JP2011129790A - Method of manufacturing led light emitting device - Google Patents

Method of manufacturing led light emitting device Download PDF

Info

Publication number
JP2011129790A
JP2011129790A JP2009288532A JP2009288532A JP2011129790A JP 2011129790 A JP2011129790 A JP 2011129790A JP 2009288532 A JP2009288532 A JP 2009288532A JP 2009288532 A JP2009288532 A JP 2009288532A JP 2011129790 A JP2011129790 A JP 2011129790A
Authority
JP
Japan
Prior art keywords
mold
sealing resin
emitting device
temperature
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009288532A
Other languages
Japanese (ja)
Other versions
JP5278300B2 (en
Inventor
Hideaki Kato
英昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2009288532A priority Critical patent/JP5278300B2/en
Publication of JP2011129790A publication Critical patent/JP2011129790A/en
Application granted granted Critical
Publication of JP5278300B2 publication Critical patent/JP5278300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely form an uneven shape on a light extraction surface of a sealing resin in an LED light emitting device. <P>SOLUTION: A recess 14 is filled with a liquid thermosetting resin 16 in an uncured state as shown in Fig. 1(b), and a metal mold 17 is pressed against a surface of the resin. The metal mold 17 has an unevenness 17b made of low-melting-point solder on one surface of a metal plate 17a of aluminum alloy. Then the thermosetting resin 16 and metal mold 17 are heated at 100°C for one hour while they are brought into contact with each other to cure the thermosetting resin 16 (Fig. 1(c)). The unevenness 17b is heated to be molten. The metal plate 17a of the metal mold 17 is separated to be removed. The molten unevenness 17b forms a metal layer 19 of liquid gathering by surface tension of the low-melting-point solder to float on an unevenness 18 of the thermosetting resin 16 (Fig. 1(d)). Then the temperature is lowered to solidify the metal layer 19, which is removed from on the unevenness 18 (Fig. 1(e)). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、LED発光装置の製造方法に関し、特に封止樹脂表面に凹凸を形成する方法に特徴を有する。   The present invention relates to a method for manufacturing an LED light-emitting device, and particularly has a feature in a method for forming irregularities on a sealing resin surface.

従来、LED発光装置では、LEDチップやワイヤを保護するため、発光面からの光取り出しを向上させるため、および蛍光体を配置するために、LEDチップやワイヤを樹脂によって封止している。   Conventionally, in an LED light emitting device, an LED chip and a wire are sealed with a resin in order to protect the LED chip and the wire, improve light extraction from the light emitting surface, and arrange a phosphor.

このようなLED発光装置において、さらに光取り出しを向上させるため、封止樹脂の光取り出し面に凹凸を設ける方法が知られている。たとえば特許文献1〜3である。   In such an LED light emitting device, in order to further improve the light extraction, a method of providing irregularities on the light extraction surface of the sealing resin is known. For example, it is patent documents 1-3.

特許文献1では、半硬化の樹脂をエッチングすることで、または凹凸形状の金型を押し当てることで、封止樹脂表面に凹凸を形成することが記載されている。また、封止樹脂の硬化後に研削することで凹凸を形成してよいことも記載されている。また、封止樹脂表面に、凹凸を備えた樹脂膜を印刷する方法も示されている。   Patent Document 1 describes that irregularities are formed on the surface of a sealing resin by etching a semi-cured resin or pressing a concave-convex mold. It is also described that irregularities may be formed by grinding after the sealing resin is cured. In addition, a method of printing a resin film having unevenness on the sealing resin surface is also shown.

また、特許文献2では、封止樹脂表面に凹凸を有したフィルムを張り付ける方法が示されている。   Patent Document 2 discloses a method for attaching a film having irregularities on the surface of a sealing resin.

特開2003−234509JP2003-234509 特開2008−227456JP 2008-227456 A 特開2005−19541JP-A-2005-19541

しかし、樹脂膜の印刷やフィルムの貼り付けで凹凸を設ける場合、樹脂膜またはフィルムと、封止樹脂との界面で光が反射してしまい、光取り出し効率が低下してしまう。また、金型によって凹凸を形成する場合、抜き勾配が必須となるため、凹凸形状に制約が生じてしまう。また、凹凸が微細であると、金型と樹脂との密着性が高くなってしまい、金型を剥離する際に凹凸が破壊されてしまう問題がある。   However, when unevenness is provided by printing a resin film or attaching a film, light is reflected at the interface between the resin film or film and the sealing resin, resulting in a decrease in light extraction efficiency. Further, when the unevenness is formed by a mold, the draft is essential, and thus the uneven shape is restricted. Further, if the unevenness is fine, there is a problem that the adhesion between the mold and the resin is increased, and the unevenness is destroyed when the mold is peeled off.

そこで本発明の目的は、LED発光装置の製造方法において、封止樹脂の光取り出し面に凹凸を形成する新規な方法を提供することである。   Accordingly, an object of the present invention is to provide a novel method for forming irregularities on the light extraction surface of a sealing resin in a method for manufacturing an LED light emitting device.

