JP2011127950A - Liquid thin-film forming device - Google Patents

Liquid thin-film forming device Download PDF

Info

Publication number
JP2011127950A
JP2011127950A JP2009284993A JP2009284993A JP2011127950A JP 2011127950 A JP2011127950 A JP 2011127950A JP 2009284993 A JP2009284993 A JP 2009284993A JP 2009284993 A JP2009284993 A JP 2009284993A JP 2011127950 A JP2011127950 A JP 2011127950A
Authority
JP
Japan
Prior art keywords
liquid
liquid sample
wave
sample
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009284993A
Other languages
Japanese (ja)
Inventor
Masafumi Okuno
雅史 奥野
Akira Watabe
明 渡部
Hiroshi Tsugita
浩 次田
Hidetoshi Nose
秀俊 能勢
Takanori Kojima
孝則 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI PHYSICS KENKYUSHO KK
Original Assignee
HIKARI PHYSICS KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI PHYSICS KENKYUSHO KK filed Critical HIKARI PHYSICS KENKYUSHO KK
Priority to JP2009284993A priority Critical patent/JP2011127950A/en
Publication of JP2011127950A publication Critical patent/JP2011127950A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem in spectroscopic analyzers that use light or electromagnetic waves, such that the measurement of true spectral information is disturbed due to inclusion of spectral information of cell material, as well as, multiple interference effect by a cell overlapping a signal as noise since liquid samples are measured, while being sandwiched by a cell formed of a material, such as glass. <P>SOLUTION: In the spectroscopic analyzers which uses light or electromagnetic waves, spectral signals with less noise can be measured, without using the cell, by used of a liquid thin-film forming device which uses a nozzle directly forming a thin film from a liquid sample and has interference effect eliminating function by a sonic or ultrasonic vibrator for eliminating interferences of the nozzle which are defects. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、分光分析装置において、液体状の試料を計測する際に発生する干渉効果に起因するノイズを取り除くことを目的とした、干渉信号防止機能を有する液体状試料薄膜化装置に関するものである。 The present invention relates to a liquid sample thinning device having an interference signal prevention function for the purpose of removing noise caused by an interference effect generated when measuring a liquid sample in a spectroscopic analyzer. .

光あるいは電磁波を利用した分光分析手法において、利用可能な波長あるいは周波数領域が拡大している。従来から行われている赤外分光よりも、さらに長波長の電磁波を使うことにより、分子間の振動周波数や分子内の振動周波数に共鳴する現象を観測することが可能となった。 In a spectroscopic analysis method using light or electromagnetic waves, usable wavelengths or frequency regions are expanding. By using electromagnetic waves having a longer wavelength than conventional infrared spectroscopy, it has become possible to observe phenomena that resonate with vibration frequencies between molecules and vibration frequencies within molecules.

光あるいは電磁波を用いる分光分析手法において、測定対象となる物質の状態は、固体状、液体状、気体状など、さまざまな形態が存在する。液体状試料の計測では、通常、溶液セルと呼ばれる容器に液体状試料を挟みこみ、溶液セルの外部から照射した電磁波、例えば赤外線やテラヘルツ波の透過波を計測している。通常、溶液の濃度など測定対象の状態に応じて、溶液セルの厚さをいろいろ変えて計測されている。透過率が低く、試料を通過してきたテラヘルツ波の信号が弱くなるような液体状試料では、数十ミクロン程度のスペーサーをガラス板等で挟んで、薄い溶液セルを構成し、計測が行われる。このスペーサーの厚さを種々用意することが計測の手段として一般的に利用されている。

特開2007−083364 特開平9−275235 実開平2−129755
In a spectroscopic analysis method using light or electromagnetic waves, the state of a substance to be measured has various forms such as a solid state, a liquid state, and a gaseous state. In the measurement of a liquid sample, a liquid sample is usually sandwiched in a container called a solution cell, and an electromagnetic wave irradiated from the outside of the solution cell, for example, a transmitted wave of infrared rays or terahertz waves is measured. Usually, the thickness of the solution cell is varied in accordance with the state of the measurement object such as the concentration of the solution. In a liquid sample having a low transmittance and a weak terahertz wave signal passing through the sample, a thin solution cell is formed by sandwiching a spacer of about several tens of microns between glass plates or the like, and measurement is performed. The preparation of various spacer thicknesses is generally used as a measuring means.

