigerant flooded state occurs and of efficiently preventing the refrigerant flooded state. <P>SOLUTION: When a compressor is stopped, voltage for determining the refrigerant flooded state is applied to a motor for driving the compressor, and based on the voltage and current made to flow in the motor when the voltage is applied, winding impedance of the motor is calculated. Based on the calculated winding impedance, winding temperature is estimated, and based on the estimated winding temperature and refrigerant saturation temperature obtained by converting refrigerant pressure detected by a pressure detector on the suction side or discharge side of the compressor at that time, whether or not the refrigerant flooded state where a liquid refrigerant is stored within the compressor occurs is determined. When the occurrence of refrigerant flooded state is determined, a heating means heating the refrigerant within the compressor is operated, and when the refrigerant flooded state is eliminated by the operation of the heating means, the operation of the heating means is stopped. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、空気調和機用の圧縮機駆動制御装置に関し、更に詳しくは圧縮機内に液冷媒が貯留する冷媒寝込みを防止するための技術に関する。   The present invention relates to a compressor drive control device for an air conditioner, and more particularly to a technique for preventing refrigerant stagnation in which liquid refrigerant is stored in the compressor.

空気調和機の室外機において、低温状態での圧縮機停止中には、圧縮機に冷媒が集まる冷媒寝込み現象が発生することがある。冷媒寝込み現象が発生すると、圧縮機の起動負荷が大きくなり、圧縮機の破損につながったり、大きな起動電流によりシステム異常と見なされ、起動できない等の不具合の発生に繋がる。そこで、従来より、冷媒寝込み防止制御が行われており、例えば、圧縮機に設置したクランクケースヒータを圧縮機停止中に常時通電する方法がある。   In an outdoor unit of an air conditioner, when the compressor is stopped at a low temperature, a refrigerant stagnation phenomenon in which refrigerant collects in the compressor may occur. When the refrigerant stagnation phenomenon occurs, the starting load of the compressor increases, leading to breakage of the compressor or a system failure due to a large starting current, leading to problems such as failure to start. Therefore, conventionally, refrigerant stagnation prevention control has been performed. For example, there is a method in which a crankcase heater installed in a compressor is always energized while the compressor is stopped.

しかし、この方法では、冷媒寝込みの有無に関わらず圧縮機停止中に常時通電しているため、冷媒が寝込んでいなくても通電している場合があり、不要な電力を消費するという問題があった。そこで、冷媒寝込みが生じている場合のみに圧縮機内の冷媒を加熱する制御を行うことで電力消費を図るようにした技術がある。   However, in this method, since the energization is always performed while the compressor is stopped regardless of whether or not the refrigerant stagnation, there is a problem that the energization may be performed even if the refrigerant is not stagnation, and unnecessary power is consumed. there were. Therefore, there is a technique in which power consumption is achieved by performing control to heat the refrigerant in the compressor only when refrigerant stagnation occurs.

例えば、「(1)圧縮機停止中に、外気温度検出器8により検出される外気温度Taが、圧縮機6に冷媒が寝込む可能性がある第1の設定温度Tset1以下であり、かつ、放熱器温度検出器9により検出される放熱器温度Tbが、インバータが駆動していないと想定できる第2の設定温度Tset2以下である場合に、インバータ素子3を駆動して圧縮機駆動用モータ5の巻線に拘束通電を行う。」ようにし、「(2)拘束通電中に、外気温度検出器8により検出される外気温度Taが第1の設定温度Tset1よりも高くなった場合、あるいは放熱器温度検出器9により検出される放熱器温度Tbが第2の設定温度Tset2よりも高くなった場合に、拘束通電を停止する。」(例えば、特許文献1参照)ようにした技術がある。   For example, “(1) When the compressor is stopped, the outside air temperature Ta detected by the outside air temperature detector 8 is equal to or lower than the first set temperature Tset1 at which the refrigerant may stagnate in the compressor 6 and heat dissipation. When the radiator temperature Tb detected by the heater temperature detector 9 is equal to or lower than the second set temperature Tset2 that can be assumed that the inverter is not driven, the inverter element 3 is driven to drive the compressor driving motor 5 When the outside air temperature Ta detected by the outside air temperature detector 8 becomes higher than the first set temperature Tset1 during the restraint electricity supply, or a radiator. There is a technique in which restraint energization is stopped when the radiator temperature Tb detected by the temperature detector 9 becomes higher than the second set temperature Tset2 ”(see, for example, Patent Document 1).

この特許文献1では、停止中の圧縮機駆動用モータに対して拘束通電(モータの巻線は発熱するが、圧縮機が回転しない程度の低電圧を印加)することにより、モータ巻線の発熱を利用して冷媒を加熱し、冷媒寝込みを解消するようにしている。   In this Patent Document 1, heat generation of a motor winding is performed by energizing a stopped compressor driving motor (a motor winding generates heat but a low voltage is applied so that the compressor does not rotate). The refrigerant is heated to eliminate the stagnation of the refrigerant.

特開2000−292014号公報([0018]、[0019]、図2)JP 2000-292014 ([0018], [0019], FIG. 2)

特許文献1の技術では、冷媒が寝込んでいるか否かの判断を外気温度に基づき行っている。しかしながら、実際の使用環境では、外気温度が低くても冷媒寝込みが発生していない場合があり、外気温度に基づく判断では判断精度が不十分だった。このため、冷媒が寝込んでいなくても圧縮機駆動用モータに対して拘束通電が行われることがあり、不要な電力を消費するという問題があった。   In the technique of Patent Literature 1, it is determined whether or not the refrigerant is sleeping based on the outside air temperature. However, in the actual use environment, there is a case where the refrigerant stagnation does not occur even when the outside air temperature is low, and the judgment accuracy is insufficient in the judgment based on the outside air temperature. For this reason, even if the refrigerant is not stagnation, there is a problem in that the energization of the compressor driving motor may be performed, and unnecessary power is consumed.

この発明は、上記のような課題を解決するためになされたもので、冷媒寝込み状態か否かの判定精度を上げて不要な電力消費を極力低減し、冷媒寝込み防止を効率良く行うことが可能な空気調和機用の圧縮機駆動制御装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and can improve the accuracy of determining whether or not the refrigerant is in a stagnation state, thereby reducing unnecessary power consumption as much as possible and efficiently preventing the stagnation of the refrigerant. An object of the present invention is to obtain a compressor drive control device for a simple air conditioner.

この発明に係る空気調和機用の圧縮機駆動制御装置は、圧縮機停止中に圧縮機駆動用のモータに冷媒寝込み判定用の電圧を印加する電圧印加部と、モータに流れる電流を検出する電流検出器と、寝込み判定用の電圧と、この電圧印加時に電流検出器により検出された電流とに基づいてモータの巻線インピーダンスを算出するインピーダンス演算部と、インピーダンス演算部で算出した巻線インピーダンスに基づいて巻線温度を推定し、推定した巻線温度と、このときの圧縮機の吸入側又は吐出側の圧力検出器により検出された冷媒圧力を換算した冷媒の飽和温度とに基づいて、圧縮機内に液冷媒が貯留した冷媒寝込み状態か否かを判定する判定部と、判定部により冷媒寝込み状態と判定した場合に、圧縮機内の冷媒を加熱する加熱手段を駆動し、加熱手段の駆動により冷媒寝込み状態ではなくなると、加熱手段の駆動を停止する制御部とを備えたものである。   The compressor drive control device for an air conditioner according to the present invention includes a voltage application unit that applies a voltage for refrigerant stagnation determination to a motor for driving the compressor while the compressor is stopped, and a current that detects a current flowing through the motor. An impedance calculation unit that calculates the winding impedance of the motor based on the detector, the voltage for stagnation determination, and the current detected by the current detector when this voltage is applied, and the winding impedance calculated by the impedance calculation unit Based on the estimated winding temperature and the saturation temperature of the refrigerant converted from the refrigerant pressure detected by the pressure sensor on the suction side or the discharge side of the compressor at this time, compression is performed. A determination unit that determines whether or not the refrigerant is in a state where the liquid refrigerant is stored in the machine, and a heating unit that heats the refrigerant in the compressor when the determination unit determines that the refrigerant is in the sleeping state , Becomes not the refrigerant stagnation state by the driving of the heating means, in which a control unit for stopping the driving of the heating means.

この発明によれば、冷媒寝込み状態か否かを判定する指標として、巻線温度と、圧縮機の吸入側又は吐出側に配置した圧力検出器により検出した冷媒圧力を換算した飽和温度とを用いるようにし、また、冷媒が寝込んでいるときのみ圧縮機内の冷媒を加熱するように構成したので、冷媒寝込み状態か否かの判定精度が上昇し、不要な電力消費を低減でき、冷媒寝込み防止を効率良く行うことが可能である。   According to the present invention, the winding temperature and the saturation temperature obtained by converting the refrigerant pressure detected by the pressure detector disposed on the suction side or the discharge side of the compressor are used as an index for determining whether or not the refrigerant is in the stagnation state. In addition, since the refrigerant in the compressor is heated only when the refrigerant is sleeping, the accuracy of determining whether the refrigerant is in the sleeping state is increased, unnecessary power consumption can be reduced, and the refrigerant is prevented from sleeping. It is possible to carry out efficiently.

この発明の実施の形態1および実施の形態2における空気調和機の構成を示す図である。It is a figure which shows the structure of the air conditioner in Embodiment 1 and Embodiment 2 of this invention. 図1の圧縮機の構成を示す概略模式図である。It is a schematic diagram which shows the structure of the compressor of FIG. この発明の実施の形態1に係る圧縮機駆動制御装置を示す回路図である。It is a circuit diagram which shows the compressor drive control apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る圧縮機駆動制御装置における冷媒寝込み防止処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant | coolant stagnation prevention process in the compressor drive control apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る圧縮機駆動制御装置を示す回路図である。It is a circuit diagram which shows the compressor drive control apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る圧縮機駆動制御装置における冷媒寝込み防止処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant | coolant stagnation prevention process in the compressor drive control apparatus which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、この発明の実施の形態1および実施の形態2における空気調和機の構成を示す図である。
空気調和機は、圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4とが冷媒配管で接続された冷凍サイクルを有し、図中の矢印方向に冷媒が流れることで室内の空気調和を行なっている。また、圧縮機1にはクランクケースヒータ5が設けられているが、この発明においてクランクケースヒータ5はあってもなくてもよい。空気調和機は更に、圧縮機1の吸入圧力を検出する吸入圧力検出器6と、圧縮機1の吐出圧力を検出する吐出圧力検出器7とを備えている。また、空気調和機は、空気調和機全体を制御する制御装置8を備えている。制御装置8はマイコンにより構成され、圧縮機1を制御する圧縮機駆動制御装置9を備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of an air conditioner according to Embodiment 1 and Embodiment 2 of the present invention.
The air conditioner has a refrigeration cycle in which a compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4 are connected by a refrigerant pipe. Air conditioning is performed. Moreover, although the crankcase heater 5 is provided in the compressor 1, the crankcase heater 5 may or may not be provided in the present invention. The air conditioner further includes a suction pressure detector 6 that detects the suction pressure of the compressor 1 and a discharge pressure detector 7 that detects the discharge pressure of the compressor 1. The air conditioner also includes a control device 8 that controls the entire air conditioner. The control device 8 is constituted by a microcomputer and includes a compressor drive control device 9 that controls the compressor 1.

図2は、図1の圧縮機の構成を示す概略模式図である。
圧縮機1は、圧縮機駆動用モータ(以下、単にモータ10という)10と、外部より冷媒を吸入して圧縮する圧縮機構部11と、モータ10の回転力を圧縮機構部11に伝達して当該圧縮機構部11を駆動するクランク軸12と、密閉容器1aの底部に貯留される潤滑油13と、これらを内部に収納した密閉容器1aとを備える。モータ10は、巻線が幾重にも巻きつけられたステータ14と、ロータ15とを有し、ステータ14に巻かれた巻線に電流が流れることでモータ10が回転する。モータ10が回転することにより、圧縮機構部11内において冷媒が圧縮される。
FIG. 2 is a schematic diagram showing the configuration of the compressor of FIG.
The compressor 1 includes a compressor driving motor (hereinafter simply referred to as a motor 10) 10, a compression mechanism unit 11 that sucks and compresses refrigerant from outside, and a rotational force of the motor 10 is transmitted to the compression mechanism unit 11. The crankshaft 12 which drives the said compression mechanism part 11, the lubricating oil 13 stored by the bottom part of the airtight container 1a, and the airtight container 1a which accommodated these inside are provided. The motor 10 includes a stator 14 having a plurality of windings wound thereon, and a rotor 15. The motor 10 rotates when a current flows through the winding wound around the stator 14. As the motor 10 rotates, the refrigerant is compressed in the compression mechanism section 11.