第1の発明は、LEDチップが熱硬化性樹脂からなる封止樹脂によって封止され、封止樹脂の光取り出し面に凹凸が設けられたLED発光装置の製造方法において、光取り出し面に凹凸を設ける工程は、凹凸にかみ合う形状を有した金型として、封止樹脂の硬化温度以上、熱分解温度以下の温度で融解する金属を材料とする金型を用い、未硬化の封止樹脂の光取り出し面に金型を合わせた状態で、封止樹脂の硬化温度以上、金型の融解温度未満の温度に加熱して、少なくとも封止樹脂の光取り出し面を硬化させる工程と、光取り出し面の硬化後、金型の融解温度以上、封止樹脂の熱分解温度以下の温度に加熱して、金型を融解させて除去する工程と、を有することを特徴とするLED発光装置の製造方法である。   According to a first aspect of the present invention, there is provided a method of manufacturing an LED light-emitting device in which an LED chip is sealed with a sealing resin made of a thermosetting resin, and the light extraction surface of the sealing resin is provided with unevenness. The providing step uses a mold made of a metal that melts at a temperature not lower than the curing temperature of the sealing resin and not higher than the thermal decomposition temperature as a mold having a shape that meshes with the unevenness, and the light of the uncured sealing resin. In a state where the mold is aligned with the take-out surface, the step of heating at least the sealing resin curing temperature and lower than the mold melting temperature to cure at least the light-extracting surface of the sealing resin; And a step of melting and removing the mold by heating to a temperature not lower than the melting temperature of the mold and not higher than the thermal decomposition temperature of the sealing resin after curing. is there.

金型として用いる金属は、たとえば、低融点はんだであり、Sn−Bi、Sn−Bi−Ag、Sn−Pb、Sn−Pb−Sb、Sn−Agなどである。なお、金型全体がこのような金属である必要はなく、凹凸にかみ合わせる部分のみであってよい。光取り出し面を硬化させる際の温度は、金型の融解温度よりも15℃以上低い温度であることが望ましい。より安定して光取り出し面に凹凸を形成することができるからである。   The metal used as the mold is, for example, a low melting point solder such as Sn—Bi, Sn—Bi—Ag, Sn—Pb, Sn—Pb—Sb, Sn—Ag. Note that the entire mold need not be made of such a metal, and may be only a portion engaged with the unevenness. The temperature at which the light extraction surface is cured is desirably 15 ° C. lower than the melting temperature of the mold. This is because irregularities can be formed on the light extraction surface more stably.

封止樹脂には、耐熱性の高いシリコーン樹脂が好適であるが、エポキシ樹脂などを用いてもよい。   A silicone resin with high heat resistance is suitable for the sealing resin, but an epoxy resin or the like may be used.

凹凸は任意の形状でよいが、光取り出し効率を向上させるためには、微細で周期的な構造が望ましい。特に、LEDチップの発光波長オーダーの微細な周期性を有した凹凸が望ましい。   The unevenness may be any shape, but a fine and periodic structure is desirable in order to improve the light extraction efficiency. In particular, irregularities having fine periodicity in the order of the emission wavelength of the LED chip are desirable.

第2の発明は、第1の発明において、少なくとも封止樹脂の光取り出し面を硬化させる際の温度は、金型の融解温度よりも15℃以上低い温度である、ことを特徴とするLED発光装置の製造方法である。   According to a second aspect of the present invention, in the first aspect of the present invention, the temperature at which at least the light extraction surface of the sealing resin is cured is a temperature lower by 15 ° C. or more than the melting temperature of the mold. It is a manufacturing method of an apparatus.

第3の発明は、第1の発明または第2の発明において、金型を除去した後、再度加熱して封止樹脂を硬化させる工程をさらに有する、ことを特徴とするLED発光装置の製造方法である。   According to a third aspect of the present invention, in the first or second aspect of the invention, the method further includes the step of curing the sealing resin by heating again after removing the mold. It is.

第4の発明は、第1の発明から第3の発明において、金型を封止樹脂の光取り出し面に合わせる前に、封止樹脂と同一材料の樹脂を、金型の光取り出し面と合わせる側の面に塗布する工程をさらに有する、ことを特徴とするLED発光装置の製造方法である。   According to a fourth invention, in the first to third inventions, before matching the mold with the light extraction surface of the sealing resin, match the resin of the same material as the sealing resin with the light extraction surface of the mold. It is a manufacturing method of the LED light-emitting device characterized by further having the process apply | coated to the side surface.

第5の発明は、第1の発明から第4の発明において、金型は、低融点はんだであることを特徴とするLED発光装置の製造方法である。   A fifth invention is a method for manufacturing an LED light emitting device according to the first to fourth inventions, wherein the mold is a low melting point solder.

第6の発明は、第5の発明において、前記低融点はんだは、SnとBiを含む合金であることを特徴とするLED発光装置の製造方法である。   A sixth invention is the method of manufacturing an LED light emitting device according to the fifth invention, wherein the low melting point solder is an alloy containing Sn and Bi.

第7の発明は、第1の発明から第6の発明において、封止樹脂は、シリコーン樹脂であることを特徴とするLED発光装置の製造方法である。   A seventh invention is a method for manufacturing an LED light emitting device according to any one of the first to sixth inventions, wherein the sealing resin is a silicone resin.

第8の発明は、第1の発明から第7の発明において、金型は、Snを含む合金であり、金型を融解させる工程は、金型の材料である金属よりも融点が低くSnを含む金属を、融解させた状態で金型に接触させて原子拡散させ、金型の融点を低下させた後、金型を融解させる工程である、ことを特徴とするLED発光装置の製造方法である。   In an eighth invention according to the first to seventh inventions, the mold is an alloy containing Sn, and the step of melting the mold has a lower melting point than the metal that is the material of the mold, and Sn is used. In the method for manufacturing an LED light-emitting device, the method includes a step of melting a mold after contacting the mold in a melted state with the mold in an atomic diffusion to lower the melting point of the mold. is there.

金型の材料である金属よりも融点が低くSnを含む金属は、融解させた後に金型に接触させてもよいし、接触させてから融解させてもよい。   The metal having a melting point lower than that of the metal that is the material of the mold and containing Sn may be brought into contact with the mold after being melted, or may be melted after being brought into contact.

第1の発明によると、光取り出し面の凹凸を破壊することなく金型を除去することができるため、封止樹脂の光取り出し面に凹凸形状を精度よく形成することができる。特に、凹凸が微細である場合に本発明の効果が大きい。凹凸が微細であると、表面張力によって融解した金型である金属が光取り出し面の凹凸から浮き上がり、容易に除去することができるためである。また、従来の金型で必要であった抜き勾配は、本発明の金型では必要ないため、光取り出し面に形成する凹凸形状の設計の自由度が非常に高い。   According to the first invention, since the mold can be removed without destroying the irregularities on the light extraction surface, the irregular shape can be accurately formed on the light extraction surface of the sealing resin. In particular, the effect of the present invention is great when the unevenness is fine. This is because if the unevenness is fine, the metal, which is a mold melted by the surface tension, floats from the unevenness of the light extraction surface and can be easily removed. In addition, since the draft required in the conventional mold is not necessary in the mold of the present invention, the degree of freedom in designing the uneven shape formed on the light extraction surface is very high.

また、第2の発明によると、凹凸形状の加工精度をより向上させることができる。   In addition, according to the second invention, the processing accuracy of the uneven shape can be further improved.

また、第3の発明によると、封止樹脂をさらに硬化させることができる。   According to the third invention, the sealing resin can be further cured.

また、第4の発明によると、封止樹脂の光取り出し面と金型との間に気泡が生じてしまうのを防止することができる。   According to the fourth invention, it is possible to prevent bubbles from being generated between the light extraction surface of the sealing resin and the mold.

また、第5の発明のように、金型として低融点はんだを用いることができ、特に第6の発明のように、低融点はんだとしてSnとBiを含む合金を用いることができる。また、第7の発明のように、封止樹脂としてシリコーン樹脂を用いることができる。   Further, as in the fifth invention, a low melting point solder can be used as the mold, and in particular, as in the sixth invention, an alloy containing Sn and Bi can be used as the low melting point solder. Further, as in the seventh invention, a silicone resin can be used as the sealing resin.

また、第8の発明によれば、金型に融解温度の高いものを使用することができるため、封止樹脂を硬化させる際の温度を高くすることができ、凹凸形状の転写精度を向上させることができる。また、封止樹脂の硬化後に金型の融解温度を低減できるため、金型を融解して除去する際に封止樹脂の劣化を抑制することが手きる。   Further, according to the eighth invention, since a mold having a high melting temperature can be used, the temperature at which the sealing resin is cured can be increased, and the transfer accuracy of the concavo-convex shape is improved. be able to. Moreover, since the melting temperature of the mold can be reduced after the sealing resin is cured, it is possible to suppress the deterioration of the sealing resin when the mold is melted and removed.

実施例1のLED発光装置の製造工程について示した図。The figure shown about the manufacturing process of the LED light-emitting device of Example 1. FIG. 実施例1のLED発光装置の構成を示した図。The figure which showed the structure of the LED light-emitting device of Example 1. FIG. ケース11の製造に用いた型の構成を示した図。The figure which showed the structure of the type | mold used for manufacture of case 11. FIG. 実施例2のLED発光装置の製造工程を示した図。The figure which showed the manufacturing process of the LED light-emitting device of Example 2. FIG.

以下、本発明の具体的な実施例について図を参照に説明するが、本発明は実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the examples.

図2は、実施例1のLED発光装置の構成を示した図である。LED発光装置は、凹部14を有し、凹部14の底面14cに電極パターン10a、10bを有したケース11と、電極パターン10a上に搭載され、ボンディングワイヤ13a、13bによって電極パターン10a、10bと接続されたLEDチップ12と、凹部14内を満たした熱硬化性樹脂16の硬化物である封止樹脂15と、によって構成されている。   FIG. 2 is a diagram illustrating the configuration of the LED light-emitting device of Example 1. The LED light emitting device has a recess 14 and is mounted on the electrode pattern 10a and the case 11 having the electrode patterns 10a and 10b on the bottom surface 14c of the recess 14 and is connected to the electrode patterns 10a and 10b by bonding wires 13a and 13b. And the sealing resin 15 that is a cured product of the thermosetting resin 16 filling the recess 14.

ケース11は、熱硬化性の樹脂で形成されている。LEDチップ12には、青、緑、赤など任意の発光波長のものを用いてよく、紫外光や赤外光を発光するものであってもよい。封止樹脂15には、蛍光体や、分散材などが混合されていてもよい。   The case 11 is formed of a thermosetting resin. The LED chip 12 may have an arbitrary emission wavelength such as blue, green, and red, and may emit ultraviolet light or infrared light. The sealing resin 15 may be mixed with a phosphor, a dispersing material, or the like.

封止樹脂15は、光取り出し面(凹部14の底面14c側とは反対側の表面)に凹凸18を有している。この凹凸18は、光取り出し効率を向上させるためのものである。凹凸18の形状は、光取り出し効率をより向上させるために、LEDチップ12の発光波長オーダーの微細な周期構造が望ましい。凹部14の形状は円錐台ないし角錐台状であり、凹部14の側面14aは、凹部14の底面14cに平行な面における凹部14の断面積が、底面14cから離れるにしたがって増加するような傾斜を有している。   The sealing resin 15 has irregularities 18 on the light extraction surface (the surface opposite to the bottom surface 14c side of the recess 14). The irregularities 18 are for improving the light extraction efficiency. The shape of the irregularities 18 is preferably a fine periodic structure in the order of the emission wavelength of the LED chip 12 in order to further improve the light extraction efficiency. The shape of the recess 14 is a truncated cone or a truncated pyramid, and the side surface 14a of the recess 14 is inclined so that the cross-sectional area of the recess 14 in a plane parallel to the bottom surface 14c of the recess 14 increases as the distance from the bottom surface 14c increases. Have.

また、凹部14の側面14aであって、ケース11の上面11a(凹部14の底面14c側とは反対側の面)近傍には、底面14cに平行な方向に深さを有する溝14bが形成されている。溝14bは、底面14cに平行な面内に一周するリング状である。この溝14bに封止樹脂15が入り込んでいるため、封止樹脂15のケース11からの離脱が防止される。より効果的に離脱を防止するためには、溝14の底面14cに平行な方向の深さ、および底面14cに垂直な方向の幅を、0.2〜0.5mmにするとよい。   Further, a groove 14b having a depth in a direction parallel to the bottom surface 14c is formed in the side surface 14a of the recess 14 and in the vicinity of the upper surface 11a of the case 11 (the surface opposite to the bottom surface 14c side of the recess 14). ing. The groove 14b has a ring shape that goes around in a plane parallel to the bottom surface 14c. Since the sealing resin 15 enters the groove 14b, the sealing resin 15 is prevented from being detached from the case 11. In order to prevent separation more effectively, the depth of the groove 14 in the direction parallel to the bottom surface 14c and the width in the direction perpendicular to the bottom surface 14c are preferably 0.2 to 0.5 mm.

このようなケース11は、型を用いた射出成形やトランスファーモールドなどによって形成する。型は、図3に示すように、内型100と、外型200とで構成されている。内型100は、ケース11の凹部14の形状、およびケース11の上面11aにかみ合う形状である。すなわち、内型100は、凹部14にかみ合う円錐台ないし角錐台状の突起部100aを有し、突起部100a側面には、凹部側面の溝14bとかみ合うリング状の突起部100bを有している。また、内型100は、低融点はんだであるSn−Bi合金(Sn:42%、Bi:58%、融点138℃)からなる。外型200は、ケース11の側面11bおよび底面11cの形状にかみ合う形状であり、樹脂の注入口201を有している。   Such a case 11 is formed by injection molding using a mold, transfer molding, or the like. The mold is composed of an inner mold 100 and an outer mold 200 as shown in FIG. The inner mold 100 has a shape that engages with the shape of the recess 14 of the case 11 and the upper surface 11 a of the case 11. In other words, the inner mold 100 has a truncated cone-shaped or truncated pyramid-shaped projection 100a that meshes with the recess 14, and the projection 100a has a ring-shaped projection 100b that meshes with the groove 14b on the side of the recess. . The inner mold 100 is made of a Sn—Bi alloy (Sn: 42%, Bi: 58%, melting point 138 ° C.) which is a low melting point solder. The outer mold 200 has a shape that meshes with the shape of the side surface 11 b and the bottom surface 11 c of the case 11, and has a resin injection port 201.

この内型100と外型200とをケース11の形状に組み合わせ、外型200の樹脂注入口201から熱硬化性樹脂を注入し、内型100が融解しない温度で熱硬化性樹脂を硬化させる。次に、外型200を機械的に取り外し、その後内型100の融解温度以上であって熱硬化性樹脂が熱分解する温度以下の温度で加熱して内型100を融解させて除去する。以上の方法によって、凹部14を有し、凹部14側面14bにリング状の溝14bを有したケース11を製造することができる。   The inner mold 100 and the outer mold 200 are combined with the shape of the case 11, a thermosetting resin is injected from the resin injection port 201 of the outer mold 200, and the thermosetting resin is cured at a temperature at which the inner mold 100 does not melt. Next, the outer mold 200 is mechanically removed, and then the inner mold 100 is melted and removed by heating at a temperature not lower than the melting temperature of the inner mold 100 and not higher than the temperature at which the thermosetting resin is thermally decomposed. By the above method, the case 11 which has the recessed part 14 and has the ring-shaped groove | channel 14b in the recessed part 14 side surface 14b can be manufactured.

なお、上記ケースの形成方法において、電極パターン10a、10bは省略したが、実際には型の内部に電極パターン10a、10bを配置して、ケースと一体に成形される。   In the case forming method, the electrode patterns 10a and 10b are omitted. However, in actuality, the electrode patterns 10a and 10b are disposed inside the mold, and are formed integrally with the case.

また、型を内型100と外型200とで構成せずに、型全体を低融点はんだによって構成してもよい。また、型のうち、溝14bとかみ合う部分のみを低融点はんだによって構成してもよい。   In addition, the entire mold may be formed of low melting point solder without forming the mold with the inner mold 100 and the outer mold 200. Moreover, you may comprise only the part which meshes with the groove | channel 14b among molds with a low melting-point solder.

次に、LED発光装置の製造工程について、図1を参照に説明する。   Next, a manufacturing process of the LED light emitting device will be described with reference to FIG.

まず、図1(a)のように、凹部14を有し、凹部14の底面14cに電極パターン10a、10bを有したケース11を用意し、電極パターン10a上にLEDチップ12を搭載し、ボンディングワイヤ13a、13bによってLEDチップ12の電極(図示しない)と電極パターン10a、10bとを接続する。   First, as shown in FIG. 1A, a case 11 having a recess 14 and electrode patterns 10a and 10b on the bottom surface 14c of the recess 14 is prepared, and an LED chip 12 is mounted on the electrode pattern 10a and bonded. The electrodes (not shown) of the LED chip 12 and the electrode patterns 10a and 10b are connected by wires 13a and 13b.

次に、図1(b)のように、凹部14内に未硬化の液状の熱硬化性樹脂16を充填し、金型17を樹脂の表面に押し当てる。金型17は、アルミニウム合金の金属板17aの一方の表面に、低融点はんだからなる凹凸17bを設けたものである。粒径20〜30μm程度のはんだペーストを金属板17aの表面に塗布することで凹凸17bを形成してもよい。金型17の樹脂に押し当てる側の面には、熱硬化性樹脂16と同一材料の樹脂をあらかじめ塗布しておき、金型17と熱硬化性樹脂16との間に気泡が生じてしまうのを防止するのがよい。ここで、熱硬化性樹脂には、一次硬化温度が100℃、二次硬化温度が150℃のシリコーン樹脂を用いた。また、低融点はんだには、Sn−Bi合金(Sn:42%、Bi:58%、融点138℃)を用いた。   Next, as shown in FIG. 1B, the concave portion 14 is filled with an uncured liquid thermosetting resin 16, and a mold 17 is pressed against the surface of the resin. The mold 17 is provided with an unevenness 17b made of low melting point solder on one surface of an aluminum alloy metal plate 17a. The unevenness 17b may be formed by applying a solder paste having a particle size of about 20 to 30 μm to the surface of the metal plate 17a. A resin of the same material as the thermosetting resin 16 is applied in advance to the surface of the mold 17 that is pressed against the resin, and bubbles are generated between the mold 17 and the thermosetting resin 16. It is good to prevent. Here, a silicone resin having a primary curing temperature of 100 ° C. and a secondary curing temperature of 150 ° C. was used as the thermosetting resin. In addition, an Sn—Bi alloy (Sn: 42%, Bi: 58%, melting point 138 ° C.) was used as the low melting point solder.

なお、低融点はんだには、その融点が、熱硬化性樹脂16の一次硬化温度以上で、熱硬化性樹脂16の熱分解温度以下の範囲である任意の材料を用いることができる。   For the low melting point solder, any material whose melting point is not lower than the primary curing temperature of the thermosetting resin 16 and not higher than the thermal decomposition temperature of the thermosetting resin 16 can be used.

次に、熱硬化性樹脂16と金型17とが接触した状態で100℃まで加熱し、この温度を1時間維持して熱硬化性樹脂16を硬化させる(図1(c))。この時、熱硬化性樹脂16全体を硬化させる必要はなく、少なくとも金型17と接触する表面部分のみが硬化していればよい。この硬化によって、熱硬化性樹脂16の金型17と接触する表面には、凹凸17bを反転した形状の凹凸18が転写されて形成される。また、金型17の凹凸17bは、融点138℃以下の温度であるため融解せず、固体の状態を保持している。   Next, it heats to 100 degreeC in the state which the thermosetting resin 16 and the metal mold | die 17 contacted, This temperature is maintained for 1 hour, and the thermosetting resin 16 is hardened (FIG.1 (c)). At this time, it is not necessary to cure the entire thermosetting resin 16, and it is sufficient that at least only the surface portion in contact with the mold 17 is cured. As a result of the curing, the surface of the thermosetting resin 16 that comes into contact with the mold 17 is formed by transferring the irregularities 18 having the inverted shape of the irregularities 17b. Further, the unevenness 17b of the mold 17 does not melt because it has a melting point of 138 ° C. or less, and maintains a solid state.

次に、金型17の凹凸17bの融点である138℃以上で、熱硬化性樹脂16の二次硬化温度以下の温度、たとえば140℃、に加熱し、凹凸17bを融解させる。これにより、金型17の金属板17aは分離し、除去される。また、融解した凹凸17bは、低融点はんだの表面張力によってひとまとまりの液体の金属層19となり、熱硬化性樹脂16の凹凸18上に浮き上がった状態となる(図1(d))。   Next, the unevenness 17b is melted by heating to a temperature equal to or higher than 138 ° C. which is the melting point of the unevenness 17b of the mold 17 and lower than the secondary curing temperature of the thermosetting resin 16, for example, 140 ° C. Thereby, the metal plate 17a of the mold 17 is separated and removed. Also, the melted unevenness 17b becomes a group of liquid metal layers 19 due to the surface tension of the low melting point solder, and floats on the unevenness 18 of the thermosetting resin 16 (FIG. 1 (d)).

次に、温度を低下させて金属層19を固化し、凹凸18上から金属層19を除去する(図1(e))。金属層19は凹凸18上に浮き上がった状態にあるため、接触面積が狭く、容易に除去することができる。もちろん、金属層19が液体の状態にあるときに除去してもよい。その後、熱硬化性樹脂16を150℃で3時間加熱し、熱硬化性樹脂16をさらに硬化させた。以上によって、熱硬化性樹脂16の硬化物である封止樹脂15の光取り出し面に凹凸18が形成されたLED発光装置が製造される。   Next, the metal layer 19 is solidified by lowering the temperature, and the metal layer 19 is removed from the irregularities 18 (FIG. 1 (e)). Since the metal layer 19 is in a state of being raised on the irregularities 18, the contact area is small and can be easily removed. Of course, it may be removed when the metal layer 19 is in a liquid state. Thereafter, the thermosetting resin 16 was heated at 150 ° C. for 3 hours to further cure the thermosetting resin 16. As described above, the LED light emitting device in which the unevenness 18 is formed on the light extraction surface of the sealing resin 15 that is a cured product of the thermosetting resin 16 is manufactured.

この実施例1のLED発光装置の製造方法では、封止樹脂15の光取り出し面に容易かつ精度よく凹凸18を設けることができる。   In the manufacturing method of the LED light emitting device of Example 1, the unevenness 18 can be easily and accurately provided on the light extraction surface of the sealing resin 15.

図4は、実施例2のLED発光装置の製造工程について示した図である。まず、図4(a)のように、電極20a、20bが設けられた基板21上に、LEDチップ22を搭載し、ボンディングワイヤ23a、23bによってLEDチップ22と電極20a、20bとを接続する。   FIG. 4 is a diagram illustrating a manufacturing process of the LED light-emitting device of Example 2. First, as shown in FIG. 4A, an LED chip 22 is mounted on a substrate 21 provided with electrodes 20a and 20b, and the LED chip 22 and the electrodes 20a and 20b are connected by bonding wires 23a and 23b.

次に、図4(b)に示すように、半球殻状の金型27を用意する。金型27の内側の面には、凹凸27aが形成されていて、この凹凸27は、実施例1と同様の低融点はんだからなる。そして、金型27の内側(凹凸27a形成側)に熱硬化性樹脂26を充填し、金型27を基板21上に配置し、LEDチップ22を封止した。熱硬化性樹脂26は、実施例1の熱硬化性樹脂16と同様の材料であり、一次硬化温度が100℃、二次硬化温度が150℃のシリコーン樹脂である。この状態で加熱し、100℃、1時間維持して熱硬化性樹脂16を硬化させる。この硬化によって、熱硬化性樹脂26の凹凸27aと接触する表面には、凹凸27aを反転した形状の凹凸28が転写されて形成される。   Next, as shown in FIG. 4B, a hemispherical shell mold 27 is prepared. Concavities and convexities 27 a are formed on the inner surface of the mold 27, and the concavities and convexities 27 are made of the same low melting point solder as in the first embodiment. Then, the thermosetting resin 26 was filled inside the mold 27 (on the side where the unevenness 27a was formed), the mold 27 was placed on the substrate 21, and the LED chip 22 was sealed. The thermosetting resin 26 is the same material as the thermosetting resin 16 of Example 1, and is a silicone resin having a primary curing temperature of 100 ° C. and a secondary curing temperature of 150 ° C. In this state, the thermosetting resin 16 is cured by heating at 100 ° C. for 1 hour. As a result of the curing, the surface of the thermosetting resin 26 that comes into contact with the unevenness 27a is formed by transferring the unevenness 28 having a shape obtained by inverting the unevenness 27a.

次に、図4(c)に示すように、金型17の凹凸17bの融点である138℃以上で、熱硬化性樹脂16の二次硬化温度以下の温度、たとえば140℃、に加熱し、凹凸27aを融解させ、金型27は機械的に取り出して除去する。融解した凹凸27aは、低融点はんだの表面張力によってひとまとまりの液体の金属層29となり、熱硬化性樹脂26の凹凸28上に浮き上がった状態となる。   Next, as shown in FIG.4 (c), it heats to 138 degreeC or more which is melting | fusing point of the unevenness | corrugation 17b of the metal mold 17 and below the secondary curing temperature of the thermosetting resin 16, for example, 140 degreeC, The unevenness 27a is melted, and the mold 27 is mechanically taken out and removed. The melted unevenness 27 a becomes a group of liquid metal layers 29 due to the surface tension of the low melting point solder, and floats on the unevenness 28 of the thermosetting resin 26.

次に、温度を低下させて金属層29を固化し、凹凸28上から金属層29を除去する。金属層29は凹凸28上に浮き上がった状態にあるため、接触面積が狭く、容易に除去することができる。その後、熱硬化性樹脂26を150℃で3時間加熱し、熱硬化性樹脂26をさらに硬化させる。以上によって図4(d)に示す、半球殻状のドーム型の封止樹脂25(熱硬化性樹脂26の硬化物)にLEDチップ22が封止され、封止樹脂25の光取り出し面に凹凸28が形成されたLED発光装置が製造される。   Next, the temperature is lowered to solidify the metal layer 29, and the metal layer 29 is removed from the unevenness 28. Since the metal layer 29 is in a state of being raised on the unevenness 28, the contact area is small and can be easily removed. Thereafter, the thermosetting resin 26 is heated at 150 ° C. for 3 hours to further cure the thermosetting resin 26. 4D, the LED chip 22 is sealed with the hemispherical shell-shaped dome-shaped sealing resin 25 (cured product of the thermosetting resin 26), and the light extraction surface of the sealing resin 25 is uneven. The LED light emitting device in which 28 is formed is manufactured.

なお、実施例1では封止樹脂の光取り出し面を平板状、実施例2ではドーム状としたが、本発明はこれらの形状に限るものではなく、任意の形状の光取り出し面に凹凸を形成することができる。   In Example 1, the light extraction surface of the sealing resin is a flat plate, and in Example 2, the shape is a dome. However, the present invention is not limited to these shapes, and irregularities are formed on the light extraction surface of any shape. can do.

また、実施例1、2における金型17の融解方法として、以下の方法を用いてもよい。まず、金型17としてSnを含む合金を用い、金型17よりも融点が低くSnを含む合金を用意する。次に、この合金を融解させて金型17に接触させる。または金型17に接触させてからその合金を融解させてもよい。これにより、その合金を金型17に原子拡散させ、金型17の融点を低下させることができる。そして、融点の低くなった金型17を融解させて除去する。   Moreover, the following method may be used as a melting method of the mold 17 in the first and second embodiments. First, an alloy containing Sn is used as the mold 17, and an alloy containing Sn having a melting point lower than that of the mold 17 is prepared. Next, the alloy is melted and brought into contact with the mold 17. Alternatively, the alloy may be melted after contacting the mold 17. Thereby, the alloy can be atomically diffused in the mold 17 and the melting point of the mold 17 can be lowered. Then, the mold 17 having a low melting point is melted and removed.

この金型17の融解方法によると、金型17の材料として実施例1、2で用いた材料よりも融点の高い材料を用いることができるので、熱硬化性樹脂を硬化させる際の温度を実施例1、2の場合よりも高くすることができる。その結果、凹凸17b、27aの転写精度を向上させることができる。また、熱硬化性樹脂の硬化後に金型17の融解温度を低減することができるので、金型17を融解させて除去する際に熱硬化性樹脂16、26の劣化を抑制することができる。   According to the melting method of the mold 17, a material having a higher melting point than the material used in the first and second embodiments can be used as the material of the mold 17, so the temperature at which the thermosetting resin is cured is set. It can be higher than those in Examples 1 and 2. As a result, the transfer accuracy of the irregularities 17b and 27a can be improved. Further, since the melting temperature of the mold 17 can be reduced after the thermosetting resin is cured, deterioration of the thermosetting resins 16 and 26 can be suppressed when the mold 17 is melted and removed.