JP2007-083364 JP-A-9-275235 2-129755

測定対象が水溶液の場合、テラヘルツ波領域における水の吸収度が大きいため、溶液セルを通過したテラヘルツ波は相当に減衰する。その結果、水溶液試料のテラヘルツ波領域での計測は一般的にノイズが多く、SN比が悪いとされている。 When the measurement target is an aqueous solution, the water absorption in the terahertz wave region is large, and therefore the terahertz wave that has passed through the solution cell is considerably attenuated. As a result, the measurement in the terahertz wave region of an aqueous solution sample is generally considered to be noisy and have a poor SN ratio.

また、溶液セルを用いた液体状試料の計測では、通過する電磁波は、液体状試料からの情報と、セル構成材質の情報との両方の情報を含んで検知する。 Further, in the measurement of a liquid sample using a solution cell, the electromagnetic wave passing therethrough is detected by including both information from the liquid sample and information on the cell constituent material.

スペーサーを利用した溶液セルでは、セルギャップ50ミクロン程度の薄さが限界であり、液体相の厚さを薄くすることで、透過する信号強度を向上させる手法には限界がある。また、スペーサーをはさむ両側のガラス板等の特性も、通過させるテラヘルツ波に重畳するため、SN比の悪い信号に対して、セルの影響を取り除くような数学的処理も必要とされている。 In a solution cell using a spacer, the thinness of the cell gap of about 50 microns is the limit, and there is a limit to the technique for improving the transmitted signal intensity by reducing the thickness of the liquid phase. Further, since the characteristics of the glass plates on both sides sandwiching the spacer are also superimposed on the terahertz wave to be passed, a mathematical process that removes the influence of the cell is required for a signal having a poor SN ratio.

さらに、セルの構造上、セルギャップを50ミクロン程度までしか薄くできないという欠点をもつ。この構造的な制限により、透過する電磁波の吸収が強すぎる場合などは、 厚さとして50ミクロンより薄い液体相にする必要もある場合、セル方式ではそれを実現できないなどの課題がある。 Furthermore, the cell structure has the disadvantage that the cell gap can only be reduced to about 50 microns. Due to this structural limitation, there is a problem that when the absorption of electromagnetic waves to be transmitted is too strong, it is necessary to make the liquid phase thinner than 50 microns in thickness, and this cannot be realized by the cell method.

また、可干渉性のある電磁波がセルを透過する場合、セルの壁面由来の多重干渉に起因する情報が検知器に入り込みノイズとなるため、それを取り除くデーター処理が複雑となる欠点がある。特に、テラヘルツ波の波長と試料の厚さが同程度となる場合には、干渉効果が顕著となるため、それに起因するノイズは大きな課題となっている。例えば、1THzの波長は300ミクロンであり、10THzの波長は10ミクロンである。 In addition, when coherent electromagnetic waves are transmitted through the cell, information due to multiple interference derived from the cell wall enters the detector and becomes noise, and thus there is a disadvantage that the data processing for removing it becomes complicated. In particular, when the wavelength of the terahertz wave and the thickness of the sample are approximately the same, the interference effect becomes prominent, and noise resulting therefrom is a major issue. For example, the wavelength of 1 THz is 300 microns, and the wavelength of 10 THz is 10 microns.

本発明は、テラヘルツ波を用いた分光装置において、液体状の試料を計測しようとする際に生じる液体試料の厚さの課題、および、液体試料をテラヘルツ波が通過する際に生じる干渉によるノイズの課題を以下の方法により解決する手段を提供する。 The present invention relates to a problem of the thickness of a liquid sample that occurs when a liquid sample is measured in a spectroscopic device that uses a terahertz wave, and noise caused by interference that occurs when the terahertz wave passes through the liquid sample. Means for solving the problems by the following methods are provided.

本発明によれば、液体状の試料に対して溶液セルを用いることなく、薄膜状に形成することができ、吸収率の高い液体、特に水溶液を試料として計測する場合には、薄膜状の液体の厚さを十分に薄くする事が可能となる。たとえば、50ミクロン以下にすれば、テラヘルツ波は液体の大きな吸収を受けながらも、検知器が十分なSN比で計測する強度をもって試料を透過することができる。 According to the present invention, a liquid sample can be formed into a thin film without using a solution cell, and when measuring a liquid having a high absorption rate, particularly an aqueous solution as a sample, the thin film liquid It becomes possible to make the thickness of the film sufficiently thin. For example, if the thickness is 50 microns or less, the terahertz wave can be transmitted through the sample with an intensity measured by the detector with a sufficient S / N ratio while receiving large absorption of the liquid.

しかし、上記ノズルにより生じる液体状薄膜の表面が極めて平坦であるため、表面と裏面間の多重干渉が生じる。この多重干渉効果による影響は、溶液セルを用いる従来の計測手段の場合と同様に、計測信号にノイズとして重畳される。そこで、ノズル装置に音波並びに超音波振動発生装置等を取り付け、液体状薄膜の表面に音波または超音波の波を発生させることで、表面の平坦性を低下させ、通過するテラヘルツ波の干渉効果を取り除く。また、音波または超音波は、ノズルと分離した装置から、空間を通して液体膜に与える手法でも、同様に液体膜の表面に波を発生させ、同じく干渉効果を取り除く効果を得ることができる。 However, since the surface of the liquid thin film generated by the nozzle is extremely flat, multiple interference occurs between the front surface and the back surface. The influence due to the multiple interference effect is superimposed on the measurement signal as noise, as in the case of the conventional measurement means using the solution cell. Therefore, by attaching a sound wave and ultrasonic vibration generator etc. to the nozzle device and generating sound waves or ultrasonic waves on the surface of the liquid thin film, the surface flatness is lowered, and the interference effect of the terahertz wave passing through is reduced. remove. In addition, even when a sound wave or an ultrasonic wave is applied to the liquid film through a space from a device separated from the nozzle, it is possible to similarly generate waves on the surface of the liquid film and to obtain an effect of removing the interference effect.

以上の手法により、試料の膜厚が数ミクロンから数百ミクロンの膜厚であっても、多重干渉効果によるノイズを取り除くことが可能となる。 With the above method, it is possible to remove noise due to the multiple interference effect even if the film thickness of the sample is several microns to several hundred microns.

本発明による音波並びに超音波振動機能を具備した液体状薄膜発生装置を用いることにより、液体を対象としたテラヘルツ分光装置において、干渉による影響を回避した液体状薄膜を形成できることにより、従来から行われてきたガラス等を用いた容器セルを用いることなく、液体だけの特性を正確に計測することが可能となり、計測精度の向上、さらに計測時間の短縮などの改善が可能となり、レーザーを用いたテラヘルツ分光加工産業への効果は大きい。 By using a liquid thin film generator having a sound wave and ultrasonic vibration function according to the present invention, it is possible to form a liquid thin film that avoids the influence of interference in a terahertz spectrometer for liquids. It is possible to accurately measure the characteristics of only liquid without using a container cell made of glass, etc., improving measurement accuracy and shortening measurement time, and terahertz using laser The effect on the spectral processing industry is great.

以下、図を用いて本発明の詳細について、テラヘルツ分光装置において音波並びに超音波振動機能を具備した液体状薄膜発生装置の説明を、先ず、従来のノズルによる課題の説明を行い、次に、課題を解決したノズルとその適用例を示す。 Hereinafter, the details of the present invention will be described with reference to the drawings. In the terahertz spectrometer, the description of the liquid thin film generator equipped with the sound wave and the ultrasonic vibration function will be given. First, the problem with the conventional nozzle will be explained. The nozzle which solved the problem and its application example are shown.

図1に示すように、上記参考文献(1)で示されたノズルによる液膜は、液膜の表面と裏面で通過する電磁波、特に、テラヘルツ波領域と呼ばれる10ミクロンから300ミクロン程度の範囲で、干渉性を生じる。その結果、入射するテラヘルツビームがそのまま、進行方向に進むビームと、裏面により反射波が生じて、その反射波が表面で反射して再び裏面方向へ向かうビーム(第1経路の透過波)が発生する。 As shown in FIG. 1, the liquid film by the nozzle shown in the above reference (1) is an electromagnetic wave passing through the front and back surfaces of the liquid film, particularly in the range of about 10 to 300 microns called the terahertz wave region. Cause interference. As a result, the incident terahertz beam stays as it is in the traveling direction, and a reflected wave is generated by the back surface, and the reflected wave is reflected from the surface and travels again toward the back surface (transmitted wave in the first path). To do.

第1経路の透過波が発生する理由と同じ理由により、第2経路の透過波が発生し、表面と裏面の面精度が高いほど、同じ減少が繰り返され、結果的に第n経路の透過波まで重ねあわされたビームが液膜を通過した電磁波となる。 For the same reason that the transmitted wave of the first path is generated, the transmitted wave of the second path is generated. The higher the surface accuracy of the front and back surfaces, the more the same decrease is repeated, and as a result, the transmitted wave of the nth path The beam overlapped until the end becomes an electromagnetic wave that has passed through the liquid film.

特許文献3に示したノズルは、液膜の厚さを均一にする点で優れているが、干渉によるノイズを発生することが課題であった。そこで、図2に示すように、ノズルの先端部分に超音波振動子を取り付けることにより、ノズルを構成する材料を通じて、ノズルが発生する液膜の表面に表面波を発生させる。 The nozzle shown in Patent Document 3 is excellent in that the thickness of the liquid film is uniform, but it has been a problem to generate noise due to interference. Therefore, as shown in FIG. 2, by attaching an ultrasonic vibrator to the tip portion of the nozzle, a surface wave is generated on the surface of the liquid film generated by the nozzle through the material constituting the nozzle.

液膜の表面に音波または超音波による波が発生することにより、電磁波の波長に対しては、表面および裏面が平坦な面ではなくなることにより、図1で示す干渉が発生しなくなる。その結果、入射するテラヘルツビームは、液膜を多重反射することなく通過する。 The generation of waves by sound waves or ultrasonic waves on the surface of the liquid film prevents the interference shown in FIG. 1 from occurring because the front and back surfaces are not flat with respect to the wavelength of the electromagnetic wave. As a result, the incident terahertz beam passes through the liquid film without multiple reflection.

液膜の流量はノズルの口径と液体の圧力により決まるため、液膜の厚さは時間的な平均では一定である。したがって、時間的に平均化して計測される信号には超音波により生成した液膜表面の波の影響は加わらない。 Since the flow rate of the liquid film is determined by the nozzle diameter and the pressure of the liquid, the thickness of the liquid film is constant in terms of time average. Therefore, the influence of the wave on the surface of the liquid film generated by the ultrasonic wave is not added to the signal measured by averaging in time.

図2に示すような音波並びに超音波発生装置をノズル本体に取り付ける方法とは別に、液膜の近傍に音波並びに超音波発生装置を配置することにより、空間的な超音波振動を液膜表面に加えることにより、液膜表面に波を発生させ、干渉効果を取り除くことも可能である。 Separately from the method of attaching the sound wave and ultrasonic generator as shown in FIG. 2 to the nozzle body, by placing the sound wave and ultrasonic generator near the liquid film, spatial ultrasonic vibration is applied to the liquid film surface. By adding, it is possible to generate waves on the liquid film surface and remove the interference effect.

図3に液膜面の干渉効果を取り除いた液体状試料薄膜化装置を用いたテラヘルツ分光装置の一例を示す。被計測対象となる液体を収納する液体試料タンクから、配管を通じて、加圧ポンプにより液体試料を加圧し、さらに、配管系を通じて超音波振動子を具備した液体状試料を薄膜化するノズルを通過させる。 FIG. 3 shows an example of a terahertz spectrometer using a liquid sample thinning device that eliminates the interference effect on the liquid film surface. From the liquid sample tank that stores the liquid to be measured, the liquid sample is pressurized by a pressure pump through a pipe, and further passed through a nozzle for thinning the liquid sample having an ultrasonic vibrator through the pipe system. .

