JP2011137635A - Heat flux leading method, damaged part detection method including the same, and damaged part detector using the detection method - Google Patents

Heat flux leading method, damaged part detection method including the same, and damaged part detector using the detection method Download PDF

Info

Publication number
JP2011137635A
JP2011137635A JP2009295858A JP2009295858A JP2011137635A JP 2011137635 A JP2011137635 A JP 2011137635A JP 2009295858 A JP2009295858 A JP 2009295858A JP 2009295858 A JP2009295858 A JP 2009295858A JP 2011137635 A JP2011137635 A JP 2011137635A
Authority
JP
Japan
Prior art keywords
value
heat flux
temperature difference
heated
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009295858A
Other languages
Japanese (ja)
Other versions
JP5108869B2 (en
Inventor
Hideki Endo
英樹 遠藤
Takuya Kusaka
卓也 日下
Mitsutoshi Mino
光敏 美嚢
Takahide Sakagami
▲隆▼英 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Inspection and Service Co Ltd
Original Assignee
Kobe Steel Ltd
Kobelco Inspection and Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Inspection and Service Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2009295858A priority Critical patent/JP5108869B2/en
Publication of JP2011137635A publication Critical patent/JP2011137635A/en
Application granted granted Critical
Publication of JP5108869B2 publication Critical patent/JP5108869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for leading out the heating condition of an object to be measured, capable of suppressing variations of the detection results of the damaged part caused by the man power of an inspector or the like in a method for detecting the damaged part based on the surface temperature of the object to be measured, to provide a damaged part detection method including this leading method, and to provide a damaged part detector using the detection method. <P>SOLUTION: In a heat flux leading-out method suitable for detecting the damaged part, a plurality of representative values are respectively set in a temperature difference Δt between the damaged part and a healthy part, the size d of the damaged part and heat flux q, the relation Q between the temperature difference Δt, the size d of the damaged part and the heat flux q is determined by heat conductivity analysis in respective combinations wherein the representative values of respective parameters are altered, temperature difference Δt1 desired to be detected and the size d1 of the damaged part of the detection target are set and the heat flux q when heating the object to be measured T is determined on the basis of the predetermined relation Q in order to detect the damaged part a from the set temperature difference Δt1 and the size d1 of the damaged part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、測定対象物における剥離や減肉等の傷部を、加熱された測定対象物の表面温度から検出する方法、及びこの方法を用いた傷部検出装置に関する。   The present invention relates to a method for detecting a wound portion such as peeling or thinning in a measurement object from a surface temperature of a heated measurement object, and a wound detection device using this method.

従来から、母材の表面がセラミックスコーティングされている測定対象物において、当該セラミックスコーティングの母材からの剥離を検出する方法として特許文献1に記載の方法が知られている。   Conventionally, a method described in Patent Document 1 is known as a method for detecting peeling of a ceramic coating from a base material in a measurement object whose surface is coated with a ceramic.

この方法では、測定対象物を加熱し、剥離の有無によって母材への熱伝導が異なるために生じる、即ち、周囲への熱拡散の大小によって生じる測定対象物(セラミックスコーティング)の表面温度分布を赤外線サーモグラフィ装置や赤外線カメラ等の温度測定手段によって測定し、その温度分布からセラミックスコーティングの母材からの剥離を検出する。   In this method, the surface temperature distribution of the object to be measured (ceramic coating) is generated by heating the object to be measured, which is caused by the difference in thermal conduction to the base material depending on the presence or absence of peeling. Measurement is performed by a temperature measuring means such as an infrared thermography device or an infrared camera, and the peeling of the ceramic coating from the base material is detected from the temperature distribution.

また、配管内側の減肉部(周囲よりも肉厚が薄くなった部位)を検出する方法として特許文献2に記載の方法が知られている。この方法では、配管を加熱して配管表面に設定された評価領域内の温度を均一にした後、自然冷却中の配管の表面温度を赤外線サーモグラフィ装置で測定し、その測定結果を熱伝導解析結果が格納されているデータベースと比較することにより、減肉部の有無や減肉部の範囲を検出する。   Moreover, the method of patent document 2 is known as a method of detecting the thinning part inside piping (site | part where thickness became thinner than the circumference | surroundings). In this method, after the pipe is heated and the temperature in the evaluation region set on the pipe surface is made uniform, the surface temperature of the pipe during natural cooling is measured with an infrared thermography device, and the measurement result is the result of the heat conduction analysis. The presence or absence of the thinned portion and the range of the thinned portion are detected by comparing with the database in which is stored.

これら測定した測定対象物の表面温度に基づいて剥離や減肉等の傷部を検出する方法によれば、内部に生じている傷部の検出を非破壊で行うことができる。しかも、X線や超音波探傷等では検出の難しい厚みの小さなコーティングの剥離の検出も可能である。   According to the method of detecting a flaw such as peeling or thinning based on the measured surface temperature of the measurement object, it is possible to detect the flaw generated inside without destroying it. In addition, it is also possible to detect peeling of a thin coating that is difficult to detect by X-rays, ultrasonic flaw detection, and the like.

特開昭62−126338号公報JP 62-126338 A 特開2000−161943号公報JP 2000-161943 A

上記のような表面温度に基づく傷部の検出方法では、傷部とその周囲の健全部(剥離や減肉の生じていない部位)との温度差を温度測定手段によって検出するが、測定対象物を加熱するときの加熱条件によって測定される表面温度の温度分布状態が異なる。そのため、上記の傷部の検出方法においては、測定対象物を加熱するときに、傷部と健全部との温度差を検出し易い温度分布状態となるような加熱条件を決めなければならない。   In the wound detection method based on the surface temperature as described above, the temperature measurement means detects the temperature difference between the wound and the surrounding healthy part (part where peeling or thinning has not occurred). The temperature distribution state of the surface temperature measured varies depending on the heating conditions when heating the. Therefore, in the above-described method for detecting a scratched part, when heating the measurement object, it is necessary to determine a heating condition such that a temperature distribution state in which a temperature difference between the scratched part and the healthy part can be easily detected is obtained.

この加熱条件は、FEM(有限要素法)等の熱伝導解析によって決めることができる。しかし、測定対象物の傷部の検出を行っている現場においては、日毎に測定対象物が異なる場合も多く、その度にFEM等の複雑な演算による熱伝導解析を行うことは時間的に困難である。そのため、傷部の検出を行っている検査員等により、その経験に基づいて加熱条件が決められる場合が多い。その結果、測定対象物における傷部の検出結果にばらつきが生じていた。   This heating condition can be determined by heat conduction analysis such as FEM (finite element method). However, in the field where the wound of the measurement object is detected, the measurement object is often different every day, and it is difficult in terms of time to perform heat conduction analysis by complicated calculation such as FEM each time. It is. Therefore, in many cases, an inspector or the like who is detecting a scratch determines heating conditions based on the experience. As a result, there were variations in the detection results of the scratches on the measurement object.

そこで、本発明は、上記問題点に鑑み、測定対象物の表面温度に基づく傷部の検出方法において、検査員等の人的な要因による傷部の検出結果のばらつきを抑制することができる測定対象物の加熱条件の導出方法、この導出方法を含む傷部検出方法、及びこの検出方法を用いた傷部検出装置を提供することを課題とする。   Therefore, in view of the above problems, the present invention is a measurement method capable of suppressing the variation in the detection result of a wound due to human factors such as an inspector in the method for detecting a wound based on the surface temperature of the measurement object. It is an object of the present invention to provide a method for deriving a heating condition of an object, a wound detection method including the derivation method, and a wound detection apparatus using the detection method.

そこで、本発明の発明者らは、上記課題を解消すべく鋭意研究を行った結果、以下のことを発見した。   Therefore, the inventors of the present invention have made extensive studies to solve the above problems, and as a result, discovered the following.

上記のように、傷部を検出するために測定対象物に与えられる熱負荷は、温度測定手段が傷部を表面温度の変化として検出できるよう、測定対象物の物性や、傷部の大きさ、測定対象物に供給される熱流束等をパラメータとした熱伝導解析に基づいて求められる。この熱伝導解析を各パラメータの値を種々変更して多数回行い、その結果を精査したところ、いずれの場合においても測定対象物の加熱過程における傷部と健全部との温度差Δtと加熱時間との関係において所定の特徴が現れることを発見した。   As described above, the thermal load applied to the measurement object in order to detect the flaw is such that the temperature measurement means can detect the flaw as a change in the surface temperature, the physical properties of the measurement object, and the size of the flaw. It is obtained based on a heat conduction analysis using the heat flux supplied to the measurement object as a parameter. This heat conduction analysis was performed many times with various parameter values changed, and the results were examined closely. In any case, the temperature difference Δt between the damaged part and the healthy part in the heating process of the object to be measured and the heating time. We found that certain characteristics appeared in relation to.

そこで、この特徴に着目して前記多数の熱伝導解析の結果を解析したところ、少なくとも温度差Δtと、傷部の大きさと、測定対象物を加熱するときの熱流束との間に特定の関係が成り立つことがわかった。   Therefore, when the results of the large number of heat conduction analyzes are analyzed by paying attention to this feature, there is a specific relationship between at least the temperature difference Δt, the size of the flaw, and the heat flux when heating the measurement object. It was found that

前記発明者らは、これらの発見に基づき、測定対象物の加熱過程における傷部と健全部との温度差Δtと加熱時間との関係において現れる所定の特徴に着目することによって得ることができた温度差と傷部の大きさと熱流束との特定の関係を用いて以下の構成の熱流束導出方法、この方法を含む傷部検出方法、及びこの検出方法を用いた傷部検出装置を創作した。   Based on these findings, the inventors have been able to obtain by paying attention to a predetermined feature that appears in the relationship between the heating time and the temperature difference Δt between the wound portion and the healthy portion in the heating process of the measurement object. Using a specific relationship between the temperature difference, the size of the flaw and the heat flux, a heat flux derivation method having the following configuration, a flaw detection method including this method, and a flaw detection device using this detection method were created. .

本発明に係る熱流束導出方法は、測定対象物の所定の表面を加熱対象面としてこれに熱を加え、そのときの当該表面の温度分布に基づき前記加熱対象面と直交する方向についての当該加熱対象面から厚み方向に連続する部分の厚み寸法が周囲よりも小さい傷部の存在範囲を熱伝導解析により検出するにあたり当該測定対象物を加熱するための熱流束を導出する方法であって、前記熱伝導解析のパラメータである傷部とその周囲の健全部との温度差の値と傷部の大きさの値と熱流束の値とにおいて複数の代表値をそれぞれ設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って前記温度差の値と前記傷部の大きさの値と前記熱流束の値との関係を求める関係導出工程と、前記測定対象物において検出したい前記温度差の値と検出対象とする傷部の大きさの値とを設定する値設定工程と、前記関係導出工程で予め求めておいた関係に基づいて、前記値設定工程で設定された前記温度差の値と前記傷部の大きさの値とから前記傷部の存在範囲を検出するために測定対象物を加熱するときの熱流束の値を求める熱流束導出工程とを備えることを特徴とする。尚、本発明において測定対象物の加熱対象面から厚み方向に連続する部分の厚さ寸法とは、加熱対象面から当該加熱対象面と直交する方向について隙間無く連続している測定対象物の部位の当該方向の寸法をいう。   In the heat flux derivation method according to the present invention, a predetermined surface of a measurement object is used as a surface to be heated, and heat is applied thereto. Based on the temperature distribution of the surface at that time, the heating in the direction orthogonal to the surface to be heated is performed. A method of deriving a heat flux for heating the measurement object in detecting the existence range of a flaw part having a thickness dimension smaller than that of the surrounding area from the target surface in the thickness direction, Multiple representative values are set for the value of temperature difference between the wound part and the surrounding healthy part, the size value of the wound part, and the heat flux value, which are parameters for heat conduction analysis. A relationship derivation step for obtaining a relationship among the temperature difference value, the flaw size value, and the heat flux value by conducting a heat conduction analysis in each of the combinations, and detecting the measurement object It is set in the value setting step based on the value setting step for setting the value of the temperature difference and the value of the size of the flaw to be detected and the relationship obtained in advance in the relationship deriving step A heat flux deriving step of obtaining a heat flux value when heating the measurement object in order to detect the existence range of the scratch from the value of the temperature difference and the size of the scratch. Features. In the present invention, the thickness dimension of the portion of the measurement object that is continuous in the thickness direction from the surface to be heated is the portion of the measurement object that is continuous from the surface to be heated in the direction orthogonal to the surface to be heated. The dimension of the direction.

かかる構成によれば、測定対象物において傷部と健全部との間で検出したい温度差の値と検出対象とする傷部の大きさの値とが設定されれば、傷部の検出を行う検査員等によってばらつきが生じることなく、傷部の検出のために測定対象物を加熱するのに適した熱流束の値が導出される。このようにして求められた熱流束によって測定対象物が加熱されることで、その表面温度を測定して加熱対象面の温度分布を求めたときに傷部と健全部との温度差が検出し易くなり、所定範囲の大きさを有する傷部の存在範囲を精度よく検出することができる。   According to such a configuration, if the value of the temperature difference desired to be detected between the wound and the healthy part in the measurement object and the value of the size of the wound to be detected are set, the wound is detected. A value of a heat flux suitable for heating the measurement object for detecting a flaw is derived without causing variation by an inspector or the like. The object to be measured is heated by the heat flux thus determined, and when the surface temperature is measured to determine the temperature distribution of the surface to be heated, the temperature difference between the scratched part and the healthy part is detected. It becomes easy, and the existence range of the wound part which has the size of a predetermined range can be detected accurately.

しかも、熱流束導出工程よりも前に、熱伝導解析のパラメータである傷部と健全部との温度差の値と傷部の大きさの値と熱流束の値とにおいて複数の代表値をそれぞれ設定し各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って温度差の値と傷部の大きさの値と熱流束の値との関係が予め求められているため、傷部の検出を行うときに、その都度、多数のパラメータを用いた複雑な演算による熱伝導解析等を行わなくても、測定対象物において検出したい前記温度差の値と検出対象とする傷部の大きさの値とを決めるだけで所定範囲の大きさの傷部の検出に適した熱流束の値を迅速に導出することができる。   In addition, before the heat flux deriving step, a plurality of representative values are set for the temperature difference value, the size value of the wound portion, and the heat flux value, which are parameters of the heat conduction analysis. The relationship between the temperature difference value, the flaw size value, and the heat flux value is obtained in advance by conducting a heat conduction analysis in each combination in which the representative values in each parameter are changed, and the flaw portion is obtained in advance. Each time, the value of the temperature difference to be detected in the measurement object and the size of the scratch to be detected can be detected without performing a heat conduction analysis or the like by a complicated calculation using a large number of parameters. It is possible to quickly derive a heat flux value suitable for detecting a flaw having a size within a predetermined range simply by determining the value of the thickness.

尚、上記の熱流束導出方法において、前記関係導出工程では、前記パラメータに含まれる傷部の前記加熱対象面から厚さ方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と前記熱流束の値との関係を予め求めておき、前記値設定工程では、前記測定対象物において検出対象とする傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値を設定し、前記熱流束導出工程では、前記値設定工程で設定された前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値とから前記熱流束の値を求めるのが好ましく、さらに、前記関係導出工程では、前記パラメータに含まれる健全部の前記加熱対象面から厚さ方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と前記健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と前記熱流束の値との関係を予め求めておき、前記値設定工程では、前記測定対象物における健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値を設定し、前記熱流束導出工程では、前記値設定工程で設定された前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と前記健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値とから前記熱流束の値を求めるのがより好ましい。   In the above heat flux deriving method, in the relationship deriving step, a plurality of representative values are further set in the thickness dimension values of the portion of the scratched part that is continuous in the thickness direction from the surface to be heated included in the parameter. In each combination in which the representative value in each parameter is changed, a heat conduction analysis is performed, and the value of the temperature difference, the value of the size of the flaw, and the portion of the flaw that is continuous in the thickness direction from the surface to be heated The relationship between the value of the thickness dimension and the value of the heat flux is obtained in advance, and in the value setting step, the thickness of the portion that is continuous in the thickness direction from the heating target surface of the wound portion to be detected in the measurement object The dimension value is set, and in the heat flux deriving step, the temperature difference value, the flaw size value set in the value setting step, and the flaw portion are continuously heated in the thickness direction from the surface to be heated. Of the thickness of the part to be It is preferable to determine the value of the heat flux from the above, and in the relationship deriving step, a plurality of representative values are included in the thickness dimension values of the portion of the sound part included in the parameter that is continuous in the thickness direction from the surface to be heated. The value is further set and the heat conduction analysis is performed in each combination in which the representative value in each parameter is changed, and the value of the temperature difference, the size of the flaw, and the thickness direction from the surface to be heated of the flaw The relationship between the value of the thickness dimension of the continuous part and the value of the thickness dimension of the continuous part in the thickness direction from the surface to be heated of the healthy part and the value of the heat flux is obtained in advance, And setting the value of the thickness dimension of the portion that is continuous in the thickness direction from the surface to be heated of the healthy part in the measurement object, and in the heat flux deriving step, the value of the temperature difference set in the value setting step and The wound The heat flow from the value of the size, the value of the thickness dimension of the flawed portion that is continuous in the thickness direction from the surface to be heated and the value of the thickness dimension of the flawed portion that is continuous from the surface to be heated in the thickness direction More preferably, the value of the bundle is obtained.

このように関係導出工程において傷部と健全部との温度差や熱流束等の関係を求めるときのパラメータが増えることで、傷部の検出のために測定対象物を加熱するときの加熱条件としてより適した熱流束の値が導出される。   In this way, as a heating condition when heating the measurement object to detect the wound, the parameters when obtaining the relationship such as the temperature difference and heat flux between the wound and the healthy part in the relationship deriving step are increased. A more suitable heat flux value is derived.

前記関係導出工程で求められる前記関係は、前記値設定工程で設定される温度差の値をΔt、傷部の大きさの値をd、傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値をx、熱流束の値をqとし、測定対象物の材質と健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法とに基づく定数をbとしたときに、以下の(1)式で表されるのが好ましい。   The relationship obtained in the relationship deriving step is a portion where the temperature difference value set in the value setting step is Δt, the flaw size value is d, and the flaw portion is continuous in the thickness direction from the surface to be heated. When the thickness dimension value of x is x, the heat flux value is q, and the constant based on the thickness dimension of the part to be measured in the thickness direction from the surface to be heated of the measurement object and the healthy part is b, The following formula (1) is preferred.

