JP2011122222A - Surface-coating member - Google Patents

Surface-coating member Download PDF

Info

Publication number
JP2011122222A
JP2011122222A JP2009282372A JP2009282372A JP2011122222A JP 2011122222 A JP2011122222 A JP 2011122222A JP 2009282372 A JP2009282372 A JP 2009282372A JP 2009282372 A JP2009282372 A JP 2009282372A JP 2011122222 A JP2011122222 A JP 2011122222A
Authority
JP
Japan
Prior art keywords
layer
gas
cutting tool
volume
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009282372A
Other languages
Japanese (ja)
Other versions
JP5419668B2 (en
Inventor
Sakahito Tanibuchi
栄仁 谷渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009282372A priority Critical patent/JP5419668B2/en
Publication of JP2011122222A publication Critical patent/JP2011122222A/en
Application granted granted Critical
Publication of JP5419668B2 publication Critical patent/JP5419668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coating member of a cutting tool or the like having high adhesion and wear resistance. <P>SOLUTION: The surface-coating member of a cutting tool 1 pr the like is obtained by forming a lower layer 7 of one or more layers selected from the carbide, nitride, carbonitride, carbooxide, oxynitride and oxycabonitride of Ti and an Al<SB>2</SB>O<SB>3</SB>layer 8 with an &alpha; type crystal structure on the surface of a substrate 6 and, in a Raman spectrum obtained by applying a He-Ne laser with a wavelength of 632.81 nm to the Al<SB>2</SB>O<SB>3</SB>layer 8, when, to a peak A belonging to Al<SB>2</SB>O<SB>3</SB>appearing in the range with the wave number of 416 to 420 cm<SP>-1</SP>(in the vicinity of 418 cm<SP>-1</SP>) and a fluorescence peak Cr belonging to Cr appearing in the range with the wave number of 1,398 to 1,402 cm<SP>-1</SP>(in the vicinity of 1,400 cm<SP>-</SP>1), provided that peak intensities are defined as I<SB>A</SB>and I<SB>C</SB>, respectively, the ratio (I<SB>C</SB>/I<SB>A</SB>) is 3 to 15. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は基体の表面に被覆層が形成されている表面被覆部材に関する。   The present invention relates to a surface covering member in which a coating layer is formed on the surface of a substrate.

現在、切削工具や耐摩部材、摺動部材といった耐摩耗性や摺動性、耐欠損性を必要とする部材では、超硬合金やサーメット等の基体の表面に被覆層を成膜して、耐摩耗性、摺動性、耐欠損性を向上させる手法が使われている。   At present, for members that require wear resistance, slidability, and fracture resistance, such as cutting tools, wear-resistant members, and sliding members, a coating layer is formed on the surface of a substrate such as cemented carbide or cermet and the resistance is increased. Techniques that improve wear, slidability, and fracture resistance are used.

例えば、特許文献1では、超硬合金やサーメット等の基体の表面に、TiNやTiCNの下層と、(Al1−xCr(ただし、xは0.05〜0.35)層を含む上部層の硬質被覆層を形成した切削工具が開示されている。 For example, in Patent Document 1, on the surface of a substrate such as cemented carbide or cermet, a lower layer of TiN or TiCN, and (Al 1-x Cr x ) 2 O 3 (where x is 0.05 to 0.35). A cutting tool in which an upper hard coating layer including a layer is formed is disclosed.

また、特許文献2では、基体の表面に、TiN等の密着性下地被覆層とTiAlN等の強靭性被覆層とAlを主体とする耐摩耗性被覆層とを物理蒸着した切削工具において、耐摩耗性被覆層中には、Alの結晶構造を維持したままで、Cr等を5〜20原子%の割合で固溶させたものが開示されている。 Further, in Patent Document 2, in a cutting tool in which an adhesive base coating layer such as TiN, a tough coating layer such as TiAlN, and an abrasion-resistant coating layer mainly composed of Al 2 O 3 are physically vapor-deposited on the surface of a substrate. In the wear-resistant coating layer, a solution in which Cr or the like is dissolved at a rate of 5 to 20 atomic% while maintaining the crystal structure of Al 2 O 3 is disclosed.

特開2007−075968号公報Japanese Patent Laid-Open No. 2007-075968 特開2001−322007号公報JP 2001-322007 A

しかしながら、特許文献1や特許文献2の構成では、高速切削加工のように切刃が高温になるとAl層が部分的に剥離しやすくなり、耐摩耗性が低下するということがわかった。 However, in the configurations of Patent Document 1 and Patent Document 2, it was found that the Al 2 O 3 layer is likely to be partially peeled when the cutting edge is at a high temperature as in high-speed cutting, and wear resistance is reduced. .

そこで、本発明の表面被覆部材は、高速切削加工のように接触部が高温になってもAl層の剥離を抑制できる切削工具等の部材を提供することを目的とする。 Therefore, surface-coated member of the present invention is intended to contact portions as fast cutting to provide a member such as a cutting tool which can suppress the peeling of the Al 2 O 3 layer even at high temperatures.

本発明の表面被覆部材は、基体の表面に、Tiの炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物および炭窒酸化物のうちの1層以上の下層と、α型結晶構造のAl層とを形成してなり、前記Al層に波長632.81nmのHe−Neレーザーを照射して得られるラマンスペクトルにおいて、波数416〜420cm−1(418cm−1付近)の範囲内に現れるAlに帰属されるピークAと、波数1398〜1402cm−1(1400cm−1付近)の範囲内に現れるCrに帰属される蛍光ピークCに対して、ピーク強度をそれぞれI、Iとしたとき、その比(I/I)が3〜15である。 The surface covering member of the present invention is formed on the surface of a substrate with one or more lower layers of Ti carbide, nitride, carbonitride, carbonate, nitride oxide and carbonitride, and an α-type crystal structure. it forms a the Al 2 O 3 layer, in the Raman spectrum obtained by irradiating a He-Ne laser with a wavelength of 632.81nm the the Al 2 O 3 layer, wavenumber 416~420cm -1 (418cm around -1) The peak intensity is assigned to the peak A attributed to Al 2 O 3 appearing in the range of 1 and the fluorescence peak C attributed to Cr appearing in the range of wave numbers 1398 to 1402 cm −1 (near 1400 cm −1 ). When I A and I C , the ratio (I C / I A ) is 3-15.

ここで、前記Al層を構成するAl結晶の前記基体の表面に対して垂直な方向から見た平均結晶幅が0.05〜0.7μmであることが望ましい。 Here, it is desirable that the average crystal width of the Al 2 O 3 crystal constituting the Al 2 O 3 layer as seen from a direction perpendicular to the surface of the substrate is 0.05 to 0.7 μm.

本発明の表面被覆部材によれば、Al層中にラマンスペクトルでしか観測できないくらい微量のCr成分が固溶していることによって、Al層の密着性が向上して層剥離が抑制できる結果、切削工具の耐欠損性および耐摩耗性がともに向上する。 According to the surface-coated member of the present invention, by the Cr component of the trace amount that can not be observed only in the Raman spectrum in the Al 2 O 3 layer in is a solid solution, and improving the adhesion of the Al 2 O 3 layer a layer As a result of suppressing the peeling, both the fracture resistance and wear resistance of the cutting tool are improved.

本発明の表面被覆部材の好適例である切削工具の一例についての概略断面図である。It is a schematic sectional drawing about an example of the cutting tool which is a suitable example of the surface coating member of this invention. 図1の切削工具について、波長632.81nmのHe−Neレーザーを照射して得られるラマンスペクトルである。It is a Raman spectrum obtained by irradiating the cutting tool of FIG. 1 with a He—Ne laser having a wavelength of 632.81 nm.

本発明の表面被覆部材の好適例である切削工具の一例について、図1の概略断面図を基に説明する。
図1のように、本発明の切削工具1は、すくい面2と逃げ面3との交差稜線部が切刃4を構成しているとともに、基体6の表面に、Tiの炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物および炭窒酸化物のうちの1層以上の下層7と、α型結晶構造のAl層(以下、単にAl層と略す。)8とを被覆層が形成されている。また、図1によれば、Al層8の表面には表面層9が形成されている。
An example of a cutting tool which is a suitable example of the surface covering member of the present invention will be described based on the schematic cross-sectional view of FIG.
As shown in FIG. 1, the cutting tool 1 of the present invention includes a cutting edge 4 at the intersecting ridge line portion of the rake face 2 and the flank face 3, and Ti carbide, nitride, One or more lower layers 7 of carbonitride, carbonate, nitride oxide, and oxynitride, and an Al 2 O 3 layer having an α-type crystal structure (hereinafter, simply referred to as Al 2 O 3 layer) 8 And a coating layer is formed. Further, according to FIG. 1, a surface layer 9 is formed on the surface of the Al 2 O 3 layer 8.

そして、図2に示すように、Al層に波長632.81nmのHe−Neレーザーを照射して得られるラマンスペクトルにおいて、波数416〜420cm−1(418cm−1付近)の範囲内に現れるAlに帰属されるピークAと、波数1398〜1402cm−1(1400cm−1付近)の範囲内に現れるCrに帰属される蛍光ピークCに対して、ピーク強度をそれぞれI、Iとしたとき、その比(I/I)が3〜15となっている。なお、Crは蛍光を出す物質であり、極微量含有されるだけで高いピーク強度で観測される。これによって、Al層8の密着性が向上して層剥離が抑制できる結果、切削工具1の耐欠損性および耐摩耗性がともに向上する。比I/Iの望ましい範囲は、6〜10である。 As shown in FIG. 2, in the Raman spectrum obtained by irradiating the Al 2 O 3 layer with a He—Ne laser having a wavelength of 632.81 nm, within a range of wave numbers from 416 to 420 cm −1 (near 418 cm −1 ). With respect to the peak A attributed to Al 2 O 3 appearing and the fluorescence peak C attributed to Cr appearing in the range of wave numbers 1398 to 1402 cm −1 (near 1400 cm −1 ), the peak intensities are I A and I When C , the ratio (I C / I A ) is 3-15. Note that Cr is a substance that emits fluorescence, and is observed with a high peak intensity even if contained in a very small amount. As a result, the adhesion of the Al 2 O 3 layer 8 is improved and delamination can be suppressed. As a result, both the fracture resistance and wear resistance of the cutting tool 1 are improved. A desirable range for the ratio I C / I A is 6-10.

なお、本発明において、Al層8中に含まれるCrの比率は、例えばレーザーICP−MS分析によって測定した場合には500ppm以下と極微量として検出される。このように微量の測定では誤差が大きくなることから、本発明においてはラマンスペクトルを用いて極微量のCr量を精度よく測定する。また、ピーク強度をそれぞれI、Iの算出においては、ラマンスペクトルチャートからバックグラウンド分を除いたときの値を見積もってから算出する。 In the present invention, the ratio of Cr contained in the Al 2 O 3 layer 8 is detected as a trace amount of 500 ppm or less when measured by laser ICP-MS analysis, for example. As described above, since an error becomes large in a very small amount of measurement, in the present invention, an extremely small amount of Cr is accurately measured using a Raman spectrum. In calculating the peak intensities I A and I C , the peak intensity is calculated after estimating the value when the background is removed from the Raman spectrum chart.

ここで、本発明によれば、Al層中に微量のCrが含有されていることが要因で、Al層8を構成するAl結晶の基体6の表面に対して垂直な方向から見た平均結晶幅が0.05〜0.7μmと小さくなる傾向にあり、これによって、Al層8の耐摩耗性が向上する。 Here, according to the present invention, by factors that are contained is Cr traces on the Al 2 O 3 layer in respect the surface of the Al 2 O 3 substrate 6 of crystals constituting the the Al 2 O 3 layer 8 The average crystal width as viewed from the vertical direction tends to be as small as 0.05 to 0.7 μm, whereby the wear resistance of the Al 2 O 3 layer 8 is improved.

次に、Al層8より基体6側に形成される下層7について説明する。
下層7は、TiC、TiN、TiCN、TiCNO、TiCO、TiNO、TiOの群から選ばれる1層以上が好適に用いられ、耐摩耗性および耐欠損性が向上する。本実施態様によれば、具体的な構成として、基体6の直上には第1層としてTiN層7aが形成され、第2層としてTiCN層7bが形成されている。TiCN層7bとしては、アセトニトリル(CHCN)ガスを原料として含み成膜温度が780〜900℃と比較的低温で成膜した柱状結晶からなる、いわゆるMT−TiCN層と、成膜温度が950〜1100℃と高温で成膜した、いわゆるHT−TiCN層とが順に成膜された構成であることが望ましい。さらに、MT−TiCN層は、平均結晶幅が0.5μm未満と微細な微細柱状結晶からなる微細MT−TiCN層と、平均結晶幅が0.5〜2μmと比較的大きい粗大柱状結晶からなる粗大MT−TiCN層との積層からなることが望ましい。これによって、Al層8との密着力が高まり、被覆層の剥離やチッピングを抑えることができる。
Next, the lower layer 7 formed on the base 6 side from the Al 2 O 3 layer 8 will be described.
As the lower layer 7, at least one layer selected from the group consisting of TiC, TiN, TiCN, TiCNO, TiCO, TiNO, and TiO 2 is preferably used, and the wear resistance and fracture resistance are improved. According to this embodiment, as a specific configuration, a TiN layer 7a is formed as a first layer and a TiCN layer 7b is formed as a second layer immediately above the substrate 6. As the TiCN layer 7b, a so-called MT-TiCN layer composed of columnar crystals formed using an acetonitrile (CH 3 CN) gas as a raw material and formed at a relatively low film formation temperature of 780 to 900 ° C., and a film formation temperature of 950 are used. It is desirable that the so-called HT-TiCN layer formed at a high temperature of ˜1100 ° C. is sequentially formed. Further, the MT-TiCN layer is composed of a fine MT-TiCN layer made of fine fine columnar crystals with an average crystal width of less than 0.5 μm and a coarse piece made of coarse columnar crystals with a relatively large average crystal width of 0.5 to 2 μm. It is desirable to consist of a laminate with an MT-TiCN layer. Thereby, the adhesive force with the Al 2 O 3 layer 8 is increased, and peeling and chipping of the coating layer can be suppressed.

また、HT−TiCN層は、成膜工程で酸化されて、Ti原子を40〜55原子%と、酸素(O)を15〜25原子%と、炭素(C)を25〜40原子%と、残部が窒素(N)とのTiCNO層に変化して、厚み0.05〜0.5μmの中間層7cを形成していることが望ましい。これによって、平均粒径0.05〜0.7μmのα型結晶構造のAl結晶からなるα型Al層8をより容易に作製することができる。 Further, the HT-TiCN layer is oxidized in the film forming step, and Ti atoms are 40 to 55 atomic%, oxygen (O) is 15 to 25 atomic%, carbon (C) is 25 to 40 atomic%, It is desirable that the remaining portion is changed to a TiCNO layer with nitrogen (N) to form an intermediate layer 7c having a thickness of 0.05 to 0.5 μm. Thereby, the α-type Al 2 O 3 layer 8 made of Al 2 O 3 crystals having an α-type crystal structure with an average particle size of 0.05 to 0.7 μm can be more easily produced.

なお、各層の厚みおよび各層を構成する結晶の性状は、切削工具1の断面における電子顕微鏡写真(走査型電子顕微鏡(SEM)写真または透過電子顕微鏡(TEM)写真)を観察することにより、測定することが可能である。   The thickness of each layer and the properties of the crystals constituting each layer are measured by observing an electron micrograph (scanning electron microscope (SEM) photograph or transmission electron microscope (TEM) photograph) in the cross section of the cutting tool 1. It is possible.

さらに、Al層8の上層に、表面層9としてTiN層、TiC層、TiCNO層、TiCO層、TiNO層の群から選ばれる少なくとも1層(他のTi系被覆層)を形成することによって、切削工具1の摺動性の向上や外観等の調整が可能となる。表面層9としてTiN層やTiCN層を用いた場合には、切削工具1の表面が有色となり、切削工具1を使用したときに表面層9が摩耗して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できる。なお、表面層9は、摺動性を高めるためにDLC(ダイヤモンドライクカーボン)層やCrN層を表面層9として形成しても良い。 Furthermore, at least one layer selected from the group of TiN layer, TiC layer, TiCNO layer, TiCO layer, TiNO layer (other Ti-based coating layer) is formed as the surface layer 9 on the Al 2 O 3 layer 8. As a result, the slidability of the cutting tool 1 can be improved and the appearance can be adjusted. When a TiN layer or TiCN layer is used as the surface layer 9, the surface of the cutting tool 1 becomes colored, and when the cutting tool 1 is used, it is easy to determine whether the surface layer 9 is worn and used. Further, the progress of wear can be easily confirmed. The surface layer 9 may be formed with a DLC (diamond-like carbon) layer or a CrN layer as the surface layer 9 in order to improve slidability.

一方、切削工具1の基体6は、炭化タングステン(WC)と、所望により周期表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種と、からなる硬質相を、コバルト(Co)やニッケル(Ni)等の鉄属金属からなる結合相にて結合させた超硬合金やTi基サーメット、またはSi、Al、ダイヤモンド、立方晶窒化ホウ素(cBN)等のセラミックスのいずれかが好適に使用できる。中でも、切削工具1を切削工具として用いる場合には、基体6は、超硬合金またはサーメットからなることが耐欠損性および耐摩耗性の点で望ましい。また、用途によっては、基体6は炭素鋼、高速度鋼、合金鋼等の金属からなるものであっても良い。 On the other hand, the base 6 of the cutting tool 1 is made of tungsten carbide (WC) and, if desired, at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table. Cemented carbide, Ti-based cermet, or Si 3 N 4 , Al 2 O 3 , diamond, cubic crystal in which the hard phase is bonded with a binder phase made of an iron group metal such as cobalt (Co) or nickel (Ni) Any ceramic such as boron nitride (cBN) can be suitably used. In particular, when the cutting tool 1 is used as a cutting tool, the base 6 is preferably made of cemented carbide or cermet in terms of fracture resistance and wear resistance. Further, depending on the application, the substrate 6 may be made of a metal such as carbon steel, high speed steel, or alloy steel.

さらに、上記記載では切削工具1について説明したが、摺動部品や金型等の耐摩部品、掘削工具、刃物等の工具、耐衝撃部品等の各種の用途への応用も可能である。特に、切削工具1を高速切削条件で加工した場合に優れた切削性能を示す。つまり、α型Al層8が高温になっても、本実施形態によれば、α型Al層8がTiCN層7bと強固に結合しているので、α型Al層8がチッピングしたり欠損したりすることを抑制することができる。もちろん、鋼の切削加工においても、従来の工具に対して優れた耐欠損性および耐摩耗性を示すことができる。 Furthermore, although the cutting tool 1 was demonstrated in the said description, application to various uses, such as wear-resistant parts, such as a sliding part and a metal mold | die, a tool, such as an excavation tool, a blade, and an impact-resistant part, is also possible. In particular, excellent cutting performance is shown when the cutting tool 1 is machined under high-speed cutting conditions. That is, alpha type the Al 2 O 3 layer 8 is heated to a high temperature, according to this embodiment, since the alpha-type the Al 2 O 3 layer 8 is tightly bound and TiCN layer 7b, alpha-type Al 2 O It is possible to suppress chipping or chipping of the three layers 8. Of course, even in steel cutting, it is possible to show excellent fracture resistance and wear resistance with respect to conventional tools.

(製造方法)
また、本実施形態の切削工具1の一例である上述した表面被覆切削工具の製造方法の一実施形態について説明する。
(Production method)
Moreover, one Embodiment of the manufacturing method of the surface covering cutting tool mentioned above which is an example of the cutting tool 1 of this embodiment is described.

まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形する。その後、得られた成形体を真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体6を作製する。そして、上記基体6の表面に所望によって研磨加工や切刃部のホーニング加工を施す。   First, metal powder, carbon powder, etc. are appropriately added to and mixed with inorganic powders such as metal carbides, nitrides, carbonitrides and oxides that can be formed by firing the hard alloy described above, press molding, casting molding, A predetermined tool shape is formed by a known forming method such as extrusion molding or cold isostatic pressing. Thereafter, the obtained molded body is fired in a vacuum or in a non-oxidizing atmosphere to produce the substrate 6 made of the hard alloy described above. Then, the surface of the base 6 is subjected to polishing or honing of the cutting edge as desired.

次に、得られた基体6の表面に化学気相蒸着(CVD)法によって被覆層を形成する。
まず、基体6の直上に第1層としてTiN層を形成する。TiN層の成膜条件としては、混合ガス組成として四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を800〜940℃(チャンバ内)、圧力を8〜50kPaにて成膜される。
Next, a coating layer is formed on the surface of the obtained substrate 6 by chemical vapor deposition (CVD).
First, a TiN layer is formed as a first layer directly on the substrate 6. The conditions for forming the TiN layer include, as a mixed gas composition, titanium tetrachloride (TiCl 4 ) gas in a ratio of 0.5 to 10% by volume and nitrogen (N 2 ) gas in a ratio of 10 to 60% by volume, with the remainder being hydrogen. Using a mixed gas composed of (H 2 ) gas, the film is formed at a film forming temperature of 800 to 940 ° C. (in the chamber) and a pressure of 8 to 50 kPa.

次に、第2層としてTiCN層7bを形成する。ここでは、TiCN層7bが、平均結晶幅が小さい微細柱状結晶層と、この層よりも平均結晶幅が大きい粗柱状結晶層とのMT−TiCN層と、HT−TiCN層との3層にて構成する場合の成膜条件について説明する。   Next, a TiCN layer 7b is formed as a second layer. Here, the TiCN layer 7b is composed of three layers of a fine columnar crystal layer having a small average crystal width, a MT-TiCN layer of a coarse columnar crystal layer having a larger average crystal width than this layer, and an HT-TiCN layer. The film forming conditions for the configuration will be described.

MT−TiCN層のうちの微細柱状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%、アセトニトリル(CHCN)ガスを0.1〜0.4体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。MT−TiCN層のうちの粗柱状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜4.0体積%、窒素(N)ガスを0〜40体積%、アセトニトリル(CHCN)ガスを0.4〜2.0体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。 The film formation conditions of the fine columnar crystal layer in the MT-TiCN layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.5 to 10% by volume, nitrogen (N 2 ) gas is 10 to 60% by volume, acetonitrile (CH 3 CN) gas in a ratio of 0.1 to 0.4% by volume, and the remaining gas is a hydrogen (H 2 ) gas, the film forming temperature is 780 to 900 ° C., and the pressure is 5 to 25 kPa. . The film formation conditions of the coarse columnar crystal layer in the MT-TiCN layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.5 to 4.0% by volume, nitrogen (N 2 ) gas is 0 to 40% by volume, acetonitrile (CH 3 CN) gas is contained at a ratio of 0.4 to 2.0% by volume, and the remaining gas is a hydrogen (H 2 ) gas mixed gas, the film forming temperature is 780 to 900 ° C., and the pressure is 5 to 25 kPa. And

HT−TiCN層の成膜条件は、四塩化チタン(TiCl)ガスを0.1〜3体積%、メタン(CH)ガスを0.1〜10体積%、窒素(N)ガスを0〜15体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を950〜1100℃、圧力を5〜40kPaとして成膜する。そして、チャンバ内を950〜1100℃、5〜40kPaとし、四塩化チタン(TiCl)ガスを1〜5体積%、メタン(CH)ガスを4〜10体積%、窒素(N)ガスを10〜30体積%、一酸化炭素(CO)ガスを4〜8体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に10〜60分導入して成膜した後、続いて体積%で二酸化炭素(CO)ガスを0.5〜4.0体積%、残りが窒素(N)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を950〜1100℃、5〜40kPaにて、二酸化炭素(CO)ガスを0.5〜10体積%、残りが窒素(N)ガスからなる混合ガスを反応チャンバ内に10〜60分導入することによって、HT−TiCN層を酸化させてTiCNO層に変化させながら中間層を成膜する。なお、このCOガスを含む混合ガスを流す工程を経ることなく中間層を形成することもできるが、α型Al層8を構成する結晶を微細なものとするためには、COガスを含む混合ガスを流す工程を経ることが望ましい。 The film forming conditions of the HT-TiCN layer were 0.1 to 3% by volume of titanium tetrachloride (TiCl 4 ) gas, 0.1 to 10% by volume of methane (CH 4 ) gas, and 0 of nitrogen (N 2 ) gas. The film is formed at a film forming temperature of 950 to 1100 ° C. and a pressure of 5 to 40 kPa, using a mixed gas containing hydrogen (H 2 ) gas in a ratio of ˜15% by volume. The chamber is 950 to 1100 ° C. and 5 to 40 kPa, titanium tetrachloride (TiCl 4 ) gas is 1 to 5% by volume, methane (CH 4 ) gas is 4 to 10% by volume, and nitrogen (N 2 ) gas is 10 to 30% by volume, carbon monoxide (CO) gas was 4 to 8% by volume, and the remainder was adjusted to a mixed gas consisting of hydrogen (H 2 ) gas and introduced into the reaction chamber for 10 to 60 minutes to form a film. Subsequently, a mixed gas consisting of 0.5% to 4.0% by volume of carbon dioxide (CO 2 ) gas and the remainder of nitrogen (N 2 ) gas in a volume% is prepared and introduced into the reaction chamber to form a film. At a temperature of 950 to 1100 ° C. and 5 to 40 kPa, a mixed gas composed of 0.5 to 10% by volume of carbon dioxide (CO 2 ) gas and the balance of nitrogen (N 2 ) gas is placed in the reaction chamber for 10 to 60 minutes. Oxidizing the HT-TiCN layer by introducing Then, an intermediate layer is formed while changing to a TiCNO layer. Although the intermediate layer can be formed without passing the step of flowing a mixed gas containing CO gas, in order to make the crystals constituting the α-type Al 2 O 3 layer 8 fine, CO gas It is desirable to go through a process of flowing a mixed gas containing.

そして、引き続き、α型Al層8を形成する。α型Al層8の成膜条件としては、三塩化アルミニウム(AlCl)ガスを0.5〜5.0体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.5〜5.0体積%、硫化水素(HS)ガスを0〜0.5体積%、塩化クロム(CrCl)ガスを0.005〜0.025体積%、残りが水素(H)ガスからなる混合ガスをチャンバ内に導入し、成膜温度を950〜1100℃、圧力を5〜10kPaとして成膜することが望ましい。 Subsequently, the α-type Al 2 O 3 layer 8 is formed. The film forming conditions for the α-type Al 2 O 3 layer 8 include 0.5 to 5.0% by volume of aluminum trichloride (AlCl 3 ) gas and 0.5 to 3.5% by volume of hydrogen chloride (HCl) gas. Carbon dioxide (CO 2 ) gas in an amount of 0.5 to 5.0% by volume, hydrogen sulfide (H 2 S) gas in an amount of 0 to 0.5% by volume, and chromium chloride (CrCl 2 ) gas in an amount of 0.005 to 0.005%. It is desirable to introduce a mixed gas composed of 025 volume% and the remainder of hydrogen (H 2 ) gas into the chamber, and form a film at a film formation temperature of 950 to 1100 ° C. and a pressure of 5 to 10 kPa.

ここで、Cr成分の供給については、微量のCr成分を供給する必要があるために、三塩化アルミニウム(AlCl)ガスを供給するために用いるジェネレータの加熱温度を280〜350℃に設定するとともに、塩化クロム(CrCl)ガスを供給するジェネレータの加熱温度を550〜700℃に設定して調整する。これによって、微量のCr成分を均一に安定して成膜チャンバ内に導入することができて、組成ムラの小さいα型Al層8を作製することができる。これによって、α型Al層8の剥離を安定して抑制することができる。 Here, regarding the supply of the Cr component, since it is necessary to supply a very small amount of the Cr component, the heating temperature of the generator used to supply the aluminum trichloride (AlCl 3 ) gas is set to 280 to 350 ° C. The heating temperature of the generator for supplying chromium chloride (CrCl 2 ) gas is adjusted to 550 to 700 ° C. As a result, a small amount of Cr component can be uniformly and stably introduced into the film forming chamber, and the α-type Al 2 O 3 layer 8 with small composition unevenness can be produced. Thereby, peeling of the α-type Al 2 O 3 layer 8 can be stably suppressed.

また、α型Al層8の成膜に先立ち、三塩化アルミニウム(AlCl)ガスを0.5〜5.0体積%と残りが水素(H)ガスからなる混合ガスを20〜40分間流すことにより、中間層の表面にα型Al層を構成する結晶の核が均一にできて、α型Al層8の密着性が向上する点で望ましい。 Prior to the formation of the α-type Al 2 O 3 layer 8, a mixed gas composed of 0.5 to 5.0% by volume of aluminum trichloride (AlCl 3 ) gas and the remaining hydrogen (H 2 ) gas is 20 to 20%. by passing 40 minutes, the crystal nuclei constituting the α-type the Al 2 O 3 layer on the surface of the intermediate layer is made uniform, the adhesion of α type the Al 2 O 3 layer 8 is desirable in terms of improving.

さらに、α型Al層8の上層に表面層9としてTiN層を形成する。四塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを0〜60体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを反応チャンバ内に導入し、チャンバの温度を960〜1100℃、圧力を10〜85kPaとして成膜する。 Further, a TiN layer is formed as a surface layer 9 on the α-type Al 2 O 3 layer 8. A mixed gas comprising 0.1 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 0 to 60% by volume of nitrogen (N 2 ) gas, and the remainder consisting of hydrogen (H 2 ) gas is contained in the reaction chamber. The film is formed at a chamber temperature of 960 to 1100 ° C. and a pressure of 10 to 85 kPa.

そして、所望により、形成した被覆層の表面の少なくとも切刃部を研磨加工する。この研磨加工により、切刃部が平滑に加工され、被削材の溶着を抑制して、さらに耐欠損性に優れた切削工具となる。   Then, if desired, at least the cutting edge portion of the surface of the formed coating layer is polished. By this polishing process, the cutting edge portion is processed smoothly, and welding of the work material is suppressed, and a cutting tool having excellent fracture resistance is obtained.

平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMA120412)に成形した。得られた成形体について、脱バインダ処理を施し、0.5〜100Paの真空中、1400℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金に対して、ブラシ加工にてすくい面側について刃先処理(Rホーニング)を施した。   A metal cobalt (Co) powder with an average particle size of 1.2 μm is added to and mixed with tungsten carbide (WC) powder with an average particle size of 1.5 μm at a ratio of 6% by mass, and the cutting tool shape ( CNMA12041). The obtained compact was subjected to a binder removal treatment and fired at 1400 ° C. for 1 hour in a vacuum of 0.5 to 100 Pa to produce a cemented carbide. Furthermore, the cutting edge processing (R honing) was performed on the rake face side by brush processing on the manufactured cemented carbide.

次に、上記超硬合金に対して、CVD法により各種の被覆層を表1に示す成膜条件、および表2に示す層構成にて形成した。なお、成膜する際のCr成分の供給については、三塩化アルミニウム(AlCl)ガスを供給するために用いるジェネレータの加熱温度を320℃に設定するとともに、塩化クロム(CrCl)ガスを供給するジェネレータの加熱温度を600℃に設定してCr源の供給を行った。そして、被覆層3の表面をすくい面側から30秒間ブラシ加工して試料No.1〜8の表面被覆切削工具を作製した。 Next, various coating layers were formed on the cemented carbide by the CVD method under the film forming conditions shown in Table 1 and the layer configuration shown in Table 2. Regarding the supply of the Cr component during film formation, the heating temperature of the generator used to supply the aluminum trichloride (AlCl 3 ) gas is set to 320 ° C., and the chromium chloride (CrCl 2 ) gas is supplied. The Cr source was supplied with the generator heating temperature set to 600 ° C. Then, the surface of the coating layer 3 was brushed for 30 seconds from the rake face side, and sample No. 1 to 8 surface-coated cutting tools were produced.

得られた工具について、波長632.81nmのHe−Neレーザーを照射してラマンスペクトルを得た。得られたスペクトルチャートについて、バックグラウンド分を除いて各ピーク強度を算出した。また、被覆層の断面について透過型電子顕微鏡観察を行い、各層を構成する結晶の形状、平均粒径(または平均結晶幅)、厚みを見積もった。結果は表2に示した。   The obtained tool was irradiated with a He—Ne laser having a wavelength of 632.81 nm to obtain a Raman spectrum. About the obtained spectrum chart, each peak intensity | strength was computed except the background part. Further, the cross section of the coating layer was observed with a transmission electron microscope, and the shape, average particle diameter (or average crystal width), and thickness of the crystals constituting each layer were estimated. The results are shown in Table 2.

Figure 2011122222
Figure 2011122222

Figure 2011122222
Figure 2011122222

次に、このスローアウェイチップを用いて以下の切削条件にて切削試験を行った。結果は表3に示した。
切削方法:外周加工
被削材 :SKD11
切削速度:120m/分
送り :0.5mm/rev
切り込み:0.5mm
切削状態:乾式
評価方法:フランク摩耗が0.3mm以上となる時間(表中、工具寿命と記載。)とそのときの切刃の状態
Next, a cutting test was performed using the throwaway tip under the following cutting conditions. The results are shown in Table 3.
Cutting method: Peripheral workpiece: SKD11
Cutting speed: 120 m / min Feed: 0.5 mm / rev
Cutting depth: 0.5mm
Cutting state: Dry evaluation method: Time for flank wear to be 0.3 mm or more (described as tool life in the table) and the state of the cutting blade at that time

Figure 2011122222
Figure 2011122222

表1〜3に示される結果から、I/Iが3より小さい試料No.6およびNo.8では、Al層が剥離しやすく工具寿命も短いものであった。また、I/Iが15を超える試料No.7では、Al層自体の耐摩耗性が低下した。これに対し、I/Iが3〜15の試料No.1〜5では、Al層の密着力も高く耐摩耗性も良好であり、その結果、工具寿命が長いものであった。特に、Al層を成膜する際に、AlClガスとHガスの混合ガスを流した試料No.1〜4では、Al層の密着性が高くなった。また、中間層を形成する工程においてCOガスを含む混合ガスを流す工程を経た試料No.1〜3では、Al層を構成するAl結晶の結晶幅が小さくなり、耐摩耗性が向上する傾向にあった。 From the results shown in Tables 1 to 3, sample Nos. With I C / I A smaller than 3 were obtained. 6 and no. In No. 8, the Al 2 O 3 layer was easy to peel off and the tool life was short. In addition, sample Nos. With I C / I A exceeding 15 were obtained. In No. 7, the wear resistance of the Al 2 O 3 layer itself decreased. On the other hand, sample Nos. With I C / I A of 3-15. In Nos. 1 to 5, the adhesion of the Al 2 O 3 layer was high and the wear resistance was good, and as a result, the tool life was long. In particular, when forming the Al 2 O 3 layer, the sample No. 1 in which a mixed gas of AlCl 3 gas and H 2 gas was flowed was used. In 1-4, the adhesion of the Al 2 O 3 layer is increased. In addition, in the step of forming the intermediate layer, the sample No. 1 to 3, the crystal width of the Al 2 O 3 crystal constituting the Al 2 O 3 layer was reduced, and the wear resistance tended to be improved.

1 切削工具
2 すくい面
3 逃げ面
4 切刃
6 基体
7 下層
7a TiN層
7b TiCN層
7c 中間層
8 Al
9 表面層
1 cutting tool 2 rake face 3 flank 4 cutting edge 6 substrate 7 lower 7a TiN layer 7b TiCN layer 7c intermediate layer 8 Al 2 O 3 layer 9 surface layer

Claims (2)

基体の表面に、Tiの炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物および炭窒酸化物のうちの1層以上の下層と、α型結晶構造のAl層とを形成してなり、前記Al層に波長632.81nmのHe−Neレーザーを照射して得られるラマンスペクトルにおいて、波数416〜420cm−1(418cm−1付近)の範囲内に現れるAlに帰属されるピークAと、波数1398〜1402cm−1(1400cm−1付近)の範囲内に現れるCrに帰属される蛍光ピークCに対して、ピーク強度をそれぞれI、Iとしたとき、その比(I/I)が3〜15である表面被覆部材。 On the surface of the substrate, one or more lower layers of Ti carbide, nitride, carbonitride, carbonate, nitride oxide and carbonitride and an Al 2 O 3 layer having an α-type crystal structure are formed. In the Raman spectrum obtained by irradiating the Al 2 O 3 layer with a He—Ne laser having a wavelength of 632.81 nm, Al 2 O appearing in a wave number range of 416 to 420 cm −1 (near 418 cm −1 ). When the peak intensity is I A and I C with respect to the peak A attributed to 3 and the fluorescence peak C attributed to Cr appearing in the range of wave numbers 1398 to 1402 cm −1 (near 1400 cm −1 ), respectively. , the ratio (I C / I a) surface-coated member is from 3 to 15. 前記Al層を構成するAl結晶の前記基体の表面に対して垂直な方向から見た平均結晶幅が0.05〜0.7μmである請求項1に記載の表面被覆部材。 2. The surface covering member according to claim 1, wherein an average crystal width of the Al 2 O 3 crystal constituting the Al 2 O 3 layer viewed from a direction perpendicular to the surface of the substrate is 0.05 to 0.7 μm. .
JP2009282372A 2009-12-14 2009-12-14 Surface covering member Active JP5419668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282372A JP5419668B2 (en) 2009-12-14 2009-12-14 Surface covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282372A JP5419668B2 (en) 2009-12-14 2009-12-14 Surface covering member

Publications (2)

Publication Number Publication Date
JP2011122222A true JP2011122222A (en) 2011-06-23
JP5419668B2 JP5419668B2 (en) 2014-02-19

Family

ID=44286383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282372A Active JP5419668B2 (en) 2009-12-14 2009-12-14 Surface covering member

Country Status (1)

Country Link
JP (1) JP5419668B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230221A (en) * 2010-04-27 2011-11-17 Kyocera Corp Surface-coated member
WO2015080149A1 (en) * 2013-11-29 2015-06-04 京セラ株式会社 Cutting tool
WO2015146918A1 (en) * 2014-03-22 2015-10-01 京セラ株式会社 Coated tool and cutting tool
WO2018097280A1 (en) * 2016-11-28 2018-05-31 パナソニックIpマネジメント株式会社 Oxide coating film formed on substrate surface of iron-based sintered body, sliding member provided with said oxide coating film, and device provided with said sliding member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149235A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Surface coated cutting tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149235A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Surface coated cutting tool

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230221A (en) * 2010-04-27 2011-11-17 Kyocera Corp Surface-coated member
US10113239B2 (en) 2013-11-29 2018-10-30 Kyocera Corporation Cutting tool
JPWO2015080149A1 (en) * 2013-11-29 2017-03-16 京セラ株式会社 Cutting tools
WO2015080149A1 (en) * 2013-11-29 2015-06-04 京セラ株式会社 Cutting tool
KR101894313B1 (en) 2014-03-22 2018-09-03 쿄세라 코포레이션 Coated tool and cutting tool
CN106102973A (en) * 2014-03-22 2016-11-09 京瓷株式会社 Coating tool and cutting element
KR20160117610A (en) * 2014-03-22 2016-10-10 쿄세라 코포레이션 Coated tool and cutting tool
WO2015146918A1 (en) * 2014-03-22 2015-10-01 京セラ株式会社 Coated tool and cutting tool
JP5864826B1 (en) * 2014-03-22 2016-02-17 京セラ株式会社 Coated and cutting tools
US10202688B2 (en) 2014-03-22 2019-02-12 Kyocera Corporation Coated tool and cutting tool
WO2018097280A1 (en) * 2016-11-28 2018-05-31 パナソニックIpマネジメント株式会社 Oxide coating film formed on substrate surface of iron-based sintered body, sliding member provided with said oxide coating film, and device provided with said sliding member
CN109996901A (en) * 2016-11-28 2019-07-09 松下知识产权经营株式会社 Iron series sintered body substrate surface formed oxidation overlay film, be formed with the sliding component of the oxidation overlay film and with the equipment of the sliding component
JPWO2018097280A1 (en) * 2016-11-28 2019-10-17 パナソニックIpマネジメント株式会社 Oxide film formed on the surface of a base material of an iron-based sintered body, a sliding member on which this oxide film is formed, and an apparatus provided with this sliding member
JP7065424B2 (en) 2016-11-28 2022-05-12 パナソニックIpマネジメント株式会社 An oxide film formed on the surface of the base material of an iron-based sintered body, a sliding member on which the oxide film is formed, and a device provided with this sliding member.
CN109996901B (en) * 2016-11-28 2022-11-15 松下知识产权经营株式会社 Oxide film, sliding member having the same formed thereon, and apparatus having the sliding member

Also Published As

Publication number Publication date
JP5419668B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
KR101826091B1 (en) Hard-coated member and its production method, and indexable rotary tool comprising it
JP4994367B2 (en) CUTTING TOOL, MANUFACTURING METHOD THEREOF, AND CUTTING METHOD
JP5890594B2 (en) Coated tool
JP5414883B2 (en) Cutting tools
JP5683190B2 (en) Surface covering member
JP5841170B2 (en) Coated tool
KR102056206B1 (en) Hard film coating tool and method for manufacturing said tool
WO2007049785A1 (en) Surface-coated member, method for manufacture thereof, and cutting tool
JPWO2008026700A1 (en) Cutting tool, manufacturing method thereof and cutting method
JP2012196726A (en) Cutting tool
JP5419668B2 (en) Surface covering member
JP2012144766A (en) Coated member
JP3962300B2 (en) Aluminum oxide coated tool
JP5693039B2 (en) Surface covering member
JP2012030308A (en) Cutting tool
JP6162484B2 (en) Surface covering member
JP6039481B2 (en) Surface covering member
JP6522985B2 (en) Coated tools
JP2015085417A (en) Coated tool
JP6050183B2 (en) Cutting tools
JP5898394B1 (en) Coated tool
JP6039479B2 (en) Surface covering member
JP5822780B2 (en) Cutting tools
JP2006299422A (en) Production method of surface coated body
JP2006297584A (en) Surface coated tool and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150