薄膜化した試料に、テラヘルツ波発生装置から発するテラヘルツビームを透過させる。透過したビームはテラヘルツ検知用半導体により電気信号に変換されパソコンを含む検出装置において数値データー化される。 A terahertz beam emitted from the terahertz wave generator is transmitted through the thinned sample. The transmitted beam is converted into an electrical signal by a terahertz detection semiconductor and converted into numerical data in a detection device including a personal computer.

ノズルから出た液体状試料は、液体収集タンクにより集められる。 The liquid sample exiting the nozzle is collected by a liquid collection tank.

図4にテラヘルツ時間分解分光システムに、液体状試料薄膜化装置を用いた場合の実施例を示す。この例では、テラヘルツ波の発生と、試料を通過または反射したテラヘルツ信号波の検出の両方にフェムト秒レーザーを用いる。それぞれのフェムト秒レーザーは時間的に同期させる必要があるため、1つのフェムト秒光源から発生したフェムト秒レーザーを二つの経路に分ける光学系を基本とする。 FIG. 4 shows an embodiment in which a liquid sample thinning device is used in the terahertz time-resolved spectroscopy system. In this example, a femtosecond laser is used for both generation of a terahertz wave and detection of a terahertz signal wave that has passed through or reflected from a sample. Since each femtosecond laser needs to be synchronized in time, it is based on an optical system that divides a femtosecond laser generated from one femtosecond light source into two paths.

図4に示すように、フェムト秒レーザーから発生したレーザービームはビームスプリッターで2分割され、一方はテラヘルツ波の発生のために、可変光学遅延装置を経て、レンズにより、テラヘルツ発生半導体に集光される。 As shown in Fig. 4, the laser beam generated from the femtosecond laser is split into two by a beam splitter, and one is focused on a terahertz-generating semiconductor by a lens via a variable optical delay device for generation of terahertz waves. The

図4に示すように、被計測対象となる液体を収納する液体試料タンクから、配管を通じて、加圧ポンプにより液体試料を加圧し、さらに、配管系を通じて超音波振動子を具備した液体状試料を薄膜化するノズルを通過させる。ノズルからの液体は液体収集タンクにより回収される。 As shown in FIG. 4, from a liquid sample tank that stores a liquid to be measured, a liquid sample is pressurized through a pipe with a pressure pump, and further equipped with an ultrasonic transducer through a pipe system. Pass the nozzle to be thinned. Liquid from the nozzle is collected by a liquid collection tank.

テラヘルツ波発生用半導体素子から発生したテラヘルツビームは、薄膜状になった試料を通過した後、テラヘルツ検出半導体に入射する。ここで、可変光学遅延装置で二つに分離したフェムト秒レーザーの光路長を調整することにより、試料の情報を含む信号の時間分解計測を実施する。テラヘルツ検出半導体で電気信号に変換された信号はパソコンを含む検出装置により数値データー化される。
The terahertz beam generated from the terahertz wave generating semiconductor element passes through the thin film sample and then enters the terahertz detection semiconductor. Here, the time-resolved measurement of the signal including the sample information is performed by adjusting the optical path length of the femtosecond laser separated into two by the variable optical delay device. A signal converted into an electrical signal by the terahertz detection semiconductor is converted into numerical data by a detection device including a personal computer.

本発明の活用例として、吸収が大きいという理由で、計測が困難とされている水を主成分とする液体状の試料の分析が実現するため、液体状飲料製品の製造ラインに組み込んだ、瞬時計測型の検査装置を作ることができ、食品の品質管理や食品の安全確保に利用可能である。 As an application example of the present invention, an analysis of a liquid sample whose main component is water, which is considered difficult to measure because of its large absorption, is realized in an instant in a liquid beverage product production line. A measurement-type inspection device can be made, which can be used for quality control of food and ensuring food safety.

既存の薄膜化ノズルによる干渉効果の課題を示す図。The figure which shows the subject of the interference effect by the existing thin film nozzle. 干渉効果を取り除く機能を有する液体状試料薄膜化ノズルを示す図。The figure which shows the liquid sample thin film nozzle which has a function which removes an interference effect. 干渉効果を取り除く機能を有する液体状試料薄膜化装置を含むテラヘルツ波分光装置を示す図。The figure which shows the terahertz wave spectroscopy apparatus containing the liquid sample thin film forming apparatus which has a function which removes an interference effect. 干渉効果を取り除く機能を有する液体状試料薄膜化装置を含むテラヘルツ波時間分解分光装置を示す図The figure which shows the terahertz wave time-resolved spectroscopic device including the liquid sample thinning device having the function of removing the interference effect

Claims (7)

液体を板状の均一な薄膜にし、板状の部分を光あるいは電磁波を通過させて、その液体の物性を評価する装置において、通過する光あるいは電磁波に対する干渉効果を液膜表面に表面波を生じさせることで取り除くことを特徴とする、液体状試料薄膜化装置。 In a device that evaluates the physical properties of the liquid by making the liquid into a plate-like uniform thin film and allowing light or electromagnetic waves to pass through the plate-like part, it produces surface waves on the surface of the liquid film that interfere with the light or electromagnetic waves that pass through. The liquid sample thinning device is characterized in that it is removed by removing the liquid sample. 音波並びに超音波振動子と液体を薄膜化する装置とを一体化した構造で、薄膜表面に音波または超音波振動による表面波を生じさせる、請求項1に記載の液体試料薄膜化装置。 2. The liquid sample thinning device according to claim 1, wherein a surface wave is generated on the surface of the thin film by a sound wave or ultrasonic vibration with a structure in which a sound wave and an ultrasonic vibrator and a device for thinning the liquid are integrated. 音波並びに超音波振動子と液体を薄膜化する装置とを一体化しない構造で、音波並びに超音波振動子から発する空間媒体の振動を介して、薄膜表面に音波または超音波振動による表面波を生じさせる、請求項1に記載の液体状試料薄膜化装置。 A structure that does not integrate a sound wave and an ultrasonic vibrator with a liquid thinning device, and generates a surface wave due to the sound wave or ultrasonic vibration on the surface of the thin film through the vibration of the spatial medium emitted from the sound wave and the ultrasonic vibrator. The liquid sample thin film forming apparatus according to claim 1. 液体薄膜の表面に発生する表面波の波長や強度を、付随する音波並びに超音波振動装置から制御することを特長とする、請求項1から請求項3に記載の液体状試料薄膜化装置。 The liquid sample thinning device according to any one of claims 1 to 3, wherein the wavelength and intensity of surface waves generated on the surface of the liquid thin film are controlled from an accompanying sound wave and an ultrasonic vibration device. 光あるいは電磁波を用いる分光装置において、液体状の試料を被計測物とする際、その試料を通過する光あるいは電磁波が試料を通過する際に発生する干渉効果を削除するための機能を有する請求項1から請求項4に記載の液体状試料薄膜化装置を具備した分光分析装置。 The spectroscopic device using light or electromagnetic waves has a function for eliminating an interference effect generated when light or electromagnetic waves passing through the sample pass through the sample when a liquid sample is used as an object to be measured. A spectroscopic analysis apparatus comprising the liquid sample thinning device according to claim 1. 請求項5に記載の分光装置において、テラヘルツ波を用いる分光装置に使われる液体試料薄膜化装置において、装置が作り出す液体の厚さが、50ミクロン以下であり、入射したテラヘルツ波が計測に十分な強度で透過することを特徴とする液体状試料の厚さを制御できる機能を有する請求項1から請求項4に記載の液体状試料薄膜化装置を具備した分光分析装置。 6. The spectroscopic device according to claim 5, wherein the liquid sample thinning device used in the spectroscopic device using terahertz waves has a liquid thickness of 50 microns or less, and the incident terahertz waves are sufficient for measurement. 5. A spectroscopic analysis apparatus comprising the liquid sample thinning device according to claim 1, which has a function of controlling the thickness of the liquid sample characterized by being transmitted with intensity. 請求項6に記載の装置において、テラヘルツ波の波長と液体状試料の厚さが同じになることで生じる干渉フィルター効果を回避する目的で、テラヘルツ波の波長と液膜の厚さが一致しないような膜厚制御機能を有する請求項1から請求項4に記載の液体状試料薄膜化装置を具備した分光分析装置。
7. The apparatus according to claim 6, wherein the wavelength of the terahertz wave and the thickness of the liquid film do not coincide with each other for the purpose of avoiding an interference filter effect caused by the same wavelength of the terahertz wave and the thickness of the liquid sample. 5. A spectroscopic analysis apparatus comprising the liquid sample thinning device according to claim 1 having a proper film thickness control function.
JP2009284993A 2009-12-16 2009-12-16 Liquid thin-film forming device Pending JP2011127950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284993A JP2011127950A (en) 2009-12-16 2009-12-16 Liquid thin-film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284993A JP2011127950A (en) 2009-12-16 2009-12-16 Liquid thin-film forming device

Publications (1)

Publication Number Publication Date
JP2011127950A true JP2011127950A (en) 2011-06-30

Family

ID=44290707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284993A Pending JP2011127950A (en) 2009-12-16 2009-12-16 Liquid thin-film forming device

Country Status (1)

Country Link
JP (1) JP2011127950A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195176A (en) * 2012-03-19 2013-09-30 Canon Inc Electromagnetic wave pulse measuring device, electromagnetic wave pulse measuring method, and application device using electromagnetic wave pulse measuring device
JP2015219088A (en) * 2014-05-16 2015-12-07 フェムトディプロイメンツ株式会社 Liquid membrane nozzle device, injection needle, syringe, syringe type liquid membrane generation device, liquid sterilization device, liquid screen formation device, and method for manufacturing liquid membrane nozzle device
WO2017069132A1 (en) * 2015-10-19 2017-04-27 フェムトディプロイメンツ株式会社 Terahertz time-resolved spectroscopic device
WO2017138525A1 (en) * 2016-02-12 2017-08-17 フェムトディプロイメンツ株式会社 Liquid film generating device and liquid film cartridge used therein
JP2017146291A (en) * 2016-02-12 2017-08-24 フェムトディプロイメンツ株式会社 Liquid film production device and liquid film cartridge used for the same
JP6266719B1 (en) * 2016-08-31 2018-01-24 フェムトディプロイメンツ株式会社 Terahertz time domain spectrometer
WO2018110481A1 (en) * 2016-12-15 2018-06-21 フェムトディプロイメンツ株式会社 Terahertz wave signal analyzing device, terahertz wave signal analyzing method, and program for analyzing terahertz wave signal
WO2019171772A1 (en) 2018-03-05 2019-09-12 フェムトディプロイメンツ株式会社 Liquid film generation device and liquid film cartridge for use therein
WO2021201237A1 (en) 2020-04-03 2021-10-07 フェムトディプロイメンツ株式会社 Measuring jig, and calibration method and terahertz wave measuring method using same
EP4047352A4 (en) * 2019-10-18 2023-11-15 Femto Deployments Inc. Electromagnetic signal analysis device and electromagnetic signal analysis program

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195176A (en) * 2012-03-19 2013-09-30 Canon Inc Electromagnetic wave pulse measuring device, electromagnetic wave pulse measuring method, and application device using electromagnetic wave pulse measuring device
JP2015219088A (en) * 2014-05-16 2015-12-07 フェムトディプロイメンツ株式会社 Liquid membrane nozzle device, injection needle, syringe, syringe type liquid membrane generation device, liquid sterilization device, liquid screen formation device, and method for manufacturing liquid membrane nozzle device
KR20180071196A (en) 2015-10-19 2018-06-27 펨토 디플로이멘츠 가부시키가이샤 Terahertz time-resolved spectroscopy device
WO2017069132A1 (en) * 2015-10-19 2017-04-27 フェムトディプロイメンツ株式会社 Terahertz time-resolved spectroscopic device
US10295461B2 (en) 2015-10-19 2019-05-21 Femto Deployments Inc. Terahertz time domain spectroscopy device
WO2017138525A1 (en) * 2016-02-12 2017-08-17 フェムトディプロイメンツ株式会社 Liquid film generating device and liquid film cartridge used therein
JP2017146291A (en) * 2016-02-12 2017-08-24 フェムトディプロイメンツ株式会社 Liquid film production device and liquid film cartridge used for the same
US10724941B2 (en) 2016-02-12 2020-07-28 FEMTO Deployments, Inc. Liquid membrane forming device and liquid membrane cartridge used therein
JP6266719B1 (en) * 2016-08-31 2018-01-24 フェムトディプロイメンツ株式会社 Terahertz time domain spectrometer
WO2018042938A1 (en) * 2016-08-31 2018-03-08 フェムトディプロイメンツ株式会社 Terahertz time domain spectroscopy apparatus
US10352849B2 (en) 2016-08-31 2019-07-16 Femto Deployments Inc. Terahertz time domain spectroscopic apparatus
JP2018036121A (en) * 2016-08-31 2018-03-08 フェムトディプロイメンツ株式会社 Terahertz time domain spectral instrument
WO2018110481A1 (en) * 2016-12-15 2018-06-21 フェムトディプロイメンツ株式会社 Terahertz wave signal analyzing device, terahertz wave signal analyzing method, and program for analyzing terahertz wave signal
JPWO2018110481A1 (en) * 2016-12-15 2019-12-19 フェムトディプロイメンツ株式会社 Terahertz wave signal analyzer, terahertz wave signal analysis method, and terahertz wave signal analysis program
US11181474B2 (en) 2016-12-15 2021-11-23 Femto Deployments Inc. Terahertz wave signal analysis device, terahertz wave signal analysis method, and terahertz wave signal analysis program
WO2019171772A1 (en) 2018-03-05 2019-09-12 フェムトディプロイメンツ株式会社 Liquid film generation device and liquid film cartridge for use therein
EP4047352A4 (en) * 2019-10-18 2023-11-15 Femto Deployments Inc. Electromagnetic signal analysis device and electromagnetic signal analysis program
WO2021201237A1 (en) 2020-04-03 2021-10-07 フェムトディプロイメンツ株式会社 Measuring jig, and calibration method and terahertz wave measuring method using same
KR20220163347A (en) 2020-04-03 2022-12-09 펨토 디플로이멘츠 가부시키가이샤 Measurement jig, calibration method using it, and terahertz wave measurement method
JP7465578B2 (en) 2020-04-03 2024-04-11 フェムトディプロイメンツ株式会社 Measurement tool, calibration method using same, and terahertz wave measurement method

Similar Documents

Publication Publication Date Title
JP2011127950A (en) Liquid thin-film forming device
JP6266719B1 (en) Terahertz time domain spectrometer
US8742353B2 (en) Single terahertz wave time-waveform measuring device
Wang et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound
US7798000B1 (en) Non-destructive imaging, characterization or measurement of thin items using laser-generated lamb waves
JP6997779B2 (en) Acoustic resonance spectroscopy measurement method and system
EP2722639A1 (en) Method for measuring layer thickness of multilayer ceramic
CN109030406B (en) Terahertz frequency spectrum calibration system and method
JPWO2006085403A1 (en) Real-time terahertz tomography equipment and spectroscopic imaging equipment
WO2017069132A1 (en) Terahertz time-resolved spectroscopic device
US11408823B2 (en) Terahertz spectrum measurement method and system based on unequal optical path method
JP2008076159A (en) Method and device for inspecting internal defect
KR100822680B1 (en) A laser ultrasonic apparatus and method to detect micro multi-cracks
JP2014194344A (en) Method for measurement using terahertz wave
CN104792705A (en) Laser power fluctuation monitoring and compensating device and method for photoacoustic spectrum measurement
WO2018099408A1 (en) Highly sensitive, graphene surface wave based multiple light beam refractive index detection apparatus and method
JP4439363B2 (en) Online crystal grain size measuring apparatus and measuring method using laser ultrasonic wave
CN104914050A (en) Device and method for improving detection sensitivity of optoacousticspectrum
JP2008134076A (en) Gas analyzer
Hirsch et al. Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements
KR101700139B1 (en) Apparatus and method for measurement of nonlinearity parameter using laser
US20150241348A1 (en) Information acquiring apparatus and information acquiring method
Wiesinger et al. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes
US10247659B2 (en) Device for characterizing an interface of a structure and corresponding device
US20240142372A1 (en) Adulteration and authenticity analysis method of organic substances and materials by terahertz spectroscopy