本発明によって製造されるLED発光装置は光取り出し効率が高いので、照明装置などに好適である。   Since the LED light-emitting device manufactured by the present invention has high light extraction efficiency, it is suitable for lighting devices and the like.

10a、10b、21a、21b:電極パターン
11:ケース
12、22:LEDチップ
13a、13b、23a、23b:ボンディングワイヤ
14:溝
15、25:封止樹脂
16、26:熱硬化性樹脂
17、27:金型
18、28:凹凸
10a, 10b, 21a, 21b: electrode pattern 11: case 12, 22: LED chip 13a, 13b, 23a, 23b: bonding wire 14: groove 15, 25: sealing resin 16, 26: thermosetting resin 17, 27 : Mold 18, 28: Concavity and convexity

Claims (8)

LEDチップが熱硬化性樹脂からなる封止樹脂によって封止され、前記封止樹脂の光取り出し面に凹凸が設けられたLED発光装置の製造方法において、
前記光取り出し面に凹凸を設ける工程は、
凹凸にかみ合う形状を有した金型として、前記封止樹脂の硬化温度以上、熱分解温度以下の温度で融解する金属を材料とする金型を用い、
未硬化の前記封止樹脂の前記光取り出し面に前記金型を合わせた状態で、前記封止樹脂の硬化温度以上、前記金型の融解温度未満の温度に加熱して、少なくとも前記封止樹脂の前記光取り出し面を硬化させる工程と、
前記光取り出し面の硬化後、前記金型の融解温度以上、前記封止樹脂の熱分解温度以下の温度に加熱して、前記金型を融解させて除去する工程と、
を有することを特徴とするLED発光装置の製造方法。
In the LED light emitting device manufacturing method in which the LED chip is sealed with a sealing resin made of a thermosetting resin, and the light extraction surface of the sealing resin is provided with irregularities.
The step of providing irregularities on the light extraction surface includes:
Using a mold made of a metal that melts at a temperature equal to or higher than the curing temperature of the sealing resin and equal to or lower than the thermal decomposition temperature, as a mold having a shape that meshes with the unevenness,
In a state where the mold is aligned with the light extraction surface of the uncured sealing resin, the mold is heated to a temperature not lower than the curing temperature of the sealing resin and lower than the melting temperature of the mold, so that at least the sealing resin Curing the light extraction surface of
After curing the light extraction surface, heating to a temperature equal to or higher than the melting temperature of the mold and equal to or lower than the thermal decomposition temperature of the sealing resin to melt and remove the mold;
The manufacturing method of the LED light-emitting device characterized by having.
少なくとも前記封止樹脂の光取り出し面を硬化させる際の温度は、前記金型の融解温度よりも15℃以上低い温度である、
ことを特徴とする請求項1に記載のLED発光装置の製造方法。
The temperature when curing at least the light extraction surface of the sealing resin is a temperature that is 15 ° C. or more lower than the melting temperature of the mold,
The method for manufacturing an LED light-emitting device according to claim 1.
前記金型を除去した後、再度加熱して前記封止樹脂を硬化させる工程をさらに有する、ことを特徴とする請求項1または請求項2に記載のLED発光装置の製造方法。   The method for manufacturing an LED light emitting device according to claim 1, further comprising a step of curing the sealing resin by heating again after removing the mold. 前記金型を前記封止樹脂の光取り出し面に合わせる前に、前記封止樹脂と同一材料の樹脂を、前記金型の前記光取り出し面と合わせる側の面に塗布する工程をさらに有する、ことを特徴とする請求項1ないし請求項3のいずれか1項に記載のLED発光装置の製造方法。   Before aligning the mold with the light extraction surface of the sealing resin, further comprising a step of applying a resin of the same material as the sealing resin to the surface of the mold that is to be aligned with the light extraction surface; The manufacturing method of the LED light-emitting device of any one of Claim 1 thru | or 3 characterized by these. 前記金型は、低融点はんだであることを特徴とする請求項1ないし請求項4のいずれか1項に記載のLED発光装置の製造方法。   The method for manufacturing an LED light-emitting device according to claim 1, wherein the mold is a low-melting-point solder. 前記低融点はんだは、SnとBiを含む合金であることを特徴とする請求項5に記載のLED発光装置の製造方法。   6. The method of manufacturing an LED light emitting device according to claim 5, wherein the low melting point solder is an alloy containing Sn and Bi. 前記封止樹脂は、シリコーン樹脂であることを特徴とする請求項1ないし請求項6のいずれか1項に記載のLED発光装置の製造方法。   The method for manufacturing an LED light-emitting device according to claim 1, wherein the sealing resin is a silicone resin. 前記金型は、Snを含む合金であり、
前記金型を融解させる工程は、
前記金型の材料である金属よりも融点が低くSnを含む金属を、融解させた状態で前記金型に接触させて原子拡散させ、前記金型の融点を低下させた後、前記金型を融解させる工程である、ことを特徴とする請求項1ないし請求項7のいずれか1項に記載のLED発光装置の製造方法。
The mold is an alloy containing Sn,
The step of melting the mold includes
A metal having a melting point lower than that of the metal that is the material of the mold is brought into contact with the mold in a molten state to be atomically diffused to lower the melting point of the mold, and then the mold is formed. The method for manufacturing an LED light-emitting device according to claim 1, wherein the method is a melting step.
JP2009288532A 2009-12-19 2009-12-19 Manufacturing method of LED light emitting device Active JP5278300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288532A JP5278300B2 (en) 2009-12-19 2009-12-19 Manufacturing method of LED light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288532A JP5278300B2 (en) 2009-12-19 2009-12-19 Manufacturing method of LED light emitting device

Publications (2)

Publication Number Publication Date
JP2011129790A true JP2011129790A (en) 2011-06-30
JP5278300B2 JP5278300B2 (en) 2013-09-04

Family

ID=44292046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288532A Active JP5278300B2 (en) 2009-12-19 2009-12-19 Manufacturing method of LED light emitting device

Country Status (1)

Country Link
JP (1) JP5278300B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199186A (en) * 2013-04-27 2013-07-10 中国科学院苏州纳米技术与纳米仿生研究所 Photoelectric device with roughening structure on surface of nut cap
WO2013157310A1 (en) * 2012-04-17 2013-10-24 シャープ株式会社 Light-emitting device and method for manufacturing same
JP2014175416A (en) * 2013-03-07 2014-09-22 Toyoda Gosei Co Ltd Manufacturing method of light emitting device
JP2015111626A (en) * 2013-12-06 2015-06-18 シャープ株式会社 Light-emitting device and method of manufacturing the same
WO2016158601A1 (en) * 2015-03-27 2016-10-06 東レエンジニアリング株式会社 Led module, and method for manufacturing led module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155708A (en) * 1988-12-09 1990-06-14 Sintokogio Ltd Manufacture of resin product
JPH02160513A (en) * 1988-11-08 1990-06-20 Kooki Eng:Kk Manufacture of component in hollow structure and its product
JP2003234509A (en) * 2002-02-08 2003-08-22 Citizen Electronics Co Ltd Light emitting diode
JP2005019541A (en) * 2003-06-24 2005-01-20 Rohm Co Ltd Optical semiconductor device
JP2005166941A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Light emitting device, its manufacturing method, lighting module using the same, and lighting equipment
JP2008227456A (en) * 2007-03-13 2008-09-25 Samsung Electro Mech Co Ltd High-power led package and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160513A (en) * 1988-11-08 1990-06-20 Kooki Eng:Kk Manufacture of component in hollow structure and its product
JPH02155708A (en) * 1988-12-09 1990-06-14 Sintokogio Ltd Manufacture of resin product
JP2003234509A (en) * 2002-02-08 2003-08-22 Citizen Electronics Co Ltd Light emitting diode
JP2005019541A (en) * 2003-06-24 2005-01-20 Rohm Co Ltd Optical semiconductor device
JP2005166941A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Light emitting device, its manufacturing method, lighting module using the same, and lighting equipment
JP2008227456A (en) * 2007-03-13 2008-09-25 Samsung Electro Mech Co Ltd High-power led package and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157310A1 (en) * 2012-04-17 2013-10-24 シャープ株式会社 Light-emitting device and method for manufacturing same
JP2014175416A (en) * 2013-03-07 2014-09-22 Toyoda Gosei Co Ltd Manufacturing method of light emitting device
CN103199186A (en) * 2013-04-27 2013-07-10 中国科学院苏州纳米技术与纳米仿生研究所 Photoelectric device with roughening structure on surface of nut cap
JP2015111626A (en) * 2013-12-06 2015-06-18 シャープ株式会社 Light-emitting device and method of manufacturing the same
WO2016158601A1 (en) * 2015-03-27 2016-10-06 東レエンジニアリング株式会社 Led module, and method for manufacturing led module
JP2016186974A (en) * 2015-03-27 2016-10-27 東レエンジニアリング株式会社 Led module and led module manufacturing method
US10333038B2 (en) 2015-03-27 2019-06-25 Toray Engineering Co., Ltd. LED module and method for manufacturing LED module

Also Published As

Publication number Publication date
JP5278300B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP6008940B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR20180080113A (en) Display devices and methods for forming display devices
CN203932096U (en) Flexible light-emitting semiconductor device and for supporting and be electrically connected the flexible article of light-emitting semiconductor device
JP5384727B2 (en) Method and apparatus for forming uniform particle layer of fluorescent material on surface
JP5278300B2 (en) Manufacturing method of LED light emitting device
CN103190204A (en) Flexible LED device with wire bond free die
CN104094424A (en) Molded lens forming chip scale led package and method of manufacturing the same
JP2010130007A (en) Light-emitting diode device and method of manufacturing the same
CN103199187B (en) A kind of LED encapsulation substrate and encapsulating structure and preparation method thereof
US10128424B2 (en) Method for producing optoelectronic semiconductor components and optoelectronic semiconductor component
CN104733597A (en) Light Emitting Device And Method Of Fabricating Same
US20150303359A1 (en) High Efficiency Light Emitting Diode Package Suitable for Wafer Level Packaging
JP6481458B2 (en) Method for manufacturing light emitting device
JP2018107285A (en) Light-emitting device and method for manufacturing the same
CN110783252A (en) Micro device transfer head, manufacturing method thereof and micro device transfer method
US8476089B2 (en) Method for manufacturing light emitting diode package
EP3188261B1 (en) Chip scale packaging light emitting device and manufacturing method of the same
JP6582827B2 (en) Substrate, light emitting device, and method of manufacturing light emitting device
JP2012182357A (en) Lead frame substrate for led light emitting element, led light emitting element device, and lead frame for the led light emitting element
JP6769881B2 (en) Chip scale package type light emitting device having a concave surface and its manufacturing method
TW201429002A (en) Method for manufacturing a light-emitting diode package structure
US20130248906A1 (en) Light emitting diode package structure and method for fabricating the same
JP5278301B2 (en) Method for manufacturing case for LED light emitting device
TW202306145A (en) Display panel and manufacturing method thereof
TW201824404A (en) A method of semiconductor package without substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150