JP2011122567A - Thermoacoustic engine and alpha-type stirling engine - Google Patents

Thermoacoustic engine and alpha-type stirling engine Download PDF

Info

Publication number
JP2011122567A
JP2011122567A JP2009283133A JP2009283133A JP2011122567A JP 2011122567 A JP2011122567 A JP 2011122567A JP 2009283133 A JP2009283133 A JP 2009283133A JP 2009283133 A JP2009283133 A JP 2009283133A JP 2011122567 A JP2011122567 A JP 2011122567A
Authority
JP
Japan
Prior art keywords
heater
cooler
acoustic
thin tubes
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009283133A
Other languages
Japanese (ja)
Inventor
Yasushi Yamamoto
康 山本
Shinya Hasegawa
真也 長谷川
Makoto Abe
阿部  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009283133A priority Critical patent/JP2011122567A/en
Publication of JP2011122567A publication Critical patent/JP2011122567A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoacoustic engine and an α-type Stirling engine with minimized change in a flow passage sectional area. <P>SOLUTION: A flow passage of working fluid is formed by a plurality of narrow tubes 8 to extend from a heater connection section 6 in which a heater 3 is connected to an acoustic cylinder 2 to a cooler connection section 7 in which an opposite acoustic cylinder 2 is connected to a cooler 4. The plurality of narrow tubes 8 are arranged leaving a space between the narrow tubes in a part between the heater 3 and the cooler 4 via a regenerator 5, and the space between the plurality of narrow tubes 8 is gradually reduced toward the acoustic cylinders 2 respectively in the heater connection section 6 and in the cooler connection section 7 to closely arrange the plurality of narrow tubes 8 toward the acoustic cylinders 2, and the difference between the flow passage sectional area in the acoustic cylinders 2 and the total flow passage sectional area by the plurality of narrow tubes 8 is a predetermined value or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流路断面積の変化が小さい熱音響機関及びα型スターリングエンジンに関する。   The present invention relates to a thermoacoustic engine and an α-type Stirling engine with a small change in flow path cross-sectional area.

図5に示されるように、従来の熱音響機関(熱音響スターリングエンジン)51は、中空の音響筒52内に作動流体が満たされ、作動流体に外部からの熱を取り込むためのフィンを有する加熱器53と作動流体から外部に熱を取り出すためのフィンを有する冷却器54とが音響筒52の長手方向に間隔をあけて配置され、加熱器53と冷却器54の間に再生器55が配置されてなる。加熱器53と再生器55と冷却器54を合わせて原動機(プライムムーバ)という。図5の熱音響機関は、音響筒52がループ状に閉じた形態のものである。   As shown in FIG. 5, a conventional thermoacoustic engine (thermoacoustic Stirling engine) 51 is filled with a working fluid in a hollow acoustic cylinder 52 and has a fin for taking heat from outside into the working fluid. And a cooler 54 having fins for extracting heat from the working fluid to the outside are arranged at intervals in the longitudinal direction of the acoustic cylinder 52, and a regenerator 55 is arranged between the heater 53 and the cooler 54. Being done. The heater 53, the regenerator 55, and the cooler 54 are collectively referred to as a prime mover. The thermoacoustic engine of FIG. 5 has a configuration in which the acoustic cylinder 52 is closed in a loop shape.

図6に示した原動機の場合、加熱器61は、音響筒62に対して断面輪郭の形状と寸法が同じで両端が開放された外筒63を有し、外筒63の内部には流路と平行な複数の内部フィン64が並べられ、外筒63の外周には複数の外部フィン65が設けられる。冷却器66も同様に、音響筒62に対して断面輪郭の形状と寸法が同じで両端が開放された外筒63を有し、外筒63の内部には流路と平行な複数の内部フィン64が並べられ、外筒63の外周には複数の外部フィン65が設けられる。再生器67は、音響筒62に対して断面輪郭の形状と寸法が同じで両端が開放された外筒68を有し、外筒68の内部に流路を横断する複数の金網69が長手方向に積層される。音響筒62から加熱器61、再生器67、冷却器66、反対側の音響筒62まで、形状と寸法が同じ断面輪郭のまま連通している。この原動機では、加熱器61において、外部の熱が外部フィン65に吸収され、その熱が内部フィン64に伝導され、内部フィン64から作動流体に熱が放出される。冷却器66においては、加熱器61とは逆の熱交換が行われる。   In the case of the prime mover shown in FIG. 6, the heater 61 has an outer cylinder 63 having the same shape and dimensions as the cross-sectional contour with respect to the acoustic cylinder 62 and open at both ends. A plurality of internal fins 64 parallel to each other are arranged, and a plurality of external fins 65 are provided on the outer periphery of the outer cylinder 63. Similarly, the cooler 66 has an outer cylinder 63 having the same cross-sectional outline shape and dimensions as the acoustic cylinder 62 and open at both ends, and the inner cylinder 63 has a plurality of internal fins parallel to the flow path. 64 are arranged, and a plurality of external fins 65 are provided on the outer periphery of the outer cylinder 63. The regenerator 67 has an outer cylinder 68 that has the same shape and dimensions as the cross-sectional contour with respect to the acoustic cylinder 62 and is open at both ends, and a plurality of metal meshes 69 that traverse the flow path are provided in the outer cylinder 68 in the longitudinal direction. Is laminated. The acoustic cylinder 62, the heater 61, the regenerator 67, the cooler 66, and the acoustic cylinder 62 on the opposite side communicate with each other with the same cross-sectional outline and shape. In this prime mover, in the heater 61, external heat is absorbed by the external fin 65, the heat is conducted to the internal fin 64, and heat is released from the internal fin 64 to the working fluid. In the cooler 66, heat exchange opposite to that of the heater 61 is performed.

図7に示した原動機の場合、加熱器71は、音響筒72に対して断面輪郭の形状と寸法が同じで両端が閉じられた外筒73を有し、その外筒73の両端間に複数の細管74が挿通されている。冷却器75も同様に、音響筒に対して断面輪郭の形状と寸法が同じで両端が閉じられた外筒73を有し、その外筒73の両端間に複数の細管74が挿通されている。再生器76は、音響筒72に対して断面輪郭の形状と寸法が同じで両端が開放された外筒77を有し、外筒77の内部に流路を横断する複数の金網78が長手方向に積層される。音響筒72から再生器76までは加熱器71の細管74を通して連通し、再生器76から反対側の音響筒72までは冷却器75の細管74を通して連通している。加熱器71の外筒73内には高温の熱媒流体が流され、冷却器75の外筒内には低温の熱媒流体が流される。この原動機では、加熱器71及び冷却器75の細管74がフィンの役割をする。   In the case of the prime mover shown in FIG. 7, the heater 71 has an outer cylinder 73 having the same shape and dimensions as the cross-sectional contour with respect to the acoustic cylinder 72 and closed at both ends. The thin tube 74 is inserted. Similarly, the cooler 75 has an outer cylinder 73 having the same cross-sectional outline shape and dimensions as the acoustic cylinder and closed at both ends, and a plurality of thin tubes 74 are inserted between both ends of the outer cylinder 73. . The regenerator 76 has an outer cylinder 77 having the same shape and dimensions as the cross-sectional contour with respect to the acoustic cylinder 72 and open at both ends, and a plurality of metal meshes 78 that traverse the flow path are provided in the outer cylinder 77 in the longitudinal direction. Is laminated. The acoustic cylinder 72 to the regenerator 76 communicate with each other through a narrow tube 74 of the heater 71, and the acoustic cylinder 72 from the regenerator 76 to the opposite acoustic cylinder 72 communicates with a narrow tube 74 of the cooler 75. A high-temperature heat transfer fluid flows in the outer cylinder 73 of the heater 71, and a low-temperature heat transfer fluid flows in the outer cylinder of the cooler 75. In this prime mover, the thin tubes 74 of the heater 71 and the cooler 75 serve as fins.

特開2008−101910号公報JP 2008-101910A 特許第3050543号公報Japanese Patent No. 3050543 特開2001−207909号公報JP 2001-207909 A

図6に示した原動機では、加熱器61も冷却器66も、内部フィン64の伝熱性能を確保するために、内部フィン64の厚さをあまり薄くすることはできない。一方、音響筒62と同一サイズの外筒63の内部に内部フィン64が存在することで、外筒63内における流路の断面積は音響筒62における流路の断面積に比べて小さくなる。内部フィン64の厚さを厚くすると、外筒63内における流路の断面積はいっそう小さくなる。   In the prime mover shown in FIG. 6, neither the heater 61 nor the cooler 66 can make the thickness of the internal fins 64 too thin in order to ensure the heat transfer performance of the internal fins 64. On the other hand, since the internal fins 64 are present inside the outer cylinder 63 having the same size as the acoustic cylinder 62, the cross-sectional area of the flow path in the outer cylinder 63 is smaller than the cross-sectional area of the flow path in the acoustic cylinder 62. When the thickness of the internal fin 64 is increased, the cross-sectional area of the flow path in the outer cylinder 63 is further reduced.

図7に示した原動機では、加熱器71も冷却器75も、外筒73の両端が閉じられており、流路は細管74のみとなるので、外筒73内における流路の断面積は音響筒72における流路の断面積に比べて小さくなる。   In the prime mover shown in FIG. 7, both ends of the outer cylinder 73 of the heater 71 and the cooler 75 are closed, and the flow path is only the narrow tube 74. Therefore, the cross-sectional area of the flow path in the outer cylinder 73 is acoustic. It becomes smaller than the cross-sectional area of the flow path in the cylinder 72.

ところで、熱音響機関では、発生した音波の反射を少なくすることが望ましい。音波の反射が発生すると、進行波から定在波が励起される。熱音響機関の熱力学的サイクルは、進行波により実現されるため、進行波成分の割合を定在波成分の割合よりも高くすることが望ましい。したがって、音波の反射を抑えることが熱音響機関の出力向上のための必要課題となる。   By the way, in a thermoacoustic engine, it is desirable to reduce reflection of the generated sound wave. When reflection of a sound wave occurs, a standing wave is excited from a traveling wave. Since the thermodynamic cycle of the thermoacoustic engine is realized by traveling waves, it is desirable to make the proportion of the traveling wave component higher than the proportion of the standing wave component. Therefore, suppressing reflection of sound waves is a necessary issue for improving the output of the thermoacoustic engine.

音波の反射は、作動流体の流路の断面積が変化する場所で発生する。例えば、音響筒に閉口部や開口部があると、大きく流路の断面積が変化する。逆に、作動流体の流路の断面積の変化をなるべく少なくすることが音波の反射を抑えるのに有効である。   The reflection of the sound wave occurs at a place where the cross-sectional area of the working fluid flow path changes. For example, if the acoustic cylinder has a closed portion or an opening, the cross-sectional area of the flow path changes greatly. Conversely, reducing the change in the cross-sectional area of the working fluid flow path as much as possible is effective in suppressing reflection of sound waves.

図6や図7の原動機は、音響筒62(72)から加熱器61(71)に入る境界及び冷却器66(75)から音響筒62(72)に入る境界にて大きく流路の断面積が変化するため、音波の反射が著しく、熱音響機関の出力を低下させる原因となっている。   The motor shown in FIGS. 6 and 7 has a large cross-sectional area of the flow path at the boundary from the acoustic cylinder 62 (72) to the heater 61 (71) and the boundary from the cooler 66 (75) to the acoustic cylinder 62 (72). Therefore, the reflection of sound waves is remarkable, which causes a decrease in the output of the thermoacoustic engine.

また、流路の断面積の急縮小や急拡大は、作動流体が流れるときに大きな抵抗となることが知られている。さらに、内部フィン64が配置された外筒63から金網69が配置された外筒68への流体の流れ、またはその逆の流れでは、急激に流れの向きが変えられ、これも流れを阻害する要因となる。このような流路抵抗は、図6や図7の原動機のみならず、キネマスティクスターリングエンジンやフリーピストンスターリングエンジン等の一般的なスターリングエンジンにおいても出力を低下させる原因となっている。   In addition, it is known that sudden reduction or rapid expansion of the cross-sectional area of the flow path causes a large resistance when the working fluid flows. Furthermore, in the flow of fluid from the outer cylinder 63 in which the internal fins 64 are arranged to the outer cylinder 68 in which the metal mesh 69 is arranged, or vice versa, the direction of the flow is suddenly changed, which also inhibits the flow. It becomes a factor. Such flow path resistance causes a decrease in output not only in the prime mover shown in FIGS. 6 and 7, but also in general Stirling engines such as a kinematics Stirling engine and a free piston Stirling engine.

そこで、本発明の目的は、上記課題を解決し、流路断面積の変化が小さい熱音響機関及びα型スターリングエンジンを提供することにある。   Accordingly, an object of the present invention is to provide a thermoacoustic engine and an α-type Stirling engine that solve the above-described problems and have a small change in flow path cross-sectional area.

上記目的を達成するために本発明の熱音響機関は、中空の音響筒内に作動流体が満たされ、前記作動流体に外部からの熱を取り込む加熱器と前記作動流体から外部に熱を取り出す冷却器とが前記音響筒の長手方向に間隔をあけて配置され、前記加熱器と前記冷却器の間に再生器が配置された熱音響機関において、前記音響筒に前記加熱器が接続される加熱器接続部から前記冷却器に前記音響筒が接続される冷却器接続部までにわたり、前記作動流体の流路が複数の細管により形成され、前記加熱器から前記再生器を経て前記冷却器までの間、前記複数の細管が相互に間隔をあけて配置され、前記加熱器接続部と前記冷却器接続部では、前記音響筒に向かって徐々に前記複数の細管同士の間隔が狭められ、前記音響筒に至るまでに前記複数の細管が相互に密着させて配置され、前記音響筒における流路断面積と前記複数の細管による総流路断面積との差が所定以下であるものである。   In order to achieve the above object, a thermoacoustic engine of the present invention includes a heater in which a working fluid is filled in a hollow acoustic cylinder, and heat from outside is taken into the working fluid, and cooling from which heat is taken out from the working fluid. In a thermoacoustic engine in which a regenerator is disposed between the heater and the cooler, and the heater is connected to the acoustic tube. The working fluid flow path is formed by a plurality of thin tubes extending from the heater connection portion to the cooler connection portion where the acoustic cylinder is connected to the cooler, and from the heater to the cooler via the regenerator In the meantime, the plurality of thin tubes are arranged with a space therebetween, and in the heater connection portion and the cooler connection portion, the spaces between the plurality of thin tubes are gradually narrowed toward the acoustic cylinder, The plurality of details before reaching the tube There is disposed in close contact with each other, the difference between the total flow path cross-sectional area due to the plurality of capillaries and the flow path cross-sectional area of the acoustic tube is of the predetermined or less.

前記複数の細管が相互に間隔をあけて配置された箇所では、各細管の断面輪郭が円形であり、前記複数の細管が相互に密着させて配置された箇所では、前記断面輪郭が円形の細管が集合され圧縮されて隙間なく密着されることにより、各細管の断面輪郭が六角形であってもよい。   The cross-sectional outline of each thin tube is circular at a location where the plurality of thin tubes are spaced apart from each other, and the cross-sectional contour is circular at a location where the plurality of thin tubes are arranged in close contact with each other. The cross-sectional contours of the thin tubes may be hexagonal by being collected and compressed and closely adhered without gaps.

前記加熱器では前記複数の細管相互の隙間に高温の熱媒流体が流され、前記冷却器では前記複数の細管相互の隙間に低温の熱媒流体が流されてもよい。   In the heater, a high-temperature heat transfer fluid may flow in the gaps between the plurality of thin tubes, and in the cooler, a low-temperature heat transfer fluid may flow in the gaps between the plurality of thin tubes.

また、本発明のα型スターリングエンジンは、前記熱音響機関の音響筒の長手方向両端にそれぞれレシプロ機構が接続されたものである。   In the α-type Stirling engine of the present invention, reciprocating mechanisms are respectively connected to both ends in the longitudinal direction of the acoustic cylinder of the thermoacoustic engine.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)流路断面積の変化が小さい。   (1) The change in the channel cross-sectional area is small.

本発明の一実施形態を示す熱音響機関の原動機部分の分解斜視図である。It is a disassembled perspective view of the motor | power_engine part of the thermoacoustic engine which shows one Embodiment of this invention. 図1の熱音響機関の原動機部分の側断面図、横断面図及び流路断面積分布図である。FIG. 2 is a side sectional view, a transverse sectional view, and a flow passage sectional area distribution diagram of a motor part of the thermoacoustic engine of FIG. 1. 本発明において複数の細管を集合・圧縮する様子を説明するためのイメージ図である。It is an image figure for demonstrating a mode that a some thin tube is collected and compressed in this invention. 本発明のα型スターリングエンジンの構成図である。It is a block diagram of the alpha type Stirling engine of this invention. 従来のループ管型の熱音響機関の構成図である。It is a block diagram of the conventional loop tube type thermoacoustic engine. 従来の原動機の側断面図及び流路断面積分布図である。It is a sectional side view of a conventional prime mover and a flow path sectional area distribution diagram. 従来の原動機の側断面図及び流路断面積分布図である。It is a sectional side view of a conventional prime mover and a flow path sectional area distribution diagram.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1及び図2に示されるように、本発明に係る熱音響機関1は、中空の音響筒2内に作動流体が満たされ、作動流体に外部からの熱を取り込む加熱器3と作動流体から外部に熱を取り出す冷却器4とが音響筒2の長手方向に間隔をあけて配置され、加熱器3と冷却器4の間に再生器5が配置される。加熱器3と再生器5と冷却器4により原動機が構成される。   As shown in FIGS. 1 and 2, a thermoacoustic engine 1 according to the present invention includes a working fluid filled in a hollow acoustic cylinder 2 and a heater 3 that takes in heat from the outside into the working fluid and the working fluid. A cooler 4 that extracts heat to the outside is disposed at an interval in the longitudinal direction of the acoustic cylinder 2, and a regenerator 5 is disposed between the heater 3 and the cooler 4. The heater 3, the regenerator 5, and the cooler 4 constitute a prime mover.

熱音響機関1は、音響筒2に加熱器3が接続される加熱器接続部6と、冷却器4に反対側の音響筒2が接続される冷却器接続部7とを有する。加熱器接続部6から冷却器接続部7までにわたり、作動流体の流路が複数の細管8により形成される。図1には細管8は示していないが、細管8は、図2のように加熱器接続部6から冷却器接続部7までにわたり、切れ目なく続いている。すなわち、本発明では、加熱器3、再生器5、冷却器4が複数の細管8の束で構成される。加熱器3から再生器5を経て冷却器4までの間は、複数の細管8が相互に間隔をあけて配置され、加熱器接続部6と冷却器接続部7では、音響筒2に向かって徐々に複数の細管8同士の間隔が狭められ、音響筒2に至るまでに複数の細管8が相互に密着させて配置される。   The thermoacoustic engine 1 includes a heater connecting portion 6 in which the heater 3 is connected to the acoustic cylinder 2 and a cooler connecting portion 7 in which the opposite acoustic cylinder 2 is connected to the cooler 4. A working fluid flow path is formed by a plurality of thin tubes 8 from the heater connection 6 to the cooler connection 7. Although the thin tube 8 is not shown in FIG. 1, the thin tube 8 continues from the heater connection 6 to the cooler connection 7 as shown in FIG. That is, in the present invention, the heater 3, the regenerator 5, and the cooler 4 are configured by a bundle of a plurality of thin tubes 8. Between the heater 3 through the regenerator 5 and the cooler 4, a plurality of thin tubes 8 are arranged at intervals from each other, and the heater connection 6 and the cooler connection 7 are directed toward the acoustic cylinder 2. The intervals between the plurality of thin tubes 8 are gradually narrowed, and the plurality of thin tubes 8 are arranged in close contact with each other until reaching the acoustic cylinder 2.

この実施形態では、細管8には、断面輪郭が円形のものが用いられる。ただし、複数の細管8が相互に間隔をあけて配置された箇所では、各細管8の断面輪郭は円形のままであるが、複数の細管8が相互に密着させて配置された箇所では、断面輪郭が円形の細管8が集合され圧縮されて隙間なく密着されることにより、各細管8の断面輪郭が六角形となる。   In this embodiment, a thin tube 8 having a circular cross-sectional contour is used. However, the cross-sectional outline of each thin tube 8 remains circular at a location where the plurality of thin tubes 8 are spaced apart from each other, but the cross-section is at a location where the plurality of thin tubes 8 are disposed in close contact with each other. The thin tubes 8 having a circular outline are assembled, compressed, and closely contacted without gaps, so that the cross-sectional outline of each thin tube 8 becomes a hexagon.

図1には、加熱器3及び冷却器4に、細管8が通る穴8aが示されている。この穴8aの配置から分かるように、加熱器3から再生器5を経て冷却器4までの間では、複数の細管8は一定の間隔で規則的に配置される。これは熱交換性能を向上させるためである。特に、本実施形態では、加熱器3から再生器5を経て冷却器4までの間では、複数の細管8が全体的に角形に配置される。これは、全ての細管8が均等に熱媒流体に接するようにして全体としての熱交換量を大きくするためである。また、このとき横一列の細管8が縦に揃えられて碁盤目状の配置となってもよいが、奇数列と偶数列とで半ピッチずれることで千鳥格子状の配置となるのがいっそう好ましい。   In FIG. 1, a hole 8 a through which a thin tube 8 passes is shown in the heater 3 and the cooler 4. As can be seen from the arrangement of the holes 8a, a plurality of capillaries 8 are regularly arranged at regular intervals between the heater 3, the regenerator 5, and the cooler 4. This is to improve the heat exchange performance. In particular, in the present embodiment, a plurality of thin tubes 8 are arranged in a generally square shape from the heater 3 to the cooler 4 through the regenerator 5. This is to increase the amount of heat exchange as a whole by making all the thin tubes 8 uniformly contact the heat transfer fluid. Further, at this time, the horizontal rows of thin tubes 8 may be arranged vertically and arranged in a grid pattern, but it is more preferable that the odd rows and even rows are shifted by a half pitch to form a staggered arrangement. preferable.

加熱器3には、全ての細管8を囲み込み、断面輪郭が角形で両端が閉じられた加熱器外筒9が設けられる。加熱器外筒9の閉じられた両端には、細管8を通すための穴8aが形成される。この加熱器外筒9には、高温の熱媒流体を導入・排出するための熱媒管10が接続される。これにより、加熱器3では複数の細管8の相互の隙間に高温の熱媒流体が流され、熱交換が行われることになる。   The heater 3 is provided with a heater outer cylinder 9 that surrounds all the thin tubes 8 and has a square cross-sectional outline and is closed at both ends. Holes 8a through which the thin tubes 8 are passed are formed at both ends of the heater outer cylinder 9 that are closed. A heating medium pipe 10 for introducing and discharging a high-temperature heating medium fluid is connected to the heater outer cylinder 9. As a result, in the heater 3, a high-temperature heat transfer fluid is caused to flow through the gaps between the plurality of thin tubes 8 and heat exchange is performed.

冷却器4には、加熱器3と同様に、全ての細管8を囲み込み、断面輪郭が角形で両端が閉じられた冷却器外筒11が設けられる。冷却器外筒11の閉じられた両端には、細管8を通すための穴8aが形成される。この冷却器外筒11には、低温の熱媒流体を外筒内に導入・排出するための熱媒管12が接続される。これにより、冷却器4では複数の細管8の相互の隙間に高温の熱媒流体が流され、熱交換が行われることになる。   Similarly to the heater 3, the cooler 4 is provided with a cooler outer cylinder 11 that surrounds all the thin tubes 8, has a square cross-sectional outline, and is closed at both ends. Holes 8a through which the thin tubes 8 are passed are formed at both ends of the cooler outer cylinder 11 which are closed. The cooler outer cylinder 11 is connected to a heat medium pipe 12 for introducing and discharging a low-temperature heat medium fluid into the outer cylinder. As a result, in the cooler 4, a high-temperature heat transfer fluid is caused to flow through the gaps between the plurality of thin tubes 8 and heat exchange is performed.

なお、加熱器外筒9と冷却器外筒11に供給される熱媒流体の高温・低温は相対的なもので、両者に適宜な温度差があればよい。また、流体の種類は問わない。例えば、高温の熱媒流体が内燃機関の排気ガス、低温の熱媒流体が冷却水であってもよい。   In addition, the high temperature and low temperature of the heat transfer fluid supplied to the heater outer cylinder 9 and the cooler outer cylinder 11 are relative, and it is sufficient that there is an appropriate temperature difference between the two. Moreover, the kind of fluid is not ask | required. For example, the high-temperature heat transfer fluid may be exhaust gas of an internal combustion engine, and the low-temperature heat transfer fluid may be cooling water.

音響筒2は、断面輪郭が円形に形成される。加熱器接続部6及び冷却器接続部7には、音響筒2への接続箇所では断面輪郭の形状が円形で加熱器3への接続箇所では断面輪郭の形状が角形となるように断面輪郭形状が変化するコーンケーブ状の接続部カバー13,14が設けられる。接続部カバー13,14は、音響筒2から加熱器外筒9又は冷却器外筒11までにわたり、全ての細管8を囲み込む。接続部カバー13,14は、必須のものではないが、原動機の気密性を向上させるために設けられる。   The acoustic cylinder 2 has a circular cross section. The heater connection portion 6 and the cooler connection portion 7 have cross-sectional contour shapes so that the cross-sectional contour shape is circular at the connection location to the acoustic cylinder 2 and the cross-sectional contour shape is square at the connection location to the heater 3. The cone-cave connection covers 13 and 14 are provided. The connection portion covers 13 and 14 surround all the thin tubes 8 from the acoustic tube 2 to the heater outer tube 9 or the cooler outer tube 11. Although the connection part covers 13 and 14 are not essential, they are provided in order to improve the airtightness of the prime mover.

再生器5には、加熱器外筒9及び冷却器外筒11と断面輪郭の形状及び寸法が同じ角形の再生器カバー15が設けられる。再生器カバー15は、加熱器外筒9から冷却器外筒11までにわたり、全ての細管8を囲み込む。再生器カバー15は、必須のものではないが、再生器5の周囲の空気の動きを制限すると共に再生器5の機械的強度を補強するために設ける。   The regenerator 5 is provided with a rectangular regenerator cover 15 having the same shape and dimensions of the cross-sectional contour as the heater outer cylinder 9 and the cooler outer cylinder 11. The regenerator cover 15 extends from the heater outer cylinder 9 to the cooler outer cylinder 11 and surrounds all the thin tubes 8. The regenerator cover 15 is not essential, but is provided to restrict the movement of air around the regenerator 5 and reinforce the mechanical strength of the regenerator 5.

図3により、複数の細管8を集合・圧縮する様子を説明する。   The manner in which a plurality of capillaries 8 are assembled and compressed will be described with reference to FIG.

複数の断面輪郭が円形の細管8を互いに接するように集合し、圧縮しない状態では、細管8同士の間に小さい隙間が生じる。もし、この状態で細管8の集合を音響筒2に接続すると、細管8が音響筒2に連通するだけでなく、細管8の間の隙間も音響筒2に連通するため、作動流体が隙間に漏れてしまう。これを防ぐために、隙間を何かで埋めるとそこに端面が形成され、音波の反射を生じることになる。もちろん、この形態でも従来よりは流路断面積の変化は小さく、音響筒2における流路断面積と複数の細管8による総流路断面積との差を所望する程度に小さくすることはできる。しかし、本実施形態では、次のように細管8の圧縮を行う。   In a state where a plurality of circular thin tubes 8 having cross-sectional outlines are in contact with each other and are not compressed, a small gap is generated between the thin tubes 8. If the assembly of the thin tubes 8 is connected to the acoustic tube 2 in this state, not only the thin tubes 8 communicate with the acoustic tube 2, but also the gap between the thin tubes 8 communicates with the acoustic tube 2, so that the working fluid becomes a gap. Leaks. In order to prevent this, if the gap is filled with something, an end face is formed there, and sound waves are reflected. Of course, even in this embodiment, the change in the channel cross-sectional area is smaller than in the prior art, and the difference between the channel cross-sectional area of the acoustic cylinder 2 and the total channel cross-sectional area of the plurality of thin tubes 8 can be made as small as desired. However, in the present embodiment, the narrow tube 8 is compressed as follows.

本実施形態では、複数の断面輪郭が円形の細管8を互いに接するように集合した後、周囲より圧縮することにより、全ての細管8を隙間なく密着させる。このとき、各細管8の断面輪郭は六角形となる。なお、密着性を高めるために、あらかじめ断面輪郭が円形の細管8の外周にロウ又は接着剤を付けておき、圧縮後に、細管8を相互にロウ又は接着剤で固めてもよい。この形態では、細管8同士の間の隙間がなくなり、作動流体が隙間に漏れることがない。また、端面が形成されないので、音波の反射を生じにくい。この形態では、音響筒2における流路断面積と複数の細管8による総流路断面積との差は、細管8の肉厚に由来する分のみであり、従来よりも著しく小さい所定以下とすることができる。   In this embodiment, a plurality of thin tubes 8 having a cross-sectional outline are gathered so as to be in contact with each other, and then compressed from the periphery, thereby bringing all the thin tubes 8 into close contact with each other without gaps. At this time, the cross-sectional outline of each thin tube 8 is a hexagon. In addition, in order to improve adhesiveness, wax or an adhesive may be previously attached to the outer periphery of the thin tube 8 having a circular cross-sectional outline, and after compression, the thin tubes 8 may be mutually solidified with wax or an adhesive. In this embodiment, there is no gap between the thin tubes 8, and the working fluid does not leak into the gap. Moreover, since the end face is not formed, the reflection of the sound wave hardly occurs. In this embodiment, the difference between the cross-sectional area of the flow path in the acoustic cylinder 2 and the total cross-sectional area of the plurality of thin tubes 8 is only due to the thickness of the thin tubes 8 and is set to a predetermined value that is significantly smaller than the conventional one. be able to.

図2には、熱音響機関1の長手方向各所における横断面図が示されている。音響筒2の横断面には所定の径の円が表れているのに対し、加熱器接続部6における音響筒2の直前箇所と冷却器接続部7における音響筒2の直前箇所では、音響筒2と同じ径の円の中に密着して圧縮された複数の細管8が表れている。加熱器3と冷却器4(再生器5も同様)では、各細管8が相互に間隔を拡げ、全体的に角形の千鳥格子配置となっている。   FIG. 2 shows cross-sectional views of the thermoacoustic engine 1 at various locations in the longitudinal direction. Whereas a circle having a predetermined diameter appears in the cross section of the acoustic cylinder 2, an acoustic cylinder is formed at a position immediately before the acoustic cylinder 2 in the heater connection portion 6 and at a position immediately before the acoustic cylinder 2 in the cooler connection portion 7. A plurality of narrow tubes 8 appearing in close contact with each other in a circle having the same diameter as 2 appear. In the heater 3 and the cooler 4 (same for the regenerator 5), the narrow tubes 8 are spaced apart from each other, and are arranged in an overall square houndstooth pattern.

以下、本発明の熱音響機関1の動作を説明する。   Hereinafter, the operation of the thermoacoustic engine 1 of the present invention will be described.

本発明の熱音響機関1は、加熱器3から再生器5を経て冷却器4までの間、作動流体の流路は連続した細管8で構成される。このため、加熱器3と再生器5の境界及び再生器5と冷却器4の境界において、流路断面積の変化が全くないため、流路断面積の変化箇所における音波の反射が生じることがない。その結果、進行波が多く得られ、熱音響機関1の出力を大きくすることができる。   In the thermoacoustic engine 1 of the present invention, the flow path of the working fluid is composed of continuous thin tubes 8 from the heater 3 to the cooler 4 through the regenerator 5. For this reason, there is no change in the flow path cross-sectional area at the boundary between the heater 3 and the regenerator 5 and the boundary between the regenerator 5 and the cooler 4, so that sound waves may be reflected at locations where the flow path cross-sectional area changes. Absent. As a result, many traveling waves are obtained, and the output of the thermoacoustic engine 1 can be increased.

本発明の熱音響機関1は、加熱器3から再生器5を経て冷却器4までの間、作動流体の流れの向きが全く変化しないので、再生器67(76)が金網69(78)で構成された従来のものに比べ流路抵抗が小さい。   In the thermoacoustic engine 1 of the present invention, since the direction of the flow of the working fluid does not change at all from the heater 3 to the cooler 4 through the regenerator 5, the regenerator 67 (76) is a wire mesh 69 (78). The flow path resistance is smaller than that of the conventional structure.

本発明の熱音響機関1は、音響筒2と加熱器3との間の加熱器接続部6及び冷却器4と反対側の音響筒2との間の冷却器接続部7において、作動流体の流路は、加熱器3から冷却器4までと一貫して連続した細管8で構成される。このため、加熱器接続部6においても冷却器接続部7においても、流路断面積の変化が全くなく、流路断面積の変化箇所における音波の反射が生じることがない。その結果、進行波が多く得られ、熱音響機関1の出力を大きくすることができる。   The thermoacoustic engine 1 according to the present invention includes a heater connection 6 between the acoustic cylinder 2 and the heater 3 and a cooler connection 7 between the acoustic cylinder 2 on the opposite side of the cooler 4 and the working fluid. The flow path is constituted by a thin tube 8 that is continuously continuous from the heater 3 to the cooler 4. For this reason, neither the heater connection 6 nor the cooler connection 7 has any change in the cross-sectional area of the flow path, and no sound waves are reflected at the changes in the cross-sectional area of the flow path. As a result, many traveling waves are obtained, and the output of the thermoacoustic engine 1 can be increased.

本発明の熱音響機関1は、音響筒2に加熱器接続部6が接続される箇所及び音響筒2に冷却器接続部7が接続される箇所では、細管8が密着させて圧縮されているので、音響筒2における流路断面積と複数の細管8による総流路断面積との差は、細管8の肉厚からくる分のみであり、所定以下とすることができる。   In the thermoacoustic engine 1 of the present invention, the narrow tube 8 is in close contact and compressed at a location where the heater connection 6 is connected to the acoustic cylinder 2 and a location where the cooler connection 7 is connected to the acoustic cylinder 2. Therefore, the difference between the cross-sectional area of the flow path in the acoustic cylinder 2 and the total cross-sectional area of the flow path by the plurality of thin tubes 8 is only due to the thickness of the thin tubes 8 and can be set to a predetermined value or less.

本発明の熱音響機関1は、細管8内に作動流体を通し、細管8の周囲に熱媒流体を通すので、熱交換効率がよい。   In the thermoacoustic engine 1 of the present invention, since the working fluid is passed through the narrow tube 8 and the heat transfer fluid is passed around the narrow tube 8, the heat exchange efficiency is good.

本発明の熱音響機関1は、加熱器接続部6から加熱器3、再生器5、冷却器4、冷却器接続部7まで、一貫して連続した細管8で構成され、つなぎ目がない。よって、作動流体の気密性が高く、作動流体が外部に漏れにくい。   The thermoacoustic engine 1 of the present invention is composed of a continuous thin tube 8 from the heater connection 6 to the heater 3, the regenerator 5, the cooler 4, and the cooler connection 7, and has no joints. Therefore, the airtightness of the working fluid is high and the working fluid is difficult to leak to the outside.

細管8は、熱伝導率の低い材料で構成するのが好ましい。これにより、再生器5において温度勾配を安定に確保することが容易になる。一方、細管8は、肉厚をできる限り薄くするのが好ましい。これにより、加熱器3及び再生器5における熱交換を促進することができ、再生器5の両端の温度を熱媒流体の高温と低温に確保することができる。   The thin tube 8 is preferably made of a material having low thermal conductivity. This facilitates ensuring a stable temperature gradient in the regenerator 5. On the other hand, it is preferable to make the thin tube 8 as thin as possible. Thereby, the heat exchange in the heater 3 and the regenerator 5 can be promoted, and the temperatures at both ends of the regenerator 5 can be ensured at the high temperature and low temperature of the heat transfer fluid.

次に、本発明のα型スターリングエンジンを説明する。   Next, the α-type Stirling engine of the present invention will be described.

図4に示されるように、本発明のα型スターリングエンジン40は、熱音響機関1の音響筒2の長手方向両端にそれぞれレシプロ機構41a,41bが接続されたものである。   As shown in FIG. 4, the α-type Stirling engine 40 of the present invention is one in which reciprocating mechanisms 41 a and 41 b are connected to both ends in the longitudinal direction of the acoustic cylinder 2 of the thermoacoustic engine 1.

レシプロ機構41aでは、第一回転体42aが第一クランク43aを介して第一ピストン44aに連結され、第一ピストン44aが挿入された第一シリンダ45aに、これまで説明した熱音響機関1の原動機部分が接続されている。すなわち、第一シリンダ45aのヘッド側は音響筒2に相当し、この音響筒2に加熱器接続部6から加熱器3、再生器5、冷却器4、冷却器接続部7までの複数の細管8が接続されている。   In the reciprocating mechanism 41a, the first rotating body 42a is connected to the first piston 44a via the first crank 43a, and the prime mover of the thermoacoustic engine 1 described so far is connected to the first cylinder 45a in which the first piston 44a is inserted. The parts are connected. That is, the head side of the first cylinder 45a corresponds to the acoustic cylinder 2, and a plurality of thin tubes from the heater connecting portion 6 to the heater 3, the regenerator 5, the cooler 4, and the cooler connecting portion 7 are connected to the acoustic cylinder 2. 8 is connected.

レシプロ機構41bでは、冷却器接続部7の細管8が音響筒2に相当する第二シリンダ45bのヘッド側に接続される。第二シリンダ45bには第二ピストン44bが挿入され、第二ピストン44bは第二クランク43bを介して第二回転体42bに連結されている。   In the reciprocating mechanism 41 b, the thin tube 8 of the cooler connecting portion 7 is connected to the head side of the second cylinder 45 b corresponding to the acoustic cylinder 2. A second piston 44b is inserted into the second cylinder 45b, and the second piston 44b is connected to the second rotating body 42b via a second crank 43b.

さらに、第一回転体42aと第二回転体42bには、ベルト46がかけられている。   Further, a belt 46 is hung on the first rotating body 42a and the second rotating body 42b.

第一ピストン44aが軸方向に単振動することにより、第一シリンダ45a内の作動流体が振動して音波が発生する。この音波が加熱器3、再生器5、冷却器4からなる原動機を通ることにより、増幅作用を受け、第二シリンダ45bに至る。第二シリンダ45b内の作動流体が振動するので第二ピストン44bが軸方向に単振動する。第二ピストン44bの単振動は第二クランク43bにより第二回転体42bの回転振動に変換され、その回転振動がベルト46を介して第一回転体42aに伝達され、第一回転体42aの回転振動が第一クランク43aにより第一ピストン44aに帰還される。   When the first piston 44a vibrates in the axial direction, the working fluid in the first cylinder 45a vibrates to generate sound waves. When this sound wave passes through the prime mover composed of the heater 3, the regenerator 5, and the cooler 4, it receives an amplification action and reaches the second cylinder 45b. Since the working fluid in the second cylinder 45b vibrates, the second piston 44b simply vibrates in the axial direction. The single vibration of the second piston 44b is converted into the rotational vibration of the second rotating body 42b by the second crank 43b, and the rotational vibration is transmitted to the first rotating body 42a via the belt 46, and the rotation of the first rotating body 42a. The vibration is returned to the first piston 44a by the first crank 43a.

このα型スターリングエンジン40において、音響筒2から本発明の原動機を経て反対側の音響筒2へ至る経路中、作動流体の断面積変化が所定以下に抑えられているので、反射波が生じにくく、エネルギの損失が低減される。   In the α-type Stirling engine 40, the change in the cross-sectional area of the working fluid is suppressed to a predetermined value or less in the path from the acoustic cylinder 2 to the acoustic cylinder 2 on the opposite side through the prime mover of the present invention. , Energy loss is reduced.

1 熱音響機関
2 音響筒
3 加熱器
4 冷却器
5 再生器
6 加熱器接続部
7 冷却器接続部
8 細管
9 加熱器外筒
10 熱媒管
11 冷却器外筒
12 熱媒管
13 接続部カバー
14 接続部カバー
15 再生器カバー
40 α型スターリングエンジン
41a,41b レシプロ機構
DESCRIPTION OF SYMBOLS 1 Thermoacoustic engine 2 Acoustic cylinder 3 Heater 4 Cooler 5 Regenerator 6 Heater connection part 7 Cooler connection part 8 Narrow pipe 9 Heater outer cylinder 10 Heat medium pipe 11 Cooler outer cylinder 12 Heat medium pipe 13 Connection part cover 14 Connection part cover 15 Regenerator cover 40 α type Stirling engine 41a, 41b Reciprocating mechanism

Claims (4)