圧縮機構部11で圧縮された冷媒は、排出ポート(図示せず)から密閉容器1a外へと吐出される。なお、圧縮機1は、密閉容器1a内部が吐出圧力雰囲気のものでも、吸入圧力雰囲気のものでもどちらでも良いが、密閉容器1a内部において冷媒雰囲気内にモータ10が配置されている。このように構成された圧縮機1において圧縮機1内の潤滑油13の液面は、冷媒が寝込んでいない場合は液面16aのような低い位置にある。しかし、圧縮機1に冷媒が集まる冷媒寝込みが生じると、液面16bのようにモータ10の巻線が浸かる高さとなる。   The refrigerant compressed by the compression mechanism unit 11 is discharged from the discharge port (not shown) to the outside of the sealed container 1a. The compressor 1 may have either a discharge pressure atmosphere or a suction pressure atmosphere inside the sealed container 1a, but the motor 10 is disposed in the refrigerant atmosphere inside the sealed container 1a. In the compressor 1 configured as described above, the liquid level of the lubricating oil 13 in the compressor 1 is at a low position such as the liquid level 16a when the refrigerant is not stagnation. However, when the refrigerant stagnation where the refrigerant collects in the compressor 1, the height of the winding of the motor 10 is immersed like the liquid level 16 b.

図3は、この発明の実施の形態1に係る圧縮機駆動制御装置を示す回路図である。図3において図1と同一部分には同一符号を付す。
図3において、圧縮機駆動制御装置9は、モータ10の入力電力を制御するモータ入力電圧制御器21と、モータ10の入力電流を検出する電流検出器22と、圧縮機駆動制御装置9全体を制御する制御部23とを備えている。制御部23には、吸入圧力検出器6及び吐出圧力検出器7が接続され、これら検出器からの検出結果が入力されている。制御部23は、インピーダンス演算部24と、判定部25とを備えている。インピーダンス演算部24は、前記モータ入力電流と前記モータ入力電圧とからモータ10の巻線インピーダンスを演算する。判定部25は、インピーダンス演算部24で演算された巻線インピーダンスと、吸入圧力検出器6又は吐出圧力検出器7の検出結果とを用いて冷媒寝込み状態を判定する。
FIG. 3 is a circuit diagram showing the compressor drive control apparatus according to Embodiment 1 of the present invention. In FIG. 3, the same parts as those of FIG.
In FIG. 3, the compressor drive control device 9 includes a motor input voltage controller 21 that controls the input power of the motor 10, a current detector 22 that detects the input current of the motor 10, and the compressor drive control device 9 as a whole. And a control unit 23 for controlling. A suction pressure detector 6 and a discharge pressure detector 7 are connected to the control unit 23, and detection results from these detectors are input. The control unit 23 includes an impedance calculation unit 24 and a determination unit 25. The impedance calculator 24 calculates the winding impedance of the motor 10 from the motor input current and the motor input voltage. The determination unit 25 determines the refrigerant stagnation state using the winding impedance calculated by the impedance calculation unit 24 and the detection result of the suction pressure detector 6 or the discharge pressure detector 7.

ここで、冷媒寝込み状態か否かを判定するための判定原理について説明する。
圧縮機1の密閉容器1a内部において、モータ10の巻線は冷媒に包まれている。このため、巻線温度は冷媒の温度の影響を受けて変化する。すなわち、巻線温度と冷媒温度との間には相関がある。外気が低い状態での圧縮機1停止中では、密閉容器1a内部の冷媒や、温度が高い凝縮器2等から圧縮機1に戻ってくる冷媒が温度の低下により液化し、冷媒寝込みが発生する。冷媒寝込みが発生すると、寝込んだ液冷媒によって巻線が冷やされ、巻線周囲がガス冷媒である場合に比べて巻線温度は低くなる。この現象を利用することにより冷媒寝込み状態か否かを判定できる。
Here, the determination principle for determining whether or not the refrigerant is in the stagnation state will be described.
Inside the sealed container 1 a of the compressor 1, the winding of the motor 10 is surrounded by a refrigerant. For this reason, winding temperature changes under the influence of the temperature of a refrigerant | coolant. That is, there is a correlation between the winding temperature and the refrigerant temperature. While the compressor 1 is stopped in a state where the outside air is low, the refrigerant inside the sealed container 1a or the refrigerant returning to the compressor 1 from the high-temperature condenser 2 or the like is liquefied due to a decrease in temperature, and refrigerant stagnation occurs. . When the stagnation of the refrigerant occurs, the winding is cooled by the stagnation liquid refrigerant, and the winding temperature becomes lower than the case where the periphery of the winding is a gas refrigerant. By utilizing this phenomenon, it can be determined whether or not the refrigerant is in a stagnation state.

ここでは単純に巻線温度が圧縮機1内部の冷媒温度に一致すると見なすものとすると、巻線温度が冷媒の飽和温度よりも低ければ、巻線周囲に液冷媒が存在することを意味し、寝込み状態と判定できる。一方、巻線の温度が飽和温度よりも高ければ、巻線周囲がガス冷媒に包まれていることを意味し、寝込み無しの状態と判定できる。   Here, assuming that the winding temperature simply matches the refrigerant temperature inside the compressor 1, if the winding temperature is lower than the saturation temperature of the refrigerant, it means that liquid refrigerant exists around the winding, It can be determined to be in a sleeping state. On the other hand, if the temperature of the winding is higher than the saturation temperature, it means that the periphery of the winding is surrounded by the gas refrigerant, and it can be determined that there is no stagnation.

なお、冷媒は、飽和温度よりも少しでも低ければ全冷媒液状、少しでも高ければ全冷媒ガス状である。このため、上述したように巻線温度が飽和温度よりも低いか高いかを判断することにより、巻線周囲に液冷媒が存在するか否かの判断が可能である。しかし、実際の運用上では、多少の冷媒寝込みであれば圧縮機起動時の問題は生じないため、その辺を加味した判断を行うことが好ましい。そこで、本例では、巻線が液冷媒に規定以上、浸かっている場合、言い換えれば冷媒寝込み量が規定量以上の場合を冷媒寝込み状態と判定するようにしている。この規定量を加味した判定を可能とするため、飽和温度から所定温度T0(≧0℃)を差し引いたしきい値温度(=飽和温度−T0)と巻線温度とを比較するようにしている。すなわち、巻線温度がしきい値温度よりも低ければ、冷媒寝込み量が規定量以上であり冷媒寝込み状態と判定し、巻線温度がしきい値温度以上であれば冷媒寝込み量が規定量未満であり冷媒寝込み無しと判定する。なお、所定温度T0の決定方法については後述する。   Note that the refrigerant is in the form of all refrigerants if it is slightly lower than the saturation temperature, and is in the form of all refrigerants if it is slightly higher. For this reason, as described above, it is possible to determine whether or not liquid refrigerant exists around the winding by determining whether the winding temperature is lower or higher than the saturation temperature. However, in actual operation, if there is some refrigerant stagnation, there will be no problem at the time of starting the compressor. Therefore, in this example, when the winding is immersed in the liquid refrigerant more than the specified amount, in other words, the case where the refrigerant stagnation amount is greater than the specified amount is determined as the refrigerant stagnation state. In order to make the determination with this specified amount taken into consideration, a threshold temperature (= saturation temperature−T0) obtained by subtracting a predetermined temperature T0 (≧ 0 ° C.) from the saturation temperature is compared with the winding temperature. . That is, if the winding temperature is lower than the threshold temperature, it is determined that the refrigerant stagnation amount is equal to or greater than the specified amount and the refrigerant stagnation state. If the winding temperature is equal to or higher than the threshold temperature, the refrigerant stagnation amount is less than the predetermined amount. It is determined that there is no refrigerant stagnation. A method for determining the predetermined temperature T0 will be described later.

また、冷媒寝込みを判定する指標として、上記判定方法では巻線温度と、吸入圧力検出器6又は吐出圧力検出器7により直接冷媒を検出した圧力を換算した飽和温度とを用いているが、この判定方法によれば、従来の外気温度に基づく判定に比べて精度の高い判定が可能である。すなわち、巻線温度は圧縮機1内部の冷媒に直接接触したことによる影響を受けた温度であり、圧縮機1内部の冷媒状態を判断する指標として適している。また、飽和温度は、圧縮機1の吸入側又は吐出側の冷媒を直接検出した冷媒圧力を換算したものである。よって、巻線温度と上記飽和温度とに基づき冷媒寝込み状態か否かを判定することで、実際の圧縮機1内部の冷媒状態に即した精度の高い判定が可能である。   In addition, as an index for determining the stagnation of the refrigerant, the above determination method uses the winding temperature and the saturation temperature obtained by converting the pressure at which the refrigerant is directly detected by the suction pressure detector 6 or the discharge pressure detector 7. According to the determination method, it is possible to determine with higher accuracy than the determination based on the conventional outside air temperature. That is, the winding temperature is a temperature affected by direct contact with the refrigerant inside the compressor 1 and is suitable as an index for determining the refrigerant state inside the compressor 1. The saturation temperature is obtained by converting the refrigerant pressure obtained by directly detecting the refrigerant on the suction side or the discharge side of the compressor 1. Therefore, by determining whether or not the refrigerant is in the stagnation state based on the winding temperature and the saturation temperature, it is possible to determine with high accuracy according to the actual refrigerant state in the compressor 1.

図4は、この発明の実施の形態1に係る圧縮機駆動制御装置における冷媒寝込み防止処理の流れを示すフローチャートである。以下、圧縮機駆動制御装置9の冷媒寝込み防止処理の流れを図4を参照して説明する。
圧縮機1の停止中、制御部23は冷媒寝込み判定用の所定電圧をモータ10に印加する(S1)。そして、電流検出器22は冷媒寝込み判定用の所定電圧が印加されたときのモータ10の入力電力を検出する(S2)。制御部23は、モータ10の入力電圧と、電流検出器22より検出したモータ10の入力電流とに基づいてモータ10の巻線インピーダンスを推定する(S3)。制御部23は、巻線インピーダンスと巻線温度との関係式(テーブルでも良い)を予め記憶しており、この関係式と、インピーダンス演算部24により算出された巻線インピーダンスとに基づいて巻線温度を推定する(S4)。また、制御部23は冷媒の飽和温度を求める(S5)。冷媒の飽和温度は、吸入圧力検出器6又は吐出圧力検出器7より検出された冷媒圧力から換算される飽和温度である。なお、圧縮機停止中の冷媒圧力は吸入側と吐出側とでほぼ均圧しており、ここで換算される飽和温度もほぼ同じ温度となる。なお、冷媒は吸入側から寝込んでいくため、吸入圧力検出器6により検出された吸入圧力を用いて換算する方が好ましい。
FIG. 4 is a flowchart showing the flow of the refrigerant stagnation prevention process in the compressor drive control apparatus according to Embodiment 1 of the present invention. Hereinafter, the flow of the refrigerant stagnation prevention process of the compressor drive control device 9 will be described with reference to FIG.
While the compressor 1 is stopped, the control unit 23 applies a predetermined voltage for refrigerant stagnation determination to the motor 10 (S1). Then, the current detector 22 detects the input power of the motor 10 when a predetermined voltage for determining whether the refrigerant is stagnation is applied (S2). The controller 23 estimates the winding impedance of the motor 10 based on the input voltage of the motor 10 and the input current of the motor 10 detected by the current detector 22 (S3). The control unit 23 stores in advance a relational expression (which may be a table) between the winding impedance and the winding temperature, and the winding based on the relational expression and the winding impedance calculated by the impedance calculation unit 24. The temperature is estimated (S4). Moreover, the control part 23 calculates | requires the saturation temperature of a refrigerant | coolant (S5). The saturation temperature of the refrigerant is a saturation temperature converted from the refrigerant pressure detected by the suction pressure detector 6 or the discharge pressure detector 7. Note that the refrigerant pressure when the compressor is stopped is almost equalized on the suction side and the discharge side, and the saturation temperature converted here is also substantially the same temperature. Since the refrigerant stagnates from the suction side, it is preferable to use the suction pressure detected by the suction pressure detector 6 for conversion.

そして、判定部25は、上述したようにS4で推定した巻線温度としきい値温度とを比較し、巻線温度がしきい値温度よりも低い場合、巻線が液体の冷媒に規定以上に浸っている状態、つまり寝込み状態であると判定する。一方、巻線温度がしきい値温度以上の場合は、巻線が液体の冷媒に規定以上は浸っていない状態、つまり寝込み状態ではないと判定する(S6)。   Then, the determination unit 25 compares the winding temperature estimated in S4 with the threshold temperature as described above, and if the winding temperature is lower than the threshold temperature, the winding is more than specified by the liquid refrigerant. It is determined that the subject is immersed, that is, in a sleeping state. On the other hand, when the winding temperature is equal to or higher than the threshold temperature, it is determined that the winding is not immersed in the liquid refrigerant more than the specified temperature, that is, not in the sleeping state (S6).

判定部25は、冷媒寝込み状態であると判定した場合、所定の加熱方法により圧縮機1を加熱する(S7)。圧縮機1の加熱方法としては、例えば、従来と同様にモータ10に拘束通電(圧縮機が回転しない程度の電圧をモータ10に印加)を行い、巻線の温度を上昇させて冷媒を加熱する方法、又はクランクヒータ5を設置している場合はクランクヒータ5に通電する方法を採用する。そして、このような加熱の結果、巻線温度がしきい値温度以上となると、圧縮機加熱を停止する(S8)。
圧縮機駆動制御装置9は、以上に説明した冷媒寝込み防止処理を圧縮機1停止中に定期的に繰り返し行い、圧縮機1停止中の冷媒寝込みを防止する。
If the determination unit 25 determines that the refrigerant is in the stagnation state, the determination unit 25 heats the compressor 1 by a predetermined heating method (S7). As a heating method of the compressor 1, for example, restraint energization is applied to the motor 10 (a voltage that does not allow the compressor to rotate is applied to the motor 10), and the refrigerant is heated by increasing the temperature of the winding. A method or a method of energizing the crank heater 5 when the crank heater 5 is installed is adopted. Then, as a result of such heating, when the winding temperature becomes equal to or higher than the threshold temperature, the compressor heating is stopped (S8).
The compressor drive control device 9 periodically repeats the refrigerant stagnation prevention process described above while the compressor 1 is stopped, and prevents the refrigerant stagnation while the compressor 1 is stopped.

ここで、所定温度T0の決定方法について説明する。
巻線温度は、冷媒寝込み量が多くなるに連れて低くなる。また、上述したように冷媒寝込み状態か否かの判定は、巻線が液体の冷媒に規定以上、浸っているかどうか、言い換えれば冷媒寝込み量が規定量以上かどうかを判断基準としており、その規定量をどの程度とするかがT0の設定に係わってくる。T0を大きくするとしきい値温度が低くなる。このため、巻線温度が冷媒寝込み量が多くなるに連れて低くなることを鑑みると、しきい値温度が低くなると前記規定量が増えることになる。実際の運用上では、多少の冷媒寝込みであれば圧縮機起動時の問題は生じないため、その許容できる冷媒寝込み量をT0によって調整する。よって、T0は、圧縮機1の体積等によって異なる冷媒寝込み許容量に応じて実験的に求める。
Here, a method for determining the predetermined temperature T0 will be described.
The winding temperature decreases as the refrigerant stagnation amount increases. In addition, as described above, the determination as to whether or not the refrigerant is in the stagnation state is based on whether or not the winding is immersed in the liquid refrigerant more than a specified amount, in other words, whether or not the amount of refrigerant stagnation is greater than or equal to the specified amount. The amount of the amount depends on the setting of T0. Increasing T0 decreases the threshold temperature. For this reason, considering that the winding temperature decreases as the refrigerant stagnation amount increases, the prescribed amount increases as the threshold temperature decreases. In actual operation, if the refrigerant stagnates to some extent, there will be no problem at the time of starting the compressor. Therefore, the allowable refrigerant stagnation amount is adjusted by T0. Therefore, T0 is experimentally determined according to the refrigerant stagnation allowance that varies depending on the volume of the compressor 1 and the like.

以上のように、実施の形態1では、圧縮機駆動用のモータ10に冷媒寝込み判定用の電圧を印加したときの巻線インピーダンスの大きさからモータ10の巻線温度を推定する。そして、推定した巻線温度を巻線周囲の冷媒の温度と見なし、巻線温度と、吸入圧力検出器6又は吐出圧力検出器7により直接検出した冷媒圧力を換算した飽和温度とを用いて冷媒寝込み状態か否かの判定を行う。そして、冷媒が寝込んでいるときのみ圧縮機1を加熱するようにした。よって、従来の外気温度に基づく判定に比べ、実際の圧縮機1内部の冷媒状態に即した精度の高い判定が可能である。また、冷媒寝込み状態か否かの判定精度が上昇するため、冷媒が寝込んでいない場合に圧縮機1の加熱を行うといった不要な電力消費を極力低減でき、冷媒寝込み防止を効率良く行うことが可能となる。   As described above, in the first embodiment, the winding temperature of the motor 10 is estimated from the magnitude of the winding impedance when the refrigerant stagnation determination voltage is applied to the compressor driving motor 10. Then, the estimated winding temperature is regarded as the temperature of the refrigerant around the winding, and the refrigerant is obtained using the winding temperature and a saturation temperature obtained by converting the refrigerant pressure directly detected by the suction pressure detector 6 or the discharge pressure detector 7. It is determined whether or not the user is in a sleeping state. And the compressor 1 was heated only when the refrigerant was sleeping. Therefore, compared with the determination based on the conventional outside air temperature, the determination with high precision according to the refrigerant state in the actual compressor 1 is possible. Further, since the accuracy of determining whether or not the refrigerant is in the stagnation state is increased, unnecessary power consumption such as heating the compressor 1 when the refrigerant is not stagnation can be reduced as much as possible, and the stagnation of the refrigerant can be efficiently prevented. It becomes.

また、推定した巻線温度としきい値温度(飽和温度−T0)とを比較し、巻線温度がしきい値温度よりも低ければ冷媒寝込み状態と判定するようにしたので、T0の設定次第で、冷媒寝込み許容量を加味した判定が可能となる。冷媒寝込み許容量は圧縮機体積や冷媒量などによって異なるため、実験によって適宜設定することでその圧縮機に即した精度の高い判定が可能となる。   Also, the estimated winding temperature is compared with the threshold temperature (saturation temperature -T0), and if the winding temperature is lower than the threshold temperature, it is determined that the refrigerant is in the stagnation state. Thus, it is possible to make a determination in consideration of the refrigerant stagnation allowance. Since the allowable amount of refrigerant stagnation varies depending on the compressor volume, the amount of refrigerant, and the like, it is possible to determine with high accuracy in accordance with the compressor by appropriately setting it through experiments.

また、実施の形態1の圧縮機駆動制御装置9は、ハードウェア構成自体は従来の制御装置をそのまま利用でき、冷媒寝込み判定処理をソフトウェア的に変更するだけであるので、部品追加等によるコスト増加を伴うことなく冷媒寝込み防止の効率化を実現できる。   Further, the compressor drive control device 9 according to the first embodiment can use the conventional control device as it is, and only changes the refrigerant stagnation determination processing by software, so that the cost increases due to the addition of components and the like. Therefore, it is possible to improve the efficiency of preventing the refrigerant stagnation.

実施の形態2.
以上の実施の形態1では、モータ入力電流及び入力電圧からモータ10の巻線インピーダンスを検出し、その巻線インピーダンスにより推定される巻線温度に基づいて冷媒寝込み状態を判定するようにしたものである。実施の形態2は、実施の形態1よりも高い精度で冷媒寝込み状態を判定する方法について説明する。
Embodiment 2. FIG.
In the first embodiment described above, the winding impedance of the motor 10 is detected from the motor input current and the input voltage, and the refrigerant stagnation state is determined based on the winding temperature estimated from the winding impedance. is there. In the second embodiment, a method for determining the refrigerant stagnation state with higher accuracy than in the first embodiment will be described.

図5は、この発明の実施の形態2の圧縮機駆動制御装置9の構成を示すブロック図である。図5において図3と同一部分には同一符号を付し、説明を省略する。
実施の形態2の圧縮機駆動制御装置9Aは、モータ10の3相入力のうち何れか2相間に直流電圧を印加し、その印加電圧とこの電圧印加時に電流検出器22により検出された電流とからモータ10の巻線抵抗を検出する巻線抵抗検出回路31を有している。また、制御部23Aは、巻線抵抗検出回路31により検出された巻線抵抗と、吸入圧力検出器6又は吐出圧力検出器7の検出結果とを用いて冷媒寝込み状態を判定する判定部25Aを備えている。
FIG. 5 is a block diagram showing a configuration of the compressor drive control device 9 according to the second embodiment of the present invention. In FIG. 5, the same parts as those in FIG.
The compressor drive control device 9A according to the second embodiment applies a DC voltage between any two phases of the three-phase inputs of the motor 10, and applies the applied voltage and the current detected by the current detector 22 when this voltage is applied. To a winding resistance detection circuit 31 for detecting the winding resistance of the motor 10. Further, the control unit 23A includes a determination unit 25A that determines the refrigerant stagnation state using the winding resistance detected by the winding resistance detection circuit 31 and the detection result of the suction pressure detector 6 or the discharge pressure detector 7. I have.

図6は、この発明の実施の形態2に係る圧縮機駆動制御装置における冷媒寝込み防止処理の流れを示すフローチャートである。以下、圧縮機駆動制御装置9Aの冷媒寝込み防止処理の流れを図6を参照して説明する。図6において図4に示した実施の形態1と同一処理部分には同一ステップ番号を付している。以下、実施の形態2が実施の形態1と異なる部分を中心に説明し、実施の形態1と重複する部分は簡単に説明とする。
実施の形態2の圧縮機駆動制御装置9Aでは、圧縮機1の停止中、巻線抵抗検出回路31がモータ10の3相入力のうち何れか2相間に直流電圧を印加し、その印加電圧とこの電圧印加時に電流検出器22により検出された電流とからモータ10の巻線抵抗を検出する(S11)。制御部23Aは、巻線インピーダンスと巻線温度との関係式(テーブルでもよい)を予め記憶しており、この関係式と、巻線抵抗検出回路31により検出された巻線インピーダンスとに基づいて巻線温度を推定する(S12)。
FIG. 6 is a flowchart showing the flow of the refrigerant stagnation prevention process in the compressor drive control apparatus according to Embodiment 2 of the present invention. Hereinafter, the flow of the refrigerant stagnation prevention process of the compressor drive control device 9A will be described with reference to FIG. In FIG. 6, the same processing steps as those in the first embodiment shown in FIG. In the following, the second embodiment will be described with a focus on the differences from the first embodiment, and the parts overlapping with the first embodiment will be briefly described.
In the compressor drive control device 9A of the second embodiment, while the compressor 1 is stopped, the winding resistance detection circuit 31 applies a DC voltage between any two phases of the three-phase inputs of the motor 10, and the applied voltage and The winding resistance of the motor 10 is detected from the current detected by the current detector 22 when this voltage is applied (S11). The controller 23A stores in advance a relational expression (may be a table) between the winding impedance and the winding temperature, and based on this relational expression and the winding impedance detected by the winding resistance detection circuit 31. The winding temperature is estimated (S12).

これ以降の処理は実施の形態1と同様であり、制御部23Aは、吸入圧力検出器6又は吐出圧力検出器7より検出された冷媒圧力を飽和温度に換算する(S5)。そして、判定部25Aは、ステップS5で得られた飽和温度から所定温度T0を差し引いたしきい値温度と、ステップS12で推定した巻線温度とを比較し(S6)、巻線温度がしきい値温度よりも低い場合、巻線が液体の冷媒に規定以上に浸っている状態、つまり寝込み状態であると判定する。一方、巻線温度がしきい値温度以上の場合は、巻線が液体の冷媒に規定以上は浸っていない状態、つまり寝込み状態ではないと判定する。   The subsequent processing is the same as in Embodiment 1, and the control unit 23A converts the refrigerant pressure detected by the suction pressure detector 6 or the discharge pressure detector 7 into a saturation temperature (S5). Then, the determination unit 25A compares the threshold temperature obtained by subtracting the predetermined temperature T0 from the saturation temperature obtained in step S5 and the winding temperature estimated in step S12 (S6), and the winding temperature is the threshold. When the temperature is lower than the value temperature, it is determined that the winding is immersed in the liquid refrigerant more than a specified value, that is, the sleeping state. On the other hand, when the winding temperature is equal to or higher than the threshold temperature, it is determined that the winding is not immersed in the liquid refrigerant more than a specified amount, that is, not in the sleeping state.

判定部25Aは、冷媒寝込み状態であると判定した場合、所定の圧縮機1の加熱方法により圧縮機1を加熱し(S7)、加熱の結果、巻線温度がしきい値温度よりも高くなると、圧縮機加熱を停止する(S8)。   When the determination unit 25A determines that the refrigerant is in the stagnation state, the compressor 1 is heated by a predetermined heating method of the compressor 1 (S7), and when the winding temperature becomes higher than the threshold temperature as a result of the heating. Then, the compressor heating is stopped (S8).

以上のように、実施の形態2では実施の形態1と同様の効果が得られると共に、巻線抵抗検出回路31を設けたことにより、更に以下の効果が得られる。巻線抵抗検出回路31は、モータ10の3相入力のうち何れか2相間に直流電圧を印加し、その印加電圧とこの電圧印加時に電流検出器22により検出された電流とからモータ10の巻線抵抗を検出する。このため、リアクトル成分のインピーダンスの影響がなくなり、より高い精度でモータ10の巻線温度を推定できる。このように高精度で推定される巻線温度を用いて冷媒寝込み状態か否かの判定を行うため、実施の形態1に比べて更に判定精度を高めることができる。また、冷媒寝込みの有無の判定精度が上昇するため、冷媒が寝込んでいない場合に圧縮機1の加熱を行うといった不要な電力消費を更に低減可能であり、冷媒寝込み防止を高い精度で更に効率良く行うことができる。   As described above, in the second embodiment, the same effects as in the first embodiment can be obtained, and the following effects can be further obtained by providing the winding resistance detection circuit 31. The winding resistance detection circuit 31 applies a DC voltage between any two phases of the three-phase inputs of the motor 10 and turns the motor 10 from the applied voltage and the current detected by the current detector 22 when the voltage is applied. Detect wire resistance. For this reason, the influence of the impedance of the reactor component is eliminated, and the winding temperature of the motor 10 can be estimated with higher accuracy. Since it is determined whether or not the refrigerant is in a stagnation state using the winding temperature estimated with high accuracy as described above, the determination accuracy can be further increased as compared with the first embodiment. In addition, since the accuracy of determining whether or not the refrigerant is stagnation increases, unnecessary power consumption such as heating the compressor 1 when the refrigerant is not stagnation can be further reduced, and the refrigerant stagnation can be prevented with high accuracy and more efficiently. It can be carried out.

1 圧縮機、1a 密閉容器、2 凝縮器、3 膨張弁、4 蒸発器、5 クランクケースヒータ、6 吸入圧力検出器、7 吐出圧力検出器、8 制御装置、9 圧縮機駆動制御装置、9A 圧縮機駆動制御装置、10 モータ、11 圧縮機構部、12 クランク軸、13 潤滑油、14 ステータ、15 ロータ、16a 液面、16b 液面、21 モータ入力電圧制御器、22 電流検出器、23 制御部、23A 制御部、24 インピーダンス演算部、25 判定部、25A 判定部、31 巻線抵抗検出回路。   DESCRIPTION OF SYMBOLS 1 Compressor, 1a Airtight container, 2 Condenser, 3 Expansion valve, 4 Evaporator, 5 Crankcase heater, 6 Suction pressure detector, 7 Discharge pressure detector, 8 Control device, 9 Compressor drive control device, 9A Compression Machine drive control device, 10 motor, 11 compression mechanism part, 12 crankshaft, 13 lubricating oil, 14 stator, 15 rotor, 16a liquid level, 16b liquid level, 21 motor input voltage controller, 22 current detector, 23 control part , 23A control unit, 24 impedance calculation unit, 25 determination unit, 25A determination unit, 31 winding resistance detection circuit.

Claims (3)

圧縮機停止中に圧縮機駆動用のモータに冷媒寝込み判定用の電圧を印加する電圧印加部と、
前記モータに流れる電流を検出する電流検出器と、
前記寝込み判定用の電圧と、この電圧印加時に前記電流検出器により検出された電流とに基づいて前記モータの巻線インピーダンスを算出するインピーダンス演算部と、
前記インピーダンス演算部で算出した巻線インピーダンスに基づいて巻線温度を推定し、推定した巻線温度と、このときの前記圧縮機の吸入側又は吐出側の圧力検出器により検出された冷媒圧力を換算した冷媒の飽和温度とに基づいて、前記圧縮機内に液冷媒が貯留した冷媒寝込み状態か否かを判定する判定部と、
該判定部により冷媒寝込み状態と判定した場合に、前記圧縮機内の冷媒を加熱する加熱手段を駆動し、該加熱手段の駆動により冷媒寝込み状態ではなくなると、前記加熱手段の駆動を停止する制御部と
を備えたことを特徴とする空気調和機用の圧縮機駆動制御装置。
A voltage applying unit that applies a voltage for refrigerant stagnation determination to a compressor driving motor while the compressor is stopped;
A current detector for detecting a current flowing through the motor;
An impedance calculation unit that calculates the winding impedance of the motor based on the voltage for stagnation determination and the current detected by the current detector when the voltage is applied;
The winding temperature is estimated based on the winding impedance calculated by the impedance calculation unit, and the estimated winding temperature and the refrigerant pressure detected by the pressure detector on the suction side or the discharge side of the compressor at this time are calculated. Based on the converted refrigerant saturation temperature, a determination unit that determines whether the refrigerant is in a stagnation state in which liquid refrigerant is stored in the compressor;
A control unit that drives a heating unit that heats the refrigerant in the compressor when the determination unit determines that the refrigerant is in a stagnation state, and stops driving the heating unit when the refrigerant is not in the stagnation state by driving the heating unit. And a compressor drive control device for an air conditioner.
圧縮機駆動用のモータに流れる電流を検出する電流検出器と、
圧縮機停止中に圧縮機駆動用のモータの3相入力のうちいずれか2相間に冷媒寝込み判定用の直流電圧を印加し、その印加電圧とこの電圧印加時に前記電流検出器により検出された電流とから前記モータの巻線抵抗を算出する巻線抵抗検出回路と、
該巻線抵抗検出回路で検出した巻線抵抗に基づいて前記モータの巻線温度を推定し、推定した巻線温度と、このときの前記圧縮機の吸入側又は吐出側の圧力検出器により検出された冷媒圧力を換算した冷媒の飽和温度とに基づいて、前記圧縮機内に液冷媒が貯留した冷媒寝込み状態か否かを判定する判定部と、
該判定部により冷媒寝込み状態と判定した場合に、前記圧縮機内の冷媒を加熱する加熱手段を駆動し、該加熱手段の駆動により冷媒寝込み状態ではなくなると、前記加熱手段の駆動を停止する制御部と
を備えたことを特徴とする空気調和機用の圧縮機駆動制御装置。
A current detector for detecting the current flowing in the motor for driving the compressor;
While the compressor is stopped, a DC voltage for refrigerant stagnation determination is applied between any two phases of the three-phase input of the motor for driving the compressor, and the applied voltage and the current detected by the current detector when this voltage is applied A winding resistance detection circuit for calculating the winding resistance of the motor from
The winding temperature of the motor is estimated based on the winding resistance detected by the winding resistance detection circuit, and is detected by the estimated winding temperature and the pressure detector on the suction side or discharge side of the compressor at this time A determination unit that determines whether or not the refrigerant is in a stagnation state in which the liquid refrigerant is stored in the compressor, based on the saturation temperature of the refrigerant obtained by converting the refrigerant pressure that has been converted;
A control unit that drives a heating unit that heats the refrigerant in the compressor when the determination unit determines that the refrigerant is in a stagnation state, and stops driving the heating unit when the refrigerant is not in the stagnation state by driving the heating unit. And a compressor drive control device for an air conditioner.
前記判定部は、前記飽和温度から所定温度を差し引いたしきい値温度と、前記推定された巻線温度とを比較し、巻線温度が前記しきい値温度よりも低ければ冷媒寝込み状態と判定し、巻線温度が前記しきい値温度以上であれば冷媒寝込み状態ではないと判定することを特徴とする請求項1又は請求項2記載の空気調和機用の圧縮機駆動制御装置。   The determination unit compares a threshold temperature obtained by subtracting a predetermined temperature from the saturation temperature and the estimated winding temperature, and determines that the refrigerant is in a stagnation state if the winding temperature is lower than the threshold temperature. 3. The compressor drive control device for an air conditioner according to claim 1, wherein if the winding temperature is equal to or higher than the threshold temperature, it is determined that the refrigerant is not stagnation.
JP2010004357A 2010-01-12 2010-01-12 Compressor drive control device for air conditioner Active JP5506412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004357A JP5506412B2 (en) 2010-01-12 2010-01-12 Compressor drive control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004357A JP5506412B2 (en) 2010-01-12 2010-01-12 Compressor drive control device for air conditioner

Publications (2)

Publication Number Publication Date
JP2011144966A true JP2011144966A (en) 2011-07-28
JP5506412B2 JP5506412B2 (en) 2014-05-28

Family

ID=44459986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004357A Active JP5506412B2 (en) 2010-01-12 2010-01-12 Compressor drive control device for air conditioner

Country Status (1)

Country Link
JP (1) JP5506412B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564611A (en) * 2013-10-22 2015-04-29 珠海格力电器股份有限公司 Control method and device of compressor electric heating band
US9739515B2 (en) 2012-04-16 2017-08-22 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer that efficiently heats refrigerant on standby
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
US10605500B2 (en) 2012-01-04 2020-03-31 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
CN115135880A (en) * 2020-02-26 2022-09-30 三菱电机株式会社 Power conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145583A (en) * 1989-10-31 1991-06-20 Toshiba Corp Liquefaction detecting method for compressor
JPH04241797A (en) * 1991-01-16 1992-08-28 Toshiba Corp Compressor
JPH05288411A (en) * 1992-04-07 1993-11-02 Daikin Ind Ltd Preheating control device for compressor
JPH09113039A (en) * 1995-10-16 1997-05-02 Matsushita Refrig Co Ltd Heater device for compressor
JPH11324934A (en) * 1998-05-13 1999-11-26 Matsushita Electric Ind Co Ltd Compressor driver for air conditioner
JP2002277072A (en) * 2001-03-14 2002-09-25 Matsushita Refrig Co Ltd Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145583A (en) * 1989-10-31 1991-06-20 Toshiba Corp Liquefaction detecting method for compressor
JPH04241797A (en) * 1991-01-16 1992-08-28 Toshiba Corp Compressor
JPH05288411A (en) * 1992-04-07 1993-11-02 Daikin Ind Ltd Preheating control device for compressor
JPH09113039A (en) * 1995-10-16 1997-05-02 Matsushita Refrig Co Ltd Heater device for compressor
JPH11324934A (en) * 1998-05-13 1999-11-26 Matsushita Electric Ind Co Ltd Compressor driver for air conditioner
JP2002277072A (en) * 2001-03-14 2002-09-25 Matsushita Refrig Co Ltd Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605500B2 (en) 2012-01-04 2020-03-31 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
US9739515B2 (en) 2012-04-16 2017-08-22 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer that efficiently heats refrigerant on standby
US9903629B2 (en) 2012-06-20 2018-02-27 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
CN104564611A (en) * 2013-10-22 2015-04-29 珠海格力电器股份有限公司 Control method and device of compressor electric heating band
CN115135880A (en) * 2020-02-26 2022-09-30 三菱电机株式会社 Power conversion device
CN115135880B (en) * 2020-02-26 2024-05-14 三菱电机株式会社 Power conversion device

Also Published As

Publication number Publication date
JP5506412B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US8966915B2 (en) Air-conditioning apparatus utilizing compressor preheating
US8418483B2 (en) System and method for calculating parameters for a refrigeration system with a variable speed compressor
CN102725600B (en) Crankcase heater systems and methods for variable speed compressors
US10619903B2 (en) Discharge pressure calculation from torque in an HVAC system
JP5506412B2 (en) Compressor drive control device for air conditioner
US20120260687A1 (en) Centrifuge
US9372021B2 (en) Air-conditioning apparatus
JP5836859B2 (en) MOTOR CONTROL DEVICE, MOTOR DRIVE DEVICE USING THE SAME, COMPRESSOR, REFRIGERATOR, AIR CONDITIONER, AND MOTOR CONTROL METHOD
JP5959500B2 (en) Air conditioner and control method of air conditioner
WO2013099147A1 (en) Refrigeration cycle device
JP6217668B2 (en) Electric compressor
JP5611179B2 (en) Air conditioner
JP2010002090A (en) Refrigerating cycle device
JP5306262B2 (en) Drive controller for compressor for air conditioner
JP2013204979A (en) Air conditioner
JP2008038912A (en) Compressor internal state estimating device and air conditioner
JP2009058199A (en) Cooling device
JP2012070530A (en) Motor drive apparatus
JP2012067929A (en) Heat pump cycle apparatus
JP5264848B2 (en) Drive control device
JP2006250449A (en) Air conditioner
KR20070018499A (en) Method for Controlling Operation of Inverter Refrigerator
JP2013120041A (en) Refrigerating cycle apparatus
KR20120079375A (en) Apparatus and method for controlling compression motor, and refrigerating machine having the same
JP2012067930A (en) Refrigerating cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250