Figure 2011137635
Figure 2011137635

このように、傷部と健全部との温度差の値と傷部の大きさの値と傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と熱流束の値との関係が簡単な関数によって表されることで、測定対象物において検出したい傷部と健全部との温度差の値と検出対象とする傷部の大きさの値と検出対象とする傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値とが与えられれば、例えば電卓等によって、前記傷部の検出に必要な熱流束の値を容易且つ迅速に導出することができる。   Thus, the value of the temperature difference between the wound part and the healthy part, the value of the size of the wound part, the value of the thickness dimension of the part continuous in the thickness direction from the heating target surface of the wound part, and the value of the heat flux Since the relationship is expressed by a simple function, the temperature difference between the wound and the healthy part to be detected in the measurement object, the value of the size of the wound to be detected, and the heating of the wound to be detected If the value of the thickness dimension of the portion continuous in the thickness direction from the target surface and the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the healthy part are given, for example, by a calculator or the like The value of the heat flux necessary for detection can be derived easily and quickly.

本発明に係る傷部検出方法は、測定対象物の所定の表面を加熱対象面としてこれに熱を加え、そのときの当該表面の温度分布に基づき前記加熱対象面と直交する方向についての当該加熱対象面から厚さ方向に連続する部分の厚み寸法が周囲よりも小さい傷部の存在範囲を熱伝導解析により検出する方法であって、請求項1乃至4のいずれか1項に記載の熱流束導出方法によって前記熱流束の値を求める熱流束決定工程と、前記熱流束決定工程で求めた値の熱流束によって前記測定対象物を加熱する加熱工程と、前記加熱工程において加熱された前記測定対象物の加熱対象面における表面温度を測定する温度測定工程と、前記温度測定工程で測定された表面温度の加熱対象面における温度分布と前記熱流束導出方法の値設定工程において設定された温度差の値とに基づいて前記傷部の存在範囲を検出する検出工程とを備えることを特徴とする。   The wound detection method according to the present invention applies heat to a predetermined surface of a measurement object as a surface to be heated, and performs heating in a direction orthogonal to the surface to be heated based on the temperature distribution of the surface at that time. 5. A method for detecting the existence range of a flaw having a thickness dimension of a portion continuous in a thickness direction from a target surface by heat conduction analysis, wherein the heat flux according to claim 1. A heat flux determination step for obtaining the value of the heat flux by a derivation method, a heating step for heating the measurement object with the heat flux of the value obtained in the heat flux determination step, and the measurement target heated in the heating step Set in the temperature measurement step for measuring the surface temperature of the object to be heated, the temperature distribution of the surface temperature measured in the temperature measurement step on the surface to be heated, and the value setting step in the heat flux derivation method. Characterized in that it comprises a detection step of detecting the existence range of the flaw on the basis of the on and the value of the temperature difference.

かかる構成によれば、測定対象物において検出したい前記温度差の値と検出対象とする傷部の大きさの値とが与えられれば、検査員等によってばらつきが生じることなく傷部の検出のための加熱に適した熱流束の値が求められ、この値の熱流束で測定対象物を加熱することで所定範囲の大きさを有する傷部の存在範囲を精度よく検出することができる。   According to such a configuration, if the value of the temperature difference that is desired to be detected in the measurement object and the value of the size of the wound to be detected are given, it is possible to detect the wound without causing variation by an inspector or the like. The value of the heat flux suitable for the heating is obtained, and by heating the measurement object with the heat flux of this value, it is possible to accurately detect the existence range of the flaw having a predetermined size.

しかも、熱流束決定工程よりも前に、熱伝導解析のパラメータである傷部と健全部との温度差の値と傷部の大きさの値と熱流束の値とにおいて複数の代表値をそれぞれ設定し各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って前記温度差の値と前記傷部の大きさの値と前記熱流束の値との関係が予め求められているため、傷部の検出を行うときに、その都度、多数のパラメータを用いた複雑な演算による熱伝導解析等を行わなくても、測定対象物において検出したい前記温度差の値と検出対象とする傷部の大きさの値とを設定するだけで前記傷部の存在範囲の検出に適した熱流束の値を迅速に導出することができる。   In addition, before the heat flux determination step, a plurality of representative values are set for the temperature difference value, the flaw size value, and the heat flux value, which are parameters of the heat conduction analysis. Since the heat conduction analysis is performed in each combination in which the representative values in the respective parameters are set and changed, the relationship between the temperature difference value, the flaw size value, and the heat flux value is obtained in advance. Each time a scratch is detected, the temperature difference value to be detected in the measurement object and the scratch to be detected can be detected without performing a heat conduction analysis or the like by a complicated calculation using a large number of parameters. It is possible to quickly derive a heat flux value suitable for detection of the range of presence of the flaw by simply setting the size of the part.

前記温度測定工程では、前記測定対象物の加熱対象面に複数の測定点が指定されて各測定点の温度が測定され、前記検出工程では、前記複数の測定点のうちの特定の測定点と他の測定点との間の温度差の値と、前記値設定工程において設定された温度差に基づく所定の閾値とを比較することにより前記傷部の検出が行われるのが好ましい。   In the temperature measurement step, a plurality of measurement points are designated on the surface to be heated of the measurement object, and the temperature of each measurement point is measured. In the detection step, a specific measurement point of the plurality of measurement points and It is preferable that the flaw is detected by comparing a value of a temperature difference with another measurement point and a predetermined threshold value based on the temperature difference set in the value setting step.

かかる構成によれば、測定対象物における所定範囲の大きさの傷部の存在範囲をより精度よく検出することができる。即ち、傷部と健全部とでは測定対象物において加熱対象面から厚さ方向に連続する部分の厚み寸法が異なるため加熱により熱拡散の大小に起因する温度差が生じ、その結果、傷部同士又は健全部同士の温度差に比べて温度差が大きくなり、この大きくなった温度差を利用することで傷部を容易に検出することができる。しかも、この温度差の値と所定の値(閾値)との大小によって傷部か健全部かを判断することで、傷部か健全部かをより精度よく簡単に判断することができる。   According to such a configuration, it is possible to more accurately detect the existence range of a scratch portion having a predetermined size in the measurement object. That is, since the thickness dimension of the portion that is continuous in the thickness direction from the surface to be heated in the measurement object is different between the wound portion and the healthy portion, a temperature difference due to the magnitude of thermal diffusion occurs due to heating. Or a temperature difference becomes large compared with the temperature difference between healthy parts, and a crack part can be easily detected by utilizing this enlarged temperature difference. In addition, it is possible to more easily and accurately determine whether the wound portion is a healthy portion or not by determining whether it is a wound portion or a healthy portion based on the magnitude of the temperature difference value and a predetermined value (threshold value).

また、前記検出工程では、前記複数の測定点を前記特定の測定点に対する温度差の小さな第1の測定点とこの第1の測定点よりも前記特定の測定点に対する温度差が大きな第2の測定点とに分類し、前記第1の測定点が前記第2の測定点よりも多い場合には、前記特定の測定点に対する温度差の値が前記閾値よりも大きくなった測定点を前記傷部として検出する一方、前記第1の測定点が前記第2の測定点よりも少ない場合には、前記特定の測定点に対する温度差の値が前記閾値よりも小さくなった測定点を前記傷部として検出するのが好ましい。   In the detecting step, the plurality of measurement points may be a first measurement point having a small temperature difference with respect to the specific measurement point, and a second temperature difference with respect to the specific measurement point being larger than the first measurement point. When the first measurement point is larger than the second measurement point, the measurement point whose temperature difference with respect to the specific measurement point is larger than the threshold value is classified as the measurement point. On the other hand, when the first measurement point is smaller than the second measurement point, the measurement point whose temperature difference with respect to the specific measurement point is smaller than the threshold is detected as the scratched part. It is preferable to detect as

かかる構成によれば、複数の測定点から任意に特定の測定点を選んだ場合でも、傷部と健全部とが確実に判断される。即ち、通常、傷部は健全部よりも面積が小さいため、第1の測定点と第2の測定点とのうち少ない方を傷部の測定点として判断し、傷部の検出が行われる。これにより、特定の測定点が傷部又は健全部のいずれに指定されても、検出結果において傷部と健全部とが逆になることが防止される。   According to such a configuration, even when a specific measurement point is arbitrarily selected from a plurality of measurement points, a wound portion and a healthy portion are reliably determined. That is, since the area of the wound is usually smaller than that of the healthy part, the smaller of the first measurement point and the second measurement point is determined as the measurement point of the wound, and the wound is detected. Thereby, even if a specific measurement point is designated as a wound part or a healthy part, it is prevented that a wound part and a healthy part are reversed in a detection result.

前記加熱工程では、ハロゲンランプにより測定対象物が加熱され、前記温度測定工程では、赤外線サーモグラフィ装置により測定対象物の表面温度が測定されるのが好ましい。   In the heating step, it is preferable that the measurement object is heated by a halogen lamp, and in the temperature measurement step, the surface temperature of the measurement object is measured by an infrared thermography apparatus.

かかる構成によれば、測定対象物から離れた位置から測定対象物の加熱及び表面温度の測定ができる。そのため、測定対象物が高所等、測定位置から離れた位置に配置されている場合でも足場等を組むことなく容易に傷部の検出を行うことができる。   According to this configuration, it is possible to heat the measurement object and measure the surface temperature from a position away from the measurement object. Therefore, even when the measurement object is arranged at a position away from the measurement position, such as a high place, it is possible to easily detect a scratch without forming a scaffold or the like.

本発明に係る傷部検出装置は、測定対象物の所定の表面を加熱対象面としてこれに熱を加え、そのときの当該表面の温度分布に基づき前記加熱対象面と直交する方向についての当該加熱対象面から厚さ方向に連続する部分の厚み寸法が周囲よりも小さい傷部の存在範囲を熱伝導解析により検出するための装置であって、前記測定対象物を加熱する加熱手段と、前記測定対象物の加熱対象面における表面温度を測定する測定手段と、前記加熱手段が前記測定対象物を加熱するときの熱流束の値を求める導出手段と、前記測定対象物における傷部と健全部との間で検出したい温度差の値と検出対象とする傷部の大きさの値とを前記導出手段に入力可能な入力手段と、前記導出手段で導出された熱流束の値を外部に出力する出力手段と、前記測定手段で測定された表面温度の加熱対象面における温度分布と入力手段から入力された前記温度差の値とに基づいて前記傷部の存在範囲を検出する検出手段とを備え、前記加熱手段は、前記熱流束の値を変更可能に構成され、前記導出手段は、前記熱伝導解析のパラメータである傷部とその周囲の健全部との温度差の値と傷部の大きさの値と熱流束の値とにおいて複数の代表値をそれぞれ設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行ったときの前記温度差の値と前記傷部の大きさの値と前記熱流束の値との関係を予め格納しておく記憶部と、前記入力手段から入力された前記温度差の値と傷部の大きさの値とから前記記憶部に格納されている関係に基づいて熱流束の値を求める熱流束導出部とを有することを特徴とする。   The wound detection device according to the present invention applies heat to a predetermined surface of a measurement object as a surface to be heated, and performs heating in a direction orthogonal to the surface to be heated based on the temperature distribution of the surface at that time. A device for detecting the existence range of a flaw having a thickness dimension of a portion continuous in a thickness direction from an object surface by heat conduction analysis, the heating means for heating the measurement object, and the measurement Measuring means for measuring the surface temperature of the object to be heated on the surface to be heated; Deriving means for obtaining a value of heat flux when the heating means heats the object to be measured; Scratches and healthy parts on the object to be measured; Input means capable of inputting the value of the temperature difference to be detected between and the value of the size of the flaw to be detected to the deriving means, and outputting the value of the heat flux derived by the deriving means to the outside Output means and said measuring hand Detecting means for detecting the existence range of the flaws based on the temperature distribution on the surface to be heated of the surface temperature measured in (2) and the value of the temperature difference input from the input means, and the heating means includes the The heat flux value is configured to be changeable, and the derivation means includes a temperature difference value, a flaw size value, and a heat flux value between the wound portion and the surrounding healthy portion, which are parameters of the heat conduction analysis. The value of the temperature difference, the value of the size of the flaw, and the heat flux when a heat conduction analysis is performed in each combination in which a plurality of representative values are respectively set and the representative values in the respective parameters are changed. Based on the relationship stored in the storage unit from the storage unit storing the relationship between the temperature difference value and the temperature difference value and the flaw size value input from the input unit. A heat flux deriving section for obtaining the value of the bundle. Characterized in that it.

かかる構成によれば、測定対象物において検出したい前記温度差の値と検出対象とする傷部の大きさの値とを入力手段から入力することにより、検査員等によってばらつきが生じることなく、出力手段から前記傷部の存在範囲の検出に適した熱流束の値が出力されるため、この値に基づいて加熱手段が測定対象物を加熱するときの熱流束の値を変更することで、所定範囲の大きさを有する傷部の存在範囲の検出を精度よく行うことができる。   According to such a configuration, by inputting the value of the temperature difference to be detected in the measurement object and the value of the size of the wound part to be detected from the input unit, the output can be performed without causing variation by an inspector or the like. Since the value of the heat flux suitable for detection of the range where the flaw is present is output from the means, the value of the heat flux when the heating means heats the measurement object is changed based on this value, so that the predetermined value is obtained. It is possible to accurately detect the presence range of the wound having the size of the range.

しかも、記憶部に、熱伝導解析のパラメータである傷部とその周囲の健全部との温度差の値と傷部の大きさの値と熱流束の値とにおいて複数の代表値をそれぞれ設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行ったときの温度差の値と傷部の大きさの値と熱流束の値との関係が予め格納されているため、入力手段から前記温度差の値と傷部の大きさの値とが入力される度に複雑な演算等による熱伝導解析が行われなくても、傷部の検出に適した熱流束の値が導出され、その結果、迅速な傷部の検出を行うことが可能となる。   In addition, a plurality of representative values are set in the storage unit for the temperature difference value between the wound part and the surrounding healthy part, the size value of the wound part, and the heat flux value, which are parameters for heat conduction analysis. Since the relationship between the temperature difference value, the flaw size value, and the heat flux value when the heat conduction analysis is performed in each combination in which the representative value in each parameter is changed is stored in advance. Each time the temperature difference value and the flaw size value are input from the means, a heat flux value suitable for flaw detection can be derived without performing heat conduction analysis by complicated calculations. As a result, it is possible to quickly detect a scratch.

尚、上記の傷部検出装置においては、前記入力手段は、前記測定対象物において検出対象とする傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値を前記導出手段に入力可能に構成され、前記記憶部には、前記パラメータに含まれる傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行ったときの前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と前記熱流束の値との関係が予め格納され、前記熱流束導出部は、前記入力手段から入力された温度差の値と傷部の大きさの値と傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値とから前記記憶部に格納されている関係に基づいて熱流束の値を求めるのが好ましく、さらに、前記入力手段は、前記測定対象物における健全部の前記加熱対象面から厚さ方向に連続する部分の厚み寸法の値を前記導出手段に入力可能に構成され、前記記憶部には、前記パラメータに含まれる健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行ったときの前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と前記健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と前記熱流束の値との関係が予め格納され、前記熱流束導出部は、前記入力手段から入力された温度差の値と傷部の大きさの値と傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値と健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法の値とから前記記憶部に格納されている関係に基づいて熱流束の値を求めるのがより好ましい。このように、記憶部に格納されている傷部と健全部との温度差や熱流束等の関係を求めるときのパラメータが増えることで、前記傷部の存在範囲の検出のために測定対象物を加熱するときのより適した熱流束の値が導出される。   In the above flaw detection apparatus, the input means inputs the value of the thickness dimension of the portion of the measurement object continuous in the thickness direction from the heating target surface of the flaw to be detected to the derivation means. The storage unit is further configured to set a plurality of representative values in the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the scratch included in the parameter, and the representative value in each parameter The value of the temperature difference, the value of the size of the scratched part, and the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the scratched part when the heat conduction analysis is performed in each combination with each changed And the value of the heat flux are stored in advance, and the heat flux deriving unit is configured to determine whether the temperature difference value inputted from the input means, the value of the size of the flaw, and the thickness of the flaw from the surface to be heated. Of the thickness dimension of the continuous part in the direction It is preferable that the value of the heat flux is obtained based on the relationship stored in the storage unit, and the input means is continuous in the thickness direction from the surface to be heated of the healthy part in the measurement object. A value of the thickness dimension of the part is configured to be input to the derivation means, and the storage unit includes a plurality of thickness dimension values of the part continuous in the thickness direction from the surface to be heated of the healthy part included in the parameter. A representative value is further set, and the value of the temperature difference, the value of the size of the flaw, and the surface to be heated of the flaw when the heat conduction analysis is performed in each combination in which the representative value in each parameter is changed. The relationship between the value of the thickness dimension of the portion that continues in the thickness direction, the value of the thickness dimension of the portion that continues in the thickness direction from the surface to be heated of the healthy portion, and the value of the heat flux is stored in advance, and the heat flux The derivation part The value of the temperature difference inputted from the input means, the value of the size of the flaw, the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the flaw, and the thickness direction from the surface to be heated of the healthy portion It is more preferable to obtain the value of the heat flux based on the relationship stored in the storage unit from the value of the thickness dimension of the continuous portion. In this way, the measurement object for detecting the existence range of the flaw is increased by increasing the parameters when obtaining the relationship between the temperature difference and the heat flux between the flaw and the healthy part stored in the storage unit. The value of the heat flux that is more suitable for heating is derived.

前記加熱手段は、前記測定対象物を加熱するための加熱源を備え、この加熱源は、前記測定対象物からの距離を変更可能に構成されるのが好ましい。   The heating means preferably includes a heating source for heating the measurement object, and the heating source is preferably configured to be able to change a distance from the measurement object.

かかる構成によれば、測定対象物に供給される熱流束の値を容易に変更することができる。即ち、出力手段からの出力に基づき加熱源の測定対象物からの距離を変更するだけで、測定対象物に供給される熱流束の値を変更することができる。   According to such a configuration, the value of the heat flux supplied to the measurement object can be easily changed. That is, the value of the heat flux supplied to the measurement object can be changed only by changing the distance of the heating source from the measurement object based on the output from the output means.

このとき、前記出力手段は、前記導出手段で導出された熱流束の値を出力信号として前記加熱手段に出力し、前記加熱手段は、前記出力手段からの出力信号に基づいて前記加熱源を移動させる移動手段をさらに備えてもよい。   At this time, the output means outputs the value of the heat flux derived by the derivation means to the heating means as an output signal, and the heating means moves the heating source based on the output signal from the output means. You may further provide the moving means to make.

かかる構成によれば、入力手段から温度差の値と傷部の大きさの値とが入力されると、加熱手段において自動的に前記傷部の存在範囲の検出に適した値となるように調整された熱流束が測定対象物に供給される。   According to such a configuration, when the value of the temperature difference and the value of the size of the scratch are input from the input unit, the heating unit automatically becomes a value suitable for detection of the existing range of the scratch. The adjusted heat flux is supplied to the measurement object.

また、前記出力手段は、前記導出手段で導出された熱流束の値を出力信号として前記加熱手段に出力し、前記加熱手段は、前記測定対象物を加熱可能に構成されると共に供給される電流値に基づいて前記測定対象物に供給される熱流束の値を変更可能な加熱源と、前記出力手段からの出力信号に基づいて前記加熱源に供給する電流値を変更する加熱用電源とを備えてもよい。   The output means outputs the value of the heat flux derived by the derivation means to the heating means as an output signal, and the heating means is configured to be able to heat the measurement object and supplied with current. A heating source capable of changing a value of a heat flux supplied to the measurement object based on a value, and a heating power source for changing a current value supplied to the heating source based on an output signal from the output means. You may prepare.

かかる構成によっても、入力手段から温度差の値と傷部の大きさの値とが入力されると、加熱手段において自動的に前記傷部の存在範囲の検出に適した値となるように調整された熱流束が測定対象物に供給される。   Even with this configuration, when the temperature difference value and the flaw size value are input from the input unit, the heating unit automatically adjusts the value to be suitable for detection of the flaw existence range. The heat flux is supplied to the measurement object.

以上より、本発明によれば、測定対象物の表面温度に基づく傷部の検出方法において、検査員等の人的な要因による傷部の検出結果のばらつきを抑制することができる測定対象物の加熱条件の導出方法、この導出方法を含む傷部検出方法、及びこの検出方法を用いた傷部検出装置を提供することができる。   As described above, according to the present invention, in the method for detecting a wound based on the surface temperature of the measurement object, the variation of the detection result of the wound due to human factors such as an inspector can be suppressed. A heating condition deriving method, a flaw detection method including this derivation method, and a flaw detection device using this detection method can be provided.

第1実施形態に係る傷部検出装置の概略構成図である。It is a schematic block diagram of the wound detection apparatus which concerns on 1st Embodiment. 前記傷部検出装置の演算手段の構成ブロック図である。It is a block diagram of the calculation means of the flaw detection apparatus. 前記演算手段本体の導出手段における記憶部に予め格納される関数を求めるために行ったFEMで用いた解析モデルを示す図である。It is a figure which shows the analysis model used by FEM performed in order to obtain | require the function previously stored in the memory | storage part in the derivation | leading-out means of the said calculating means main body. (a)は前記解析モデルに用いた軟鋼の物性値を示す図であり、(b)は前記記憶部に予め格納される関数を求めるために行ったFEMでのパラメータの各値を示す図である。(A) is a figure which shows the physical-property value of the mild steel used for the said analysis model, (b) is a figure which shows each value of the parameter in FEM performed in order to obtain | require the function previously stored in the said memory | storage part. is there. 傷部の大きさ毎の傷部中央と健全部との温度差と加熱時間との関係を示す図である。It is a figure which shows the relationship between the temperature difference of the wound center and the healthy part for every magnitude | size of a wound, and heating time. 測定対象物の健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法が0.006mの場合において、傷部中央と健全部との温度差と傷部の大きさとの関係を傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法さ毎に示す両対数グラフである。When the thickness dimension of the portion of the measurement object that is continuous from the heating target surface in the thickness direction is 0.006 m, the relationship between the temperature difference between the center of the damage portion and the sound portion and the size of the damage portion is determined. It is a log-log graph shown for every thickness dimension of the part which continues in the thickness direction from the heating object surface. 図6の両対数グラフの横軸をd√3/xとした図である。FIG. 7 is a diagram in which the horizontal axis of the log-log graph of FIG. 6 is d√3 / x. 健全部の加熱対象面から厚さ方向に連続する部分の厚み寸法が0.012mの場合において、傷部中央と健全部との温度差と傷部の大きさとの関係を傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法毎に示す両対数グラフの横軸をd√3/xとした図である。When the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the healthy portion is 0.012 m, the relationship between the temperature difference between the center of the damaged portion and the healthy portion and the size of the damaged portion is determined. FIG. 5 is a diagram in which the horizontal axis of the log-log graph shown for each thickness dimension of the portion continuous in the thickness direction is d√3 / x. 傷部中央と健全部との温度差と熱流束との関係を示す図である。It is a figure which shows the relationship between the temperature difference and the heat flux of a wound center and a healthy part. (a)は前記解析モデルに用いたセラミックスの物性値を示す図であり、(b)は前記記憶部に予め格納される関数を求めるために行ったFEMでのパラメータの各値を示す図である。(A) is a figure which shows the physical-property value of the ceramic used for the said analysis model, (b) is a figure which shows each value of the parameter in FEM performed in order to obtain | require the function previously stored in the said memory | storage part. is there. 傷部の大きさ毎の傷部中央と健全部との温度差と加熱時間との関係を示す図である。It is a figure which shows the relationship between the temperature difference of the wound center and the healthy part for every magnitude | size of a wound, and heating time. 傷部中央と健全部との温度差と傷部の大きさとの関係を傷部の加熱対象面から厚さ方向に連続する部分の厚み寸法毎に示す両対数グラフである。It is a log-log graph which shows the relationship between the temperature difference of a wound part center and a healthy part, and the magnitude | size of a wound part for every thickness dimension of the part which continues in a thickness direction from the heating object surface of a wound part. 図12の両対数グラフの横軸をd√3/xとした図である。FIG. 13 is a diagram in which the horizontal axis of the log-log graph of FIG. 12 is d√3 / x. 測定手段で測定対象物を測定したときの温度分布の画像(熱画像)を示す図である。It is a figure which shows the image (thermal image) of temperature distribution when a measuring object is measured with a measurement means. 図14におけるデータ処理線上での特定の測定点と他の測定点との温度差を示す図であり、(a)は健全部に特定の測定点を指定したときの図であり、(b)は傷部に特定の測定点を指定したときの図である。It is a figure which shows the temperature difference of the specific measurement point on the data processing line in FIG. 14, and another measurement point, (a) is a figure when designating a specific measurement point to a healthy part, (b) FIG. 4 is a view when a specific measurement point is designated for a flaw. 傷部の検出方法を示すフロー図である。It is a flowchart which shows the detection method of a wound part. ハロゲンライトの光軸上での距離と熱流束との関係を示す図である。It is a figure which shows the relationship between the distance on the optical axis of a halogen light, and a heat flux. 第2実施形態に係る傷部検出装置の概略構成図である。It is a schematic block diagram of the wound detection apparatus which concerns on 2nd Embodiment. 試験片の熱画像を示す図である。It is a figure which shows the thermal image of a test piece. 実測値と各近似値から得られた結果を比較した図である。It is the figure which compared the result obtained from the measured value and each approximate value.

以下、本発明の第1実施形態について、添付図面を参照しつつ説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.

本発明に係る傷部検出装置は、測定対象物において表面から見えない剥離や減肉部等の傷部を非破壊、非接触で検出することができる。具体的に、傷部検出装置は、測定対象物を加熱したときの熱拡散の大小によって生じる表面の温度分布に基づいて所定範囲の大きさを有する傷部の存在範囲を検出することができる。本実施形態において、熱拡散の大小は、測定対象物の所定の加熱される表面(加熱対象面)と直交する方向における加熱対象面から厚さ方向に連続する部分の厚み寸法の大小により生じている。この測定対象物の加熱対象面から厚さ方向に連続する部分の厚さ寸法とは、加熱対象面から当該加熱対象面と直交する方向について隙間無く連続している測定対象物の部位の当該方向の寸法をいう。例えば、図1に示されるような母材T1の表面にメッキT2によってコーティングが施された測定対象物Tにおいて傷部aが剥離である場合には、傷部aの加熱対象面から厚さ方向に連続する部分の厚さ寸法とは、加熱対象面50から当該加熱対象面50と直交する方向について連続し、剥離により生じた空間55を囲む面(剥離部分のメッキの裏面)52までの部位Aの寸法をいう。また、健全部bの加熱対象面から厚さ方向に連続する部分の厚さ寸法とは、加熱対象面50から当該加熱対象面50と直交する方向について連続し、母材T1の裏面53までの部位Bの寸法をいう。   The flaw detection apparatus according to the present invention can detect a flaw, such as a peeled or thinned portion, which is not visible from the surface of the measurement object, in a non-destructive and non-contact manner. Specifically, the flaw detection device can detect the existence range of a flaw having a predetermined size based on the temperature distribution on the surface caused by the magnitude of thermal diffusion when the measurement object is heated. In the present embodiment, the magnitude of the thermal diffusion is caused by the size of the thickness dimension of the portion continuous in the thickness direction from the heating target surface in the direction orthogonal to the predetermined heated surface (heating target surface) of the measurement object. Yes. The thickness dimension of the portion of the measurement object that is continuous in the thickness direction from the surface to be heated is the direction of the portion of the measurement object that is continuous from the surface to be heated in the direction orthogonal to the surface to be heated. The dimensions of For example, in the case where the scratched part a is peeled off in the measurement target T in which the surface of the base material T1 as shown in FIG. 1 is coated by plating T2, the thickness direction from the heating target surface of the scratched part a The thickness dimension of the continuous portion is a portion from the heating target surface 50 to a surface (back surface of the plating of the peeling portion) 52 that is continuous in the direction orthogonal to the heating target surface 50 and surrounds the space 55 generated by the peeling. The dimension of A is said. Moreover, the thickness dimension of the part which continues in the thickness direction from the heating target surface of the healthy part b is continuous in the direction orthogonal to the heating target surface 50 from the heating target surface 50 to the back surface 53 of the base material T1. The dimension of the site | part B is said.

図18に示されるような傷部aが減肉である場合には、傷部aの加熱対象面から厚さ方向に連続する部分の厚さ寸法とは、加熱対象面50から測定対象物Tの裏面(加熱対象面と反対側の面)54において加熱対象面50側に部分的に凹んでいる部位の寸法Cをいう。   When the wound part a as shown in FIG. 18 is thinned, the thickness dimension of the part of the wound part a that is continuous in the thickness direction from the surface to be heated is the object T to be measured from the surface 50 to be heated. The dimension C of a part of the back surface (surface opposite to the surface to be heated) 54 that is partially recessed toward the surface to be heated 50 is referred to.

傷部検出装置は、図1に示されるように、測定対象物Tを加熱する加熱手段12と、測定対象物Tの表面温度を測定する測定手段18と、加熱手段12及び測定手段18を制御する演算手段20とを備える。   As shown in FIG. 1, the wound detection device controls the heating unit 12 that heats the measurement target T, the measurement unit 18 that measures the surface temperature of the measurement target T, and the heating unit 12 and the measurement unit 18. And calculating means 20.

加熱手段12は、測定対象物Tを加熱するための加熱源14と、この加熱源14に電力を供給する加熱用電源16とを備える。加熱源14は、非接触で測定対象物Tを加熱でき、測定対象物Tからの距離を変更可能に構成される。加熱源14は、測定対象物Tからの距離を変更することにより、測定対象物Tを加熱するときに当該測定対象物Tに供給する熱流束の値を変更することができる。本実施形態の加熱源14には、ハロゲンライトが用いられる。   The heating means 12 includes a heating source 14 for heating the measuring object T and a heating power source 16 for supplying electric power to the heating source 14. The heating source 14 is configured to be able to heat the measurement target T in a non-contact manner and change the distance from the measurement target T. The heating source 14 can change the value of the heat flux supplied to the measurement target T when the measurement target T is heated by changing the distance from the measurement target T. A halogen light is used for the heating source 14 of the present embodiment.

測定手段18は、非接触で測定対象物Tの表面温度を測定でき、測定対象物Tの表面(加熱対象面)50における各部位(測定点)の温度を測定することで温度分布を得ることができる。測定点は、測定手段18によって指定された測定対象物Tの表面50における温度が測定される部位(点)である。本実施形態では、測定手段18として赤外線サーモグラフィ装置が用いられる。また、本実施形態の測定点は、赤外線サーモグラフィ装置18における各画素にそれぞれ対応する測定対象物Tの表面50上の部位である。   The measuring means 18 can measure the surface temperature of the measurement target T in a non-contact manner, and obtains a temperature distribution by measuring the temperature of each part (measurement point) on the surface (heating target surface) 50 of the measurement target T. Can do. The measurement point is a part (point) at which the temperature on the surface 50 of the measurement target T designated by the measurement means 18 is measured. In the present embodiment, an infrared thermography apparatus is used as the measuring means 18. In addition, the measurement point of the present embodiment is a portion on the surface 50 of the measurement target T corresponding to each pixel in the infrared thermography apparatus 18.

赤外線サーモグラフィ装置18で得られた測定対象物表面50の温度分布は、温度分布信号として演算手段本体22(詳しくは、検出手段36)に送信される。   The temperature distribution of the measurement object surface 50 obtained by the infrared thermography device 18 is transmitted as a temperature distribution signal to the calculation means body 22 (specifically, the detection means 36).

演算手段20は、図2にも示されるように、演算手段本体22と、この演算手段本体22に情報を入力する入力手段24と、演算手段本体22から出力された情報を外部に出力する出力手段26とを備える。この入力手段24は、少なくとも、測定対象物Tにおける傷部aと健全部bとの間で検出したい温度差の値Δt1と、検出対象とする傷部の大きさの値d1と、検出対象とする傷部aの加熱対象面50から厚み方向に連続する部分の厚み寸法(以下、単に「傷部の厚み寸法」とも称する。)の値x1と、測定対象物Tの健全部bの加熱対象面50から厚み方向に連続する部分の厚み寸法の値(以下、単に「健全部の厚み寸法」とも称する。)y1とをそれぞれ演算手段本体22へ入力することができる。本実施形態では、入力手段24としてキーボードが用いられる。本実施形態の出力手段26は、CRT、LCD等の検査員等が画面を通じて情報を取得できるように構成されている。尚、入力手段24及び出力手段26の具体的構成は限定されない。   As shown in FIG. 2, the calculation means 20 includes a calculation means main body 22, an input means 24 that inputs information to the calculation means main body 22, and an output that outputs information output from the calculation means main body 22 to the outside. Means 26. The input means 24 includes at least a temperature difference value Δt1 to be detected between the wound part a and the healthy part b in the measurement object T, a size value d1 of the wound part to be detected, and a detection target. The value x1 of the thickness dimension (hereinafter, also simply referred to as “thickness dimension of the wound portion”) of the portion that is continuous in the thickness direction from the heating target surface 50 of the wound portion a to be heated and the heating target of the healthy portion b of the measurement target T The value of the thickness dimension of the portion that continues from the surface 50 in the thickness direction (hereinafter also simply referred to as “thickness dimension of the healthy part”) y1 can be input to the computing means body 22 respectively. In the present embodiment, a keyboard is used as the input unit 24. The output means 26 of the present embodiment is configured such that an inspector such as a CRT or LCD can acquire information through a screen. The specific configurations of the input unit 24 and the output unit 26 are not limited.

演算手段本体22は、加熱手段12が測定対象物Tを加熱するときの熱流束の値を導出する導出手段30と、測定手段18で得られた温度分布と入力手段24から入力された情報とに基づいて傷部aの存在範囲を検出する検出手段36とを有する。   The calculation means body 22 includes a derivation means 30 for deriving a value of the heat flux when the heating means 12 heats the measuring object T, a temperature distribution obtained by the measurement means 18, and information input from the input means 24. And detecting means 36 for detecting the existence range of the wound part a based on the above.

導出手段30は、所定の関数(熱流束導出関数Q)が予め格納されている記憶部32と、入力手段24から入力された情報と記憶部32に格納されている熱流束導出関数Qとから、加熱手段12により測定対象物Tを加熱するときの熱流束の値qを導出する熱流束導出部34とを有する。   The deriving unit 30 includes a storage unit 32 in which a predetermined function (heat flux deriving function Q) is stored in advance, information input from the input unit 24, and a heat flux deriving function Q stored in the storage unit 32. And a heat flux deriving unit 34 for deriving a heat flux value q when the measurement object T is heated by the heating means 12.

記憶部に格納されている熱流束導出関数Qは、以下の(2)式で表される。   The heat flux derivation function Q stored in the storage unit is expressed by the following equation (2).

Figure 2011137635
Figure 2011137635

ここで、Δt、d、x、b、qは、それぞれ入力手段から入力される温度差の値、傷部の大きさの値、傷部の厚み寸法の値、健全部の厚み寸法に基づく定数、熱流束の値である。尚、本実施形態では、傷部aと健全部bとの温度差の値Δtには絶対値が用いられる。 Here, Δt, d, x, b, and q are constants based on a temperature difference value, a flaw size value, a flaw thickness value, and a healthy portion thickness dimension respectively input from the input means. , The value of heat flux. In the present embodiment, an absolute value is used as the temperature difference value Δt between the wound part a and the healthy part b.

熱流束導出関数Qは、熱伝導解析(本実施形態ではFEM(有限要素法))での解析結果に基づいて導出された関数である。具体的に、この熱流束導出関数Qは、熱伝導解析のパラメータである傷部aとその周囲の健全部bとの温度差の値Δtと、傷部aの大きさの値dと、傷部aの厚み寸法(残厚)の値xと、健全部bの厚み寸法の値yと、熱流束の値qとにおいて複数の代表値をそれぞれ設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいてFEMを行って求めた温度差の値Δtと傷部aの大きさの値dと傷部aの厚み寸法の値xと健全部bの厚み寸法の値yと熱流束の値qとの関係を表す。   The heat flux derivation function Q is a function derived based on an analysis result in a heat conduction analysis (FEM (finite element method) in the present embodiment). Specifically, the heat flux derivation function Q includes a temperature difference value Δt between the wound part a and the surrounding healthy part b, which is a parameter of heat conduction analysis, a size value d of the wound part a, A plurality of representative values are set for the thickness dimension (residual thickness) value x of the part a, the thickness dimension value y of the healthy part b, and the heat flux value q, and the representative values of the parameters are changed. Temperature difference value Δt, flaw size a value d, flaw thickness value x, flaw portion thickness value y, healthy portion b thickness value y, and heat flux value q Represents the relationship.

詳細には、以下のようにして熱流束導出関数Q((2)式)が求められた。   Specifically, the heat flux derivation function Q (Equation (2)) was determined as follows.

本実施形態に係る傷部検出装置10においては、赤外線サーモグラフィ装置18が検出できる表面50の温度変化が傷部aと健全部bとの間で得られなければならない。そこで、測定対象物Tの加熱条件として熱流束と加熱時間とに着目し、FEM(熱伝導解析)によって加熱条件と測定対象物表面50に現れる温度変化(傷部aと健全部bとの温度差の値Δt)、傷部aの大きさ(寸法)d及び傷部aの厚み寸法xとの関係を検討した。   In the wound detection apparatus 10 according to the present embodiment, the temperature change of the surface 50 that can be detected by the infrared thermography device 18 must be obtained between the wound a and the healthy part b. Therefore, paying attention to the heat flux and the heating time as the heating conditions of the measuring object T, the heating conditions and the temperature change appearing on the measuring object surface 50 by FEM (heat conduction analysis) (temperatures of the wound part a and the healthy part b). The relationship between the difference value Δt), the size (dimension) d of the scratched part a, and the thickness dimension x of the damaged part a was examined.

以下では、測定対象物として金属を用いた場合と非金属のセラミックスを用いた場合を検討するが、先ず、測定対象物が金属の場合について検討する。   Below, the case where a metal is used as a measurement object and the case where a non-metallic ceramic is used are examined. First, the case where a measurement object is a metal is examined.

[測定対象物が金属の場合]
<解析モデル及び解析条件>
加熱時に測定対象物表面に現れる時系列の温度変化を算出するため、2次元軸対称モデルによる非定常熱伝導解析を行った。解析モデルとして図3に示す中央に傷部として円形の凹部(減肉部)が形成された円板を用いた。前記の解析では、円板の外周面を断熱、表裏面で空気の自然対流による熱伝達を考慮した。円板の材質を軟鉄と仮定し、図4(a)に示す物性値を計算に用いた。
[When the object to be measured is metal]
<Analysis model and analysis conditions>
In order to calculate the time-series temperature change that appears on the surface of the measurement object during heating, unsteady heat conduction analysis was performed using a two-dimensional axisymmetric model. As an analysis model, a disk in which a circular recess (thinning portion) was formed as a scratch at the center shown in FIG. 3 was used. In the above analysis, heat transfer by natural convection of air was considered on the front and back surfaces of the outer peripheral surface of the disk. Assuming that the disc material is soft iron, the physical property values shown in FIG.

熱伝導解析では、パラメータのうち、傷部の大きさ(減肉部の直径)d、傷部の厚み寸法(残厚)x、健全部の厚み寸法y及び熱流束qの値を図4(b)に示すように変化させ、傷部中央と健全部との温度をそれぞれ算出した。このとき、健全部の温度として加熱側の面の周縁部の温度を用いた。熱伝導解析は、加熱過程40sec、冷却過程80secの合計120secについて実施し、その間の時系列の温度変化を求めた。   In the heat conduction analysis, among the parameters, the values of the size of the damaged portion (diameter of the thinned portion) d, the thickness size of the damaged portion (remaining thickness) x, the thickness size y of the healthy portion, and the heat flux q are shown in FIG. The temperature was changed as shown in b), and the temperatures of the wound center and the healthy part were calculated. At this time, the temperature of the peripheral part of the surface on the heating side was used as the temperature of the healthy part. The heat conduction analysis was performed for a total of 120 seconds of the heating process 40 sec and the cooling process 80 sec, and the time-series temperature change during that time was obtained.

<傷部中央と健全部の温度差Δtと加熱時間との関係>
上記の熱伝導解析の結果から、加熱時間と測定対象物Tの表面温度との関係について検討する。解析結果の一例として、健全部の厚み寸法yが0.006mで傷部の厚み寸法xが0.001mの場合に、8kW/mの熱流束qで40秒間加熱した後、80秒間冷却するときの傷部の大きさdと傷部中央と健全部との温度差Δtとの関係を図5に示す。この図5において、温度差Δtに着目すると、加熱開始直後に大きく変化するが、時間の経過に伴って変化が小さくなり一定値に収束する傾向が確認できる。このとき、温度差Δtが一定値に収束するまでの時間は、傷部の大きさdが小さいほど短く、大きいほど長くなっていることがわかる。
<Relationship between temperature difference Δt between wound center and healthy part and heating time>
From the result of the heat conduction analysis described above, the relationship between the heating time and the surface temperature of the measuring object T will be examined. As an example of the analysis result, when the thickness dimension y of the healthy part is 0.006 m and the thickness dimension x of the wound part is 0.001 m, heating is performed with a heat flux q of 8 kW / m 2 for 40 seconds, followed by cooling for 80 seconds. FIG. 5 shows the relationship between the size d of the damaged part and the temperature difference Δt between the center of the damaged part and the healthy part. In FIG. 5, focusing on the temperature difference Δt, it changes greatly immediately after the start of heating, but it can be confirmed that the change decreases with time and converges to a constant value. At this time, it can be seen that the time until the temperature difference Δt converges to a constant value is shorter as the size d of the flaw is smaller and longer as it is larger.

このように温度差Δtが一定値に収束すると、この温度差Δtを定数として扱うことができ、加熱時間を温度差Δtの影響因子から除外できる。以下では、一定値に収束した温度差Δtとして40secの加熱終了時の温度差Δtを用い、さらに熱伝導解析の結果を精査する。   When the temperature difference Δt converges to a constant value in this way, the temperature difference Δt can be treated as a constant, and the heating time can be excluded from the influencing factors of the temperature difference Δt. In the following, the temperature difference Δt at the end of heating of 40 seconds is used as the temperature difference Δt converged to a constant value, and the result of the heat conduction analysis is further examined.

<傷部の大きさd、傷部の厚み寸法x及び温度差Δtの関係>
上記のように温度差Δtが収束することに着目してこの温度差Δtを定数として扱い、傷部の大きさd及び傷部の厚み寸法xと温度差Δtの関係を調べた。縦軸を温度差Δt、横軸を傷部の大きさdとする両対数グラフの一例を図6に示す。この図6によれば、傷部の大きさdと温度差Δtとの関係が、傷部の厚み寸法xの値に関わらず傾きが等しい直線関係として表される。測定対象物が金属の場合では、直線の傾きは、傷部の厚み寸法xの値に関わらず、ほぼ√3となった。異なる値の熱流束でも、同様の傾向が確認でき、温度差Δtは傷部の大きさdの√3乗に比例して変動する。
<Relationship Between Scratch Size d, Scratch Thickness Dimension x, and Temperature Difference Δt>
Focusing on the convergence of the temperature difference Δt as described above, this temperature difference Δt was treated as a constant, and the relationship between the scratch size d and the thickness x of the scratch and the temperature difference Δt was examined. FIG. 6 shows an example of a log-log graph in which the vertical axis indicates the temperature difference Δt and the horizontal axis indicates the size d of the scratch. According to FIG. 6, the relationship between the size d of the scratch and the temperature difference Δt is expressed as a linear relationship with the same slope regardless of the value of the thickness x of the scratch. When the object to be measured was a metal, the slope of the straight line was approximately √3 regardless of the value of the thickness dimension x of the scratch. The same tendency can be confirmed even with different values of heat flux, and the temperature difference Δt varies in proportion to the third power of the size d of the scratch.

次に図6の関係をさらに単純化するため、横軸を(d√3)/xとして、両対数グラフを作成した。その結果を図7に示す。このように横軸を(d√3)/xとすることにより、図6における各傷部の厚み寸法xでのグラフが全て一直線上に重なった。 Next, in order to further simplify the relationship of FIG. 6, a log-log graph was created with the horizontal axis as ( d√3 ) / x. The result is shown in FIG. Thus, by setting the horizontal axis to ( d√3 ) / x, the graphs of the thickness dimension x of each scratch in FIG. 6 all overlapped on a straight line.

<健全部の厚み寸法yが温度差Δtに及ぼす影響>
次に、健全部の厚み寸法yが温度差Δtに及ぼす影響について検討するため、健全部の厚み寸法yが0.012mのときに、図7と同様に傷部の大きさd及び傷部の厚み寸法xと温度差Δtとの関係を整理した。その結果を図8に示す。この図8によれば、健全部の厚み寸法が0.012mの場合でも0.006mの場合と同様の傾向が確認できた。即ち、各傷部の厚み寸法xでのグラフが全てほぼ同一直線上に重なった。
<Effect of thickness dimension y of healthy part on temperature difference Δt>
Next, in order to examine the influence of the thickness y of the healthy part on the temperature difference Δt, when the thickness y of the healthy part is 0.012 m, the size d of the wound and The relationship between the thickness dimension x and the temperature difference Δt was arranged. The result is shown in FIG. According to FIG. 8, even when the thickness dimension of the healthy part is 0.012 m, the same tendency as in the case of 0.006 m can be confirmed. That is, all the graphs with the thickness dimension x of each scratch overlapped substantially on the same straight line.

<傷部の厚み寸法x、熱流束q及び温度差Δtの関係>
さらに、傷部の厚み寸法x、熱流束q及び温度差Δtの関係を調べた。その一例として、傷部の大きさdを0.01mとし、各傷部の厚み寸法xにおいて縦軸を温度差Δt、横軸を熱流束qとして整理し、その結果を図9に示す。この図9によれば、温度差Δtは熱流束qに比例して大きくなる。傷部の大きさdの値を変えても、同様の比例関係が確認できた。
<Relationship between wound thickness x, heat flux q and temperature difference Δt>
Further, the relationship between the thickness dimension x of the scratch, the heat flux q, and the temperature difference Δt was examined. As an example, the size d of the scratches is set to 0.01 m, and in the thickness dimension x of each scratch, the vertical axis is the temperature difference Δt and the horizontal axis is the heat flux q, and the result is shown in FIG. According to FIG. 9, the temperature difference Δt increases in proportion to the heat flux q. Even when the value of the size d of the scratch was changed, the same proportional relationship could be confirmed.

<近似式(熱流束導出関数Q)>
図7〜9に基づき、健全部の厚み寸法y=0.006m、0.012mの場合に、温度差Δtを算出する近似式を求めると以下の(3)式が得られる。
<Approximate expression (heat flux derivation function Q)>
Based on FIGS. 7 to 9, the following equation (3) is obtained when an approximate expression for calculating the temperature difference Δt is obtained when the thickness dimension y of the healthy part is 0.006 m and 0.012 m.

Figure 2011137635
Figure 2011137635

ここで、aは健全部の厚み寸法に基づく比例定数であり、本実施例のように測定対象物Tが軟鉄で健全部の厚み寸法yが0.006mの場合には、a0.006m=4.08×10−4となり、健全部の厚み寸法yが0.012mの場合には、a0.012m=4.22×10−4となる。 Here, a is a proportional constant based on the thickness dimension of the healthy part, and when the measurement object T is soft iron and the thickness dimension y of the healthy part is 0.006 m as in this embodiment, a 0.006 m = 4.08 × 10 −4 , and when the thickness dimension y of the healthy part is 0.012 m, a 0.012 m = 4.22 × 10 −4 .

熱流束qを求めるために(3)式をqについて整理することで、以下の(4)式が(熱流束導出関数Q)得られる。   By arranging the equation (3) for q in order to obtain the heat flux q, the following equation (4) (the heat flux derivation function Q) is obtained.

Figure 2011137635
Figure 2011137635

ここで、bは健全部の厚み寸法に基づく比例定数であり、本実施例のように測定対象物Tが軟鉄で健全部の厚み寸法yが0.006mの場合には、b0.006m=2450.98となり、健全部の厚み寸法yが0.012mの場合には、b0.012m=2369.67となる。 Here, b is a proportional constant based on the thickness dimension of the healthy part, and when the measurement object T is soft iron and the thickness dimension y of the healthy part is 0.006 m as in this embodiment, b 0.006 m = 2450.98, and the thickness dimension y of the healthy section in the case of 0.012 m becomes b 0.012m = 2369.67.

以上のように、測定対象物Tの加熱のときに傷部aと健全部bとの温度差Δtが収束することに着目し、この温度差Δtを定数として取り扱うことによって、温度差Δtと傷部の大きさdと傷部の厚み寸法xと健全部の厚み寸法yと熱流束qとの特定の関係である熱流束導出関数Qが得られた。   As described above, focusing on the fact that the temperature difference Δt between the wound part a and the healthy part b converges when the measurement target T is heated, the temperature difference Δt and the damage are treated by treating the temperature difference Δt as a constant. A heat flux derivation function Q, which is a specific relationship among the size d of the part, the thickness dimension x of the damaged part, the thickness dimension y of the healthy part, and the heat flux q, was obtained.

[測定対象物がセラミックスの場合]
<解析モデル及び解析条件>
上記の測定対象物が金属の場合と同様に、図3に示す解析モデルを用いて2次元軸対称モデルによる非定常熱伝導解析を行った。円板の材質をセラミックスの一種であるアルミナ(Al)と仮定し、図10(a)に示す物性値を計算に用いた。
[When the object to be measured is ceramic]
<Analysis model and analysis conditions>
Similarly to the case where the measurement object is a metal, unsteady heat conduction analysis was performed using a two-dimensional axisymmetric model using the analysis model shown in FIG. Assuming that the material of the disc is alumina (Al 2 O 3 ), which is a kind of ceramics, the physical property values shown in FIG.

熱伝導解析では、パラメータのうち、傷部の大きさd、傷部の厚み寸法x、健全部の厚み寸法y及び熱流束qの値を図10(b)に示すように変化させ、傷部中央と健全部との温度をそれぞれ算出した。熱伝導解析は、120sec間、加熱したときの時系列の温度変化を求めた。   In the heat conduction analysis, among the parameters, the size d of the wound, the thickness x of the wound, the thickness y of the healthy part, and the heat flux q are changed as shown in FIG. The temperatures of the center and the healthy part were calculated. In the heat conduction analysis, a time-series temperature change when heated for 120 seconds was obtained.

<傷部中央と健全部の温度差Δtと加熱時間との関係>
上記の熱伝導解析の結果から、加熱時間と測定対象物Tの表面温度との関係について検討する。解析結果の一例として、健全部の厚み寸法yが0.006mで傷部の厚み寸法xが0.005mの場合に、8kW/mの熱流束qで120秒間加熱したときの傷部の大きさdと傷部中央と健全部との温度差Δtとの関係を図11に示す。この図11において、温度差Δtに着目すると、加熱開始直後に大きく変化し、所定時間経過後にピークに達し、その後、僅かに減少していく、即ち、1つのピーク値を持つ傾向が確認できる。このとき、温度差Δtがピーク値に達するまでの時間は、傷部の大きさdが小さいほど短く、大きいほど長くなっていることがわかる。
<Relationship between temperature difference Δt between wound center and healthy part and heating time>
From the result of the heat conduction analysis described above, the relationship between the heating time and the surface temperature of the measuring object T will be examined. As an example of the analysis result, when the thickness y of the healthy part is 0.006 m and the thickness x of the wound is 0.005 m, the size of the wound when heated with a heat flux q of 8 kW / m 2 for 120 seconds. FIG. 11 shows the relationship between the length d and the temperature difference Δt between the wound center and the healthy part. In FIG. 11, paying attention to the temperature difference Δt, it can be confirmed that the temperature changes greatly immediately after the start of heating, reaches a peak after elapse of a predetermined time, and then decreases slightly, that is, has a single peak value. At this time, it can be seen that the time until the temperature difference Δt reaches the peak value is shorter as the size d of the flaw is smaller and longer as the size is larger.

このように温度差Δtが1つのピーク値を持つため、このピーク値を用いることにより、加熱時間を温度差Δtの影響因子から除外できる。以下では、温度差Δtとしてピーク値を用い、さらに熱伝導解析の結果を精査する。   Thus, since the temperature difference Δt has one peak value, the heating time can be excluded from the influence factors of the temperature difference Δt by using this peak value. In the following, the peak value is used as the temperature difference Δt, and the result of the heat conduction analysis is further examined.

<傷部の大きさd、傷部の厚み寸法x及び温度差Δtの関係>
上記のように温度差Δtが1つのピーク値を持つことに着目して温度差Δtとしてこのピーク値を用い、傷部の大きさd及び傷部の厚み寸法xと温度差Δtの関係を調べた。縦軸を温度差Δt、横軸を傷部の大きさdとする両対数グラフの一例を図12に示す。この図12によれば、傷部の大きさdと温度差Δtとの関係が、傷部の厚み寸法xの値に関わらず傾きが等しい直線関係として表される。測定対象物が非金属の場合でも、直線の傾きは、傷部の厚み寸法xの値に関わらず、ほぼ√3となった。異なる値の熱流束でも、同様の傾向が確認でき、温度差Δtは傷部の大きさdの√3乗に比例して変動する。
<Relationship Between Scratch Size d, Scratch Thickness Dimension x, and Temperature Difference Δt>
Focusing on the fact that the temperature difference Δt has one peak value as described above, this peak value is used as the temperature difference Δt, and the relationship between the scratch size d and the thickness x of the scratch and the temperature difference Δt is examined. It was. FIG. 12 shows an example of a log-log graph with the vertical axis representing the temperature difference Δt and the horizontal axis representing the size d of the scratch. According to FIG. 12, the relationship between the size d of the scratch and the temperature difference Δt is expressed as a linear relationship having the same inclination regardless of the value of the thickness dimension x of the scratch. Even when the object to be measured was non-metallic, the slope of the straight line was almost √3 regardless of the value of the thickness dimension x of the scratch. The same tendency can be confirmed even with different values of heat flux, and the temperature difference Δt varies in proportion to the third power of the size d of the scratch.

次に図12の関係をさらに単純化するため、横軸を(d√3)/xとして、両対数グラフを作成した。その結果を図13に示す。このように横軸を(d√3)/xとすることにより、図12における各傷部の厚み寸法xでのグラフが全て一直線上に重なった。 Next, in order to further simplify the relationship of FIG. 12, a log-log graph was created with the horizontal axis as ( d√3 ) / x. The result is shown in FIG. In this way, by setting the horizontal axis to ( d√3 ) / x, all the graphs at the thickness dimension x of each scratch in FIG. 12 overlap each other.

<傷部の厚み寸法x、熱流束q及び温度差Δtの関係>
さらに、測定対象物が非金属(セラミックス)の場合においても、傷部の厚み寸法x、熱流束q及び温度差Δtの関係を調べたところ、測定対象物が金属の場合と同様に、温度差Δtは熱流束qに比例して大きくなる(図9参照)。また、傷部の大きさdの値を変えても、同様の比例関係が確認できた。
<Relationship between wound thickness x, heat flux q and temperature difference Δt>
Further, even when the object to be measured is a non-metal (ceramics), the relationship between the thickness dimension x of the scratches, the heat flux q, and the temperature difference Δt was examined. Δt increases in proportion to the heat flux q (see FIG. 9). Moreover, even if the value of the size d of the scratch was changed, the same proportional relationship could be confirmed.

<近似式(熱流束導出関数Q)>
図9、12、13に基づき、温度差Δtを算出する近似式を求めると以下の(5)式が得られる。
<Approximate expression (heat flux derivation function Q)>
Based on FIGS. 9, 12, and 13, an approximate expression for calculating the temperature difference Δt is obtained, and the following expression (5) is obtained.

Figure 2011137635
Figure 2011137635

ここで、cは健全部の厚み寸法に基づく比例定数であり、本実施例のように測定対象物Tがアルミナで健全部の厚み寸法yが0.006mの場合には、c=5.67×10−4となる。 Here, c is a proportional constant based on the thickness dimension of the healthy part, and when the measurement object T is alumina and the thickness dimension y of the healthy part is 0.006 m as in this embodiment, c = 5.67. × 10 -4 .

熱流束qを求めるために(5)式をqについて整理することで、以下の(6)式が(熱流束導出関数Q)得られる。   By arranging the equation (5) with respect to q in order to obtain the heat flux q, the following equation (6) (heat flux derivation function Q) is obtained.

Figure 2011137635
Figure 2011137635

ここで、eは健全部の厚み寸法に基づく比例定数であり、本実施例のように測定対象物Tがアルミナで健全部の厚み寸法yが0.006mの場合には、e=1763.55となる。 Here, e is a proportional constant based on the thickness dimension of the healthy part, and e = 1763.55 when the measurement object T is alumina and the thickness dimension y of the healthy part is 0.006 m as in this embodiment. It becomes.

このように、測定対象物Tの加熱のときに傷部aと健全部bとの温度差Δtが1つのピーク値を持つことに着目し、この温度差Δtのピーク値を用いることによっても、温度差Δtと傷部の大きさdと傷部の厚み寸法xと健全部の厚み寸法yと熱流束qとの特定の関係である熱流束導出関数Qが得られた。   Thus, paying attention to the fact that the temperature difference Δt between the scratched part a and the healthy part b has one peak value when the measuring object T is heated, and also by using the peak value of this temperature difference Δt, A heat flux derivation function Q, which is a specific relationship among the temperature difference Δt, the size d of the damaged portion, the thickness size x of the damaged portion, the thickness size y of the healthy portion, and the heat flux q, was obtained.

以上より、測定対象物が金属であってもセラミックス(非金属)であっても、熱流束導出関数Qの比例定数を除く項が共にΔt(x/d√3)である点が共通している((4)式及び(6)式参照)。即ち、測定対象物が金属であっても、非金属であっても、比例定数を変更するだけで熱流束導出関数Qを用いることができる。 From the above, it is common that the term excluding the proportionality constant of the heat flux derivation function Q is Δt (x / d√3 ) regardless of whether the object to be measured is a metal or a ceramic (nonmetal). (Refer to equations (4) and (6)). That is, regardless of whether the object to be measured is a metal or a non-metal, the heat flux derivation function Q can be used simply by changing the proportionality constant.

熱流束導出部34は、以上のようにして求められて予め記憶部32に格納されている熱流束導出関数Qに入力手段24から入力された値(情報)を代入することで、傷部aの存在範囲の検出に適した熱流束qを導出する。ここで、傷部aの検出に適した熱流束qとは、測定対象物表面50の温度分布に基づいて傷部aを検出する場合、傷部aの検出性は、表面温度の絶対値よりも傷部aと健全部bとの温度差Δtが大きく影響を与えるため、加熱後の測定対象物Tにおける傷部aと健全部bとの温度差Δtが大きくなるような熱流束である。   The heat flux deriving unit 34 substitutes the value (information) input from the input unit 24 for the heat flux deriving function Q that is obtained as described above and is stored in the storage unit 32 in advance. The heat flux q suitable for detection of the existence range of is derived. Here, the heat flux q suitable for the detection of the flaw part a means that when the flaw part a is detected based on the temperature distribution of the measurement object surface 50, the detectability of the flaw part a is based on the absolute value of the surface temperature. Since the temperature difference Δt between the wound part a and the healthy part b has a large influence, the heat flux is such that the temperature difference Δt between the wound part a and the healthy part b in the measurement target T after heating becomes large.

具体的に、本実施形態の熱流束導出部34では、入力手段24から、測定対象物Tにおける傷部aと健全部bとの間で検出したい温度差の値Δt1と、検出対象とする傷部の大きさの値d1と、検出対象とする傷部の厚み寸法(残厚)の値x1と、測定対象物の健全部の厚み寸法の値y1とが入力されることにより、これら各値Δt1、d1、x1、y1と記憶部32に格納されている熱流束導出関数Qとから、傷部aの存在範囲の検出に適した熱流束qを導出する。   Specifically, in the heat flux deriving unit 34 of the present embodiment, the temperature difference value Δt1 to be detected between the wound part a and the healthy part b in the measurement target T and the wound to be detected are detected from the input unit 24. By inputting the value d1 of the size of the part, the value x1 of the thickness dimension (residual thickness) of the wound part to be detected, and the value y1 of the thickness dimension of the healthy part of the measurement object, these values are input. Based on Δt1, d1, x1, y1 and the heat flux derivation function Q stored in the storage unit 32, a heat flux q suitable for detection of the existence range of the damaged part a is derived.

このように熱流束導出部34では、記憶部32に、FEMに用いられるパラメータである傷部と健全部との温度差の値Δtと傷部の大きさの値dと熱流束の値qとにおいて複数の代表値をそれぞれ設定し各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいてFEMを行って求めた温度差の値Δtと傷部の大きさの値dと熱流束の値qとの関係(熱流束導出関数)が予め格納されているため、これを用いることで、傷部aを検出するために測定対象物Tを加熱するのに適した熱流束qを求める際に、その都度、多数のパラメータを用いた複雑な演算によるFEMを行わなくても、傷部aの検出に適した熱流束の値qを迅速に導出することができる。   As described above, in the heat flux deriving unit 34, the storage unit 32 stores the temperature difference value Δt, the flaw size value d, and the heat flux value q, which are parameters used for the FEM. Between a temperature difference value Δt, a flaw size value d, and a heat flux value q obtained by performing FEM in each combination in which a plurality of representative values are set in FIG. Since the (heat flux derivation function) is stored in advance, when this is used, the heat flux q suitable for heating the measurement target T in order to detect the scratch a is obtained each time, The heat flux value q suitable for detection of the flaw a can be quickly derived without performing FEM by a complicated calculation using a large number of parameters.

このように導出された熱流束の値qは、熱流束導出部34により熱流束信号として出力手段26に出力される。   The heat flux value q derived in this way is output to the output means 26 as a heat flux signal by the heat flux deriving unit 34.

検出手段36は、測定手段18から温度分布信号として受け取った測定対象物表面50の温度分布と、入力手段24から入力された検出したい温度差の値Δt1とに基づいて傷部aの存在範囲を検出するものである。   Based on the temperature distribution of the measurement object surface 50 received as the temperature distribution signal from the measurement means 18 and the temperature difference value Δt1 to be detected input from the input means 24, the detection means 36 determines the existence range of the scratched part a. It is to detect.

具体的に、検出手段36は、測定手段18で温度を測定した複数の測定点(本実施形態では、赤外線サーモグラフィ装置の各画素に対応する測定対象物表面50の部位)のうちから特定の測定点を指定し、この特定の測定点と他の測定点との間の温度差の値をそれぞれ求める(図15(a)参照)。検出手段36は、このようにして求めた各温度差の値と、入力手段24から入力された検出したい温度差の値Δt1に基づく閾値とをそれぞれ比較することにより傷部aの存在範囲の検出を行う。本実施形態の閾値は、入力手段24から入力された検出したい温度差の値Δt1の1/2の値である。尚、検出したい温度差の値Δt1は、測定手段18における温度分解能に基づいて決められ、本実施形態では、測定手段18の温度分解能の約10倍の値である。   Specifically, the detection means 36 performs a specific measurement from among a plurality of measurement points (in this embodiment, the part of the measurement object surface 50 corresponding to each pixel of the infrared thermography device) at which the temperature is measured by the measurement means 18. A point is specified, and the value of the temperature difference between this specific measurement point and another measurement point is obtained (see FIG. 15A). The detecting means 36 detects the range of existence of the scratch a by comparing each temperature difference value thus obtained with the threshold value based on the temperature difference value Δt1 to be detected input from the input means 24. I do. The threshold value of the present embodiment is a value that is ½ of the temperature difference value Δt1 that is input from the input unit 24 and that is to be detected. The temperature difference value Δt1 to be detected is determined based on the temperature resolution in the measuring means 18, and in this embodiment is a value about 10 times the temperature resolution of the measuring means 18.

詳細には、検出手段36は、図14に示すように、測定手段18で温度分布が得られた測定領域においてデータ処理線αを指定し、このデータ処理線α上の測定点の一つを特定の測定点(図14におけるα1点)として指定する。検出手段36は、この特定の測定点α1と他のデータ処理線上の測定点との温度差をそれぞれ求め(図15(a)参照)、この温度差と閾値とを比較し、この閾値を超えた温度差を求めたときの測定点を傷部aと判断する。検出手段36は、このデータ処理線αを測定領域内で移動させ、各位置でのデータ処理線α上の傷部aの存在範囲を求めることで、測定領域内の傷部aの存在範囲を検出する。   Specifically, as shown in FIG. 14, the detection means 36 designates a data processing line α in the measurement region where the temperature distribution is obtained by the measurement means 18, and selects one of the measurement points on the data processing line α. Designated as a specific measurement point (α1 point in FIG. 14). The detection means 36 obtains a temperature difference between the specific measurement point α1 and a measurement point on another data processing line (see FIG. 15A), compares the temperature difference with a threshold value, and exceeds the threshold value. The measurement point when the obtained temperature difference is obtained is determined as the scratched part a. The detection means 36 moves the data processing line α in the measurement region, and obtains the existence range of the wound portion a on the data processing line α at each position, thereby determining the existence range of the wound portion a in the measurement region. To detect.

ここで、検出手段36は、データ処理線α上で任意に特定の測定点α1を指定するため、傷部aの存在範囲内に特定の測定点α1を指定する場合がある。この場合には、データ処理線α上の他の測定点との温度差の値を求めると、図15(b)に示されるようになり、閾値を超えた温度差を求めたときの測定点を傷部aと判断すると、健全部bが傷部aと判断されることになる。そのため、検出手段36は、通常、測定対象物Tにおいて傷部aの領域が健全部bの領域に対して圧倒的に小さくなることを利用して、特定の測定点α1が健全部bに指定されたか傷部aに指定されたかを判断する。   Here, since the detection means 36 arbitrarily designates a specific measurement point α1 on the data processing line α, there is a case where the specific measurement point α1 is designated within the existence range of the flaw part a. In this case, when the value of the temperature difference from the other measurement points on the data processing line α is obtained, it is as shown in FIG. 15B, and the measurement point when the temperature difference exceeding the threshold is obtained. Is determined to be a damaged part a, the healthy part b is determined to be a damaged part a. Therefore, the detection means 36 normally designates the specific measurement point α1 as the healthy part b by utilizing the fact that the area of the wound part a is overwhelmingly smaller than the area of the healthy part b in the measurement object T. It is determined whether it has been designated as a wound part a.

具体的に、本実施形態の検出手段36は、特定の測定点と他の測定点との温度差をそれぞれ求めた後、データ処理線α上の傷部aの存在範囲を検出する前に、データ処理線α上の複数の測定点を特定の測定点α1に対する温度差の小さな第1の測定点と、この第1の測定点よりも特定の測定点α1に対する温度差が大きな第2の測定点とに分類する。そして、検出手段36は、第1の測定点が第2の測定点よりも多い場合には、特定の測定点α1に対する温度差の値が閾値よりも大きくなった測定点を傷部aとして検出する一方、第1の測定点が第2の測定点よりも少ない場合には、特定の測定点α1に対する温度差の値が閾値よりも小さくなった測定点を傷部aとして検出する。このように判断することで、検出手段36では、特定の測定点α1が傷部a又は健全部bのいずれに指定されても、検出結果において傷部aと健全部bとが逆になることが防止される。   Specifically, after detecting the temperature difference between the specific measurement point and other measurement points, the detection means 36 of the present embodiment, before detecting the existence range of the scratch a on the data processing line α, A plurality of measurement points on the data processing line α is a first measurement point having a small temperature difference with respect to the specific measurement point α1, and a second measurement having a large temperature difference with respect to the specific measurement point α1 than the first measurement point. Classify with points. Then, when there are more first measurement points than the second measurement points, the detection means 36 detects the measurement point at which the value of the temperature difference with respect to the specific measurement point α1 is larger than the threshold value as a scratch a. On the other hand, when the first measurement point is smaller than the second measurement point, the measurement point at which the value of the temperature difference with respect to the specific measurement point α1 is smaller than the threshold value is detected as the scratch part a. By determining in this way, the detection unit 36 reverses the wound part a and the healthy part b in the detection result regardless of whether the specific measurement point α1 is designated as the wound part a or the healthy part b. Is prevented.

検出手段36は、検出した傷部aの存在範囲を検出信号として出力手段26に送信する。   The detection means 36 transmits the detected range of the scratched part a to the output means 26 as a detection signal.

以上のように構成される傷部検出装置10では、測定対象物の厚み寸法(健全部の厚み寸法)の値yや検出対象となる傷部の大きさの値d等のように容易に設定できる値又は容易に得られる値が入力されることで、その都度、FEMを行うことなく、傷部aの存在範囲の検出のために測定対象物Tを加熱するのに適した熱流束qが迅速に導出され、この導出された熱流束qで測定対象物Tを加熱することで、検査員等によってばらつきが生じることなく、測定対象物Tにおける傷部aの存在範囲を精度よく検出することができる。   In the wound detection apparatus 10 configured as described above, the thickness y of the measurement object (thickness dimension of the healthy part), the value y of the size of the wound to be detected, and the like are easily set. When a possible value or an easily obtained value is input, a heat flux q suitable for heating the measurement target T for detecting the existence range of the wound a is obtained without performing FEM each time. By promptly deriving and heating the measuring object T with the derived heat flux q, it is possible to accurately detect the existence range of the scratched part a in the measuring object T without causing variation by an inspector or the like. Can do.

具体的には、以下のようにして(図16参照)、傷部aの存在範囲の検出が行われる。   Specifically, the presence range of the scratched part a is detected as follows (see FIG. 16).

<各数値の設定>
まず、測定対象物Tを加熱するための熱流束の値qを求めるために入力手段24から演算手段本体22へ入力するための所定の複数の値が設定される(ステップS1)。具体的には、検出したい温度差の値Δt1と、検出対象とする傷部の大きさの値d1と、検出対象とする傷部の厚み寸法の値x1と、健全部の厚み寸法の値y1とが設定される。検出したい温度差の値Δt1は、本実施形態では、測定手段18の温度分解能の約10倍の値(2.5℃)に設定される。傷部の大きさの値d1は、測定対象物Tの表面方向に沿った大きさである。このように検出対象とする傷部の大きさの値d1が設定されても、当該傷部検出装置10において、この大きさの傷部aのみが検出されるのではなく、この傷部aの大きさを含む所定の範囲の大きさの傷部aが検出される。この所定の範囲とは、傷部aに関する複数のパラメータ(例えば、d、x、…等)を含む各パラメータをそれぞれ変更して熱伝導解析を行った場合に、熱流束導出関数Qにより導出された熱流束qと等しい、又は熱流束qよりも値の小さな熱流束が解析結果として得られるような前記傷部に関するパラメータの範囲をいう。傷部の厚み寸法の値x1は、例えば、メッキ等のコーティングの剥離を検出する場合には、このコーティングの厚み寸法の値を用いる。健全部の厚み寸法の値yは、測定対象物Tを測定することにより容易に得られる。
<Setting each numerical value>
First, in order to obtain the heat flux value q for heating the measuring object T, a plurality of predetermined values to be input from the input means 24 to the calculation means main body 22 are set (step S1). Specifically, the temperature difference value Δt1 to be detected, the value d1 of the size of the wound to be detected, the value x1 of the thickness size of the wound to be detected, and the value y1 of the thickness size of the healthy portion And are set. In this embodiment, the temperature difference value Δt1 to be detected is set to a value (2.5 ° C.) that is about 10 times the temperature resolution of the measuring means 18. The value d1 of the size of the scratch is a size along the surface direction of the measuring object T. Thus, even if the value d1 of the size of the wound to be detected is set, the wound detection device 10 does not detect only the wound a of this size, A scratch a having a size within a predetermined range including the size is detected. The predetermined range is derived by the heat flux derivation function Q when the heat conduction analysis is performed by changing each parameter including a plurality of parameters (for example, d, x,...) Relating to the wound part a. This is a parameter range related to the flaw so that a heat flux equal to or smaller than the heat flux q can be obtained as an analysis result. As the value x1 of the thickness dimension of the scratch, for example, when the peeling of the coating such as plating is detected, the value of the thickness dimension of the coating is used. The value y of the thickness dimension of the healthy part can be easily obtained by measuring the measuring object T.

<数値の入力及び熱流束の導出>
上記のようにして設定された各値が入力手段24から入力される。入力手段24から上記の各値が入力されると、演算手段本体22の導出手段30において熱流束導出部34が記憶部32に予め格納されている熱流束導出関数Qと入力された各値とから測定対象物Tを加熱するときの熱流束の値qを直ちに導出し、この結果(熱流束の値q)が出力手段26に表示される(ステップS2)。
<Numerical value input and heat flux derivation>
Each value set as described above is input from the input means 24. When each of the above values is input from the input unit 24, the heat flux deriving unit 34 in the deriving unit 30 of the computing unit body 22 stores the heat flux deriving function Q stored in the storage unit 32 in advance and each of the input values. From this, the heat flux value q when the measurement target T is heated is immediately derived, and this result (heat flux value q) is displayed on the output means 26 (step S2).

具体的には、演算手段20において熱流束導出部34が入力された温度差の値Δt1と傷部の大きさの値d1と傷部の厚み寸法の値x1と健全部の厚み寸法の値y1と、記憶部32に予め格納された熱流束導出関数Qとから熱流束の値qを導出する。そして、熱流束導出部34が、この導出した熱流束の値qを熱流束信号として出力手段26に送信し、この熱流束信号を受け取った出力手段26が熱流束の値qを表示する。   Specifically, the temperature difference value Δt1, the flaw size value d1, the flaw thickness value x1, and the healthy portion thickness y value y1 input to the heat flux derivation unit 34 in the calculation means 20 are input. Then, the heat flux value q is derived from the heat flux derivation function Q stored in advance in the storage unit 32. Then, the heat flux deriving section 34 transmits the derived heat flux value q as a heat flux signal to the output means 26, and the output means 26 that has received the heat flux signal displays the heat flux value q.

このように演算手段20によれば、予めFEMによる熱伝導解析を行い、その結果から導き出された関係(熱流束導出関数Q)が格納されているため、この熱流束導出関数Qを用いることで、測定対象物Tの傷部aの存在範囲の検出の度に熱流束の値qをFEMにより導出する必要がなく、容易に設定できる値や得やすい値を用いて迅速に導出することができる。また、検査員等の経験に基づいて熱流束の値qを決める場合に比べ、上記の各値さえ決めれば熱流束の値qが一義的に求められるため、人的な要因による検出結果のばらつきが抑制される。   Thus, according to the calculation means 20, since the heat conduction analysis by FEM is performed in advance and the relationship (heat flux derivation function Q) derived from the result is stored, this heat flux derivation function Q can be used. It is not necessary to derive the heat flux value q by FEM each time the range of existence of the scratched part a of the measuring object T is detected, and it can be quickly derived using a value that can be easily set or a value that can be easily obtained. . Further, compared to the case where the heat flux value q is determined based on the experience of an inspector or the like, the heat flux value q can be uniquely determined only by determining each of the above values. Is suppressed.

<測定対象物の加熱>
次に、求められた熱流束により測定対象物Tを加熱する。本実施形態では、測定対象物Tに供給される熱流束の値が出力手段26に表示された熱流束の値qとなるように、加熱源14と測定対象物Tとの距離が調整される(ステップS3)。具体的に、加熱源14として用いられているハロゲンライトを移動させて当該ハロゲンライト14の測定対象物Tからの距離を調整することにより、測定対象物Tに供給される熱流束が調整される。
<Heating of measurement object>
Next, the measuring object T is heated by the obtained heat flux. In the present embodiment, the distance between the heating source 14 and the measuring object T is adjusted so that the value of the heat flux supplied to the measuring object T becomes the value q of the heat flux displayed on the output means 26. (Step S3). Specifically, the heat flux supplied to the measurement target T is adjusted by moving the halogen light used as the heating source 14 and adjusting the distance of the halogen light 14 from the measurement target T. .

詳細には、ハロゲンライト14の光軸上の熱流束と測定対象物Tからハロゲンライトまでの距離との関係(図17参照)を実測等により予め求めておき、この関係と出力手段26に表示された熱流束の値qとに基づき測定対象物Tの所定の表面(加熱対象面)50からハロゲンライト14までの距離を求める。測定対象物Tの表面50からハロゲンライト14までの距離が求めた距離となるようにハロゲンライト14を移動させる。このように測定対象物Tの表面50とハロゲンライト14との距離が調整された状態で、ハロゲンライト14により測定対象物Tが加熱される。   Specifically, the relationship between the heat flux on the optical axis of the halogen light 14 and the distance from the measurement object T to the halogen light (see FIG. 17) is obtained in advance by actual measurement or the like, and this relationship is displayed on the output means 26. The distance from the predetermined surface (heating target surface) 50 of the measuring object T to the halogen light 14 is determined based on the heat flux value q. The halogen light 14 is moved so that the distance from the surface 50 of the measuring object T to the halogen light 14 is the calculated distance. Thus, the measuring object T is heated by the halogen light 14 in a state where the distance between the surface 50 of the measuring object T and the halogen light 14 is adjusted.

尚、本実施形態では、測定対象物Tへ供給される熱流束を調整するために、熱流束の値qを出力手段26に表示させ、この値qに基づいて予め求めておいた距離と熱流束との関係から、検査員等が測定対象物Tとハロゲンライト14との距離を求めてハロゲンライト14を移動させているが、これに限定されない。例えば、記憶部32に予め距離と熱流束との関係を格納しておき、熱流束導出部34が導出した熱流束の値qとこの関係とに基づいて測定対象物Tからハロゲンライト14までの距離を求め、この距離を出力手段26に表示させるように構成されてもよい。また、傷部検出装置10に、ハロゲンライト(加熱源)14を移動させて測定対象物Tとハロゲンライト14との距離を変更可能なアクチュエータ等の移動手段を設け、熱流束導出部34が上記のようにして測定対象物Tとハロゲンライト14との距離を求め、これに基づき移動手段を制御してハロゲンライト14を移動させるように構成されてもよい。   In the present embodiment, in order to adjust the heat flux supplied to the measuring object T, the heat flux value q is displayed on the output means 26, and the distance and heat flow obtained in advance based on this value q are displayed. The inspector or the like obtains the distance between the measuring object T and the halogen light 14 from the relationship with the bundle and moves the halogen light 14, but the present invention is not limited to this. For example, the relationship between the distance and the heat flux is stored in the storage unit 32 in advance, and the measurement object T to the halogen light 14 are measured based on the heat flux value q derived by the heat flux deriving unit 34 and this relationship. The distance may be obtained and the distance may be displayed on the output unit 26. Further, the scratch detection device 10 is provided with a moving means such as an actuator that can move the halogen light (heating source) 14 to change the distance between the measuring object T and the halogen light 14, and the heat flux deriving unit 34 is provided with the above-described heat flux deriving unit 34. Thus, the distance between the measuring object T and the halogen light 14 may be obtained, and the halogen light 14 may be moved by controlling the moving means based on the distance.

<温度測定及び傷部の存在範囲の検出>
加熱開始から所定時間(本実施形態では、熱流束導出関数Qを求めたときに用いた加熱時間:40秒)経過後に測定手段18により測定対象物Tの表面温度を測定し、測定対象物表面50の温度分布を求める(ステップS4)。
<Temperature measurement and detection of scratched area>
The surface temperature of the measuring object T is measured by the measuring means 18 after elapse of a predetermined time from the start of heating (in this embodiment, the heating time used when obtaining the heat flux derivation function Q: 40 seconds). 50 temperature distributions are obtained (step S4).

この温度分布に基づき、検出手段36が傷部の存在範囲を検出する。具体的に、検出手段36は、測定手段18により得られた測定対象物表面50の温度分布から、健全部bと所定の温度差が生じた範囲を傷部aの存在範囲として検出する。   Based on this temperature distribution, the detection means 36 detects the presence range of the flaw. Specifically, the detection unit 36 detects a range in which a predetermined temperature difference from the healthy part b occurs from the temperature distribution of the measurement target surface 50 obtained by the measurement unit 18 as the existence range of the wound part a.

詳細には、検出手段36が測定手段18により温度分布を求めた測定領域内において多数の測定点から特定の測定点α1を指定し、この特定の測定点α1と他の測定点との温度差をそれぞれ求める。そして、検出手段36は、入力手段24から入力された検出したい温度差の値Δt1に基づく閾値(本実施形態では、上記のように温度差の値Δt1の1/2の値)と、特定の測定点α1と他の測定点との温度差の値とを比較し、この温度差の値が閾値よりも大きい範囲(特定の測定点α1が健全部bに指定された場合)又は前記温度差の値が閾値よりも小さい範囲(特定の測定点α1が傷部aに指定された場合)を測定対象物Tにおける傷部aの存在範囲として検出する(ステップS5)。   More specifically, a specific measurement point α1 is designated from a number of measurement points in the measurement region in which the detection means 36 has obtained the temperature distribution by the measurement means 18, and the temperature difference between this specific measurement point α1 and another measurement point. For each. Then, the detection means 36 has a threshold value based on the temperature difference value Δt1 to be detected input from the input means 24 (in this embodiment, a value that is ½ of the temperature difference value Δt1 as described above) and a specific value. A temperature difference value between the measurement point α1 and another measurement point is compared, and the temperature difference value is larger than a threshold value (when the specific measurement point α1 is designated as the healthy part b) or the temperature difference. A range in which the value of is smaller than the threshold value (when a specific measurement point α1 is designated as the wound part a) is detected as an existing range of the wound part a in the measurement target T (step S5).

このように検出手段36で検出された傷部aの存在範囲は、出力手段26に検出信号として送信され、これを受け取った出力手段26が傷部aの位置や範囲等を表示する。   Thus, the presence range of the wound part a detected by the detection means 36 is transmitted as a detection signal to the output means 26, and the output means 26 that has received this displays the position, range, etc. of the wound part a.

以上のように本実施形態の傷部検出装置10によれば、測定対象物Tにおいて、検出したい温度差の値Δt1と、検出対象とする傷部の大きさの値d1と、検出対象とする傷部の厚み寸法の値x1と、健全部の厚み寸法の値y1とを入力手段から入力することにより、検査員等によってばらつきが生じることなく、出力手段26から傷部aの存在範囲の検出に適した熱流束の値qが出力されるため、この値に基づいて加熱手段12が測定対象物Tを加熱するときの熱流束の値qを変更することで、所定範囲の大きさを有する傷部aの存在範囲の検出を精度よく行うことができる。   As described above, according to the wound detection device 10 of the present embodiment, the temperature difference value Δt1 to be detected, the value d1 of the size of the wound to be detected, and the detection target are detected in the measurement target T. By inputting the value x1 of the thickness dimension of the wound portion and the value y1 of the thickness dimension of the healthy portion from the input means, the presence range of the wound portion a can be detected from the output means 26 without causing variation by an inspector or the like. Since the heat flux value q suitable for the output is output, the heating means 12 changes the heat flux value q when the measurement object T is heated based on this value, thereby having a predetermined range of magnitude. It is possible to accurately detect the existence range of the wound a.

しかも、記憶部32に、FEMに基づいて導出された熱流束導出関数Qが予め格納されているため、入力手段24から温度差の値Δt1と、傷部の大きさの値d1と、傷部の厚み寸法の値x1と、健全部の厚み寸法の値y1とが入力される度に複雑な演算等によるFEMが行われなくても、傷部aの検出に適した熱流束の値qが導出され、その結果、迅速な傷部aの検出を行うことが可能となる。   Moreover, since the heat flux derivation function Q derived based on the FEM is stored in the storage unit 32 in advance, the temperature difference value Δt1, the flaw size value d1, The heat flux value q suitable for the detection of the scratched part a is obtained even if the FEM is not performed by a complicated calculation each time the thickness dimension value x1 and the healthy part thickness dimension value y1 are input. As a result, it is possible to quickly detect the scratched part a.

また、傷部検出装置10では、ハロゲンランプ(加熱源)14により測定対象物Tが加熱され、赤外線サーモグラフィ装置(測定手段)18により測定対象物Tの表面温度が測定されるため、測定対象物Tから離れた位置から測定対象物Tの加熱及び表面温度の測定ができる。そのため、測定対象物Tが高所等、測定位置から離れた位置に配置されている場合でも足場等を組むことなく容易に傷部aの検出を行うことができる。   Further, in the flaw detection device 10, the measurement target T is heated by the halogen lamp (heating source) 14, and the surface temperature of the measurement target T is measured by the infrared thermography device (measurement means) 18. The measurement object T can be heated and the surface temperature can be measured from a position away from T. Therefore, even when the measurement target T is arranged at a position away from the measurement position, such as a high place, the wound part a can be easily detected without forming a scaffold or the like.

次に、本発明の第2実施形態について図18を参照しつつ説明する。上記第1実施形態と同様の構成には同一符号を用いると共に詳細な説明を省略し、異なる構成についてのみ詳細に説明する。   Next, a second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only different components are described in detail.

本実施形態の傷部検出装置110は、加熱手段12と測定手段18とを備える。加熱手段12は、ハロゲンライトからなる加熱源14と、この加熱源14に電力を供給する加熱用電源16を有する。測定手段18は、赤外線サーモグラフィ装置により構成される。   The wound detection device 110 of this embodiment includes a heating unit 12 and a measurement unit 18. The heating means 12 includes a heating source 14 made of halogen light and a heating power source 16 for supplying electric power to the heating source 14. The measuring means 18 is constituted by an infrared thermography device.

また、本実施形態では、測定対象物Tにおける傷部aの存在範囲の検出のため、傷部検出装置110以外に、熱流束導出関数Qと、ハロゲンライト14の光軸上での距離と熱流束との関係(図17参照)が記載されたテーブルとを予め用意しておく。   Further, in the present embodiment, in order to detect the existence range of the flaw a in the measurement target T, in addition to the flaw detection device 110, the heat flux derivation function Q, the distance on the optical axis of the halogen light 14, and the heat flow. A table describing the relationship with the bundle (see FIG. 17) is prepared in advance.

以上のような傷部検出装置110と、熱流束導出関数Qと、ハロゲンライト14の光軸上での距離と熱流束との関係とを用い、以下のようにして(図16参照)測定対象物Tにおける所定範囲の傷部aの存在範囲の検出が行われる。   Using the flaw detection device 110 as described above, the heat flux derivation function Q, and the relationship between the distance on the optical axis of the halogen light 14 and the heat flux (see FIG. 16), the measurement target is as follows. Detection of the presence range of a predetermined range of scratches a on the object T is performed.

<各数値の設定>
第1実施形態と同様に、検出したい温度差の値Δt1と、検出対象とする傷部の大きさの値d1と、検出対象とする傷部の厚み寸法の値x1と、健全部の厚み寸法の値y1とが設定される(ステップS1)。
<Setting each numerical value>
Similar to the first embodiment, the temperature difference value Δt1 to be detected, the value d1 of the size of the wound part to be detected, the value x1 of the thickness dimension of the wound part to be detected, and the thickness dimension of the healthy part Value y1 is set (step S1).

<熱流束の導出>
これらの各値と熱流束導出関数Qとから熱流束qが求められる(ステップS2)。本実施形態では、熱流束導出関数Qと設定された各値とに基づいて検査員等が計算により熱流束qを求める。このとき、熱流束導出関数Qが比較的簡単な関数であるため、検査員等が各値を熱流束導出関数Qに代入し、電卓等により計算することで、FEM等の複雑な演算を行う熱伝導解析を行う場合に比べ、傷部aの検出に適した熱流束の値qを極めて容易且つ迅速に求めることができる。そのため、FEM(熱伝導解析)を行う時間が不要となり、検査員等の経験に基づいて熱流束の値を決めていたのと異なり、検出したい傷部の形状(大きさd1や厚み寸法x1)と検出したい温度差Δt1とを決めるだけで、傷部aの検出に適した熱流束の値qが一義的に求まり、人的な要因による傷部の検出結果のばらつきが抑制される。
<Derivation of heat flux>
A heat flux q is determined from these values and the heat flux derivation function Q (step S2). In the present embodiment, an inspector or the like obtains the heat flux q by calculation based on the heat flux derivation function Q and each set value. At this time, since the heat flux derivation function Q is a relatively simple function, an inspector or the like substitutes each value into the heat flux derivation function Q and performs calculation by a calculator or the like to perform a complicated operation such as FEM. Compared with the case where the heat conduction analysis is performed, the value q of the heat flux suitable for the detection of the scratched part a can be obtained very easily and quickly. Therefore, time for performing FEM (heat conduction analysis) is not required, and unlike the case where the value of the heat flux is determined based on the experience of an inspector or the like, the shape (size d1 and thickness dimension x1) of the wound to be detected And determining the temperature difference Δt1 to be detected, the heat flux value q suitable for detection of the wound part a is uniquely determined, and the variation in the detection result of the wound part due to human factors is suppressed.

<測定対象物の加熱>
このようにして導出した熱流束の値qに基づき、第1実施形態同様に検査員等がハロゲンライト14の光軸上での距離と熱流束との関係から測定対象物Tとハロゲンライト14との距離を求め、ハロゲンライト14の位置が調整される(ステップS3)。
<Heating of measurement object>
Based on the heat flux value q derived in this way, the inspector or the like can measure the measurement object T and the halogen light 14 from the relationship between the distance on the optical axis of the halogen light 14 and the heat flux as in the first embodiment. And the position of the halogen light 14 is adjusted (step S3).

このように測定対象物Tとハロゲンライト14との距離が調整された状態で、ハロゲンライト14により測定対象物Tが加熱される。   Thus, the measuring object T is heated by the halogen light 14 in a state where the distance between the measuring object T and the halogen light 14 is adjusted.

<温度測定及び傷部の存在範囲の検出>
加熱開始から所定時間(第1実施形態同様に40秒)経過後に測定手段18により測定対象物Tの表面温度を測定してその温度分布を求める(ステップS4)。この測定により得られた測定対象物表面50の温度分布から傷部aの存在範囲を検出する(ステップS5)。本実施形態では、測定手段18である赤外線サーモグラフィ装置の熱画像の色の変化により傷部aの存在範囲が検出される。具体的には、熱画像において、温度差が一定以上となる範囲を傷部aとして検出する。
<Temperature measurement and detection of scratched area>
After a predetermined time (40 seconds as in the first embodiment) has elapsed since the start of heating, the surface temperature of the measuring object T is measured by the measuring means 18 to obtain the temperature distribution (step S4). From the temperature distribution of the measurement object surface 50 obtained by this measurement, the existence range of the scratched part a is detected (step S5). In the present embodiment, the existence range of the scratched part a is detected by a change in the color of the thermal image of the infrared thermography apparatus that is the measuring means 18. Specifically, in the thermal image, a range where the temperature difference is a certain level or more is detected as a scratched part a.

詳細には、熱画像中の測定対象物Tにおいて、大部分を占める色と異なる色の部位、即ち、測定対象物の大部分を占める健全部と一定以上の温度差が生じている部位を傷部として検出する。通常、測定対象物において健全部bが傷部aよりも圧倒的に大きく厚みも一定であるため、加熱後の温度は、健全部bでは略均一となる。一方、傷部aは、健全部bよりも厚みが小さいため、加熱後の温度は健全部bよりも高温となる。そのため、赤外線サーモグラフィ装置18により温度を測定し、その熱画像から、測定対象物の大部分を占める色(温度)と異なる色(温度)の範囲を検出することにより、健全部bよりも厚みの小さな部位(傷部)の存在範囲を検出することができる。   Specifically, in the measurement object T in the thermal image, a part of a color different from the color that occupies the most part, that is, a part that has a temperature difference of a certain level or more from a healthy part that occupies most of the measurement object is scratched. Detect as part. Usually, since the healthy part b is overwhelmingly larger than the damaged part a and the thickness is constant in the measurement object, the temperature after heating becomes substantially uniform in the healthy part b. On the other hand, since the damaged part a is smaller in thickness than the healthy part b, the temperature after heating becomes higher than that of the healthy part b. Therefore, by measuring the temperature with the infrared thermography device 18 and detecting the range of the color (temperature) different from the color (temperature) occupying most of the measurement object from the thermal image, the thickness is larger than that of the healthy part b. The existence range of a small part (scratched part) can be detected.

ここで、熱流束の値qを求めるときに設定した測定対象とする傷部の大きさの値d1及び傷部の厚み寸法の値x1と同じ寸法を有する傷部aが測定対象物Tに生じていた場合に、求めた値qの熱流束で測定対象物Tを加熱することによって、傷部aと健全部bとの温度差が熱流束導出関数Qを求めるときに設定した温度差の値Δt1となる。この温度差は、赤外線サーモグラフィ装置18の温度分解能の約10倍となるように設定されているため、当該装置18の熱画像上において明確な色の違いとして現れる。また、検出したい温度差の値Δt1を赤外線サーモグラフィ装置18の温度分解能の約十倍に設定したことで、測定対象物Tに実際に生じている傷部aの寸法(大きさd及び厚み寸法x)が熱流束の値qを求めるときに設定した値と異なっても、この寸法が所定範囲内の大きさであれば、傷部aと健全部bとの温度差の値がΔt1より小さくなっても熱画像上で十分識別できる色の違いとして現れる。この色の違いによって、検査員等は、熱流束を求めたときに設定した傷部の寸法を含む所定範囲内の大きさの傷部aを熱画像から検出できる。   Here, a flaw part a having the same dimensions as the flaw size value d1 and flaw thickness value x1 set as the measurement target set when obtaining the heat flux value q is generated in the measurement object T. The temperature difference between the scratched part a and the healthy part b is determined when the heat flux derivation function Q is obtained by heating the measuring object T with the obtained heat flux of the value q. Δt1. Since this temperature difference is set to be about 10 times the temperature resolution of the infrared thermography device 18, it appears as a clear color difference on the thermal image of the device 18. In addition, since the temperature difference value Δt1 to be detected is set to about ten times the temperature resolution of the infrared thermography device 18, the dimensions (size d and thickness dimension x) of the wound portion a actually generated in the measurement target T are obtained. ) Is different from the value set when obtaining the heat flux value q, but if this dimension is within a predetermined range, the value of the temperature difference between the wound part a and the healthy part b will be smaller than Δt1. However, it appears as a color difference that can be sufficiently identified on the thermal image. Due to the difference in color, the inspector or the like can detect from the thermal image a wound a having a size within a predetermined range including the dimension of the wound set when the heat flux is obtained.

以上のような熱流束導出関数Qを用いた熱流束の値qの導出方法によれば、この値qの熱流束で加熱することにより傷部aと健全部bとの温度差Δtを十分識別できるような熱流束の値qが求められるため、この熱流束で測定対象物Tを加熱することで、目視によっても熱画像の色の変化から傷部aの検出を行い易くなり、その結果、精度よく傷部を検出することができる。   According to the method of deriving the value q of the heat flux using the heat flux derivation function Q as described above, the temperature difference Δt between the damaged part a and the healthy part b can be sufficiently identified by heating with the heat flux of this value q. Since the value q of the heat flux that can be obtained is obtained, it becomes easy to detect the scratched part a from the color change of the thermal image by visual observation by heating the measuring object T with this heat flux. A wound can be detected with high accuracy.

尚、本発明の熱流束導出方法、この導出方法を含む傷部検出方法、及びこの検出方法を用いた傷部検出装置は、上記第1及び第2実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The heat flux derivation method of the present invention, the flaw detection method including this derivation method, and the flaw detection device using this detection method are not limited to the first and second embodiments. Of course, various modifications can be made without departing from the scope of the invention.

本実施形態の熱流束導出関数Qは、傷部aと健全部bとの温度差の値Δtと、傷部の大きさの値dと、傷部の厚み寸法の値xと、健全部の厚み寸法の値yと、熱流束の値qとの関係として求められているが、これに限定されない。即ち、熱流束導出関数Qは、温度差の値Δtと、傷部の大きさの値dと、熱流束の値qとの関係から求められてもよい。この場合、熱流束導出関数Q1は、図6及び図9から近似式として求められ、具体的には、以下の(6)式ように表される。   The heat flux derivation function Q of the present embodiment includes the temperature difference value Δt between the wound part a and the healthy part b, the value d of the wound part size, the value x of the thickness dimension of the wound part, and the healthy part. Although it is calculated | required as the relationship between the thickness dimension value y and the heat flux value q, it is not limited to this. That is, the heat flux derivation function Q may be obtained from the relationship among the temperature difference value Δt, the flaw size value d, and the heat flux value q. In this case, the heat flux derivation function Q1 is obtained as an approximate expression from FIGS. 6 and 9, and is specifically expressed as the following expression (6).

先ず、図6及び図9から求められた近似式は、   First, the approximate expression obtained from FIG. 6 and FIG.

Figure 2011137635
Figure 2011137635

ここで、Δt、q、d、は、それぞれ傷部と健全部との温度差(℃)、熱流束(W/m)、傷部の大きさ(m)である。 Here, Δt, q, d are a temperature difference (° C.), a heat flux (W / m 2 ), and a size (m) of the damaged part, respectively, between the damaged part and the healthy part.

この(7)式をqについて整理すると、   When this equation (7) is arranged with respect to q,

Figure 2011137635
Figure 2011137635

また、熱流束導出関数Qは、温度差の値Δtと、傷部の大きさの値dと、傷部の厚み寸法xと、熱流束の値qとの関係から求められてもよい。この場合、熱流束導出関数Q2は、図7及び図9から近似式として求められ、具体的には、以下の(10)式ように表される。   The heat flux derivation function Q may be obtained from the relationship among the temperature difference value Δt, the flaw size value d, the flaw thickness dimension x, and the heat flux value q. In this case, the heat flux derivation function Q2 is obtained as an approximate expression from FIGS. 7 and 9, and is specifically expressed as the following expression (10).

先ず、図7及び図9から求められた近似式は、   First, the approximate expression obtained from FIG. 7 and FIG.

Figure 2011137635
Figure 2011137635

ここで、Δt、q、d、xは、それぞれ傷部と健全部との温度差(℃)、熱流束(W/m)、傷部の大きさ(m)、傷部の厚み寸法(m)である。 Here, Δt, q, d, and x are the temperature difference (° C.) between the damaged portion and the healthy portion, heat flux (W / m 2 ), the size of the damaged portion (m), and the thickness dimension of the damaged portion ( m).

この(7)式をqについて整理すると、   When this equation (7) is arranged with respect to q,

Figure 2011137635
Figure 2011137635

以上のような熱流束導出関数Q1,Q2と、第1及び第2実施形態で用いた熱流束導出関数Qとの精度を確認するために、加熱した試験片の実測値と、熱流束導出関数Q1,Q2,Qを求めたときの近似式(7)式、(9)式、(3)式により導出したΔtと比較する。   In order to confirm the accuracy of the heat flux derivation functions Q1 and Q2 as described above and the heat flux derivation function Q used in the first and second embodiments, the measured value of the heated test piece and the heat flux derivation function It is compared with Δt derived from the approximate expressions (7), (9), and (3) when Q1, Q2, and Q are obtained.

具体的には、図19に示される試験片tpを熱流束7460W/mで加熱する。この試験片は、厚み寸法12mmで表面にはメッキが施されており、矢印で示す部分に約φ3mmの剥離が存在する。メッキの厚み寸法は、55μmである。 Specifically, the test piece tp shown in FIG. 19 is heated with a heat flux of 7460 W / m 2 . This test piece has a thickness of 12 mm and is plated on the surface, and there is a peeling of about φ3 mm at the portion indicated by the arrow. The thickness dimension of the plating is 55 μm.

図20にその結果を示す。この図から(7)式、(9)式、(3)式の順に実測値との誤差が小さくなっているのがわかる。(3)式においては、約0.5℃の誤差に収まっており、傷部の検出のための測定対象物の加熱条件としては十分な精度が得られたが、(7)式や(9)式においても、傷部の検出のための測定対象物の加熱条件として用いることができる精度が得られた。   FIG. 20 shows the result. From this figure, it can be seen that the error from the actual measurement value becomes smaller in the order of Equations (7), (9), and (3). In the equation (3), the error is within about 0.5 ° C., and sufficient accuracy was obtained as the heating condition of the measurement object for detecting the flaw, but the equations (7) and (9 In the equation (1), the accuracy that can be used as the heating condition of the measurement object for detecting the scratch was also obtained.

第1実施形態の傷部検出装置10では、検査員等によってハロゲンライト14を移動させることにより、測定対象物Tに供給される熱流束が調整されるが、これに限定されない。例えば、出力手段26が導出手段30で導出された熱流束の値qを出力信号として加熱手段12に出力し、加熱手段12が、測定対象物Tを加熱可能に構成されると共に供給される電流値に基づいて測定対象物Tに供給される熱流束の値を変更可能な加熱源14と、出力手段26からの出力信号に基づいて加熱源14に供給する電流値を変更する加熱用電源16とを備えてもよい。このように構成されても、入力手段24から温度差の値Δt1と傷部の大きさの値d1とが入力されると、加熱手段12において自動的に傷部aの存在範囲の検出に適した値となるように調整された熱流束が測定対象物Tに供給される。   In the wound detection apparatus 10 of the first embodiment, the heat flux supplied to the measurement target T is adjusted by moving the halogen light 14 by an inspector or the like, but is not limited thereto. For example, the output unit 26 outputs the heat flux value q derived by the deriving unit 30 to the heating unit 12 as an output signal, and the heating unit 12 is configured to be able to heat the measurement object T and supplied with the current. The heating source 14 that can change the value of the heat flux supplied to the measuring object T based on the value, and the heating power source 16 that changes the current value supplied to the heating source 14 based on the output signal from the output means 26. And may be provided. Even in this configuration, when the temperature difference value Δt1 and the flaw size value d1 are input from the input unit 24, the heating unit 12 is automatically suitable for detecting the existence range of the flaw a. The heat flux adjusted so as to obtain the measured value is supplied to the measuring object T.

また、第1実施形態では、測定対象物Tにおける傷部aとして剥離が生じている部位の検出が行われ、第2実施形態では、測定対象物Tにおける傷部aとして減肉部位の検出が行われるが、これに限定されず、一つの測定対象物Tにおいて剥離及び減肉の両方の検出が行われてもよい。   Moreover, in 1st Embodiment, the site | part which has peeled as the wound part a in the measurement target T is detected, and in 2nd Embodiment, the detection of a thinning part is detected as the wound part a in the measurement target T. Although it is performed, the present invention is not limited to this, and detection of both peeling and thinning may be performed on one measurement target T.

また、傷部aは剥離や減肉のみに限定されない。即ち、検出対象としての傷部aとは、測定対象物Tの所定の表面を加熱対象面としてこれに熱を加えたときに、周囲よりも熱拡散が妨げられることによって周囲(健全部b)との間で温度差Δtが生じるような部位のことである。第1及び第2実施形態の傷部(剥離及び減肉部)aでは、加熱対象面から厚さ方向に連続する部分の厚み寸法が小さく、直下への熱拡散が妨げられている。   Moreover, the wound part a is not limited only to peeling or thinning. In other words, the scratched part a as the detection target is the surrounding (healthy part b) when heat is applied to the predetermined surface of the measuring object T as a heating target surface and the heat diffusion is prevented more than the surroundings. It is a part where a temperature difference Δt occurs between the two. In the scratched part (peeling and thinning part) a of the first and second embodiments, the thickness dimension of the part continuous in the thickness direction from the surface to be heated is small, and thermal diffusion directly below is prevented.

10 傷部検出装置
12 加熱手段
18 測定手段
20 演算手段
24 入力手段
26 出力手段
30 導出手段
32 記憶部
34 熱流束導出部
36 検出手段
a 傷部
b 健全部
d 傷の大きさ値
d1 検出対象とする傷の大きさ値
q 熱流束の値
T 測定対象物
x 傷部の厚み寸法(残厚)の値
y 健全部の厚み寸法の値
Δt 傷部と健全部との温度差の値
Δt1 傷部と健全部との間において検出したい温度差の値
DESCRIPTION OF SYMBOLS 10 Wound detection apparatus 12 Heating means 18 Measuring means 20 Calculation means 24 Input means 26 Output means 30 Deriving means 32 Storage part 34 Heat flux deriving part 36 Detection means a Wound b Healthy part d Wound size value d1 Measured value x Heat flux value T Measurement object x Wound thickness value (remaining thickness) value y Healthy portion thickness dimension value Δt Temperature difference value between the damaged portion and healthy portion Δt1 Wound portion Value of temperature difference to be detected between sound and healthy part

Claims (14)

測定対象物の所定の表面を加熱対象面としてこれに熱を加え、そのときの当該表面の温度分布に基づき前記加熱対象面と直交する方向についての当該加熱対象面から厚み方向に連続する部分の厚み寸法が周囲よりも小さい傷部の存在範囲を熱伝導解析により検出するにあたり当該測定対象物を加熱するための熱流束を導出する方法であって、
前記熱伝導解析のパラメータである傷部とその周囲の健全部との温度差の値と傷部の大きさの値と熱流束の値とにおいて複数の代表値をそれぞれ設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って前記温度差の値と前記傷部の大きさの値と前記熱流束の値との関係を求める関係導出工程と、
前記測定対象物において検出したい前記温度差の値と検出対象とする傷部の大きさの値とを設定する値設定工程と、
前記関係導出工程で予め求めておいた関係に基づいて、前記値設定工程で設定された前記温度差の値と前記傷部の大きさの値とから前記傷部の存在範囲を検出するために測定対象物を加熱するときの熱流束の値を求める熱流束導出工程とを備えることを特徴とする熱流束導出方法。
Heat is applied to a predetermined surface of the measurement object as a surface to be heated, and a portion of the portion continuous in the thickness direction from the surface to be heated in a direction orthogonal to the surface to be heated is based on the temperature distribution of the surface at that time. A method of deriving a heat flux for heating the measurement object in detecting the existence range of a flaw having a thickness dimension smaller than that of the surrounding by heat conduction analysis,
A plurality of representative values are respectively set in the value of the temperature difference between the wound part and the surrounding healthy part, the size value of the wound part, and the heat flux value, which are parameters of the heat conduction analysis. A relationship derivation step for obtaining a relationship between the value of the temperature difference, the value of the size of the flaw, and the value of the heat flux by performing a heat conduction analysis in each combination with each value changed,
A value setting step for setting the value of the temperature difference to be detected in the measurement object and the value of the size of the scratch to be detected;
Based on the relationship obtained in advance in the relationship deriving step, in order to detect the presence range of the scratch from the value of the temperature difference set in the value setting step and the value of the size of the scratch A heat flux deriving method comprising: a heat flux deriving step for obtaining a value of a heat flux when heating the measurement object.
請求項1に記載の熱流束導出方法において、
前記関係導出工程では、前記パラメータに含まれる傷部の前記加熱対象面から厚み方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と前記熱流束の値との関係を予め求めておき、
前記値設定工程では、前記測定対象物において検出対象とする傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値を設定し、
前記熱流束導出工程では、前記値設定工程で設定された前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値とから前記熱流束の値を求めることを特徴とする熱流束導出方法。
The heat flux derivation method according to claim 1,
In the relationship derivation step, a plurality of representative values are further set in the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the scratch included in the parameter, and each representative value in each parameter is changed. Conducting heat conduction analysis in combination, the value of the temperature difference, the value of the size of the flaw, the value of the thickness dimension of the flawed portion in the thickness direction from the surface to be heated, and the value of the heat flux Find the relationship in advance,
In the value setting step, the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the wound portion to be detected in the measurement object is set,
In the heat flux deriving step, the value of the temperature difference set in the value setting step, the value of the size of the flawed portion, and the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the flawed portion, A heat flux derivation method characterized by obtaining the value of the heat flux from
請求項2に記載の熱流束導出方法において、
前記関係導出工程では、前記パラメータに含まれる健全部の前記加熱対象面から厚み方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行って前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と前記健全部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と前記熱流束の値との関係を予め求めておき、
前記値設定工程では、前記測定対象物における健全部の加熱対象面から厚み方向に連続する部分の厚み寸法の値を設定し、
前記熱流束導出工程では、前記値設定工程で設定された前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と前記健全部の加熱対象面から厚み方向に連続する部分の厚み寸法の値とから前記熱流束の値を求めることを特徴とする熱流束導出方法。
In the heat flux derivation method according to claim 2,
In the relationship derivation step, a plurality of representative values are further set in the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the healthy part included in the parameter, and each representative value in each parameter is changed. Conducting heat conduction analysis in combination, the value of the temperature difference, the value of the size of the flaw, the value of the thickness dimension of the flawed portion from the surface to be heated in the thickness direction, and the surface to be heated of the healthy portion In advance, the relationship between the value of the thickness dimension of the portion continuous in the thickness direction and the value of the heat flux is determined in advance.
In the value setting step, the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the healthy part in the measurement object is set,
In the heat flux deriving step, the value of the temperature difference set in the value setting step, the value of the size of the flawed portion, and the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the flawed portion, A heat flux deriving method characterized in that the value of the heat flux is obtained from the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the healthy part.
請求項3に記載の熱流束導出方法において、
前記関係導出工程で求められる前記関係は、前記値設定工程で設定される温度差の値をΔt、傷部の大きさの値をd、傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値をx、熱流束の値をqとし、測定対象物の材質と健全部の加熱対象面から厚み方向に連続する部分の厚み寸法とに基づく定数をbとしたときに、以下の(1)式で表されることを特徴とする熱流束導出方法。
Figure 2011137635
In the heat flux derivation method according to claim 3,
The relationship obtained in the relationship deriving step is that the temperature difference value set in the value setting step is Δt, the value of the size of the flaw is d, and the portion of the flaw that is continuous from the heating target surface in the thickness direction is When the thickness dimension value is x, the heat flux value is q, and the constant based on the thickness dimension of the portion of the object to be measured and the continuous portion in the thickness direction from the surface to be heated of the sound part is b, (1) A heat flux deriving method characterized by the following equation.
Figure 2011137635
測定対象物の所定の表面を加熱対象面としてこれに熱を加え、そのときの当該表面の温度分布に基づき前記加熱対象面と直交する方向についての当該加熱対象面から厚み方向に連続する部分の厚み寸法が周囲よりも小さい傷部の存在範囲を熱伝導解析により検出する方法であって、
請求項1乃至4のいずれか1項に記載の熱流束導出方法によって前記熱流束の値を求める熱流束決定工程と、
前記熱流束決定工程で求めた値の熱流束によって前記測定対象物を加熱する加熱工程と、
前記加熱工程において加熱された前記測定対象物の加熱対象面における表面温度を測定する温度測定工程と、
前記温度測定工程で測定された表面温度の加熱対象面における温度分布と前記熱流束導出方法の値設定工程において設定された温度差の値とに基づいて前記傷部の存在範囲を検出する検出工程とを備えることを特徴とする傷部検出方法。
Heat is applied to a predetermined surface of the measurement object as a surface to be heated, and a portion of the portion continuous in the thickness direction from the surface to be heated in a direction orthogonal to the surface to be heated is based on the temperature distribution of the surface at that time. It is a method for detecting the existence range of a scratch with a thickness dimension smaller than the surrounding by heat conduction analysis,
A heat flux determination step for obtaining a value of the heat flux by the heat flux derivation method according to any one of claims 1 to 4,
A heating step of heating the measurement object by the heat flux of the value obtained in the heat flux determination step;
A temperature measuring step for measuring a surface temperature on a heating target surface of the measurement object heated in the heating step;
A detection step of detecting the existence range of the flaws based on the temperature distribution of the surface temperature measured in the temperature measurement step on the surface to be heated and the value of the temperature difference set in the value setting step of the heat flux deriving method A wound detection method comprising the steps of:
請求項5に記載の傷部検出方法において、
前記温度測定工程では、前記測定対象物の加熱対象面に複数の測定点が指定されて各測定点の温度が測定され、
前記検出工程では、前記複数の測定点のうちの特定の測定点と他の測定点との間の温度差の値と、前記値設定工程において設定された温度差に基づく所定の閾値とを比較することにより前記傷部の検出が行われることを特徴とする傷部検出方法。
In the wound detection method according to claim 5,
In the temperature measurement step, a plurality of measurement points are designated on the heating target surface of the measurement object, and the temperature of each measurement point is measured,
In the detection step, a value of a temperature difference between a specific measurement point of the plurality of measurement points and another measurement point is compared with a predetermined threshold value based on the temperature difference set in the value setting step. A wound detection method, wherein the wound is detected.
請求項6に記載の傷部検出方法において、
前記検出工程では、前記複数の測定点を前記特定の測定点に対する温度差の小さな第1の測定点とこの第1の測定点よりも前記特定の測定点に対する温度差が大きな第2の測定点とに分類し、
前記第1の測定点が前記第2の測定点よりも多い場合には、前記特定の測定点に対する温度差の値が前記閾値よりも大きくなった測定点を前記傷部として検出する一方、前記第1の測定点が前記第2の測定点よりも少ない場合には、前記特定の測定点に対する温度差の値が前記閾値よりも小さくなった測定点を前記傷部として検出することを特徴とする傷部検出方法。
In the wound detection method according to claim 6,
In the detecting step, the plurality of measurement points are a first measurement point having a small temperature difference with respect to the specific measurement point, and a second measurement point having a larger temperature difference with respect to the specific measurement point than the first measurement point. And categorized as
When the first measurement point is greater than the second measurement point, the measurement point at which the value of the temperature difference with respect to the specific measurement point is larger than the threshold is detected as the scratch, When the first measurement point is smaller than the second measurement point, a measurement point having a temperature difference value with respect to the specific measurement point that is smaller than the threshold is detected as the flaw. How to detect scratches.
請求項5乃至7のいずれか1項に記載の傷部検出方法において、
前記加熱工程では、ハロゲンランプにより測定対象物が加熱され、
前記温度測定工程では、赤外線サーモグラフィ装置により測定対象物の表面温度が測定されることを特徴とする傷部検出方法。
In the wound detection method according to any one of claims 5 to 7,
In the heating step, the measurement object is heated by a halogen lamp,
In the temperature measurement step, the surface temperature of the measurement object is measured by an infrared thermography apparatus.
測定対象物の所定の表面を加熱対象面としてこれに熱を加え、そのときの当該表面の温度分布に基づき前記加熱対象面と直交する方向についての当該加熱対象面から厚み方向に連続する部分の厚み寸法が周囲よりも小さい傷部の存在範囲を熱伝導解析により検出するための装置であって、
前記測定対象物を加熱する加熱手段と、
前記測定対象物の加熱対象面における表面温度を測定する測定手段と、
前記加熱手段が前記測定対象物を加熱するときの熱流束の値を求める導出手段と、
前記測定対象物における傷部と健全部との間で検出したい温度差の値と検出対象とする傷部の大きさの値とを前記導出手段に入力可能な入力手段と、
前記導出手段で導出された熱流束の値を外部に出力する出力手段と、
前記測定手段で測定された表面温度の加熱対象面における温度分布と入力手段から入力された前記温度差の値とに基づいて前記傷部の存在範囲を検出する検出手段とを備え、
前記加熱手段は、前記熱流束の値を変更可能に構成され、
前記導出手段は、前記熱伝導解析のパラメータである傷部とその周囲の健全部との温度差の値と傷部の大きさの値と熱流束の値とにおいて複数の代表値をそれぞれ設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行ったときの前記温度差の値と前記傷部の大きさの値と前記熱流束の値との関係を予め格納しておく記憶部と、前記入力手段から入力された前記温度差の値と傷部の大きさの値とから前記記憶部に格納されている関係に基づいて熱流束の値を求める熱流束導出部とを有することを特徴とする傷部検出装置。
Heat is applied to a predetermined surface of the measurement object as a surface to be heated, and a portion of the portion continuous in the thickness direction from the surface to be heated in a direction orthogonal to the surface to be heated is based on the temperature distribution of the surface at that time. A device for detecting the existence range of a scratch with a thickness dimension smaller than the surrounding by heat conduction analysis,
Heating means for heating the measurement object;
Measuring means for measuring the surface temperature of the surface to be heated of the measurement object;
Deriving means for obtaining a value of heat flux when the heating means heats the measurement object;
An input means capable of inputting a value of a temperature difference to be detected between a wound portion and a healthy portion in the measurement object and a value of a size of the wound portion to be detected to the derivation means;
Output means for outputting the value of the heat flux derived by the deriving means to the outside;
Detecting means for detecting the presence range of the flaw based on the temperature distribution on the heating target surface of the surface temperature measured by the measuring means and the value of the temperature difference input from the input means;
The heating means is configured to be able to change the value of the heat flux,
The derivation means sets a plurality of representative values for a temperature difference value, a flaw size value, and a heat flux value between the wound portion and the surrounding healthy portion, which are parameters of the heat conduction analysis. The relationship between the temperature difference value, the flaw size value, and the heat flux value when the heat conduction analysis is performed in each combination in which the representative value in each parameter is changed is stored in advance. A storage unit, and a heat flux deriving unit for obtaining a heat flux value based on a relationship stored in the storage unit from the temperature difference value and the flaw size value input from the input unit. A wound detection device characterized by comprising:
請求項9に記載の傷部検出装置において、
前記入力手段は、前記測定対象物において検出対象とする傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値を前記導出手段に入力可能に構成され、
前記記憶部には、前記パラメータに含まれる傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行ったときの前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と前記熱流束の値との関係が予め格納され、
前記熱流束導出部は、前記入力手段から入力された温度差の値と傷部の大きさの値と傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値とから前記記憶部に格納されている関係に基づいて熱流束の値を求めることを特徴とする傷部検出装置。
In the wound detection device according to claim 9,
The input means is configured to be able to input a value of a thickness dimension of a portion continuous in a thickness direction from a heating target surface of a wound portion to be detected in the measurement object to the derivation means,
In the storage unit, a plurality of representative values are further set for the thickness dimension value of the portion continuous in the thickness direction from the surface to be heated of the scratch included in the parameter, and each combination in which the representative value in each parameter is changed The value of the temperature difference when conducting the heat conduction analysis, the value of the size of the flaw, the value of the thickness dimension of the portion continuous from the surface to be heated of the flaw in the thickness direction, and the value of the heat flux Is stored in advance,
The heat flux deriving unit includes the storage unit based on the value of the temperature difference input from the input unit, the value of the size of the flaw, and the value of the thickness dimension of the portion continuous from the surface to be heated in the thickness direction. A flaw detection device characterized in that the value of the heat flux is obtained based on the relationship stored in.
請求項10に記載の傷部検出装置において、
前記入力手段は、前記測定対象物における健全部の前記加熱対象面から厚み方向に連続する部分の厚み寸法の値を前記導出手段に入力可能に構成され、
前記記憶部には、前記パラメータに含まれる健全部の加熱対象面から厚み方向に連続する部分の厚み寸法の値において複数の代表値をさらに設定し、各パラメータにおける代表値をそれぞれ変更した各組み合わせにおいて熱伝導解析を行ったときの前記温度差の値と前記傷部の大きさの値と前記傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と前記健全部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と前記熱流束の値との関係が予め格納され、
前記熱流束導出部は、前記入力手段から入力された温度差の値と傷部の大きさの値と傷部の加熱対象面から厚み方向に連続する部分の厚み寸法の値と健全部の加熱対象面から厚み方向に連続する部分の厚み寸法の値とから前記記憶部に格納されている関係に基づいて熱流束の値を求めることを特徴とする傷部検出装置。
In the wound detection device according to claim 10,
The input means is configured to be able to input a value of a thickness dimension of a portion continuous in a thickness direction from the surface to be heated of the healthy part in the measurement object to the derivation means,
In the storage unit, a plurality of representative values are further set in the value of the thickness dimension of the portion continuous in the thickness direction from the heating target surface of the sound part included in the parameter, and each combination in which the representative value in each parameter is changed The value of the temperature difference when conducting the heat conduction analysis, the value of the size of the flaw, the value of the thickness dimension of the portion continuous in the thickness direction from the surface to be heated of the flaw, and the object to be heated of the healthy portion The relationship between the value of the thickness dimension of the portion continuous in the thickness direction from the surface and the value of the heat flux is stored in advance,
The heat flux deriving unit includes a temperature difference value inputted from the input means, a flaw size value, a thickness value of a portion continuous in a thickness direction from a flawed surface to be heated, and a healthy portion heating. A flaw detection apparatus characterized in that a value of a heat flux is obtained based on a relationship stored in the storage unit from a value of a thickness dimension of a portion continuous in a thickness direction from a target surface.
請求項9乃至11のいずれか1項に記載の傷部検出装置において、
前記加熱手段は、前記測定対象物を加熱するための加熱源を備え、この加熱源は、前記測定対象物からの距離を変更可能に構成されることを特徴とする傷部検出装置。
In the wound detection device according to any one of claims 9 to 11,
The flaw detection apparatus according to claim 1, wherein the heating unit includes a heating source for heating the measurement object, and the heating source is configured to be able to change a distance from the measurement object.
請求項12に記載の傷部検出装置において、
前記出力手段は、前記導出手段で導出された熱流束の値を出力信号として前記加熱手段に出力し、
前記加熱手段は、前記出力手段からの出力信号に基づいて前記加熱源を移動させる移動手段をさらに備えることを特徴とする傷部検出装置。
In the wound detection device according to claim 12,
The output means outputs the value of the heat flux derived by the derivation means to the heating means as an output signal,
The flaw detection apparatus according to claim 1, wherein the heating unit further includes a moving unit that moves the heating source based on an output signal from the output unit.
請求項9乃至11のいずれか1項に記載の傷部検出装置において、
前記出力手段は、前記導出手段で導出された熱流束の値を出力信号として前記加熱手段に出力し、
前記加熱手段は、前記測定対象物を加熱可能に構成されると共に供給される電流値に基づいて前記測定対象物に供給される熱流束の値を変更可能な加熱源と、前記出力手段からの出力信号に基づいて前記加熱源に供給する電流値を変更する加熱用電源とを備えることを特徴とする傷部検出装置。
In the wound detection device according to any one of claims 9 to 11,
The output means outputs the value of the heat flux derived by the derivation means to the heating means as an output signal,
The heating means is configured to be able to heat the measurement object and is capable of changing a value of a heat flux supplied to the measurement object based on a current value supplied, and from the output means A flaw detection apparatus comprising: a heating power source that changes a current value supplied to the heating source based on an output signal.
JP2009295858A 2009-12-25 2009-12-25 Heat flux derivation method, flaw detection method including this derivation method, and flaw detection device using this detection method Expired - Fee Related JP5108869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295858A JP5108869B2 (en) 2009-12-25 2009-12-25 Heat flux derivation method, flaw detection method including this derivation method, and flaw detection device using this detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295858A JP5108869B2 (en) 2009-12-25 2009-12-25 Heat flux derivation method, flaw detection method including this derivation method, and flaw detection device using this detection method

Publications (2)

Publication Number Publication Date
JP2011137635A true JP2011137635A (en) 2011-07-14
JP5108869B2 JP5108869B2 (en) 2012-12-26

Family

ID=44349205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295858A Expired - Fee Related JP5108869B2 (en) 2009-12-25 2009-12-25 Heat flux derivation method, flaw detection method including this derivation method, and flaw detection device using this detection method

Country Status (1)

Country Link
JP (1) JP5108869B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227810A (en) * 2014-05-30 2015-12-17 一般財団法人電力中央研究所 Non destructive inspection method of peeling in coating layer and non destructive inspection device
CN110546490A (en) * 2017-04-18 2019-12-06 沙特***石油公司 Apparatus, system and method for inspecting composite structures using quantitative infrared thermal imaging

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126338A (en) * 1985-11-28 1987-06-08 Komatsu Ltd Method for detecting flaw of ceramic coating
JPH08193892A (en) * 1995-01-18 1996-07-30 Kobe Steel Ltd Temperature distribution measuring implement
JPH10286742A (en) * 1997-04-09 1998-10-27 Toyoda Mach Works Ltd Sensor, condition determination device and condition determination method for machine tool
JP2000161943A (en) * 1998-11-26 2000-06-16 Hitachi Ltd Apparatus for measuring pipe thickness
JP2002022686A (en) * 2000-07-07 2002-01-23 Central Res Inst Of Electric Power Ind Method for evaluating damage and stain of high temperature heat transfer part
JP2002143997A (en) * 2000-11-10 2002-05-21 Nippon Steel Corp Instrument and method for detecting state of cast slab in mold, and storage medium readable-out from computer
JP2005274202A (en) * 2004-03-23 2005-10-06 Takahide Sakagami Flaw inspection method and its device
JP2005291743A (en) * 2004-03-31 2005-10-20 Takahide Sakagami Defect detecting method and device for concrete reinforced by reinforcement plate
JP2006337230A (en) * 2005-06-03 2006-12-14 Penta Ocean Constr Co Ltd Non-destructive inspection method of concrete structure
JP2008014959A (en) * 2007-10-01 2008-01-24 Toshiba Corp Method for inspecting coating member for interface defects
JP2009133845A (en) * 2007-11-02 2009-06-18 Kanto Chem Co Inc Non-destructive inspection method of lining tank

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126338A (en) * 1985-11-28 1987-06-08 Komatsu Ltd Method for detecting flaw of ceramic coating
JPH08193892A (en) * 1995-01-18 1996-07-30 Kobe Steel Ltd Temperature distribution measuring implement
JPH10286742A (en) * 1997-04-09 1998-10-27 Toyoda Mach Works Ltd Sensor, condition determination device and condition determination method for machine tool
JP2000161943A (en) * 1998-11-26 2000-06-16 Hitachi Ltd Apparatus for measuring pipe thickness
JP2002022686A (en) * 2000-07-07 2002-01-23 Central Res Inst Of Electric Power Ind Method for evaluating damage and stain of high temperature heat transfer part
JP2002143997A (en) * 2000-11-10 2002-05-21 Nippon Steel Corp Instrument and method for detecting state of cast slab in mold, and storage medium readable-out from computer
JP2005274202A (en) * 2004-03-23 2005-10-06 Takahide Sakagami Flaw inspection method and its device
JP2005291743A (en) * 2004-03-31 2005-10-20 Takahide Sakagami Defect detecting method and device for concrete reinforced by reinforcement plate
JP2006337230A (en) * 2005-06-03 2006-12-14 Penta Ocean Constr Co Ltd Non-destructive inspection method of concrete structure
JP2008014959A (en) * 2007-10-01 2008-01-24 Toshiba Corp Method for inspecting coating member for interface defects
JP2009133845A (en) * 2007-11-02 2009-06-18 Kanto Chem Co Inc Non-destructive inspection method of lining tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227810A (en) * 2014-05-30 2015-12-17 一般財団法人電力中央研究所 Non destructive inspection method of peeling in coating layer and non destructive inspection device
CN110546490A (en) * 2017-04-18 2019-12-06 沙特***石油公司 Apparatus, system and method for inspecting composite structures using quantitative infrared thermal imaging
JP2020516867A (en) * 2017-04-18 2020-06-11 サウジ アラビアン オイル カンパニー Apparatus, system and method for inspecting composite structures using quantitative infrared thermography
US11549898B2 (en) 2017-04-18 2023-01-10 Saudi Arabian Oil Company Method for inspecting composite structures using quantitative infra-red thermography

Also Published As

Publication number Publication date
JP5108869B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US9897561B2 (en) Method of detecting defects in an object based on active thermography and a system thereof
US11226301B2 (en) Thermographic examination means and method for non-destructive examination of a near-surface structure at a test object
JP5574261B2 (en) Flaw detection method and flaw detection apparatus
JP2016501376A (en) Sample inspection method and system using thermography
Rodríguez-Martín et al. Prediction of depth model for cracks in steel using infrared thermography
JP5494566B2 (en) Defect detection method for steel
Palmer et al. Development of test facilities for thermo-mechanical fatigue testing
JP5108869B2 (en) Heat flux derivation method, flaw detection method including this derivation method, and flaw detection device using this detection method
JP2008014959A (en) Method for inspecting coating member for interface defects
JP3670869B2 (en) Coating layer thermal resistance measurement method
JP5318656B2 (en) Method, apparatus and program for evaluating thermal insulation performance of coating layer
JP6865927B2 (en) Inspection equipment, inspection methods, inspection programs, storage media, and inspection systems
Švantner et al. Repeatability study of flash-pulse thermographic inspection of carbon-fiber composite samples
Rodríguez-Martín et al. Crack‐Depth Prediction in Steel Based on Cooling Rate
JP2014032160A (en) Flaw detection method and flaw detection device
JP2013228306A (en) Pipe inspection device and pipe inspection method using the same
JP2019138910A (en) Temperature measurement system, temperature measurement method, and method of manufacturing pipes
JP2017036977A (en) Object interior inspection device
CN106679818B (en) Device and method for measuring temperature distribution of smooth surface
JP2009282020A (en) Method, apparatus and program for evaluating heat shielding performance of coating layer
Grosso et al. Evaluating quality of adhesive joints in glass-fiber plastic piping by using active thermal NDT
Beermann et al. Light section measurement to quantify the accuracy loss induced by laser light deflection in an inhomogeneous refractive index field
JP5768477B2 (en) Method for measuring temperature of workpiece, method for manufacturing workpiece, and heating device for workpiece
Tavares et al. A dedicated illumination system for fatigue crack-growth measurement
Golovin et al. Thermographic control by new methods of multiscale analysis of nonstationary thermal fields

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Ref document number: 5108869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees