JP2011125933A - Polishing method - Google Patents

Polishing method Download PDF

Info

Publication number
JP2011125933A
JP2011125933A JP2009283755A JP2009283755A JP2011125933A JP 2011125933 A JP2011125933 A JP 2011125933A JP 2009283755 A JP2009283755 A JP 2009283755A JP 2009283755 A JP2009283755 A JP 2009283755A JP 2011125933 A JP2011125933 A JP 2011125933A
Authority
JP
Japan
Prior art keywords
surface plate
workpiece
processing
polishing
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009283755A
Other languages
Japanese (ja)
Other versions
JP5423376B2 (en
Inventor
Yoshiyuki Ogawa
善行 小川
Kiyoshi Hiraoka
潔 平岡
Yoshiki Kemi
好希 毛見
Yasuaki Fujiwara
靖晃 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2009283755A priority Critical patent/JP5423376B2/en
Publication of JP2011125933A publication Critical patent/JP2011125933A/en
Application granted granted Critical
Publication of JP5423376B2 publication Critical patent/JP5423376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method for polishing both sides of an object by the predetermined amount while obtaining the high flatness in a short polishing time. <P>SOLUTION: The polishing method includes steps of: setting the polishing rates P, Q of an upper surface plate 35 and a lower surface plate 36 to different values in order to simultaneously polish both sides 10A, 10B of an object 10 and to adjust their thickness to the predetermined thickness To; measuring the polishing amounts L, M of both sides 10A, 10B of the object 10 with a polarized separation film 13 as a reference; polishing the object 10 in the first polishing time X; inverting both sides 10A, 10B of the object 10 with respect to the upper surface plate 35 and the lower surface plate 36; and polishing the inverted object 10 in the second polishing time Y. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、両面ラップ盤で被加工物の両面を研磨して所定の厚みに調整する研磨方法に関するものである。   The present invention relates to a polishing method in which both sides of a workpiece are polished by a double-sided lapping machine and adjusted to a predetermined thickness.

両面ラップ盤は、水晶基盤や半導体ウエハ、またハードディスク用のガラス基板等の薄板状被加工物を両面同時に研磨加工するものであり、両面同時に加工することによって、研磨時間を短縮している。   The double-sided lapping machine grinds a thin plate-like workpiece such as a quartz substrate, a semiconductor wafer, or a glass substrate for a hard disk on both sides at the same time, and shortens the polishing time by processing both sides simultaneously.

また、特許文献1に記載の両面ラップ盤では、被加工物が両面ラップ盤の上定盤と下定盤との間に配置され、両面ラップ盤が回転することによって、被加工物の上下面が同時に研磨されるが、被加工物の研磨代の約半分が研磨されると、両面ラップ盤から被加工物を取り外し、被加工物の上下面を反転させて両面ラップ盤に再配置する。そして、被加工物の両面を前記と同様に目標の厚みになるまで研磨する。このように、研磨の途中において被加工物を反転させることにより、上面と下面との研摩状態の相違を矯正して、所望の厚みで高い平坦度を有する被加工物を得ている。   Moreover, in the double-sided lapping machine described in Patent Document 1, the workpiece is disposed between the upper and lower surface plates of the double-sided lapping machine, and the upper and lower surfaces of the workpiece are moved by rotating the double-sided lapping machine. Although polishing is performed at the same time, when about half of the polishing allowance of the workpiece is polished, the workpiece is removed from the double-sided lapping machine, and the upper and lower surfaces of the workpiece are reversed and rearranged on the double-sided lapping machine. Then, both surfaces of the workpiece are polished until the target thickness is reached in the same manner as described above. Thus, by reversing the workpiece in the middle of polishing, the difference in the polishing state between the upper surface and the lower surface is corrected, and a workpiece having a desired flatness and high flatness is obtained.

特開2008−149386号公報(段落[0018]〜[0022]、第1図)JP 2008-149386 A (paragraphs [0018] to [0022], FIG. 1)

しかしながら、上述した先行技術では、被加工物の上下面の間に接合面等の基準面を有し、上面をその基準面から所定量加工し、また下面をその基準面から所定量加工したうえで、被加工物を所望の厚みにすることは困難であった。   However, the above-described prior art has a reference surface such as a joint surface between the upper and lower surfaces of the workpiece, the upper surface is processed by a predetermined amount from the reference surface, and the lower surface is processed by a predetermined amount from the reference surface. Thus, it has been difficult to make the workpiece have a desired thickness.

本発明は、上記のような課題を解決するためになされたものであり、短い研磨時間で、高い平坦度を得ながら被加工物の両面を夫々所定量加工する研磨方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a polishing method for processing a predetermined amount of both surfaces of a workpiece while obtaining high flatness in a short polishing time. And

上記目的を達成するために本発明は、被加工物の互いに対向する被研磨面を同時に研磨する研磨方法であって、両面研磨機の上定盤と下定盤の加工レートを異なる値に設定する工程と、前記被研磨面の間に位置する基準面を基準に、前記被加工物の各加工量を測定する工程と、前記被加工物を前記上定盤と下定盤との間で第1の加工時間で研磨加工する工程と、前記上定盤及び下定盤に対して前記被加工物の被研磨面を反転させる工程と、前記反転させた被加工物を前記上定盤と下定盤との間で第2の加工時間で研磨加工する工程と、を有し、前記第1の加工時間と第2の加工時間とは、前記上定盤と下定盤の加工レートと、前記被加工物の各加工量とに基づいて算出されることを特徴としている。   In order to achieve the above object, the present invention is a polishing method for simultaneously polishing opposing surfaces to be processed of a workpiece, wherein the processing rates of the upper surface plate and the lower surface plate of the double-side polishing machine are set to different values. A step of measuring each processing amount of the workpiece on the basis of a reference surface located between the polished surfaces, and a first portion of the workpiece between the upper surface plate and the lower surface plate. Polishing the workpiece with a processing time of: reversing the surface to be polished of the workpiece with respect to the upper surface plate and the lower surface plate, the upper surface plate and the lower surface plate with the reversed work surface Polishing the first processing time and the second processing time, the processing rate of the upper surface plate and the lower surface plate, and the workpiece It is calculated based on each processing amount.

この方法によれば、第1及び第2の加工時間は、上定盤と下定盤の加工レートと、被加工物の各加工量とに基づいて算出される。そして、被研磨面の一方の面は、上定盤の加工レートで第1の時間で加工され、反転後、下定盤の加工レートで第2の時間で加工されて、所定量加工されることになる。一方、被研磨面の他方の面は、下定盤の加工レートで第1の時間で加工され、反転後、上定盤の加工レートで第2の時間で加工されて、所定量加工されることになる。そして、一方の面と他方の面が夫々所定量加工されることによって、被加工物は所定の厚みとなる。   According to this method, the first and second machining times are calculated based on the machining rates of the upper surface plate and the lower surface plate and the respective machining amounts of the workpiece. Then, one surface of the surface to be polished is processed at the processing time of the upper surface plate at the first time, and after being reversed, processed at the processing time of the lower surface plate at the second time and processed by a predetermined amount. become. On the other hand, the other surface of the surface to be polished is processed at the processing rate of the lower surface plate for the first time, and after being reversed, processed at the processing rate of the upper surface plate for the second time, and processed by a predetermined amount. become. Then, by processing a predetermined amount on one surface and the other surface, the workpiece has a predetermined thickness.

また、請求項2に記載の発明では、前記被加工物は接合面を有し、前記接合面を基準として前記加工量が設定されることを特徴としている。   Further, the invention according to claim 2 is characterized in that the workpiece has a joint surface, and the processing amount is set with reference to the joint surface.

また、請求項3に記載の発明では、前記接合面は前記被研磨面に対して傾斜しており、前記接合面の端部を基準に前記加工量を測定することを特徴としている。   The invention according to claim 3 is characterized in that the joining surface is inclined with respect to the surface to be polished, and the processing amount is measured with reference to an end of the joining surface.

また、請求項4に記載の発明では、前記被加工物は、接合した光学フィルタであることを特徴としている。   According to a fourth aspect of the present invention, the workpiece is a bonded optical filter.

また、請求項5に記載の発明では、前記接合面は前記被研磨面と平行であることを特徴としている。   The invention according to claim 5 is characterized in that the joining surface is parallel to the surface to be polished.

また、請求項6に記載の発明では、前記被加工物に対して、前記上定盤と下定盤との回転速度差を設けることによって、前記上定盤と下定盤との加工レートを異なる値に設定することを特徴としている。   Further, in the invention according to claim 6, by providing a difference in rotational speed between the upper surface plate and the lower surface plate with respect to the workpiece, the processing rates of the upper surface plate and the lower surface plate are different values. It is characterized by being set to.

また、請求項7に記載の発明では、前記上定盤と下定盤の研磨材の粗さ、または硬さに差を設けることによって、前記上定盤と下定盤との加工レートを異なる値に設定することを特徴としている。   Further, in the invention according to claim 7, the processing rate of the upper surface plate and the lower surface plate is set to different values by providing a difference in the roughness or hardness of the polishing material of the upper surface plate and the lower surface plate. It is characterized by setting.

また、請求項8に記載の発明では、被加工物の互いに対向する被研磨面を同時に研磨する研磨方法であって、両面研磨機の上定盤と下定盤の加工レートを異なる値に設定する工程と、前記被研磨面の間に位置する基準面を基準に、前記被加工物の各加工量を測定する工程と、同一厚さの複数の被加工物から、前記被加工物の各加工量が同じである被加工物を選別する工程と、前記選別された被加工物を前記上定盤と下定盤との間で第1の加工時間で研磨加工する工程と、前記上定盤及び下定盤に対して前記選別された被加工物の被研磨面を反転させる工程と、前記反転させた被加工物を前記上定盤と下定盤との間で第2の加工時間で研磨加工する工程と、を有し、前記第1の加工時間と第2の加工時間とは、前記上定盤と下定盤の加工レートと、前記被加工物の各加工量とに基づいて算出されることを特徴としている。   The invention according to claim 8 is a polishing method for simultaneously polishing opposite surfaces of a workpiece, wherein the processing rates of the upper surface plate and the lower surface plate of the double-side polishing machine are set to different values. A step of measuring each processing amount of the workpiece with reference to a reference surface located between the polishing surface and each processing of the workpiece from a plurality of workpieces of the same thickness Selecting a workpiece having the same amount, polishing the selected workpiece between the upper surface plate and the lower surface plate in a first processing time, the upper surface plate, and A step of reversing the polished surface of the selected workpiece with respect to the lower surface plate, and polishing the reversed workpiece between the upper surface plate and the lower surface plate in a second processing time. And the first machining time and the second machining time are processing rates of the upper surface plate and the lower surface plate. It is characterized in that the is calculated based on the respective amount of machining the workpiece.

この方法によれば、第1及び第2の加工時間は、上定盤と下定盤の加工レートと、被加工物の各加工量とに基づいて算出される。そして、選別された複数の被加工物の一方の面は、上定盤の加工レートで第1の時間で加工され、反転後、下定盤の加工レートで第2の時間で加工されて、所定量加工されることになる。一方、選別された複数の被加工物の他方の面は、下定盤の加工レートで第1の時間で加工され、反転後、上定盤の加工レートで第2の時間で加工されて、所定量加工されることになる。そして、一方の面と他方の面が夫々所定量加工されることによって、選別された複数の被加工物は所定の厚みとなる。   According to this method, the first and second machining times are calculated based on the machining rates of the upper surface plate and the lower surface plate and the respective machining amounts of the workpiece. Then, one side of the selected plurality of workpieces is processed at the processing time of the upper surface plate at the first time, and after reversing, it is processed at the processing time of the lower surface plate at the second time, It will be quantitatively processed. On the other hand, the other surface of the selected plurality of workpieces is processed at the processing time of the lower surface plate at the first time, and after being inverted, it is processed at the processing rate of the upper surface plate at the second time, It will be quantitatively processed. Then, by processing the one surface and the other surface by a predetermined amount, the selected plurality of workpieces have a predetermined thickness.

また、請求項9に記載の発明では、被加工物の互いに対向する被研磨面を同時に研磨する研磨方法であって、両面研磨機の上定盤と下定盤の加工レートを異なる値に設定する工程と、前記被研磨面の間に位置する基準面を基準に、前記被加工物の各加工量を測定する工程と、同一厚さの複数の被加工物から、前記被加工物の各加工量に応じて被加工物を区分する工程と、少なくとも2つの区分に属する被加工物を前記上定盤と下定盤との間に配置する工程と、2つの区分に属する被加工物を前記上定盤と下定盤との間で第1の加工時間で研磨加工する工程と、前記上定盤及び下定盤に対して、第1の区分に属する被加工物の被研磨面を反転させる工程と、前記2つの区分に属する被加工物を前記上定盤と下定盤との間で第2の加工時間の所定時間で研磨加工する工程と、前記上定盤及び下定盤に対して、第2の区分に属する被加工物の被研磨面を反転させる工程と、前記2つの区分に属する被加工物を前記上定盤と下定盤との間で第2の加工時間内の残り時間で研磨加工する工程とを有し、前記第1の加工時間と第2の加工時間とは、前記上定盤と下定盤の加工レートと、前記被加工物の各加工量とに基づいて算出されることを特徴としている。   The invention according to claim 9 is a polishing method for simultaneously polishing opposing surfaces of a workpiece, wherein the processing rates of the upper surface plate and the lower surface plate of the double-side polishing machine are set to different values. A step of measuring each processing amount of the workpiece with reference to a reference surface located between the polishing surface and each processing of the workpiece from a plurality of workpieces of the same thickness A step of dividing the work piece according to the amount, a step of placing the work piece belonging to at least two pieces between the upper surface plate and the lower surface plate, and the work piece belonging to two pieces of the upper surface. Polishing between the surface plate and the lower surface plate in a first processing time; and reversing the surface to be polished of the workpiece belonging to the first section with respect to the upper surface plate and the lower surface plate. The workpieces belonging to the two sections are set to a predetermined second machining time between the upper surface plate and the lower surface plate. A step of polishing between the upper surface plate and the lower surface plate, a step of reversing the surface to be polished of the workpiece belonging to the second section, and the workpiece belonging to the two sections Polishing the remaining time within the second processing time between the surface plate and the lower surface plate, wherein the first processing time and the second processing time are the upper surface plate and the lower surface plate. Calculated on the basis of the machining rate and each machining amount of the workpiece.

この方法によれば、第1及び第2の加工時間は、上定盤と下定盤の加工レートと、被加工物の各加工量とに基づいて算出される。そして、第1の区分に属する被加工物の一方の面は、上定盤の加工レートで第1の時間で加工され、反転後、下定盤の加工レートで第2の時間で加工されて、所定量加工されることになる。一方、第1の区分に属する被加工物の他方の面は、下定盤の加工レートで第1の時間で加工され、反転後、上定盤の加工レートで第2の時間で加工されて、所定量加工されることになる。そして、一方の面と他方の面が夫々所定量加工されることによって、第1の区分に属する被加工物は所定の厚みとなる。また、第2の区分に属する被加工物の一方の面は、上定盤の加工レートで第1の時間と第2の時間内の所定時間と間、加工され、反転後、下定盤の加工レートで第2の時間内の残り時間で加工されて、第1の区分の被加工物とは異なる所定量加工されることになる。一方、第2の区分に属する被加工物の他方の面は、下定盤の加工レートで第1の時間と第2の時間内の所定時間と間、加工され、反転後、上定盤の加工レートで第2の時間内の残り時間で加工されて、第1の区分の被加工物とは異なる所定量加工されることになる。そして、一方の面と他方の面が夫々所定量加工されることによって、第2の区分に属する被加工物は第1の被加工物と同じ所定の厚みとなる。   According to this method, the first and second machining times are calculated based on the machining rates of the upper surface plate and the lower surface plate and the respective machining amounts of the workpiece. Then, one surface of the work piece belonging to the first section is processed at the processing time of the upper surface plate at the first time, and after reversal, it is processed at the processing rate of the lower surface plate at the second time, A predetermined amount is processed. On the other hand, the other surface of the workpiece belonging to the first section is processed at the processing time of the lower surface plate at the first time, and after reversing, is processed at the processing time of the upper surface plate at the second time, A predetermined amount is processed. Then, by processing the one surface and the other surface by a predetermined amount, the workpiece belonging to the first section has a predetermined thickness. In addition, one surface of the workpiece belonging to the second section is processed at a processing rate of the upper surface plate for a first time and a predetermined time within the second time, and after inversion, the lower surface plate is processed. Processing is performed at the rate with the remaining time within the second time, and a predetermined amount different from the workpiece of the first section is processed. On the other hand, the other surface of the workpiece belonging to the second section is processed at the processing rate of the lower surface plate for the first time and a predetermined time within the second time, and after the inversion, the upper surface plate is processed. Processing is performed at the rate with the remaining time within the second time, and a predetermined amount different from the workpiece of the first section is processed. Then, by processing the one surface and the other surface by a predetermined amount, the workpiece belonging to the second section has the same predetermined thickness as the first workpiece.

請求項1に記載の発明によれば、第1及び第2の加工時間は、上定盤と下定盤の加工レートと、被加工物の各加工量とに基づいて算出される。そして、被研磨面の一方の面は、上定盤の加工レートで第1の時間で加工され、反転後、下定盤の加工レートで第2の時間で加工されて、或る所定量加工されることなる。一方、被研磨面の他方の面は、下定盤の加工レートで第1の時間で加工され、反転後、上定盤の加工レートで第2の時間で加工されて、別の所定量加工されることになる。そして、一方の面と他方の面が夫々所定量加工されることによって、被加工物は所定の厚みとなる。従って、両面同時に加工することで研磨加工時間が短縮され、被加工物を反転させることで平坦度の高い被加工面が得られ、上定盤と下定盤の加工レートに応じて加工時間を割り振ることで、被加工物の両面を夫々所定量加工することができるとともに、被加工物を所定の厚さに調整することができる。更に、各研磨面の加工量が異なる場合であっても、上定盤と下定盤の加工レートを変更することなく、予め設定した研磨条件で加工できるので、基準面に対する様々な厚みを有する被加工物に容易に対応できる。   According to the first aspect of the present invention, the first and second machining times are calculated based on the machining rates of the upper surface plate and the lower surface plate, and the respective machining amounts of the workpiece. Then, one surface of the surface to be polished is processed at a processing rate of the upper surface plate at a first time, and after reversal, it is processed at a processing rate of the lower surface plate at a second time and processed by a predetermined amount. It will be. On the other hand, the other surface of the surface to be polished is processed at the processing time of the lower surface plate at the first time, and after reversal, it is processed at the processing time of the upper surface plate at the second time and processed by another predetermined amount. Will be. Then, by processing a predetermined amount on one surface and the other surface, the workpiece has a predetermined thickness. Therefore, polishing time is shortened by processing both sides simultaneously, and a processed surface with high flatness can be obtained by inverting the workpiece, and processing time is allocated according to the processing rate of the upper and lower surface plates. As a result, both sides of the workpiece can be processed by a predetermined amount, and the workpiece can be adjusted to a predetermined thickness. Furthermore, even when the processing amount of each polishing surface is different, processing can be performed under preset polishing conditions without changing the processing rate of the upper surface plate and the lower surface plate, so that the surfaces having various thicknesses relative to the reference surface can be obtained. Can easily handle workpieces.

また、請求項2に記載の発明によれば、被加工物の接合面を基準として被研磨面の各加工量が設定されるので、被加工物を所定の厚さに調整することができるとともに、接合面と被研磨面との寸法精度が良好なものとなる。   Further, according to the invention described in claim 2, since each processing amount of the surface to be polished is set on the basis of the joint surface of the workpiece, the workpiece can be adjusted to a predetermined thickness. The dimensional accuracy between the bonding surface and the surface to be polished is good.

また、請求項3に記載の発明によれば、接合面は被研磨面に対して傾斜していても、被加工物の接合面を基準として被研磨面の各加工量が設定されるので、被加工物を所定の厚さに調整することができるとともに、接合面と被研磨面との寸法精度が良好なものとなる。   In addition, according to the invention described in claim 3, even if the bonding surface is inclined with respect to the surface to be polished, each processing amount of the surface to be polished is set on the basis of the bonding surface of the workpiece, The workpiece can be adjusted to a predetermined thickness, and the dimensional accuracy between the bonding surface and the surface to be polished is good.

また、請求項4に記載の発明によれば、光入出面である被研磨面と接合面との寸法精度が良く、光入出面の面精度が良いビームスプリッタを得ることができる。   According to the fourth aspect of the present invention, it is possible to obtain a beam splitter with good dimensional accuracy between the surface to be polished, which is the light entry / exit surface, and the joining surface, and good surface accuracy of the light entry / exit surface.

また、請求項5に記載の発明によれば、被加工物の接合面を基準として被研磨面の各加工量が設定されるので、被加工物を所定の厚さに調整することができるとともに、接合面と被研磨面との寸法精度が良好なものとなる。   Further, according to the invention described in claim 5, since each processing amount of the surface to be polished is set on the basis of the joint surface of the workpiece, the workpiece can be adjusted to a predetermined thickness. The dimensional accuracy between the bonding surface and the surface to be polished is good.

また、請求項6に記載の発明によれば、上定盤と下定盤との回転速度差を設けることによって、上定盤と下定盤との加工レートが異なる値に設定されるので、加工レート差を簡単に且つ確実に設定することができる。   Further, according to the invention described in claim 6, by providing a difference in rotational speed between the upper surface plate and the lower surface plate, the processing rates of the upper surface plate and the lower surface plate are set to different values. The difference can be set easily and reliably.

また、請求項7に記載の発明によれば、上定盤と下定盤の研磨材の粗さ、または硬さに差を設けることによって、上定盤と下定盤との加工レートを異なる値に設定するので、加工レート差を簡単に且つ確実に設定することができる。   Further, according to the invention described in claim 7, by providing a difference in the roughness or hardness of the polishing material of the upper surface plate and the lower surface plate, the processing rates of the upper surface plate and the lower surface plate are set to different values. Since it is set, the processing rate difference can be set easily and reliably.

また、請求項8に記載の発明によれば、複数の被加工物を纏めて、被加工物の被研磨面から夫々同時に所定量加工するとともに、所定の厚さに調整することになり、生産性が向上し、製造コストを抑制することができる。更に、各研磨面の加工量が異なる場合であっても、上定盤と下定盤の加工レートを変更することなく、予め設定した研磨条件で加工できるので、基準面に対する様々な厚みを有する被加工物に容易に対応できる。   Further, according to the invention described in claim 8, a plurality of workpieces are gathered, and a predetermined amount is simultaneously processed from the surface to be polished of the workpiece, and adjusted to a predetermined thickness. This improves the manufacturing cost. Furthermore, even when the processing amount of each polishing surface is different, processing can be performed under preset polishing conditions without changing the processing rate of the upper surface plate and the lower surface plate, so that the surfaces having various thicknesses relative to the reference surface can be obtained. Can easily handle workpieces.

また、請求項9に記載の発明によれば、被研磨面からの加工量が異なる複数の被加工物を纏めて、被加工物の被研磨面から夫々同時に所定量加工するとともに、所定の厚さに調整することになり、生産性が向上し、製造コストを抑制することができる。更に、各研磨面の加工量が異なる場合であっても、上定盤と下定盤の加工レートを変更することなく、予め設定した研磨条件で加工できるので、基準面に対する様々な厚みを有する被加工物に容易に対応できる。   According to the ninth aspect of the present invention, a plurality of workpieces having different amounts of processing from the surface to be polished are collected and simultaneously processed from the surface to be polished by a predetermined amount, and a predetermined thickness is obtained. Therefore, productivity is improved and manufacturing costs can be suppressed. Furthermore, even when the processing amount of each polishing surface is different, processing can be performed under preset polishing conditions without changing the processing rate of the upper surface plate and the lower surface plate, so that the surfaces having various thicknesses relative to the reference surface can be obtained. Can easily handle workpieces.

は、本発明の実施形態である研磨方法を適用する光学素子の製造方法の前工程を示す図These are figures which show the pre-process of the manufacturing method of the optical element to which the grinding | polishing method which is embodiment of this invention is applied. は、本発明の実施形態である研磨方法を適用する光学素子の製造方法の後工程を示す図These are figures which show the post-process of the manufacturing method of the optical element to which the grinding | polishing method which is embodiment of this invention is applied. は、本発明の実施形態である研磨方法を適用する光学素子を示す図FIG. 1 shows an optical element to which a polishing method according to an embodiment of the present invention is applied. は、本発明の実施形態である研磨方法を用いる両面ラップ盤の概略説明図These are schematic explanatory diagrams of a double-sided lapping machine that uses the polishing method according to an embodiment of the present invention. は、両面ラップ盤の要部を示す断面図Is a sectional view showing the main part of a double-sided lapping machine は、本発明の実施形態である研磨方法による加工例を示す図These are figures which show the processing example by the grinding | polishing method which is embodiment of this invention. は、本発明の実施形態である研磨方法による別の加工例を示す図These are figures which show another processing example by the grinding | polishing method which is embodiment of this invention. は、本発明の実施形態である研磨方法を適用する別の光学素子を示す図FIG. 2 is a view showing another optical element to which the polishing method according to the embodiment of the present invention is applied. は、本発明の実施形態である研磨方法を適用するさらに別の光学素子を示す図FIG. 4 is a view showing still another optical element to which the polishing method according to the embodiment of the present invention is applied.

以下に本発明の実施形態について図面を参照して説明するが、本発明は、この実施形態に限定されない。また発明の用途やここで示す用語等はこれに限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments. Further, the use of the invention and the terms shown here are not limited thereto.

図1、図2は、本実施形態である研磨方法を適用するビームスプリッタの製造方法を説明する工程図である。ビームスプリッタは、偏光分離膜を介して2つの三角柱状のガラスプリズムを接合することにより立方体状に構成したものであり、偏光分離膜において所定の偏光成分を透過し、それ以外の偏光成分を反射する機能を有する。図1(a)〜(d)、図2(a)〜(j)の工程順に製造し、その後工程で本実施形態である研磨が行なわれる。   1 and 2 are process diagrams for explaining a method of manufacturing a beam splitter to which the polishing method according to the present embodiment is applied. The beam splitter has a cubic shape formed by joining two triangular prismatic glass prisms through a polarization separation film, and transmits a predetermined polarization component in the polarization separation film and reflects other polarization components. It has the function to do. 1A to 1D and FIGS. 2A to 2J are manufactured in the order of steps, and polishing according to this embodiment is performed in the subsequent steps.

図1(a)に示すように、複数のガラス平板50が用意される。ガラス平板50は、均一な厚みの矩形状の板ガラス51と、板ガラス51の上面に形成される偏光分離膜13と、板ガラス51の下面にマッチング膜53とを備える。   As shown in FIG. 1A, a plurality of glass flat plates 50 are prepared. The glass flat plate 50 includes a rectangular plate glass 51 having a uniform thickness, a polarization separation film 13 formed on the upper surface of the plate glass 51, and a matching film 53 on the lower surface of the plate glass 51.

図1(b)は積層体60の形成工程を示す図である。積層体60は、治具90を用いて複数のガラス平板50を水平方向にずらした状態で積層されるものである。   FIG. 1B is a diagram illustrating a process for forming the stacked body 60. The laminated body 60 is laminated | stacked in the state which shifted the several glass flat plate 50 to the horizontal direction using the jig | tool 90. FIG.

治具90は、水平な板状のベース部91と、ベース部91上に配設される水平支持部92と、ベース部91上で水平方向及び垂直方向に可動する垂直支持部93とを備える。   The jig 90 includes a horizontal plate-shaped base portion 91, a horizontal support portion 92 disposed on the base portion 91, and a vertical support portion 93 that is movable in the horizontal direction and the vertical direction on the base portion 91. .

ガラス平板50が偏光分離膜13を上向きにしてベース部91に載置され、ガラス平板50の一端部が水平支持部92に当接して配置される。このガラス平板50の上面に、次のガラス平板50が積まれる。ガラス平板50を積むときに、次のガラス平板50は、ガラスの厚み相当の距離だけ下のガラス平板50から突出するように水平方向にずらして配置される。同様にして、更にガラス平板50が積み重ねられることによって、積層体60となる。   The glass flat plate 50 is placed on the base portion 91 with the polarization separation film 13 facing upward, and one end portion of the glass flat plate 50 is disposed in contact with the horizontal support portion 92. The next glass flat plate 50 is stacked on the upper surface of the glass flat plate 50. When the glass flat plates 50 are stacked, the next glass flat plate 50 is shifted in the horizontal direction so as to protrude from the lower glass flat plate 50 by a distance corresponding to the thickness of the glass. Similarly, the laminated body 60 is obtained by further stacking the glass flat plates 50.

このように積み重ねられるときに、図1(b)に示すように、垂直支持部93は、ガラス平板50Aの下面を支持するとともに、その下にあるガラス平板50の端面に当接するように配置される。そして、ガラス平板50Aの上面に紫外線硬化型接着剤が塗布される。次に、次のガラス平板50Bを用意する。このガラス平板50Bがガラス平板50Aの上面に載置され、ガラス平板50Bの上面から加圧して、ガラス平板50A、50B間の接着剤を均一に広げながら、ガラス平板50Bをガラスの厚み相当の距離だけ水平方向にずらす。ガラス平板50の位置がずれないように、図示しない紫外線光源から紫外線硬化型接着剤の完全硬化に必要な紫外線量よりも少ない紫外線を照射し、接着剤を仮硬化させる。同様にして、治具90を用いてガラス平板50を順次水平方向にずらして積み重ねていく。積み重ね終わると、図示しない紫外線光源から紫外線を充分に照射して接着剤を完全硬化させる。これで、ガラス平板50が貼り合わされた階段状の積層体60が得られる。   When stacked in this way, as shown in FIG. 1B, the vertical support portion 93 is disposed so as to support the lower surface of the glass flat plate 50A and to contact the end surface of the underlying glass flat plate 50. The Then, an ultraviolet curable adhesive is applied to the upper surface of the glass flat plate 50A. Next, the next glass flat plate 50B is prepared. The glass flat plate 50B is placed on the upper surface of the glass flat plate 50A, pressed from the upper surface of the glass flat plate 50B, and the adhesive between the glass flat plates 50A and 50B is spread uniformly, and the glass flat plate 50B is separated by a distance corresponding to the thickness of the glass. Just horizontally shift. In order not to shift the position of the glass flat plate 50, the adhesive is pre-cured by irradiating with an ultraviolet ray less than the ultraviolet ray amount necessary for complete curing of the ultraviolet curable adhesive from an ultraviolet light source (not shown). Similarly, the glass plates 50 are sequentially shifted and stacked in the horizontal direction using the jig 90. When the stacking is completed, the adhesive is completely cured by sufficiently irradiating ultraviolet rays from an ultraviolet light source (not shown). Thereby, the step-shaped laminated body 60 with which the glass flat plate 50 was bonded together is obtained.

次に図1(c)に示すように、積層体60は、ガラス平板50の平板面に対して45度に傾斜した切断線S1に沿って所定ピッチで、ワイヤソーにより複数ブロックに切断される。これによって、図1(d)に示す複数の積層分割体70が得られる。積層分割体70は図1の紙面方向に延在する平行四辺形柱状をなし、板ガラス51間に等間隔で複数の偏光分離膜13が形成されることになる。   Next, as shown in FIG. 1C, the laminated body 60 is cut into a plurality of blocks by a wire saw at a predetermined pitch along a cutting line S <b> 1 inclined at 45 degrees with respect to the flat plate surface of the glass flat plate 50. Thereby, a plurality of laminated division bodies 70 shown in FIG. The laminated divided body 70 has a parallelogram pillar shape extending in the paper plane direction of FIG. 1, and a plurality of polarization separation films 13 are formed at equal intervals between the plate glasses 51.

次に図2(a) に示すように、積層分割体70は上下両面(切断面)を鏡面加工され、鏡面加工後に上下両面に反射防止膜71がコーティングされる。   Next, as shown in FIG. 2A, the laminated divided body 70 is mirror-finished on both upper and lower surfaces (cut surfaces), and the anti-reflection film 71 is coated on the upper and lower surfaces after the mirror-finishing.

図2(b)に示すように、 積層分割体70は上下両面に紫外線硬化型接着剤を塗布されて、整合状態で積層される。積層分割体70間に紫外線硬化型接着剤を塗布し、完全硬化に必要な紫外線量より少ない量を照射しておくことにより、各積層分割体70は仮止めされる。   As shown in FIG. 2 (b), the laminated divided body 70 is laminated in an aligned state by applying an ultraviolet curable adhesive on the upper and lower surfaces. By applying an ultraviolet curable adhesive between the laminated divided bodies 70 and irradiating an amount smaller than the amount of ultraviolet light necessary for complete curing, each laminated divided body 70 is temporarily fixed.

次に図2(c)に示すように、上下方向に積層された積層分割体70は、積層分割体70の上下面と直交する切断線S2に沿って所定ピッチで、ワイヤソーにより切断される。この切断によって、仮止め積層体80が得られる。   Next, as shown in FIG. 2C, the stacked division bodies 70 stacked in the vertical direction are cut by a wire saw at a predetermined pitch along a cutting line S <b> 2 orthogonal to the upper and lower surfaces of the stacked division body 70. By this cutting, a temporary fixing laminated body 80 is obtained.

図2(d)に示すように、仮止め積層体80は紫外線硬化型接着剤を介して上下方向に連結されて紙面方向に延在する構成となっている。   As shown in FIG. 2D, the temporary fixing laminate 80 is configured to be connected in the vertical direction via an ultraviolet curable adhesive and extend in the paper surface direction.

次に図2(e)の側面図に示すように、仮止め積層体80は切断線S3に沿って所定ピッチで、ワイヤソーにより切断される。この切断線S3は図2(c)の切断線S2と直交している。   Next, as shown in the side view of FIG. 2E, the temporary fixing laminate 80 is cut by a wire saw at a predetermined pitch along the cutting line S3. This cutting line S3 is orthogonal to the cutting line S2 in FIG.

仮止め積層体80は紫外線硬化型接着剤によって接続された状態にあり、仮止め積層体80を有機溶剤に浸すことによって、充分に硬化していない紫外線硬化型接着剤が溶解され、図2(f)に示すように、複数のビームスプリッタ10に分離される。   The temporary fixing laminate 80 is in a state of being connected by an ultraviolet curable adhesive, and by immersing the temporary fixing laminate 80 in an organic solvent, the ultraviolet curable adhesive that is not sufficiently cured is dissolved, and FIG. As shown in f), it is separated into a plurality of beam splitters 10.

図3はビームスプリッタ10を示す図である。図3(a)は上記の製造工程によって製造されたビームスプリッタ(以下、「被加工物」ということもある)を示し、図3(b)は、後述する研磨によって鏡面加工され且つ所定の厚さに加工されたビームスプリッタを示している。   FIG. 3 is a diagram showing the beam splitter 10. FIG. 3A shows a beam splitter (hereinafter also referred to as “workpiece”) manufactured by the above-described manufacturing process, and FIG. 3B shows a mirror surface processed by polishing described later and having a predetermined thickness. The beam splitter processed into the length is shown.

図3(b)に示すように、ビームスプリッタ10は、2つの三角柱状のガラスプリズム11、12の間に偏光分離膜13を介在させた、厚みToの立方体状をなしている。   As shown in FIG. 3B, the beam splitter 10 has a cubic shape with a thickness To in which a polarization separation film 13 is interposed between two triangular prism-shaped glass prisms 11 and 12.

上記の製造工程においてワイヤソーで積層分割体70を切断する際に(図2(C)参照)、偏光分離膜13の両端部から寸法の余裕を持って切断し、また、切断位置のバラツキがある。これによって、図3(a)に示すように、ビームスプリッタ10の上面10Aは偏光分離膜13の上端部から距離L離間し、ビームスプリッタ10の下面10Bは偏光分離膜13の下端部から距離M離間し、ビームスプリッタ10の厚みTは図3(b)に示すビームスプリッタ10の厚みToより大きくなる。   When the laminated divided body 70 is cut with a wire saw in the above manufacturing process (see FIG. 2C), it is cut from both ends of the polarization separation film 13 with a margin of size, and there is variation in cutting position. . 3A, the upper surface 10A of the beam splitter 10 is separated by a distance L from the upper end portion of the polarization separation film 13, and the lower surface 10B of the beam splitter 10 is separated by a distance M from the lower end portion of the polarization separation film 13. As a result, the thickness T of the beam splitter 10 is larger than the thickness To of the beam splitter 10 shown in FIG.

そこで、ビームスプリッタ(被加工物)10を厚みToとするために、ビームスプリッタ10の上面10A及び下面10Bを研磨加工する。図4は本実施形態である研磨方法を用いる両面ラップ盤の概略説明図であり、図5は両面ラップ盤の要部を示す断面図である。尚、本実施形態に係る研磨加工はラップ或いはポリッシュ加工である。   Therefore, the upper surface 10A and the lower surface 10B of the beam splitter 10 are polished so that the beam splitter (workpiece) 10 has a thickness To. FIG. 4 is a schematic explanatory view of a double-sided lapping machine using the polishing method according to the present embodiment, and FIG. 5 is a cross-sectional view showing a main part of the double-sided lapping machine. The polishing process according to this embodiment is a lapping or polishing process.

図4に示すように、両面研磨機である両面ラップ盤30は、遊星歯車機構を構成しており、太陽歯車31と、内歯車32と、複数のキャリア33とを備え、更にキャリア33の上下位置に上定盤35(図5参照)と下定盤36(図5参照)を備える。   As shown in FIG. 4, a double-sided lapping machine 30 that is a double-side polishing machine constitutes a planetary gear mechanism, and includes a sun gear 31, an internal gear 32, and a plurality of carriers 33. An upper surface plate 35 (see FIG. 5) and a lower surface plate 36 (see FIG. 5) are provided at the positions.

太陽歯車31は、下定盤36を貫通した駆動軸(図略)に取り付けてあり、駆動軸を介して回転駆動させられる。太陽歯車31の外周側には歯車が設けられ、内歯車32の内周側には歯車が設けられており、太陽歯車31及び内歯車32の各歯車と噛み合うように、キャリア33の外周側には歯車が設けられている。   The sun gear 31 is attached to a drive shaft (not shown) penetrating the lower surface plate 36, and is driven to rotate through the drive shaft. A gear is provided on the outer peripheral side of the sun gear 31, and a gear is provided on the inner peripheral side of the internal gear 32. The gear is provided on the outer peripheral side of the carrier 33 so as to mesh with the gears of the sun gear 31 and the internal gear 32. Are provided with gears.

太陽歯車31が回転駆動されると、これに噛み合っている各キャリア33は、自転回転するとともに内歯車32の歯車との噛み合いによって、太陽歯車31の周囲を公転回転する。   When the sun gear 31 is rotationally driven, each carrier 33 meshing with the sun gear 31 rotates and revolves around the sun gear 31 by meshing with the gear of the internal gear 32.

各キャリア33は、矩形状の貫通穴である複数の保持部34を有する。保持部34には被加工物であるビームスプリッタ10が保持される。   Each carrier 33 has a plurality of holding portions 34 that are rectangular through holes. The holder 34 holds the beam splitter 10 that is a workpiece.

図5に示すように、上定盤35の下面にはウレタンパッドからなる研磨材37が貼り付けられ、下定盤36の上面にはウレタンパッドからなる研磨材38が貼り付けられている。キャリア33に保持された被加工物10は、研磨材37、38を介して、上定盤35と下定盤36で上下から挟み込まれる。このとき、上定盤35に圧力が印加され、被加工物10は研磨材37、38に押圧される。   As shown in FIG. 5, an abrasive 37 made of a urethane pad is attached to the lower surface of the upper surface plate 35, and an abrasive 38 made of a urethane pad is attached to the upper surface of the lower surface plate 36. The workpiece 10 held by the carrier 33 is sandwiched from above and below by the upper surface plate 35 and the lower surface plate 36 via the abrasives 37 and 38. At this time, pressure is applied to the upper surface plate 35 and the workpiece 10 is pressed against the abrasives 37 and 38.

太陽歯車31、内歯車32、上定盤35、及び下定盤36が夫々回転することで、被加工物10の上下面10A、10Bが研磨材37、38によって研磨加工される。   As the sun gear 31, the internal gear 32, the upper surface plate 35, and the lower surface plate 36 rotate, the upper and lower surfaces 10 </ b> A and 10 </ b> B of the workpiece 10 are polished by the abrasives 37 and 38.

ここで、被加工物10の厚みTを厚みToに調整し、且つ上面10Aから寸法Lだけ研磨加工し、また下面10Bから寸法Mだけ研磨加工するために、加工レートと加工時間が設定される。   Here, in order to adjust the thickness T of the workpiece 10 to the thickness To and polish the dimension L from the upper surface 10A and polish the dimension M from the lower surface 10B, the processing rate and the processing time are set. .

つまり、被加工物10を厚みTから厚みToにするのに、厚みの差C=T−To分だけ両面を研磨加工する必要がある。また上面10Aの研磨による加工量はLであり、下面10Bの研磨による加工量はMであることから、総加工量Cは式(1)のようになる。
総加工量C=L+M ・・・式(1)
That is, in order to change the workpiece 10 from the thickness T to the thickness To, it is necessary to polish both surfaces by the thickness difference C = T−To. Further, since the processing amount by polishing the upper surface 10A is L and the processing amount by polishing the lower surface 10B is M, the total processing amount C is expressed by the following equation (1).
Total machining amount C = L + M (1)

上定盤35の研磨材37による加工レートをP、下定盤36の研磨材38による加工レートをQとする。尚、加工レートとは、単位時間当たりの研磨加工量(例えば、単位はmm/分)である。   A processing rate by the abrasive 37 of the upper surface plate 35 is P, and a processing rate by the abrasive 38 of the lower surface plate 36 is Q. The processing rate is a polishing processing amount per unit time (for example, the unit is mm / min).

更に本実施形態では、研磨加工の途中で被加工物10を反転させて更に研磨加工する。まず、被加工物10の上面10Aが研磨材37(上定盤35)によって研磨され、その下面10Bが研磨材38(下定盤36)によって研磨される。この研磨加工を工程1とする。次に研磨加工の途中で、上定盤35及び下定盤36に対して、被加工物10の両面を反転させる。そして、被加工物10の上面10Aが研磨材38(下定盤36)によって研磨され、その下面10Bが研磨材37(上定盤35)によって研磨される。反転させた後の研磨加工を工程2とする。   Further, in the present embodiment, the workpiece 10 is inverted during the polishing process and further polished. First, the upper surface 10A of the workpiece 10 is polished by the abrasive 37 (upper surface plate 35), and the lower surface 10B is polished by the abrasive 38 (lower surface plate 36). This polishing process is referred to as step 1. Next, during the polishing process, both surfaces of the workpiece 10 are reversed with respect to the upper surface plate 35 and the lower surface plate 36. Then, the upper surface 10A of the workpiece 10 is polished by the polishing material 38 (lower surface plate 36), and the lower surface 10B is polished by the polishing material 37 (upper surface plate 35). The polishing process after the inversion is referred to as step 2.

ここで、工程1における加工時間をX、工程2における加工時間をYとする。総加工量Cを研磨加工する総加工時間Zは(X+Y)である。   Here, the processing time in step 1 is X, and the processing time in step 2 is Y. The total processing time Z for polishing the total processing amount C is (X + Y).

このように、途中で反転させて研磨加工した場合、上面10Aの加工量Lは、工程1、2の各加工時間X、Yと上下定盤35、36の各加工レートP、Qより、式(2)のようになる。
L=PX+QY ・・・式(2)
As described above, when polishing is performed by reversing halfway, the processing amount L of the upper surface 10A can be calculated from the processing times X and Y of steps 1 and 2 and the processing rates P and Q of the upper and lower surface plates 35 and 36. It becomes like (2).
L = PX + QY (2)

また、下面10Bの加工量Mは、工程1、2の各加工時間X、Yと上下定盤35、36の各加工レートP、Qより、式(3)のようになる。
M=QX+PY ・・・式(3)
Further, the machining amount M of the lower surface 10B is expressed by the equation (3) from the machining times X and Y in the steps 1 and 2 and the machining rates P and Q of the upper and lower surface plates 35 and 36.
M = QX + PY (3)

上記の式(2)と式(3)から、工程1の加工時間X、及び工程2の加工時間Yは、式(4)、式(5)として得られる。
X=(LP−MQ)/(P2−Q2) ・・・式(4)
Y=(MP−LQ)/(P2−Q2) ・・・式(5)
From the above formulas (2) and (3), the processing time X of step 1 and the processing time Y of step 2 are obtained as formulas (4) and (5).
X = (LP−MQ) / (P 2 −Q 2 ) (4)
Y = (MP−LQ) / (P 2 −Q 2 ) (5)

従って、偏光分離膜13の上端部から被加工物10の上面10Aまでの距離(加工量L)を測定し、偏光分離膜13の下端部から被加工物10の下面10Bまでの距離(加工量M)を測定して、更に上定盤35の加工レートP及び下定盤36の加工レートQを設定して、その各値と式(4)、式(5)を用いると、工程1と工程2の加工時間X、Yを算出することができ、その加工時間で被加工物10を研磨加工すればよい。   Accordingly, the distance (processing amount L) from the upper end portion of the polarization separation film 13 to the upper surface 10A of the workpiece 10 is measured, and the distance (processing amount) from the lower end portion of the polarization separation film 13 to the lower surface 10B of the workpiece 10 is measured. M) is measured, and further, the processing rate P of the upper surface plate 35 and the processing rate Q of the lower surface plate 36 are set, and using these values and equations (4) and (5), step 1 and step 2 processing times X and Y can be calculated, and the workpiece 10 may be polished by the processing time.

例えば、先に説明した図1、図2の製造工程によって、多数のビームスプリッタ(被加工物)10が製造される。これらの被加工物10の厚みTを測定し、その厚みTに応じて厚み区分けする。次に、1つの厚み区分における複数の被加工物10の両面の加工量L、Mを測定し、更に、加工量L、Mに応じて加工量区分けする。   For example, a large number of beam splitters (workpieces) 10 are manufactured by the manufacturing process shown in FIGS. 1 and 2 described above. The thickness T of these workpieces 10 is measured, and the thickness is classified according to the thickness T. Next, the processing amounts L and M on both surfaces of the plurality of workpieces 10 in one thickness section are measured, and further, the processing amounts are classified according to the processing amounts L and M.

所定の加工量区分に区分けされた複数の被加工物10を両面ラップ盤30の保持部34(図4、図5参照)に装着する。   A plurality of workpieces 10 divided into predetermined processing amount sections are mounted on the holding portion 34 (see FIGS. 4 and 5) of the double-sided lapping machine 30.

次に、加工レートP、Q、及び工程1、2の加工時間X、Yを設定する。   Next, processing rates P and Q and processing times X and Y of steps 1 and 2 are set.

ここで、所定の加工量区分における総加工量Cが2mm、測定の結果、上面10Aからの加工量Lが1.012mm、下面10Bからの加工量Mが0.988mmであるとする。予め上定盤35の加工レートPを0.1mm/分、下定盤36の加工レートQを0.105mm/分と設定する。この加工レートP、Qは、研磨加工の精度や加工時間等の性能・コストに基づいて設定される。   Here, it is assumed that the total processing amount C in a predetermined processing amount section is 2 mm, the processing amount L from the upper surface 10A is 1.012 mm, and the processing amount M from the lower surface 10B is 0.988 mm. The processing rate P of the upper surface plate 35 is set in advance to 0.1 mm / min, and the processing rate Q of the lower surface plate 36 is set to 0.105 mm / min. The processing rates P and Q are set based on performance and cost such as polishing accuracy and processing time.

工程1、2の加工時間X、Yは、加工量L、Mと、加工レートP、Q、及び式(4)、式(5)によって算出される。図6は、上定盤35の加工レートPを0.1mm/分、下定盤36の加工レートQを0.105mm/分に設定した場合の、式(4)、式(5)から算出した加工例を示す表である。加工量Lが1.012mm、加工量Mが0.988mmであると、表の加工例1〜21の中で加工例5が対応する。この加工例5に基づいて、両面ラップ盤30による工程1の加工時間Xが2.48分、工程2の加工時間Yが7.28分に設定される。尚、図6では、総加工時間Z(工程1と工程2の加工時間X、Yの和)を一定として、加工量L、M毎に加工例1〜21を示している。   The machining times X and Y of steps 1 and 2 are calculated by the machining amounts L and M, the machining rates P and Q, and equations (4) and (5). FIG. 6 is calculated from the equations (4) and (5) when the processing rate P of the upper surface plate 35 is set to 0.1 mm / min and the processing rate Q of the lower surface plate 36 is set to 0.105 mm / min. It is a table | surface which shows a processing example. If the processing amount L is 1.012 mm and the processing amount M is 0.988 mm, processing example 5 corresponds to processing examples 1 to 21 in the table. Based on this processing example 5, the processing time X of the process 1 by the double-sided lapping machine 30 is set to 2.48 minutes, and the processing time Y of the process 2 is set to 7.28 minutes. In FIG. 6, machining examples 1 to 21 are shown for each machining amount L and M, with the total machining time Z (sum of machining times X and Y of process 1 and process 2) being constant.

これらの加工時間X、Yを設定して、両面ラップ盤30で研磨加工すると、被加工物10の上面10Aは、工程1によって上定盤35の加工レートP(0.1mm/分)で2.48分加工され、反転後、工程2によって下定盤36の加工レートQ(0.105mm/分)で7.28分加工されて、上面10Aの加工量Lは1.012mmとなる。   When these machining times X and Y are set and polished by the double-sided lapping machine 30, the upper surface 10A of the workpiece 10 is 2 at the machining rate P (0.1 mm / min) of the upper surface plate 35 in step 1. .48 minutes, and after reversal, the machining rate Q (0.105 mm / min) of the lower surface plate 36 is processed for 7.28 minutes in Step 2, and the processing amount L of the upper surface 10A becomes 1.012 mm.

また、被加工物10の下面10Bは、工程1によって下定盤36の加工レートQ(0.105mm/分)で2.48分加工され、反転後、工程2によって上定盤35の加工レートP(0.1mm/分)で7.28分加工され、下面10Bの加工量Mは0.988mmとなる。そして総加工量Cは2mmとなる。これで、偏光分離膜13からのバラツキを取り除いた、厚みToが2mmのビームスプリッタ10が得られる。   In addition, the lower surface 10B of the workpiece 10 is processed for 2.48 minutes at the processing rate Q (0.105 mm / min) of the lower surface plate 36 in step 1, and after reversal, the processing rate P of the upper surface plate 35 is determined in step 2. (0.1 mm / min) is processed for 7.28 minutes, and the processing amount M of the lower surface 10B is 0.988 mm. The total processing amount C is 2 mm. Thus, the beam splitter 10 having a thickness To of 2 mm, in which the variation from the polarization separation film 13 is removed, is obtained.

上記の加工例は、上定盤35と下定盤36の加工レートP、Qの差を比較的に小さく設定し、被加工物10両面の研磨加工精度を上げている。上下定盤35、36の加工レートP、Qの差を変えて、加工時間を短縮させることもできる。この場合には、上定盤35と下定盤36との回転速度差が大きくなるようにして、上下定盤35、36の加工レート差を大きくする。または、上下定盤35、36に設けた各研磨材37、38の粗さ、または硬さの差が大きくなるようにして、上下定盤35、36の加工レートP、Qの差を大きくしてもよい。更に、研磨材37、38に替えて、上下定盤35、36と被加工物10との間に介在させる研磨ペレットの番手の差を大きくしてもよい。   In the above processing example, the difference between the processing rates P and Q of the upper surface plate 35 and the lower surface plate 36 is set to be relatively small, and the polishing processing accuracy of both surfaces of the workpiece 10 is increased. The processing time can be shortened by changing the difference between the processing rates P and Q of the upper and lower surface plates 35 and 36. In this case, the processing rate difference between the upper and lower surface plates 35 and 36 is increased so that the rotational speed difference between the upper surface plate 35 and the lower surface plate 36 is increased. Alternatively, the difference in the processing rates P and Q of the upper and lower surface plates 35 and 36 is increased by increasing the difference in roughness or hardness of the abrasives 37 and 38 provided on the upper and lower surface plates 35 and 36. May be. Furthermore, instead of the abrasives 37 and 38, the difference in the counts of the abrasive pellets interposed between the upper and lower surface plates 35 and 36 and the workpiece 10 may be increased.

このようにして、上下定盤35、36の加工レートP、Qの差を大きくした加工例を図7に示す。この表の加工例1〜21では、上定盤35の加工レートPが0.1mm/分、下定盤36の加工レートQが0.15mm/分に設定されて、上下定盤35、36の加工レート差は0.05である。図6の加工レート差は0.005であり、図6、図7から明らかなように、図7の加工例では総加工時間Zが短縮されている。   FIG. 7 shows a machining example in which the difference between the machining rates P and Q of the upper and lower surface plates 35 and 36 is thus increased. In the processing examples 1 to 21 in this table, the processing rate P of the upper surface plate 35 is set to 0.1 mm / min, and the processing rate Q of the lower surface plate 36 is set to 0.15 mm / min. The processing rate difference is 0.05. The machining rate difference in FIG. 6 is 0.005. As is apparent from FIGS. 6 and 7, the total machining time Z is shortened in the machining example in FIG.

上記実施形態によれば、研磨方法は、被加工物10の両面10A、10Bを同時に研磨して所定の厚みToに調整するために、上定盤35と下定盤36の加工レートP、Qを異なる値に設定する工程と、偏光分離膜13を基準に被加工物10の両面10A、10Bの各加工量L、Mを測定する工程と、被加工物10を工程1の加工時間(第1の加工時間)Xで研磨加工する工程と、上定盤35及び下定盤6に対して、被加工物10の両面10A、10Bを反転させる工程と、反転させた被加工物10を工程2の加工時間(第2の加工時間)Yで研磨加工する工程とを有する。   According to the above-described embodiment, the polishing method uses the processing rates P and Q of the upper surface plate 35 and the lower surface plate 36 in order to simultaneously polish both surfaces 10A and 10B of the workpiece 10 and adjust to a predetermined thickness To. A step of setting different values, a step of measuring the processing amounts L and M of both surfaces 10A and 10B of the workpiece 10 based on the polarization separation film 13, and a processing time of the workpiece 10 in the step 1 (first The processing time of X), the step of inverting the both surfaces 10A, 10B of the workpiece 10 with respect to the upper surface plate 35 and the lower surface plate 6, and the inverted workpiece 10 of the step 2 And a polishing process at a processing time (second processing time) Y.

この方法によると、被加工物10の上面(一方の面)10Aは、上定盤35の加工レートPで工程1の加工時間Xで加工され、反転後、下定盤36の加工レートQで工程2の加工時間Yで加工され、或る所定量L加工されることなる。一方、被加工物10の下面(他方の面)10Bは、下定盤36の加工レートQで工程1の加工時間Xで加工され、反転後、上定盤35の加工レートPで工程2の加工時間Yで加工され、別の所定量M加工されることになる。そして、上面10Aと下面10Bが夫々所定量L、M加工されることによって、被加工物10は所定の厚みToとなる。従って、両面同時に加工することで研磨加工時間が短縮され、被加工物10を反転させることで平坦度の高い被加工面が得られ、上定盤35と下定盤36の加工レートP、Qに応じて加工時間X、Yを割り振ることで、被加工物10の両面10A、10Bを夫々所定量L、M加工することができるとともに、被加工物10を所定の厚さToに調整することができる。また、被加工物10の加工量L、Mが様々な場合であっても、加工レートP、Qを加工量L、Mに対応して変えることなく、加工時間X、Yを変えることで容易に対応できる。   According to this method, the upper surface (one surface) 10 </ b> A of the workpiece 10 is processed at the processing rate X of the upper surface plate 35 at the processing time X of step 1, and after reversal, the process is performed at the processing rate Q of the lower surface plate 36. That is, a predetermined amount L is processed at a processing time Y of 2. On the other hand, the lower surface (the other surface) 10B of the workpiece 10 is processed at the processing rate Q of the lower surface plate 36 at the processing time X of step 1, and after reversal, the processing of the step 2 at the processing rate P of the upper surface plate 35 is performed. Processing is performed at time Y, and another predetermined amount M is processed. Then, the upper surface 10A and the lower surface 10B are processed by a predetermined amount L and M, respectively, so that the workpiece 10 has a predetermined thickness To. Therefore, the polishing time is shortened by processing both surfaces simultaneously, and a processed surface with high flatness is obtained by reversing the workpiece 10, and the processing rates P and Q of the upper surface plate 35 and the lower surface plate 36 are adjusted. Accordingly, by assigning the processing times X and Y, both the surfaces 10A and 10B of the workpiece 10 can be processed by a predetermined amount L and M, respectively, and the workpiece 10 can be adjusted to a predetermined thickness To. it can. Further, even when the processing amounts L and M of the workpiece 10 are various, it is easy to change the processing times X and Y without changing the processing rates P and Q corresponding to the processing amounts L and M. It can correspond to.

また、上記実施形態によれば、被加工物10は偏光分離膜(接合面)13を有して、この偏光分離膜13を基準として加工量L、Mが設定されることによって、両面10A、10Bと偏光分離膜13との寸法精度が良好なものとなるとともに、被加工物10を所定の厚さToに調整することができる。   Moreover, according to the said embodiment, the to-be-processed object 10 has the polarization separation film (bonding surface) 13, and the processing amount L and M is set on the basis of this polarization separation film 13, and thereby both surfaces 10A, 10B and the polarization separation film 13 can have good dimensional accuracy, and the workpiece 10 can be adjusted to a predetermined thickness To.

また、上記実施形態によれば、光入出面である両面と偏光分離膜との寸法精度が良く、光入出面の面精度が良いビームスプリッタ10を得ることができる。   Further, according to the above embodiment, it is possible to obtain the beam splitter 10 having good dimensional accuracy between the light input / output surfaces and the polarization separation film, and good surface accuracy of the light input / output surfaces.

また、上記実施形態によれば、加工時間X、Yは、上定盤35と下定盤36の加工レートP、Qと、偏光分離膜13を基準とした被加工物10の両面10A、10Bの各加工量L、Mとに基づいて算出されることによって、加工時間X、Yを正確に設定することができる。   Further, according to the above embodiment, the processing times X and Y are the processing rates P and Q of the upper surface plate 35 and the lower surface plate 36, and the both surfaces 10 </ b> A and 10 </ b> B of the workpiece 10 based on the polarization separation film 13. By calculating based on the processing amounts L and M, the processing times X and Y can be accurately set.

また、上記第施形態によれば、被加工物10に対して、上定盤35と下定盤36との回転速度差を設けることによって、上定盤35と下定盤36との加工レートP、Qが異なる値に設定されるので、加工レート差を簡単に且つ確実に設定することができる。   Moreover, according to the said embodiment, by providing the rotational speed difference of the upper surface plate 35 and the lower surface plate 36 with respect to the workpiece 10, the processing rate P of the upper surface plate 35 and the lower surface plate 36, Since Q is set to a different value, the machining rate difference can be set easily and reliably.

また、上記実施形態によれば、上定盤35と下定盤36の研磨材37、38の粗さ、または硬さに差を設けることによって、上定盤35と下定盤36との加工レートP、Qを異なる値に設定するので、加工レート差を簡単に且つ確実に設定することができる。   Further, according to the above embodiment, the processing rate P between the upper surface plate 35 and the lower surface plate 36 is provided by providing a difference in the roughness or hardness of the abrasives 37, 38 of the upper surface plate 35 and the lower surface plate 36. Since Q is set to a different value, the machining rate difference can be set easily and reliably.

また、上記実施形態によれば、研磨方法は、被加工物10の両面10A、10Bを同時に研磨して所定の厚みToに調整するために、上定盤35と下定盤36の加工レートP、Qを異なる値に設定する工程と、偏光分離膜13を基準に被加工物10の厚さTと両面10A、10Bの各加工量L、Mとを測定する工程と、複数の同一厚さTの被加工物10から、両面10A、10Bの各加工量L、Mが同じである被加工物10を選別する工程とを有する。更に、研磨方法は、選別された被加工物10を工程1の加工時間Xで研磨加工する工程と、上定盤35及び下定盤36に対して、選別された被加工物10の両面10A、10Bを反転させる工程と、反転させた被加工物10を工程2の加工時間Yで研磨加工する工程とを有する。   Moreover, according to the said embodiment, in order to grind | polish both surfaces 10A and 10B of the to-be-processed object 10 simultaneously and to adjust to predetermined thickness To, the processing rate P of the upper surface plate 35 and the lower surface plate 36, A step of setting Q to different values, a step of measuring the thickness T of the workpiece 10 and the processing amounts L and M of both surfaces 10A and 10B with reference to the polarization separation film 13, and a plurality of the same thickness T The workpiece 10 having the same processing amounts L and M on both surfaces 10A and 10B from the workpiece 10. Further, the polishing method includes a step of polishing the selected workpiece 10 with the processing time X of step 1, and both surfaces 10A of the selected workpiece 10 with respect to the upper surface plate 35 and the lower surface plate 36, 10B, and a process of polishing the inverted workpiece 10 with the processing time Y of step 2.

この方法によると、複数の被加工物10を纏めて、被加工物10の両面10A、10Bから夫々同時に所定量L、B加工するとともに、所定の厚さToに調整することになり、生産性が向上し、製造コストを抑制することができる。   According to this method, a plurality of workpieces 10 are gathered and simultaneously processed by a predetermined amount L and B from both surfaces 10A and 10B of the workpiece 10, respectively, and adjusted to a predetermined thickness To. The manufacturing cost can be suppressed.

尚、上記第実施形態では、図1、図2の製造工程によって、製造された多数のビームスプリッタ(被加工物)10の中から、厚み区分と加工量区分とが同じ被加工物10を選別し、この選別した被加工物10を纏めて、両面ラップ盤30で研磨加工する方法を示したが、本発明はこれに限らず、下記の方法によって研磨加工してもよい。   In the first embodiment, the workpiece 10 having the same thickness category and the same machining amount category is selected from the many beam splitters (workpieces) 10 manufactured by the manufacturing process shown in FIGS. Although the method of collecting the selected workpieces 10 and polishing them with the double-sided lapping machine 30 has been shown, the present invention is not limited to this and may be polished by the following method.

その研磨加工法は、上定盤35と下定盤36の加工レートP、Qを異なる値に設定する工程と、偏光分離膜13を基準に被加工物10の厚さTと両面10A、10Bの各加工量L、Mとを測定する工程と、同一厚さTの複数の被加工物10から、両面10A、10Bの各加工量L、Mに応じて被加工物10を区分する加工量区分工程と、2つの加工量区分に属する被加工物10を上定盤35と下定盤36との間に配置する工程とを有する。2つの加工量区分のうち、第1の加工量区分の両面10A、10Bの各加工量L1、M1とし、加工量L1、M1を加工すると被加工物10の厚みはToとなる。また、第2の加工量区分の両面10A、10Bの各加工量L2、M2とし、加工量L2、M2を加工すると被加工物10の厚みはToとなる。   The polishing method includes a step of setting the processing rates P and Q of the upper surface plate 35 and the lower surface plate 36 to different values, and the thickness T of the workpiece 10 and both surfaces 10A and 10B based on the polarization separation film 13. The process of measuring each processing amount L, M, and the processing amount classification for classifying the workpiece 10 according to each processing amount L, M on both surfaces 10A, 10B from a plurality of workpieces 10 of the same thickness T And a step of disposing the workpiece 10 belonging to the two processing amount categories between the upper surface plate 35 and the lower surface plate 36. Of the two processing amount sections, the processing amounts L1 and M1 of both surfaces 10A and 10B of the first processing amount section are set, and when the processing amounts L1 and M1 are processed, the thickness of the workpiece 10 becomes To. Further, the processing amounts L2 and M2 of both surfaces 10A and 10B of the second processing amount section are set, and when the processing amounts L2 and M2 are processed, the thickness of the workpiece 10 becomes To.

更に、研磨加工法は、工程1の加工時間Xで、2つの加工量区分に属する被加工物10を研磨加工する工程と、上定盤35及び下定盤36に対して、第1の加工量区分に属する被加工物10の両面10A、10Bを反転させる工程と、工程2の加工時間Y内の所定時間Y1で、2つの加工量区分に属する被加工物10を研磨加工する工程と、上定盤35及び下定盤36に対して、第2の加工量区分に属する被加工物10の両面10A、10Bを反転させる工程と、工程2の加工時間内Yの残り時間Y2で、2つの加工量区分に属する被加工物10を研磨加工する工程とを有する。   Further, in the polishing method, the first processing amount is applied to the step of polishing the workpiece 10 belonging to two processing amount categories and the upper surface plate 35 and the lower surface plate 36 at the processing time X in step 1. A step of inverting both surfaces 10A, 10B of the workpiece 10 belonging to the section, a step of polishing the workpiece 10 belonging to the two processing amount sections at a predetermined time Y1 within the processing time Y of the step 2, Two processes are performed in the process of inverting both surfaces 10A and 10B of the workpiece 10 belonging to the second machining amount category and the remaining time Y2 within the machining time Y of the process 2 with respect to the surface plate 35 and the lower surface plate 36. And polishing the workpiece 10 belonging to the quantity category.

この方法によると、第1の加工量区分に属する被加工物10の上面10Aは、上定盤35の加工レートPで工程1の加工時間Xで加工され、反転後、下定盤36の加工レートQで工程2の加工時間Yで加工され、所定量L1加工される。一方、第1の加工量区分に属する被加工物10の下面10Bは、下定盤36の加工レートQで工程1の加工時間Xで加工され、反転後、上定盤35の加工レートPで工程2の加工時間Yで加工され、所定量M1加工される。   According to this method, the upper surface 10A of the workpiece 10 belonging to the first processing amount category is processed at the processing time P of the process 1 at the processing rate P of the upper surface plate 35, and after the inversion, the processing rate of the lower surface plate 36. Q is processed at the processing time Y of step 2, and a predetermined amount L1 is processed. On the other hand, the lower surface 10B of the workpiece 10 belonging to the first processing amount category is processed at the processing time X of the process 1 at the processing rate Q of the lower surface plate 36, and after the reversal, the process is performed at the processing rate P of the upper surface plate 35. Is processed at a processing time Y of 2, and a predetermined amount M1 is processed.

そして、上面10Aと下面10Bが夫々所定量L1、M1加工されることによって、第1の加工量区分に属する被加工物10は所定の厚みToとなる。   Then, by processing the upper surface 10A and the lower surface 10B by the predetermined amounts L1 and M1, respectively, the workpiece 10 belonging to the first processing amount section has a predetermined thickness To.

また、第2の加工量区分に属する被加工物10の上面10Aは、上定盤35の加工レートPで工程1の加工時間Xと工程2の加工時間Y内の所定時間Y1と間、加工され、反転後、下定盤36の加工レートQで工程2の加工時間Y内の残り時間Y2で加工され、第1の加工量区分の被加工物10とは異なる所定量L2加工される。一方、第2の加工量区分に属する被加工物10の下面10Bは、下定盤36の加工レートQで工程1の加工時間Xと工程2の加工時間Y内の所定時間Y1と間、加工され、反転後、上定盤35の加工レートPで工程2の加工時間Y内の残り時間Y2で加工され、第1の加工量区分の被加工物10とは異なる所定量M2加工される。   Further, the upper surface 10A of the workpiece 10 belonging to the second machining amount section is processed at a machining rate P of the upper surface plate 35 between a machining time X in the process 1 and a predetermined time Y1 in the machining time Y in the process 2. After the reversal, the workpiece is processed at the processing rate Q of the lower surface plate 36 at the remaining time Y2 within the processing time Y of the step 2, and is processed by a predetermined amount L2 different from the workpiece 10 in the first processing amount section. On the other hand, the lower surface 10B of the workpiece 10 belonging to the second machining amount category is machined at the machining rate Q of the lower surface plate 36 between the machining time X in step 1 and a predetermined time Y1 within the machining time Y in step 2. After the reversal, the workpiece is processed at the processing rate P of the upper surface plate 35 at the remaining time Y2 within the processing time Y of step 2, and a predetermined amount M2 different from the workpiece 10 in the first processing amount section is processed.

そして、上面10Aと下面10Bが夫々所定量L2、M2加工されることによって、第2の加工量区分に属する被加工物10は第1加工量区分の被加工物10と同じ所定の厚みToとなる。   Then, by processing the upper surface 10A and the lower surface 10B by the predetermined amounts L2 and M2, respectively, the workpiece 10 belonging to the second processing amount section has the same predetermined thickness To as the workpiece 10 in the first processing amount section. Become.

加工量区分は上記のように2つに限らずに、もっと多数の加工量区分の被加工物10を本実施形態の研磨方向によって加工することができる。   The processing amount section is not limited to two as described above, and the workpiece 10 having a larger number of processing amount sections can be processed according to the polishing direction of the present embodiment.

これによって、両面からの加工量が異なる複数の被加工物10を纏めて、被加工物10の両面10A、10Bから夫々同時に所定量加工するとともに、所定の厚さに調整することになり、生産性が向上し、製造コストを抑制することができる。   As a result, a plurality of workpieces 10 having different amounts of processing from both sides are collectively processed from both sides 10A and 10B of the workpiece 10 by a predetermined amount, and adjusted to a predetermined thickness. This improves the manufacturing cost.

また、上記実施形態では、被加工物としてビームスプリッタに適用した研磨方向を示したが、本発明はこれに限らず、被加工物は図8に示す光学フィルタ210に適用してもよい。   In the above embodiment, the polishing direction applied to the beam splitter as the workpiece is shown. However, the present invention is not limited to this, and the workpiece may be applied to the optical filter 210 shown in FIG.

光学フィルタ210は、2つの平板状ガラスからなり、夫々の分光特性が異なるガラス211、212を接合面213で接合したものである。2つのガラス211、212は屈折率が異なるもの、また、ND特性の異なるものであってもよい。   The optical filter 210 is made of two flat glass plates, and glass 211 and 212 having different spectral characteristics are joined by a joining surface 213. The two glasses 211 and 212 may have different refractive indexes or different ND characteristics.

光学フィルタ210を所定の厚みに調整するとともに、各ガラス211、212を各所定の厚みに研磨加工するために、上定盤35と下定盤36との各加工レートP、Qを設定し、光学フィルタ(被加工物)210の両面210A、210Bの各加工量を測定し、更に、光学フィルタ210を所定の加工時間で両面同時に研磨加工した後、上定盤35及び下定盤6に対して、光学フィルタ210の両面210A、210Bを反転させて、反転させた光学フィルタ210を別の所定時間で両面同時に研磨加工する。   While adjusting the optical filter 210 to a predetermined thickness and polishing each glass 211, 212 to each predetermined thickness, the processing rates P, Q of the upper surface plate 35 and the lower surface plate 36 are set, and the optical After measuring each processing amount of both surfaces 210A and 210B of the filter (workpiece) 210, and further polishing both surfaces of the optical filter 210 at a predetermined processing time, the upper surface plate 35 and the lower surface plate 6 are The both surfaces 210A and 210B of the optical filter 210 are inverted, and the inverted optical filter 210 is polished at the same time for another predetermined time.

これによって、光入出面である両面と接合面との寸法精度が良く、光入出面の面精度が良い光学フィルタ210を得ることができる。   As a result, it is possible to obtain an optical filter 210 that has good dimensional accuracy between both surfaces that are the light entrance / exit surfaces and the joint surface, and good surface accuracy of the light entrance / exit surfaces.

また、本実施形態では、被加工物として、図9に示すガラスブロック310に適用してもよい。ガラスブロック310は、外形サイズの異なる2つの矩形状のガラス311、312を接合面313で接合したものである。2つのガラス311、312は、夫々の分光特性、屈折率等の光学特性が異なるものである。   Moreover, in this embodiment, you may apply to the glass block 310 shown in FIG. 9 as a to-be-processed object. The glass block 310 is obtained by bonding two rectangular glasses 311 and 312 having different outer sizes at a bonding surface 313. The two glasses 311 and 312 have different optical characteristics such as spectral characteristics and refractive index.

ガラスブロック310を所定の厚みに調整するとともに、各ガラス311、312を各所定の厚みに研磨加工するために、上定盤35と下定盤36との各加工レートP、Qを設定し、ガラスブロック(被加工物)310の両面310A、3210Bの各加工量を測定し、更に、ガラスブロック310を所定の加工時間で両面同時に研磨加工した後、上定盤35及び下定盤36に対して、ガラスブロック310の両面310A、310Bを反転させて、反転させたガラスブロック310を別の所定時間で両面同時に研磨加工する。   In order to adjust the glass block 310 to a predetermined thickness and to polish each glass 311 and 312 to each predetermined thickness, the processing rates P and Q of the upper surface plate 35 and the lower surface plate 36 are set, and the glass After measuring each processing amount of both surfaces 310A and 3210B of the block (workpiece) 310, and further polishing the glass block 310 simultaneously on both surfaces in a predetermined processing time, the upper surface plate 35 and the lower surface plate 36, The both surfaces 310A and 310B of the glass block 310 are inverted, and the inverted glass block 310 is polished simultaneously at another predetermined time.

これによって、光入出面である両面と接合面との寸法精度が良く、光入出面の面精度が良い光ガラスブロック310を得ることができる。   As a result, it is possible to obtain the optical glass block 310 with good dimensional accuracy between the both surfaces that are the light entrance / exit surfaces and the joint surface and with good surface accuracy of the light entrance / exit surfaces.

本発明は、両面ラップ盤で被加工物の両面を研磨して所定の厚みに調整する研磨方法に利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized for the grinding | polishing method which grind | polishes both surfaces of a workpiece with a double-sided lapping machine, and adjusts it to predetermined thickness.

10 ビームスプリッタ(被加工物)
10A 上面
10B 下面
11、12 ガラスプリズム
13 偏光分離膜
30 両面ラップ盤
31 太陽歯車
32 内歯車
33 キャリア
34 保持部
35 上定盤
36 下定盤
37、38 研磨材
50 ガラス平板
51 板ガラス
53 マッチング膜
60 積層体
70 積層分割体
71 反射防止膜
80 仮止め積層体
90 治具
91 ベース部
92 水平支持部
93 垂直支持部
210 光学フィルタ(被加工物)
213、313 接合面
310 ガラスブロック(被加工物)
L、M 加工量
P、Q 加工レート
S1、S2、S3 切断線
T 被加工物の厚み
X、Y 加工時間
10 Beam splitter (workpiece)
10A Upper surface 10B Lower surface 11, 12 Glass prism 13 Polarization separation film 30 Double-sided lapping machine 31 Sun gear 32 Internal gear 33 Carrier 34 Holding part 35 Upper surface plate 36 Lower surface plate 37, 38 Abrasive material 50 Glass flat plate 51 Plate glass 53 Matching film 60 Lamination Body 70 Laminated division body 71 Antireflection film 80 Temporarily stuck laminated body 90 Jig 91 Base part 92 Horizontal support part 93 Vertical support part 210 Optical filter (workpiece)
213, 313 Joint surface 310 Glass block (workpiece)
L, M Machining amount P, Q Machining rate S1, S2, S3 Cutting line T Workpiece thickness X, Y Machining time

Claims (9)

被加工物の互いに対向する被研磨面を同時に研磨する研磨方法であって、
両面研磨機の上定盤と下定盤の加工レートを異なる値に設定する工程と、
前記被研磨面の間に位置する基準面を基準に、前記被加工物の各加工量を測定する工程と、
前記被加工物を前記上定盤と下定盤との間で第1の加工時間で研磨加工する工程と、
前記上定盤及び下定盤に対して前記被加工物の被研磨面を反転させる工程と、
前記反転させた被加工物を前記上定盤と下定盤との間で第2の加工時間で研磨加工する工程と、を有し、
前記第1の加工時間と第2の加工時間とは、前記上定盤と下定盤の加工レートと、前記被加工物の各加工量とに基づいて算出されることを特徴とする研磨方法。
A polishing method for simultaneously polishing opposite surfaces of a workpiece,
A process of setting the processing rate of the upper and lower surface plates of the double-side polishing machine to different values;
Measuring each processing amount of the workpiece with reference to a reference surface located between the polished surfaces;
Polishing the workpiece in a first processing time between the upper surface plate and the lower surface plate;
Reversing the surface to be polished of the workpiece with respect to the upper surface plate and the lower surface plate,
Polishing the inverted work piece between the upper surface plate and the lower surface plate in a second processing time,
The polishing method according to claim 1, wherein the first machining time and the second machining time are calculated based on a machining rate of the upper surface plate and the lower surface plate, and each amount of processing of the workpiece.
前記被加工物は接合面を有し、前記接合面を基準として前記加工量が設定されることを特徴とする請求項1に記載の研磨方法。   The polishing method according to claim 1, wherein the workpiece has a joint surface, and the processing amount is set with reference to the joint surface. 前記接合面は前記被研磨面に対して傾斜しており、前記接合面の端部を基準に前記加工量を測定することを特徴とする請求項2に記載の研磨方法。   The polishing method according to claim 2, wherein the bonding surface is inclined with respect to the surface to be polished, and the processing amount is measured based on an end portion of the bonding surface. 前記被加工物は、接合した光学フィルタであることを特徴とする請求項2に記載の研磨方法。   The polishing method according to claim 2, wherein the workpiece is a bonded optical filter. 前記接合面は前記被研磨面と平行であることを特徴とする請求項2に記載の研磨方法。   The polishing method according to claim 2, wherein the bonding surface is parallel to the surface to be polished. 前記被加工物に対して、前記上定盤と下定盤との回転速度差を設けることによって、前記上定盤と下定盤との加工レートを異なる値に設定することを特徴とする請求項1〜請求項5のいずれかに記載の研磨方法。   The processing rate of the upper surface plate and the lower surface plate is set to different values by providing a difference in rotational speed between the upper surface plate and the lower surface plate for the workpiece. The polishing method according to claim 5. 前記上定盤と下定盤の研磨材の粗さ、または硬さに差を設けることによって、前記上定盤と下定盤との加工レートを異なる値に設定することを特徴とする請求項1〜請求項5のいずれかに記載の研磨方法。   The processing rate of the said upper surface plate and a lower surface plate is set to a different value by providing a difference in the roughness of the abrasive | polishing material of the said upper surface plate and a lower surface plate, or hardness. The polishing method according to claim 5. 被加工物の互いに対向する被研磨面を同時に研磨する研磨方法であって、
両面研磨機の上定盤と下定盤の加工レートを異なる値に設定する工程と、
前記被研磨面の間に位置する基準面を基準に、前記被加工物の各加工量を測定する工程と、
同一厚さの複数の被加工物から、前記被加工物の各加工量が同じである被加工物を選別する工程と、
前記選別された被加工物を前記上定盤と下定盤との間で第1の加工時間で研磨加工する工程と、
前記上定盤及び下定盤に対して前記選別された被加工物の被研磨面を反転させる工程と、
前記反転させた被加工物を前記上定盤と下定盤との間で第2の加工時間で研磨加工する工程と、を有し、
前記第1の加工時間と第2の加工時間とは、前記上定盤と下定盤の加工レートと、前記被加工物の各加工量とに基づいて算出されることを特徴とする研磨方法。
A polishing method for simultaneously polishing opposite surfaces of a workpiece,
A process of setting the processing rate of the upper and lower surface plates of the double-side polishing machine to different values;
Measuring each processing amount of the workpiece with reference to a reference surface located between the polished surfaces;
Selecting a workpiece having the same amount of machining of the workpiece from a plurality of workpieces of the same thickness; and
Polishing the selected workpiece between the upper surface plate and the lower surface plate in a first processing time;
Reversing the polished surface of the selected workpiece with respect to the upper surface plate and the lower surface plate,
Polishing the inverted work piece between the upper surface plate and the lower surface plate in a second processing time,
The polishing method according to claim 1, wherein the first machining time and the second machining time are calculated based on a machining rate of the upper surface plate and the lower surface plate, and each amount of processing of the workpiece.
被加工物の互いに対向する被研磨面を同時に研磨する研磨方法であって、
両面研磨機の上定盤と下定盤の加工レートを異なる値に設定する工程と、
前記被研磨面の間に位置する基準面を基準に、前記被加工物の各加工量を測定する工程と、
同一厚さの複数の被加工物から、前記被加工物の各加工量に応じて被加工物を区分する工程と、
少なくとも2つの区分に属する被加工物を前記上定盤と下定盤との間に配置する工程と、
2つの区分に属する被加工物を前記上定盤と下定盤との間で第1の加工時間で研磨加工する工程と、
前記上定盤及び下定盤に対して、第1の区分に属する被加工物の被研磨面を反転させる工程と、
前記2つの区分に属する被加工物を前記上定盤と下定盤との間で第2の加工時間の所定時間で研磨加工する工程と、
前記上定盤及び下定盤に対して、第2の区分に属する被加工物の被研磨面を反転させる工程と、
前記2つの区分に属する被加工物を前記上定盤と下定盤との間で第2の加工時間内の残り時間で研磨加工する工程とを有し、
前記第1の加工時間と第2の加工時間とは、前記上定盤と下定盤の加工レートと、前記被加工物の各加工量とに基づいて算出されることを特徴とする研磨方法。
A polishing method for simultaneously polishing opposite surfaces of a workpiece,
A process of setting the processing rate of the upper and lower surface plates of the double-side polishing machine to different values;
Measuring each processing amount of the workpiece with reference to a reference surface located between the polished surfaces;
A step of dividing the workpiece according to each processing amount of the workpiece from a plurality of workpieces of the same thickness;
Disposing a workpiece belonging to at least two sections between the upper surface plate and the lower surface plate;
Polishing a workpiece belonging to two categories between the upper surface plate and the lower surface plate in a first processing time;
Reversing the surface to be polished of the workpiece belonging to the first section with respect to the upper surface plate and the lower surface plate;
Polishing the workpieces belonging to the two sections between the upper surface plate and the lower surface plate for a predetermined time of a second processing time;
Reversing the polished surface of the workpiece belonging to the second section with respect to the upper and lower surface plates;
Polishing the workpieces belonging to the two sections between the upper surface plate and the lower surface plate with a remaining time within a second processing time,
The polishing method according to claim 1, wherein the first machining time and the second machining time are calculated based on a machining rate of the upper surface plate and the lower surface plate, and each amount of processing of the workpiece.
JP2009283755A 2009-12-15 2009-12-15 Polishing method Expired - Fee Related JP5423376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283755A JP5423376B2 (en) 2009-12-15 2009-12-15 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283755A JP5423376B2 (en) 2009-12-15 2009-12-15 Polishing method

Publications (2)

Publication Number Publication Date
JP2011125933A true JP2011125933A (en) 2011-06-30
JP5423376B2 JP5423376B2 (en) 2014-02-19

Family

ID=44289095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283755A Expired - Fee Related JP5423376B2 (en) 2009-12-15 2009-12-15 Polishing method

Country Status (1)

Country Link
JP (1) JP5423376B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022854A3 (en) * 2020-07-27 2022-04-07 Optics Balzers Ag Method for producing optical elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123965A (en) * 1991-11-05 1993-05-21 Fujitsu Ltd Wafer polishing method
JPH05329768A (en) * 1992-05-29 1993-12-14 Citizen Watch Co Ltd Double side polishing device
JPH06260546A (en) * 1993-03-03 1994-09-16 Mitsubishi Materials Shilicon Corp Thickness sorter of semiconductor wafer
JPH10296623A (en) * 1997-05-05 1998-11-10 Shin Etsu Handotai Co Ltd Device and method for polishing semiconductor wafer
JP2006281328A (en) * 2005-03-31 2006-10-19 Kyocera Kinseki Corp Method for manufacturing workpiece
JP2009182135A (en) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd Method of manufacturing compound semiconductor substrate and compound semiconductor substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123965A (en) * 1991-11-05 1993-05-21 Fujitsu Ltd Wafer polishing method
JPH05329768A (en) * 1992-05-29 1993-12-14 Citizen Watch Co Ltd Double side polishing device
JPH06260546A (en) * 1993-03-03 1994-09-16 Mitsubishi Materials Shilicon Corp Thickness sorter of semiconductor wafer
JPH10296623A (en) * 1997-05-05 1998-11-10 Shin Etsu Handotai Co Ltd Device and method for polishing semiconductor wafer
JP2006281328A (en) * 2005-03-31 2006-10-19 Kyocera Kinseki Corp Method for manufacturing workpiece
JP2009182135A (en) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd Method of manufacturing compound semiconductor substrate and compound semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022854A3 (en) * 2020-07-27 2022-04-07 Optics Balzers Ag Method for producing optical elements

Also Published As

Publication number Publication date
JP5423376B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
KR102305371B1 (en) SLICING METHOD OF SiC INGOT
US7410831B2 (en) Method and device for dividing plate-like member
KR102454030B1 (en) Wafer producing method
CN1610068B (en) Method of dividing a non-metal substrate
JP5776491B2 (en) Glass substrate for photomask, reticle or nanoimprint, and method for producing the same
KR101794488B1 (en) Production method for composite substrate
RU2368486C2 (en) Automatic polishing of mechanical parts made in titanium or titanium alloy
WO2012164757A1 (en) Device for machining columnar member
KR20180119481A (en) METHOD FOR PRODUCING SiC WAFER
JP2013165229A (en) Method for dividing optical device wafer
CN105034182A (en) Machining method for ultra-thin sapphire flaky bodies
CN108058066A (en) A kind of big method for processing surface of laser slab medium
KR101889237B1 (en) Composite substrate and thicknesstendency estimating method for piezoelectric substrate
Kim et al. Hybrid CO 2 laser-polishing process for improving material removal of silicon carbide
CN111149161B (en) Spacer, laminated body of substrate, method for manufacturing substrate, and method for manufacturing substrate for magnetic disk
JP5423376B2 (en) Polishing method
JP2012522649A5 (en)
WO2019102629A1 (en) Polygonal column member machining device and machining method
JP2009248203A (en) Machining apparatus and method of manufacturing display panel
JP6541987B2 (en) Optical element and method of manufacturing imaging element
JP2005164982A (en) Manufacturing method for compound prism
JP6556252B2 (en) Multi-stage batch polishing method and polishing film for optical fiber connector end face
JP2013116540A (en) Method of manufacturing optical element
JP2007319994A (en) Polishing pad
JP2015164084A (en) Magnetic disk substrate manufacturing method and polishing processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees