JP2011126765A - Autopyrolysis method of hydrocarbon - Google Patents

Autopyrolysis method of hydrocarbon Download PDF

Info

Publication number
JP2011126765A
JP2011126765A JP2009299506A JP2009299506A JP2011126765A JP 2011126765 A JP2011126765 A JP 2011126765A JP 2009299506 A JP2009299506 A JP 2009299506A JP 2009299506 A JP2009299506 A JP 2009299506A JP 2011126765 A JP2011126765 A JP 2011126765A
Authority
JP
Japan
Prior art keywords
hydrogen
furnace
hydrocarbons
oxygen
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009299506A
Other languages
Japanese (ja)
Inventor
Tomoki Yamazaki
知機 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUISO KK
Original Assignee
NIPPON SUISO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUISO KK filed Critical NIPPON SUISO KK
Priority to JP2009299506A priority Critical patent/JP2011126765A/en
Publication of JP2011126765A publication Critical patent/JP2011126765A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pyrolyzing and separating hydrocarbons into carbon and hydrogen with high thermal efficiency to obtain hydrogen, while minimizing a byproduct of CO<SB>2</SB>. <P>SOLUTION: An autopyrolysis method of hydrocarbons is provided, which comprises: blowing an appropriate amount of oxygen into hot hydrogen having waste heat generated from a pyrolytic furnace 2 for hydrocarbons so as to partially burn the hot hydrogen to reach a high temperature of 1,200 to 1,600°C; bringing a new hydrocarbon into contact with the high temperature atmosphere to decompose; repeating the above processes for a plurality of times to increase the concentration and volume of the hot hydrogen gas; and cooling the gas to obtain crude hydrogen. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化水素を原料として水素を製造する熱分解法に関するものである。  The present invention relates to a thermal decomposition method for producing hydrogen from a hydrocarbon as a raw material.

酸素を用いて炭化水素を酸化改質する部分酸化法並びに自己熱改質法は1950年代に米国で開発され、水素の製造法としては水蒸気改質に次いで実績がある。このプロセスでは、酸素を用いて原料の一部を燃焼させ、発生した熱によって残りの原料を改質する。この方法は、反応温度が1,200〜1,600℃と非常に高いため、反応器材料が高価で大型になるなどして、水素製造法して最近ではあまり利用されていない。しかし、最近では反応器材料の高質化と単純な構造の装置なので注目されている。  A partial oxidation method for oxidizing and reforming hydrocarbons using oxygen and an autothermal reforming method were developed in the United States in the 1950s, and have a track record as a hydrogen production method after steam reforming. In this process, a part of the raw material is burned using oxygen, and the remaining raw material is reformed by the generated heat. Since this method has a very high reaction temperature of 1,200 to 1,600 ° C., it has not been used much recently as a hydrogen production method because the reactor material is expensive and large. Recently, however, it has attracted attention because it is a high-quality reactor material and a simple structure.

1) 中村 仁:水素製造装置 PETRO−TECH、23、1、p82〜89(2000)
2) 太田時男監修:水素エネルギー最前線:文部科学省 科学技術政策研究所編 工業調査会発行p152(2003)
3) 「触媒活用大字典」編集委員会編:触媒活用大事典p522(2004,12)
4) 水素燃料電池ハンドブック編委員会:水素燃料電池ハンドブックp668(平18、9)
1) Hitoshi Nakamura: Hydrogen production equipment PETRO-TECH, 23, 1, p82-89 (2000)
2) Supervised by Tokio Ota: Hydrogen Energy Frontline: Ministry of Education, Culture, Sports, Science and Technology, Institute of Science and Technology Policy, published by the Industrial Research Committee, p152 (2003)
3) “Catalyst Utilization Dictionary” Editorial Committee: Encyclopedia of Catalyst Utilization p522 (2004, 12)
4) Hydrogen Fuel Cell Handbook Compilation Committee: Hydrogen Fuel Cell Handbook p668 (Hei 18, 9)

発明が解決しようとする課題Problems to be solved by the invention

この発明は、炭化水素を炭素と水素に熱分解することが、課題である。An object of the present invention is to thermally decompose hydrocarbons into carbon and hydrogen.

上記方法を車上で操作できるモバイル式であること。Be mobile so that the above method can be operated on the vehicle.

課題を解決するための手段Means for solving the problem

炭化水素の熱分解のためには1200〜1600℃の高熱が必要なため、炉を複数個設け、炭化水素がその全ての炉を通過する間に適量の酸素と炭化水素を追加し、自ずから1200〜1600℃の高温の維持と前炉で生成した熱水素ガスの高温を利用して追加の炭化水素を熱分解する方法をとっている。Since high heat of 1200 to 1600 ° C. is necessary for pyrolysis of hydrocarbons, a plurality of furnaces are provided, and appropriate amounts of oxygen and hydrocarbons are added while the hydrocarbons pass through all of the furnaces. A method of thermally decomposing additional hydrocarbons is utilized by utilizing the high temperature of ˜1600 ° C. and the high temperature of the hot hydrogen gas generated in the previous furnace.

発明の効果The invention's effect

この発明は、それぞれの炉で発生した高熱水素の全量を次の炉に通し、その一部に適量の酸素を供給し、高熱水素を更に燃焼させ、1200〜1600℃の高温を維持し、この温度で新しく吹込まれた炭化水素を分解する。この方法を繰かえすことによって、新たなCOの発生なしに水素の製造は濃度と容量を増加できる。In the present invention, the entire amount of hot hydrogen generated in each furnace is passed through the next furnace, an appropriate amount of oxygen is supplied to a part of the furnace, the hot hydrogen is further combusted, and a high temperature of 1200 to 1600 ° C. is maintained. Decomposes newly injected hydrocarbons at temperature. By repeating this method, the production of hydrogen can increase the concentration and capacity without generating new CO 2 .

この発明の一例を示すと、図1に示すように断熱材1で覆われた筒状の第一熱分解炉2は酸素吹入口3と炭化水素吹入口5がついている。生成ガス排出口8は、酸素吹入口15のついた煙道11とつながって図2のように第2熱分解炉9と結合され、第1熱分解炉2で発生した生成ガスは第2熱分解炉9に導かれる。As an example of the present invention, as shown in FIG. 1, a cylindrical first pyrolysis furnace 2 covered with a heat insulating material 1 has an oxygen inlet 3 and a hydrocarbon inlet 5. The product gas discharge port 8 is connected to the flue 11 with the oxygen inlet 15 and is connected to the second pyrolysis furnace 9 as shown in FIG. Guided to the cracking furnace 9.

図1の酸素吹入口3と炭化水素吹入口5より矢印4,7のように第1熱分解炉2にガスを吹きこみ点火する。炉内が1200〜1600℃になると酸素の供給量を減じ、炉内を不完全燃焼の状態にする。炉内で生成するガスは炭化水素に含まれる水分にもよるが、おおよそ、H50%程度の粗水素を期待できる。A gas is blown into the first pyrolysis furnace 2 from the oxygen inlet 3 and the hydrocarbon inlet 5 in FIG. When the inside of the furnace reaches 1200 to 1600 ° C., the supply amount of oxygen is reduced and the inside of the furnace is brought into an incomplete combustion state. Although the gas generated in the furnace depends on the moisture contained in the hydrocarbon, crude hydrogen of about 50% H 2 can be expected.

上記によって生成したガスは排出口8をとおって煙道11を経て、図2に示す第2熱分解炉9に入る。煙道11の途中に設けられた酸素吹入口15から煙道11を通過する生成ガスの温度が1200〜1600℃になるように、適量の酸素を矢印13のように生成ガス中の水素を燃焼させ、昇温、炉内の温度の維持をはかる。The gas generated as described above enters the second pyrolysis furnace 9 shown in FIG. 2 through the exhaust port 8 and the flue 11. An appropriate amount of oxygen is burned with hydrogen in the product gas as indicated by arrow 13 so that the temperature of the product gas passing through the flue 11 from the oxygen inlet 15 provided in the middle of the flue 11 becomes 1200 to 1600 ° C. The temperature is raised and the temperature inside the furnace is maintained.

図2に示すように第2熱分解炉9の炭化水素吹入口16より矢印24のように計算量の炭化水素を吹込み、第2熱分解炉9に、前炉より導かれた生成ガスに炭化水素を当てて、これを熱分解する。生成したガスは、煙道12をとおって、第3熱分解炉10に入る。煙道12に設けられた追加酸素吹入口17より矢印14のように、適量の酸素が吹込まれ、第3熱分解炉10の温度が1200〜1600℃に昇温される。第3熱分解炉10では、炭化水素吹込口19より矢印18のように炭化水素が吹こまれ高熱水素を含む生成ガスに当てられて、熱分解され、H,C,CO,COとなる。この生成ガスは更に次の炉に向かうべく出口20より、矢印21のように移動される。符号6,22,23は炎である。As shown in FIG. 2, a calculated amount of hydrocarbons is injected from the hydrocarbon inlet 16 of the second pyrolysis furnace 9 as indicated by an arrow 24, and the product gas led from the previous furnace is introduced into the second pyrolysis furnace 9. The hydrocarbon is applied and pyrolyzed. The generated gas enters the third pyrolysis furnace 10 through the flue 12. An appropriate amount of oxygen is blown from an additional oxygen inlet 17 provided in the flue 12 as indicated by an arrow 14, and the temperature of the third pyrolysis furnace 10 is raised to 1200 to 1600 ° C. In the third pyrolysis furnace 10, hydrocarbons are blown from the hydrocarbon inlet 19 as shown by an arrow 18, and are applied to the product gas containing hot hydrogen to be thermally decomposed, and H 2 , C, CO, CO 2 Become. This generated gas is further moved from the outlet 20 as indicated by an arrow 21 toward the next furnace. Reference numerals 6, 22, and 23 are flames.

上記のような操作を繰り返すことによって、炭化水素の分解が進み、生成ガス中の水素濃度は高くなり、水素の容量も大きくなる。5〜7個の熱分解炉を回った生成ガスは、高い粗水素を含むことが期待できる。By repeating the operation as described above, hydrocarbon decomposition proceeds, the hydrogen concentration in the product gas increases, and the hydrogen capacity also increases. The product gas that has gone through 5 to 7 pyrolysis furnaces can be expected to contain high crude hydrogen.

この発明の水素製造法は、はじめの部分は、水蒸気改質法と部分酸化法、自己熱改質法と似ているが炭化水素から炭素をそのまま分解できるという点で自己熱分解法というべきである。The hydrogen production method of the present invention is similar to the steam reforming method, partial oxidation method, and autothermal reforming method at the beginning, but should be called autothermal decomposition method in that carbon can be decomposed as it is from hydrocarbon. is there.

この発明は、各炉での生成ガスの高温と高熱水素の高反応性を利用したもので、炭化水素を炭素と水素、並びにその他の副生物に分解できるという点で、脱炭素という現代の技術目標に近いものである。また、小型の熱分解炉を横に並べられるという点で、モバイル式として、車載が可能であり、また各熱分解炉にNiやPtを担持したアルミナその他の触媒を使用すれば5〜10%の熱効率の向上も見込めることは確実である。また、酸素の代わりに空気を使用することも可能であるが、生成ガス中の水素濃度が低くなるので、生成ガスを冷却し、脱炭素してのち高分子膜を使用して濃度を高めれば、燃料電池にも使用できる高純度の水素もできる。The present invention utilizes the high temperature of the product gas in each furnace and the high reactivity of hot hydrogen, and is a modern technology of decarbonization in that hydrocarbons can be decomposed into carbon and hydrogen, and other by-products. It is close to the goal. In addition, small thermal cracking furnaces can be arranged side by side, so that it can be mounted on the vehicle as a mobile type, and if each thermal cracking furnace uses an alumina or other catalyst carrying Ni or Pt, 5 to 10%. It is certain that the improvement of thermal efficiency can be expected. It is also possible to use air instead of oxygen, but the hydrogen concentration in the product gas will be low, so if the product gas is cooled and decarbonized, then using a polymer membrane to increase the concentration High-purity hydrogen that can also be used in fuel cells can be produced.

この発明の第1熱分解炉の縦断面図Longitudinal sectional view of the first pyrolysis furnace of the present invention この発明の全体の縦断面図Overall longitudinal sectional view of the present invention

Claims (1)

この発明は、断熱材で覆われた独立した熱分解炉を複数個直列につなぎ、それぞれの炉で発生する熱水素を最後尾の炉まで通り抜けさせる。各炉には、酸素と炭化水素の吹き込み口をつけ、前炉で生成した熱水素の一部を、上記吹き込み口よりの酸素で再燃焼させ、1200〜1600℃の温度を維持させる。この炉内に、新たに炭化水素を吹き込んでこれを炭素と水素に熱分解する。この操作を以下のそれぞれの炉でくりかえし、熱水素の濃度と容量を増加させ、最後尾の炉より熱水素を補集し、冷却して粗水素とする炭化水素の自己熱分解方法とした。In the present invention, a plurality of independent pyrolysis furnaces covered with a heat insulating material are connected in series, and hot hydrogen generated in each furnace passes through to the last furnace. Each furnace is provided with oxygen and hydrocarbon injection ports, and a portion of the hot hydrogen produced in the previous furnace is reburned with oxygen from the injection ports to maintain a temperature of 1200 to 1600 ° C. Hydrocarbon is newly blown into the furnace and pyrolyzed into carbon and hydrogen. This operation was repeated in each of the following furnaces to increase the concentration and capacity of hot hydrogen, collect the hot hydrogen from the last furnace, and cool it down to obtain crude hydrogen by cooling.
JP2009299506A 2009-12-21 2009-12-21 Autopyrolysis method of hydrocarbon Pending JP2011126765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299506A JP2011126765A (en) 2009-12-21 2009-12-21 Autopyrolysis method of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299506A JP2011126765A (en) 2009-12-21 2009-12-21 Autopyrolysis method of hydrocarbon

Publications (1)

Publication Number Publication Date
JP2011126765A true JP2011126765A (en) 2011-06-30

Family

ID=44289784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299506A Pending JP2011126765A (en) 2009-12-21 2009-12-21 Autopyrolysis method of hydrocarbon

Country Status (1)

Country Link
JP (1) JP2011126765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325829B2 (en) 2016-07-22 2022-05-10 Xgas As Process and apparatus for decomposing a hydrocarbon fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325829B2 (en) 2016-07-22 2022-05-10 Xgas As Process and apparatus for decomposing a hydrocarbon fuel

Similar Documents

Publication Publication Date Title
JP4707665B2 (en) Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
US9096809B2 (en) Process for generating energy from organic materials and/or biomass
US9664385B2 (en) Process for enabling carbon-capture from existing combustion processes
JP6717629B2 (en) Method for supplying hydrogen-containing reducing gas to blast furnace shaft
KR20070050071A (en) Process for production of hydrogen and/or carbon monoxide
CO4870701A1 (en) PROCESS AND PLANT TO REFORM CARGO MATERIALS CONTAINING HYDROCARBONS
WO2017134829A1 (en) Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace
MX2010008808A (en) Catalytic reaction module.
JP5309620B2 (en) Tar reforming method and apparatus for gasification equipment
US20180273380A1 (en) Method for producing synthesis gas
KR102599452B1 (en) How to Improve the Efficacy of Ammonia Syngas Plant
JP2014528503A (en) Coke dry quenching with carbon dioxide, including subsequent use of produced carbon monoxide
US20190048429A1 (en) Method and system for the production of porous iron
WO2009154512A2 (en) Synthesis gas production method and a device for carrying out said method
JP2011126765A (en) Autopyrolysis method of hydrocarbon
CN113060704B (en) Organic solid clean high-efficiency hydrogen production device and method
RU2016112550A (en) METHOD AND METHOD FOR PRODUCING METHANOL USING AN INTEGRATED REFORMING SYSTEM BASED ON AN OXYGEN CONDUCTING MEMBRANE
KR20150022050A (en) A refoming process of cokes oven gas for reducing CO2
RU72418U1 (en) SYSTEM FOR PRODUCING HYDROGEN FROM BIOGAS
JP2011111388A (en) Multistage thermal decomposition furnace for hydrocarbon
JP2008169320A (en) Reforming furnace
RU2394752C1 (en) Method of extracting hydrogen on palladium membrane with heat recuperation
RU2606439C2 (en) Processing carbon dioxide-riched fraction from plant for producing hydrogen and carbon monoxide
CN111023119A (en) VOCs waste gas treatment method and treatment device
JP2009102184A (en) Method of reforming hydrocarbon by oxyhydrogen flame using three-tube burner