中空の音響筒内に作動流体が満たされ、前記作動流体に外部からの熱を取り込む加熱器と前記作動流体から外部に熱を取り出す冷却器とが前記音響筒の長手方向に間隔をあけて配置され、前記加熱器と前記冷却器の間に再生器が配置された熱音響機関において、
前記音響筒に前記加熱器が接続される加熱器接続部から前記冷却器に前記音響筒が接続される冷却器接続部までにわたり、前記作動流体の流路が複数の細管により形成され、
前記加熱器から前記再生器を経て前記冷却器までの間、前記複数の細管が相互に間隔をあけて配置され、
前記加熱器接続部と前記冷却器接続部では、前記音響筒に向かって徐々に前記複数の細管同士の間隔が狭められ、前記音響筒に至るまでに前記複数の細管が相互に密着させて配置され、
前記音響筒における流路断面積と前記複数の細管による総流路断面積との差が所定以下であることを特徴とする熱音響機関。
A hollow acoustic cylinder is filled with a working fluid, and a heater that takes heat from the outside into the working fluid and a cooler that takes heat from the working fluid to the outside are arranged at an interval in the longitudinal direction of the acoustic cylinder In a thermoacoustic engine in which a regenerator is disposed between the heater and the cooler,
From the heater connecting portion where the heater is connected to the acoustic cylinder to the cooler connecting portion where the acoustic cylinder is connected to the cooler, the flow path of the working fluid is formed by a plurality of thin tubes,
Between the heater and the regenerator to the cooler, the plurality of capillaries are spaced apart from each other,
In the heater connection portion and the cooler connection portion, the intervals between the plurality of thin tubes are gradually narrowed toward the acoustic tube, and the plurality of thin tubes are arranged in close contact with each other until reaching the acoustic tube. And
A thermoacoustic engine characterized in that a difference between a cross-sectional area of the channel in the acoustic cylinder and a total cross-sectional area of the plurality of thin tubes is equal to or less than a predetermined value.
前記複数の細管が相互に間隔をあけて配置された箇所では、各細管の断面輪郭が円形であり、前記複数の細管が相互に密着させて配置された箇所では、前記断面輪郭が円形の細管が集合され圧縮されて隙間なく密着されることにより、各細管の断面輪郭が六角形であることを特徴とする請求項1記載の熱音響機関。   The cross-sectional contour of each thin tube is circular at a location where the plurality of thin tubes are spaced apart from each other, and the cross-sectional contour is circular at a location where the plurality of thin tubes are disposed in close contact with each other. The thermoacoustic engine according to claim 1, wherein the cross-sectional contours of the thin tubes are hexagonal by being gathered and compressed and closely adhered without gaps. 前記加熱器では前記複数の細管相互の隙間に高温の熱媒流体が流され、前記冷却器では前記複数の細管相互の隙間に低温の熱媒流体が流されることを特徴とする請求項1又は2記載の熱音響機関。   The high temperature heat transfer fluid flows in the gap between the plurality of thin tubes in the heater, and the low temperature heat transfer fluid flows in the gap between the plurality of thin tubes in the cooler. 2. The thermoacoustic engine according to 2. 前記熱音響機関の音響筒の長手方向両端にそれぞれレシプロ機構が接続されたことを特徴とするα型スターリングエンジン。   An α-type Stirling engine, wherein a reciprocating mechanism is connected to each longitudinal end of the acoustic cylinder of the thermoacoustic engine.
JP2009283133A 2009-12-14 2009-12-14 Thermoacoustic engine and alpha-type stirling engine Pending JP2011122567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283133A JP2011122567A (en) 2009-12-14 2009-12-14 Thermoacoustic engine and alpha-type stirling engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283133A JP2011122567A (en) 2009-12-14 2009-12-14 Thermoacoustic engine and alpha-type stirling engine

Publications (1)

Publication Number Publication Date
JP2011122567A true JP2011122567A (en) 2011-06-23

Family

ID=44286676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283133A Pending JP2011122567A (en) 2009-12-14 2009-12-14 Thermoacoustic engine and alpha-type stirling engine

Country Status (1)

Country Link
JP (1) JP2011122567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096387A (en) * 2011-11-07 2013-05-20 Isuzu Motors Ltd Thermoacoustic engine
JP2015071993A (en) * 2013-10-04 2015-04-16 株式会社デンソー Intake device for vehicle
JP2017014913A (en) * 2015-06-26 2017-01-19 大阪瓦斯株式会社 Thermoacoustic engine
US9664181B2 (en) 2012-09-19 2017-05-30 Etalim Inc. Thermoacoustic transducer apparatus including a transmission duct

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096387A (en) * 2011-11-07 2013-05-20 Isuzu Motors Ltd Thermoacoustic engine
US9664181B2 (en) 2012-09-19 2017-05-30 Etalim Inc. Thermoacoustic transducer apparatus including a transmission duct
JP2015071993A (en) * 2013-10-04 2015-04-16 株式会社デンソー Intake device for vehicle
JP2017014913A (en) * 2015-06-26 2017-01-19 大阪瓦斯株式会社 Thermoacoustic engine

Similar Documents

Publication Publication Date Title
US4271669A (en) Reciprocating-piston engine, especially hot-gas engine or compressor
JP5423531B2 (en) Thermoacoustic engine
JP2011122567A (en) Thermoacoustic engine and alpha-type stirling engine
US6715285B2 (en) Stirling engine with high pressure fluid heat exchanger
JP5434680B2 (en) Thermoacoustic engine
JP5768688B2 (en) Thermoacoustic refrigeration equipment
JP6205936B2 (en) Heat accumulator
JP5655313B2 (en) Thermoacoustic engine
JP2005265261A (en) Pulse pipe refrigerator
JP5434613B2 (en) Thermoacoustic engine
JP5862250B2 (en) Thermoacoustic refrigeration equipment
JP2011002119A (en) Thermoacoustic engine
JP5532959B2 (en) Thermoacoustic engine
JP2007183062A (en) Heat exchanger
US11879691B2 (en) Counter-flow heat exchanger
JP5768687B2 (en) Thermoacoustic refrigeration equipment
JPS5914617B2 (en) Heater head of series double-acting hot gas engine
RU2788798C1 (en) Stirling engine thermal block
JP2012067656A (en) Egr gas cooling device
JP5799780B2 (en) Thermoacoustic refrigeration equipment
RU194107U1 (en) THERMAL-ACOUSTIC SILENCER OF THE VEHICLE ENGINE
JPS629184A (en) Heat exchanger
JP5299107B2 (en) Thermoacoustic engine
Carvajal et al. Methodology for Analysis of the Performance of Mesh-Type Regenerators
JP2011038460A (en) Stirling engine heat exchanger