JP2011120607A - Dialysis membrane - Google Patents

Dialysis membrane Download PDF

Info

Publication number
JP2011120607A
JP2011120607A JP2008089117A JP2008089117A JP2011120607A JP 2011120607 A JP2011120607 A JP 2011120607A JP 2008089117 A JP2008089117 A JP 2008089117A JP 2008089117 A JP2008089117 A JP 2008089117A JP 2011120607 A JP2011120607 A JP 2011120607A
Authority
JP
Japan
Prior art keywords
membrane
molecule
molecular recognition
specific compound
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008089117A
Other languages
Japanese (ja)
Inventor
Tadayoshi Omori
唯義 大森
Akio Susaka
昭夫 数坂
Tatsuo Hamada
辰夫 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKACHI TELEPHONE NETWORK KK
Original Assignee
TOKACHI TELEPHONE NETWORK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKACHI TELEPHONE NETWORK KK filed Critical TOKACHI TELEPHONE NETWORK KK
Priority to JP2008089117A priority Critical patent/JP2011120607A/en
Priority to PCT/JP2009/001318 priority patent/WO2009122679A1/en
Publication of JP2011120607A publication Critical patent/JP2011120607A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • B01D2325/0212Symmetric or isoporous membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • G01N2001/4016Concentrating samples by transferring a selected component through a membrane being a selective membrane, e.g. dialysis or osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • External Artificial Organs (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dialysis membrane using a highly thin molecular recognition resin membrane easily carrying out fractional extraction, fractional elimination, fractional isolation, or detection, quantitative analysis of a specific one kind of component from the mixed aqueous solution of many kinds of antibiotics, saccharides, amino acids, organic toxic substances, and other organic compounds by dialysis. <P>SOLUTION: A molecular recognition resin membrane 11 constituted by molecular-imprinting the template molecule of a specific compound molecule being an object of the fractional isolation is formed on a porous support membrane 12 having a large number of fine pores having an inner diameter permeable of a specific compound molecule being the object of the fractional isolation, the specific compound molecule is selectively dialyzed by the molecular recognition resin membrane 11 and the compound molecule is permeated through the fine pores of the porous support membrane 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、透析膜及びその製造方法に係わり、例えば生乳などの生物体液や、分泌液中に含まれる微量の特定抗生物質、特定糖類、特定有機化合物等の分析、生物体液および分泌液以外に有機化合物水溶液中に含まれる多種の微量特定単一有機化合物を分別、単離、定量等するための透析膜及びその製造方法に関する。   The present invention relates to a dialysis membrane and a method for producing the same, for example, biological fluids such as raw milk, analysis of trace amounts of specific antibiotics, specific saccharides, specific organic compounds, etc. contained in secretions, in addition to biological fluids and secretions The present invention relates to a dialysis membrane for separating, isolating, quantifying, etc., various kinds of trace specific single organic compounds contained in an organic compound aqueous solution and a method for producing the same.

多種類にわたる有機化合物を含む生物体液又は分泌液から、その中に含まれる微量の特定の抗生物質や特定の糖類、その他の有機化合物を分別、定量する場合には複雑な前処理操作を必要とする。例えば脂肪、蛋白、糖類その他の多量かつ多種類の有機化合物を含有する生乳中に微量のペニシリンGとテトラサイクリンが含まれている場合、高速液体クロマトグラフ質量分析計を用いた方法(例えばM.Kozono等 Seikatu Eisei
49巻, 220-226頁2005年)が有効であるが、その定量測定にはこれらの含有有機化合物の除去のための遠心分離、濾過、溶出など、何段階にも及ぶ熟練を要する前処理操作が必要であり、測定装置も非常に高価である。
When separating and quantifying trace amounts of specific antibiotics, specific sugars, and other organic compounds from biological fluids or secretions containing a wide variety of organic compounds, complicated pretreatment procedures are required. To do. For example, when a small amount of penicillin G and tetracycline are contained in raw milk containing a large amount and many kinds of organic compounds such as fat, protein, saccharide and the like, a method using a high performance liquid chromatograph mass spectrometer (for example, M. Kozono) Seikatu Eisei
49, 220-226, 2005) is effective, but for quantitative measurement, pretreatment operations that require many levels of skill, such as centrifugation, filtration, and elution to remove these organic compounds. And the measuring device is very expensive.

また、多種類にわたる微量の薬剤や有機化合物を含む水溶液から、特定の薬剤成分や有機化合物成分を抽出する操作も高度な技術を要する。水溶液中に含まれる微量の毒物成分の分別除去や分析も同様である。このため、食品化学分野、製薬分野、医療分野では、特定抗生物質、有機薬剤、糖類、アミノ酸、毒物等を、安価で簡便な手法によって分別単離、分析することが求められている。   In addition, an operation for extracting a specific drug component or organic compound component from an aqueous solution containing a large amount of a small amount of drug or organic compound also requires advanced techniques. The same applies to the separation and analysis of trace amounts of toxic components contained in an aqueous solution. For this reason, in the food chemistry field, the pharmaceutical field, and the medical field, it is required to separate and analyze specific antibiotics, organic drugs, saccharides, amino acids, toxic substances, and the like by an inexpensive and simple technique.

このような抗生物質、有機化合物を除去する薄膜として、分子インプリントポリマー(Molecularly Imprinted Polymers、分子認識樹脂と称されることもある)が、公知である。特開2005-232205号公報には、「分子インプリントセルロース及びその製造方法」に関する発明が記載され、同発明はセルロース等に水素結合、静電的結合、疎水性結合等によりセルロースと結合可能な鋳型分子を分子インプリントすることによって、分子インプリントセルロースを形成するものである。具体的には、セルロース又はセルロース誘導体、及び鋳型分子を含む有機溶媒溶液から有機溶媒を除去して固化させた後、鋳型分子を抽出することによって、セルロース膜を形成するものである。
特開2005-232205号公報
As a thin film for removing such antibiotics and organic compounds, molecularly imprinted polymers (also referred to as molecularly recognized resins) are known. Japanese Patent Application Laid-Open No. 2005-232205 describes an invention relating to “molecularly imprinted cellulose and a method for producing the same”, which can be bonded to cellulose by hydrogen bonding, electrostatic bonding, hydrophobic bonding, or the like. Molecular imprint cellulose is formed by molecular imprinting a template molecule. Specifically, after removing an organic solvent from an organic solvent solution containing cellulose or a cellulose derivative and a template molecule and solidifying it, a template molecule is extracted to form a cellulose film.
JP-A-2005-232205

しかしながら、前述した特開2005-232205号公報記載の発明のセルロース膜の実用化に際しては手抄筒を用いて抄紙することにより湿紙を作成し、その後、乾燥作業を経てから、実際の利用に供するためのフィルタ(濾材)や透析膜に形成する必要がある。つまり、同公報記載のセルロース膜を、濾材や透析膜として使用するには更なる加工が必要であり、必然的に作業手間、工程数の増加、コスト高を余儀なくされ、製造効率の低下をもたらすという問題点があった。 However, when the cellulose membrane of the invention described in JP-A-2005-232205 described above is put to practical use, a wet paper is prepared by making paper using a hand-made cylinder, and after being dried, it is actually used. It is necessary to form a filter (filter material) or a dialysis membrane for use. In other words, further processing is required to use the cellulose membrane described in the publication as a filter medium or a dialysis membrane, which inevitably increases the labor, the number of steps, and the cost, resulting in a decrease in production efficiency. There was a problem.

また、特開2005-232205号公報記載の発明におけるセルロース膜は、化合物の鋳型分子を、セルロース膜に形成した鋳型よって捕捉することを目的としている。即ち、同発明のセルロース膜には、その膜厚との関係から、鋳型分子を透過させる機能は有しておらず、単に特定分子が鋳型に結合するだけなため、鋳型によって捕捉可能な分子の数に必然的に限度があり、特定の分子を選択に抽出して透過させて分別・単離させるという透析などの用途に供することは技術的に困難であった。 The cellulose membrane in the invention described in JP-A-2005-232205 is intended to capture a template molecule of a compound with a template formed on the cellulose membrane. That is, the cellulose membrane of the present invention does not have a function of allowing the template molecule to permeate from the relationship with the film thickness, and only a specific molecule binds to the template. The number is inevitably limited, and it has been technically difficult to use it for applications such as dialysis in which specific molecules are selectively extracted, permeated, separated and isolated.

本発明は、このような諸事情に対処するために提案されたものであって、分別・単離の対象となる特定の化合物分子、例えば多種類の抗生物質、有機化合物などを含む生物体液、分泌液および多種類の有機化合物を含有する水溶液から、特定の単一種の抗生物質、その他の有機化合物等の化合物分子を容易に分別・単離することができるとともに、安価で構造が簡素化され、製造工程を削減することが可能な透析膜及びその製造方法を提供することを目的とする。   The present invention has been proposed to deal with such various situations, and is a specific compound molecule to be separated and isolated, for example, a biological fluid containing various types of antibiotics, organic compounds, Specific molecules of single antibiotics and other organic compounds can be easily separated and isolated from aqueous solutions containing secretions and many types of organic compounds, and the structure is inexpensive and simplified. An object of the present invention is to provide a dialysis membrane capable of reducing the production process and a method for producing the same.

上記目的を達成するために、請求項1記載の発明は、分別・単離の対象となる特定の化合物分子を透過可能な内径を有する微細孔を多数備えた多孔質支持体膜上に、分別・単離の対象となる前記特定の化合物分子の鋳型分子を分子インプリントした分子認識樹脂膜を形成し、該分子認識樹脂膜によって該特定の化合物分子を選択的に透析させ、且つ前記多孔質支持体膜の微細孔から該化合物分子を透過させるようにしたことを特徴とする。 In order to achieve the above object, the invention described in claim 1 is characterized in that a fraction is separated on a porous support membrane having a large number of micropores having an inner diameter capable of permeating a specific compound molecule to be separated and isolated. Forming a molecular recognition resin film in which a template molecule of the specific compound molecule to be isolated is molecularly imprinted, selectively dialysis of the specific compound molecule by the molecular recognition resin film, and the porous The compound molecules are made to permeate through the micropores of the support membrane.

請求項2記載の発明は、請求項1において、前記多孔質支持体膜はニトロセルロース等、その他のセルロース誘導体であることを特徴とする。   The invention according to claim 2 is characterized in that, in claim 1, the porous support membrane is other cellulose derivatives such as nitrocellulose.

請求項3記載の発明は、分別・単離の対象となる特定の化合物分子を透過可能な内径を有する微細孔を多数備えた多孔質支持体膜上に、前記特定の化合物の分子の鋳型を有する樹脂の有機溶媒溶液を塗布する工程と、前記有機溶媒溶液を乾燥させて分子認識樹脂膜を形成する工程と、を具備したことを特徴とする。 According to a third aspect of the present invention, a template of a molecule of the specific compound is provided on a porous support membrane having a large number of micropores having an inner diameter capable of permeating a specific compound molecule to be separated and isolated. And a step of applying an organic solvent solution of the resin having the organic solvent solution and a step of drying the organic solvent solution to form a molecular recognition resin film.

上述のように、請求項1又は2に記載の発明によれば、分別・単離の対象となる特定の化合物分子を透過可能な内径を有する微細孔を多数備えた多孔質支持体膜の上に、分別・単離の対象となる特定の化合物分子の鋳型分子が分子インプリントされた分子認識樹脂膜を形成するようにしている。このため、従来、極めて薄く取り扱いが困難だった分子認識樹脂膜が補強され、形成される透析膜の機械的強度を向上させることが可能である。 As described above, according to the invention described in claim 1 or 2, on the porous support membrane having a large number of micropores having an inner diameter capable of permeating a specific compound molecule to be separated and isolated. In addition, a molecular recognition resin film in which template molecules of specific compound molecules to be separated and isolated are molecularly imprinted is formed. For this reason, it is possible to reinforce the molecular recognition resin film that has been very thin and difficult to handle in the past and improve the mechanical strength of the formed dialysis membrane.

特に、請求項3記載の発明によれば、多孔質支持体膜上に、分別・単離をしようとする特定の化合物の分子の鋳型分子を含む有機溶媒溶液を塗布して乾燥させることによって分子認識樹脂膜を形成するようにしている。これにより、極めて薄い透析膜の作成を短時間で容易、且つ安価に行うことが可能である。   In particular, according to the invention described in claim 3, an organic solvent solution containing a template molecule of a molecule of a specific compound to be fractionated / isolated is applied to the porous support membrane and dried to apply molecules. A recognition resin film is formed. As a result, it is possible to easily and inexpensively produce an extremely thin dialysis membrane in a short time.

以下、本発明に係る透析膜及びその製造方法の好適な実施形態について、添付図面を参照して説明する。図1は本発明の一つの実施形態に係る透析膜の構造を示した概略図である。図1に示されるように、透析膜1は、極めて薄い分子認識樹脂膜11と、多孔質支持体膜12とからなる積層構造を有している。分子認識樹脂膜11は、ニトロセルロース膜
(厚さ100μm、孔径 0.025μm)の多孔質支持体膜12上に形成されている。多孔質支持体膜12は、分別・単離の対象となる特定の化合物分子を透過可能な内径を有する微細孔を多数備えている。
Hereinafter, preferred embodiments of a dialysis membrane and a method for producing the same according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view showing the structure of a dialysis membrane according to one embodiment of the present invention. As shown in FIG. 1, the dialysis membrane 1 has a laminated structure composed of an extremely thin molecular recognition resin membrane 11 and a porous support membrane 12. The molecular recognition resin film 11 is formed on a porous support film 12 having a nitrocellulose film (thickness: 100 μm, pore size: 0.025 μm). The porous support membrane 12 includes a large number of micropores having an inner diameter capable of permeating specific compound molecules to be separated and isolated.

分子認識樹脂膜11は、分別単離の対象となる特定の化合物分子の鋳型分子が分子インプリントされ、鋳型分子と相補的な関係にある特定の化合物分子を認識して選択的に透過させることができるようになっており、分子認識樹脂膜11を透過した化合物分子は、さらに多孔質支持体膜12の微細孔を透過する。これによって、透析膜1による特定の化合物分子の分別・単離が可能になっている。 The molecular recognition resin film 11 imprints a template molecule of a specific compound molecule to be separated and isolated, and recognizes and selectively permeates a specific compound molecule in a complementary relationship with the template molecule. The compound molecules that have permeated through the molecular recognition resin film 11 further permeate through the micropores of the porous support film 12. As a result, the dialysis membrane 1 can separate and isolate specific compound molecules.

本実施形態の透析膜1は以下のように作成される。まず、多孔質支持体膜12上に、特定有機化合物分子認識樹脂を含むアセトニトリル飽和溶液を、ピペットを用いて数回塗布する。そして、室温で1昼夜乾燥させることによって分子認識樹脂膜11を多孔質支持体膜12上に形成することで一連の作成工程が終了する。得られた透析膜1は室温空気中で保存する。この透析膜1は、従来のように手抄筒を用いて抄紙するなどの工程が不要となり、製造工程を大幅に削減することが可能となる。 The dialysis membrane 1 of this embodiment is created as follows. First, a saturated acetonitrile solution containing a specific organic compound molecule recognition resin is applied to the porous support membrane 12 several times using a pipette. Then, the molecular recognition resin film 11 is formed on the porous support film 12 by drying at room temperature for a whole day and night, thereby completing a series of production steps. The obtained dialysis membrane 1 is stored in air at room temperature. This dialysis membrane 1 does not require a process of making paper using a hand-made cylinder as in the conventional case, and can greatly reduce the manufacturing process.

前述したように、本実施形態の透析膜1は、特定の化合物分子を透過可能な内径を有する微細孔を多数備えた多孔質支持体膜12上に、分別・単離の対象となる特定の化合物分子の鋳型分子を分子インプリントしてなる分子認識樹脂膜11を積層して形成している。これによって、取り扱いが困難だった分子認識樹脂膜11が多孔質支持体膜12によって補強された状態となるので、透析膜1の機械的強度が向上する。   As described above, the dialysis membrane 1 of the present embodiment has a specific target to be separated and isolated on the porous support membrane 12 having a large number of micropores having an inner diameter capable of permeating specific compound molecules. A molecular recognition resin film 11 formed by molecularly imprinting template molecules of compound molecules is formed by laminating. As a result, the molecular recognition resin film 11 that has been difficult to handle is reinforced by the porous support film 12, so that the mechanical strength of the dialysis membrane 1 is improved.

(実施例1)
上記において説明した本発明のペニシリンG用透析膜を用いて微量のペニシリンGとテトラサイクリンを含む生乳からペニシリンGだけを透析し、分別・単離する実験を行った。本実施例で用いる透析膜は、分別・単離する化合物として、多数のペニシリンGの鋳型分子を包有し、発明の実施の形態で詳述した製造工程によって形成されるものである。
Example 1
Using the dialysis membrane for penicillin G of the present invention described above, an experiment was conducted in which only penicillin G was dialyzed from raw milk containing a small amount of penicillin G and tetracycline, and fractionated and isolated. The dialysis membrane used in this example includes a large number of penicillin G template molecules as compounds to be separated and isolated, and is formed by the manufacturing process described in detail in the embodiment of the present invention.

図2は生乳のサンプルから透析によってペニシリンGを定量する計測装置20の概略構成を示した図である。図2(A)に示されるように、計測装置20は二つのポリスチロール製の測定試料用セル22、電気化学セル24と、その間を仕切るシリコーンゴム製の厚さ約3mmのシリコーン板23とを備えて構成されている。シリコーン板23の中央部は、寸法13mm×13mmの正方形状にくり抜かれ, その上部に、本発明の透析膜(分子認識膜11及び多孔質支持体膜12)1がシリコーン系接着剤によって固定される。透析膜29は、寸法15mm×15mmの正方形状に形成されている。 FIG. 2 is a diagram showing a schematic configuration of a measuring device 20 that quantifies penicillin G from a raw milk sample by dialysis. As shown in FIG. 2 (A), the measuring device 20 includes two measurement sample cells 22 and an electrochemical cell 24 made of polystyrene, and a silicone plate 23 made of silicone rubber and having a thickness of about 3 mm. It is prepared for. The central part of the silicone plate 23 is cut out in a square shape having a size of 13 mm × 13 mm, and the dialysis membrane (the molecular recognition membrane 11 and the porous support membrane 12) 1 of the present invention is fixed to the upper portion with a silicone adhesive. The The dialysis membrane 29 is formed in a square shape with dimensions of 15 mm × 15 mm.

電気化学セル24の内側には、抗生物質測定用の電気化学センサー電極27、白金製対極26、および銀/塩化銀の比較電極(参照電極)28が挿入され、各電極には電気化学セル24内の緩衝液の電流変化を測定する図示しないポテンシオスタットが接続されている。電気化学センサー電極27は、金板に酵素(ヒスタミンデヒドロゲナーゼ)、金微粒子、テトラチアフルバレン、ナフィオン樹脂、ゼラチンを担持したヒスタミン計測用電気化学バイオセンサーで、抗生物質存在下で、ヒスタミン酸化の活性機能の低下によるヒスタミン酸化で生じる過酸化水素の酸化電流の低下現象を利用して抗生物質を定量測定するものである。図2(B)に示されるように、透析膜29を固定したシリコーン板23は、測定試料用セル22、電気化学セル24との間に、シリコーン系接着剤によって接着されている。 Inside the electrochemical cell 24, an electrochemical sensor electrode 27 for measuring antibiotics, a platinum counter electrode 26, and a silver / silver chloride reference electrode (reference electrode) 28 are inserted, and the electrochemical cell 24 is inserted into each electrode. A potentiostat (not shown) for measuring the current change of the buffer solution is connected. The electrochemical sensor electrode 27 is an electrochemical biosensor for measuring histamine in which an enzyme (histamine dehydrogenase), gold fine particles, tetrathiafulvalene, Nafion resin, and gelatin are supported on a metal plate. The activity of histamine oxidation in the presence of antibiotics. Antibiotics are quantitatively measured by utilizing the phenomenon of reduction in the oxidation current of hydrogen peroxide caused by histamine oxidation due to the decrease in histamine. As shown in FIG. 2B, the silicone plate 23 to which the dialysis membrane 29 is fixed is adhered to the measurement sample cell 22 and the electrochemical cell 24 with a silicone-based adhesive.

(ペニシリンGの選択的透析の検証)
以下に本発明のペニシリンG用の透析膜1によって、ペニシリンG、テトラサイクリンを含む生乳から透析によってペニシリンGの分別が可能であることを確認した実験結果を図3に示す。なお、図3において、縦軸は電流(nA)、横軸は時間(min)である。
(Verification of selective dialysis of penicillin G)
FIG. 3 shows the results of an experiment confirming that penicillin G can be separated from raw milk containing penicillin G and tetracycline by dialysis using the dialysis membrane 1 for penicillin G of the present invention. In FIG. 3, the vertical axis represents current (nA) and the horizontal axis represents time (min).

まず、測定用試料セル22内に試料導入管21Aから生乳4mlを入れるとともに、電気化学セル24内に100ppbのヒスタミンを含有するリン酸緩衝液(pH7.1)で満たす。ヒスタミン酸化の電流値が一定になった後(バックグラウンド電流〜31)、測定用試料セル22中の生乳に濃度4ppb(32)となるように、テトラサイクリンを加えてヒスタミン酸化電流を測定する。つぎに濃度40ppb(33)となるように、テトラサイクリンを加えヒスタミン酸化電流を測定する。その後、濃度4ppb(34)となるように、ペニシリンGを加えヒスタミン酸化電流を測定する。 First, 4 ml of raw milk is put into the measurement sample cell 22 from the sample introduction tube 21A, and the electrochemical cell 24 is filled with a phosphate buffer solution (pH 7.1) containing 100 ppb histamine. After the histamine oxidation current value becomes constant (background current to 31), tetracycline is added to the raw milk in the measurement sample cell 22 so as to have a concentration of 4 ppb (32), and the histamine oxidation current is measured. Next, tetracycline is added to measure the histamine oxidation current so that the concentration becomes 40 ppb (33). Thereafter, penicillin G is added so that the concentration becomes 4 ppb (34), and the histamine oxidation current is measured.

図3に示されるように、生乳中のテトラサイクリンの添加は濃度40ppb(33)までヒスタミン酸化電流に変化は認められない。一方、引き続き行った4ppb(34)のペニシリンGの添加では酸化電流は著しく低下した。後述の実施例3 で示すようにテトラサイクリンはヒスタミンの酸化反応を阻害する。したがって図3の測定結果は生乳中のペニシリンGが選択的にペニシリンG用の透析膜29を通過することを示している。  As shown in FIG. 3, the addition of tetracycline in raw milk shows no change in histamine oxidation current up to a concentration of 40 ppb (33). On the other hand, the subsequent addition of 4 ppb (34) penicillin G significantly reduced the oxidation current. As shown in Example 3 described later, tetracycline inhibits the histamine oxidation reaction. Therefore, the measurement results in FIG. 3 indicate that penicillin G in raw milk selectively passes through the dialysis membrane 29 for penicillin G.

(実施例2)
本発明のペニシリンG用の透析膜1を用いて微量のペニシリンGとペニシリンGと類似分子構造を持つアンピシリンを含む生乳からペニシリンGを透析し、分別・単離する実験を行った。透析膜はペニシリンG用で、計測装置は図2と同一である。測定操作も上記のペニシリンG,テトラサイクリンの分別実験と同様である。
(Example 2)
Using the dialysis membrane 1 for penicillin G according to the present invention, an experiment was conducted in which penicillin G was dialyzed from raw milk containing penicillin G and ampicillin having a molecular structure similar to penicillin G, and separated and isolated. The dialysis membrane is for penicillin G, and the measuring device is the same as in FIG. The measurement operation is also the same as the above-described fractionation experiment of penicillin G and tetracycline.

以下に実験内容および結果の詳細を図4に示す。
測定試料用セルに生乳4mlをとり、電気化学セル24を100ppbのヒスタミンを含むリン酸緩衝溶液で満たす。ヒスタミン酸化電流値が一定になった後(バックグラウンド電流〜41)、測定試料用セル22中の生乳に濃度4ppb(42)になるようにアンピシリンを加え、ヒスタミン酸化電流を測定する。次にアンピシリンの濃度を20ppb(43)にし、ヒスタミン酸化電流を測定する。さらにこの生乳に濃度4ppb(44)になるようにペニシリンGを加え、酸化電流を測定する。
The details of the experiment and the results are shown in FIG.
4 ml of raw milk is taken in the measurement sample cell, and the electrochemical cell 24 is filled with a phosphate buffer solution containing 100 ppb histamine. After the histamine oxidation current value becomes constant (background current to 41), ampicillin is added to the raw milk in the measurement sample cell 22 to a concentration of 4 ppb (42), and the histamine oxidation current is measured. Next, the concentration of ampicillin is set to 20 ppb (43), and the histamine oxidation current is measured. Further, penicillin G is added to this raw milk so as to have a concentration of 4 ppb (44), and the oxidation current is measured.

図4に示されるように、アンピシリンは上記テトラサイクリンの場合と同様に濃度20ppbにいたるまで電気化学センサー電極27のヒスタミン酸化電流値に変化を与えなかった。
引き続き行った4ppbのペニシリンGの添加では酸化電流は著しく低下し、生乳中のペニシリンが選択的に透析され、分別・単離が可能なことが確認された。濃度4ppbのペニシリンGの添加では添加後、ヒスタミン酸化電流の低下にペニシリンGと分子構造が類似するアンピシリン分子によるペニシリンGの分子認識樹脂膜11の透析妨害とみられる50〜60分間のインダクションピリオドが観測された。
As shown in FIG. 4, ampicillin did not change the histamine oxidation current value of the electrochemical sensor electrode 27 until the concentration reached 20 ppb as in the case of tetracycline.
Subsequent addition of 4 ppb penicillin G significantly reduced the oxidation current, and it was confirmed that penicillin in raw milk was selectively dialyzed and could be separated and isolated. When penicillin G at a concentration of 4 ppb is added, an induction period of 50 to 60 minutes, which appears to be dialysis interference of the molecular recognition resin film 11 of penicillin G due to ampicillin molecules having a molecular structure similar to that of penicillin G, is observed after the addition of histamine oxidation current. It was done.

(実施例3)
本発明のテトラサイクリン用の透析膜1を用いて微量のペニシリンGとテトラサイクリンを含む生乳からテトラサイクリンだけを透析し、分別する実験を行った。計測装置は図2と同一である。測定操作も実施例1、実施例2の操作と同一である。以下に実施内容および結果の詳細を図5に示す。
(Example 3)
Using the dialysis membrane 1 for tetracycline of the present invention, an experiment was conducted in which only tetracycline was dialyzed from raw milk containing a small amount of penicillin G and tetracycline and fractionated. The measuring device is the same as in FIG. The measurement operation is also the same as that in the first and second embodiments. Details of the implementation and results are shown in FIG.

測定試料用セル22に4mlの生乳をとり、電気化学セル24を100ppbのヒスタミンを含むリン酸緩衝溶液でみたす。ヒスタミン酸化の電流値が一定になった後(バックグラウンド電流〜51)、測定試料用セル22中の生乳に濃度40ppbとなるようにペニシリンGを加え(52)、ヒスタミン酸化電流を測定する。つぎにこの生乳にテトラサイクリンを濃度0.4ppbになるようにテトラサイクリンを加え(53)、ヒスタミン酸化電流を測定し、さらに濃度4ppb(54)になるようにテトラサイクリンを追加し(54)、ヒスタミン酸化電流を測定する。 4 ml of raw milk is taken in the measurement sample cell 22, and the electrochemical cell 24 is observed with a phosphate buffer solution containing 100 ppb histamine. After the current value of histamine oxidation becomes constant (background current to 51), penicillin G is added to the raw milk in the measurement sample cell 22 to a concentration of 40 ppb (52), and the histamine oxidation current is measured. Next, tetracycline is added to this raw milk to a concentration of 0.4 ppb (53), histamine oxidation current is measured, and tetracycline is added to a concentration of 4 ppb (54) (54), and histamine oxidation current is added. Measure.

図5に示されるように、テトラサイクリン用透析膜ではペニシリンGは濃度40ppbにおいても透析されず、電気化学センサー電極27のヒスタミンの酸化電流値に変化が観測されない。 他方引き続き行った0.4ppbおよび4ppbのテトラサイクリンの添加では、その濃度に応じて酸化電流は顕著に低下し、生乳中のテトラサイクリンが選択的に透析され、ペニシリンGと分別・単離されたことが実験結果より明らかとなった。 As shown in FIG. 5, penicillin G is not dialyzed even at a concentration of 40 ppb in the tetracycline dialysis membrane, and no change is observed in the histamine oxidation current value of the electrochemical sensor electrode 27. On the other hand, with the subsequent addition of 0.4 ppb and 4 ppb tetracycline, the oxidation current significantly decreased depending on the concentration, and the tetracycline in raw milk was selectively dialyzed and separated and isolated from penicillin G. It became clear from the experimental results.

以上説明した本発明の透析膜は下記の効果を有する。
1.透析膜として、多数の特定抗生物質または有機化合物分子の鋳型分子を包有する極めて薄い分子認識樹脂膜を用いるため、該抗生物質または該有機化合物分子だけが選択的に透析され、容易に他の抗生物質または有機化合物から分別・単離できる。
また、分子認識樹脂膜は極めて薄い超薄膜に形成されているので、分子を分別・単離する際に、分子に対する透過機能を長時間に亘って維持することができ、透析膜として使い易く、耐久性が大幅に向上している。
2.透析に用いられる装置は図2に示すように、ヒスタミン計測用の電気化学センサーと該センサーの電位設定と電量測定するためのポテンシオスタットが必要なだけであり、安価に製作でき、操作も容易である。
3.分子認識樹脂膜の製作に関してもそれほど困難でなく、鋳型分子として、分子認識膜樹脂膜は膜自体が極めて薄いために、材料となる有機溶媒並びに鋳型分子が少量で済み、分子認識樹脂膜を安価に製作できる。
The dialysis membrane of the present invention described above has the following effects.
1. As the dialysis membrane, an extremely thin molecular recognition resin membrane containing a large number of specific antibiotic or organic compound molecule template molecules is used, so that only the antibiotic or the organic compound molecule is selectively dialyzed, and other antibiotics can be easily used. It can be separated and isolated from substances or organic compounds.
In addition, since the molecular recognition resin film is formed in an extremely thin ultra-thin film, the function of permeating the molecule can be maintained for a long time when separating and isolating the molecule, and it is easy to use as a dialysis membrane. Durability is greatly improved.
2. As shown in Fig. 2, the device used for dialysis only requires an electrochemical sensor for histamine measurement and a potentiostat for potential setting and coulometric measurement of the sensor, which can be manufactured at low cost and is easy to operate. It is.
3. It is not so difficult to manufacture the molecular recognition resin film. As the template molecule, the molecular recognition film resin film itself is extremely thin, so that only a small amount of organic solvent and template molecules are required, making the molecular recognition resin film inexpensive. Can be produced.

なお、本実施形態では、鋳型分子を溶かす分子認識樹脂膜11の素となる有機溶媒として、アセトニトリル飽和溶液を使用しているが、鋳型分子の種類によっては、アセトン、エチルメチルケトン等のケトン類一般、アルコール類、エーテル類、ジメチルスルホアミド、テトラヒドロフラン、その他の有機溶媒を適宜用いることができる。   In the present embodiment, an acetonitrile saturated solution is used as the organic solvent that forms the molecular recognition resin film 11 that dissolves the template molecule. However, depending on the type of the template molecule, ketones such as acetone and ethyl methyl ketone are used. In general, alcohols, ethers, dimethylsulfamide, tetrahydrofuran, and other organic solvents can be used as appropriate.

また、多孔質支持体膜12として、ニトロセルロース膜を使用しているが、これに限らず、分別・単離の対象となる特定の化合物分子を透過可能な内径を有する微細孔を多数備えている多孔質の支持体膜であれば、アセチルセルロース、酢酸セルロース、硝酸セルロース、硫酸セルロース、セルロースエーテル類、セルロースエステルなどを用いることも可能である。   Moreover, although the nitrocellulose membrane is used as the porous support membrane 12, it is not limited to this, and it has a large number of micropores having an inner diameter capable of permeating specific compound molecules to be separated and isolated. As long as the porous support film is used, acetyl cellulose, cellulose acetate, cellulose nitrate, cellulose sulfate, cellulose ethers, cellulose esters, and the like can be used.

以上説明したように、本発明によれば、分別・単離の対象となる例えば多種類の抗生物質、有機化合物などを含む生物体液、分泌液および多種類の有機化合物を含有する水溶液から、特定の単一種の抗生物質、その他の有機化合物等の化合物分子を容易に分別・単離することができる。 As described above, according to the present invention, identification is made from biological fluids containing various types of antibiotics, organic compounds, etc., secretion fluids, and aqueous solutions containing various types of organic compounds that are subject to separation and isolation. It is possible to easily separate and isolate compound molecules such as a single kind of antibiotics and other organic compounds.

本発明の一つの実施形態に係る透析膜の構造を示した概略図である。It is the schematic which showed the structure of the dialysis membrane which concerns on one embodiment of this invention. 本発明の一つの実施形態に係る透析膜を使用して生乳のサンプルから透析によってペニシリンGを定量する計測装置の概略構成を示した図である。It is the figure which showed schematic structure of the measuring apparatus which quantifies penicillin G by dialysis from the sample of raw milk using the dialysis membrane which concerns on one Embodiment of this invention. 本発明のペニシリンG用の透析膜によってペニシリンG、テトラサイクリンを含む生乳から、透析によってペニシリンGの分別が可能であることを確認した実験結果を示すグラフである。It is a graph which shows the experimental result which confirmed that fractionation of penicillin G was possible by dialysis from the raw milk containing penicillin G and tetracycline by the dialysis membrane for penicillin G of the present invention. ペニシリンG用の透析膜によって微量のペニシリンGとペニシリンGと類似分子構造を持つアンピシリンを含む生乳からペニシリンGを透析し、分別・単離した場合の実験結果を示すグラフである。It is a graph which shows the experimental result at the time of dialyzing and isolating penicillin G from the raw milk containing ampicillin which has a molecular structure similar to a small amount of penicillin G and penicillin G with the dialysis membrane for penicillin G. テトラサイクリン用の透析膜を用いて微量のペニシリンGとテトラサイクリンを含む生乳からテトラサイクリンだけを透析し、分別する実験を行った場合の実験結果を示すグラフである。It is a graph which shows the experimental result at the time of performing the experiment which dialyzes only tetracycline from raw milk containing a trace amount of penicillin G and tetracycline using a dialysis membrane for tetracycline, and performs a fractionation.

符号の説明Explanation of symbols

1 透過膜(分子認識膜/ニトロセルロース透過膜)
11 分子認識膜
12 多孔質支持体膜(ニトロセルロース透過膜)
21A 試料導入管
21B 試料排出管
22 測定試料用セル
23 シリコーン板
24 電気化学セル
25 電解液導入・排出管
26 白金製対極
27 電気化学センサー電極
28 参照電極


1 Permeation membrane (Molecular recognition membrane / Nitrocellulose permeation membrane)
11 Molecular recognition membrane 12 Porous support membrane (nitrocellulose permeable membrane)
21A Sample introduction pipe 21B Sample discharge pipe 22 Measurement sample cell 23 Silicone plate 24 Electrochemical cell 25 Electrolyte introduction / discharge pipe 26 Platinum counter electrode 27 Electrochemical sensor electrode 28 Reference electrode


Claims (3)

分別・単離の対象となる特定の化合物分子を透過可能な内径を有する微細孔を多数備えた多孔質支持体膜上に、分別・単離の対象となる前記特定の化合物分子の鋳型分子を分子インプリントした分子認識樹脂膜を形成し、該分子認識樹脂膜によって該特定の化合物分子を選択的に透析させ、且つ前記多孔質支持体膜の微細孔から該化合物分子を透過させるようにしたことを特徴とする透析膜。   The template molecule of the specific compound molecule to be separated / isolated is placed on a porous support membrane having a large number of micropores having an inner diameter that can permeate the specific compound molecule to be separated / isolated. A molecularly imprinted molecular recognition resin film is formed, the specific compound molecules are selectively dialyzed by the molecular recognition resin film, and the compound molecules are permeated from the micropores of the porous support film. A dialysis membrane characterized by that. 前記多孔質支持体膜はニトロセルロース等、その他のセルロース誘導体であることを特徴とする請求項1に記載の透析膜。   The dialysis membrane according to claim 1, wherein the porous support membrane is other cellulose derivatives such as nitrocellulose. 分別・単離の対象となる特定の化合物分子を透過可能な内径を有する微細孔を多数備えた多孔質支持体膜上に、前記特定の化合物の分子の鋳型を有する樹脂の有機溶媒溶液を塗布する工程と、
前記有機溶媒溶液を乾燥させて分子認識樹脂膜を形成する工程と、を具備したことを特徴とする透析膜の製造方法。
An organic solvent solution of a resin having a template of a molecule of the specific compound is applied onto a porous support membrane having a large number of micropores having an inner diameter capable of permeating a specific compound molecule to be separated and isolated. And a process of
And a step of drying the organic solvent solution to form a molecular recognition resin film.
JP2008089117A 2008-03-31 2008-03-31 Dialysis membrane Pending JP2011120607A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008089117A JP2011120607A (en) 2008-03-31 2008-03-31 Dialysis membrane
PCT/JP2009/001318 WO2009122679A1 (en) 2008-03-31 2009-03-25 Dialysis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089117A JP2011120607A (en) 2008-03-31 2008-03-31 Dialysis membrane

Publications (1)

Publication Number Publication Date
JP2011120607A true JP2011120607A (en) 2011-06-23

Family

ID=41135087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089117A Pending JP2011120607A (en) 2008-03-31 2008-03-31 Dialysis membrane

Country Status (2)

Country Link
JP (1) JP2011120607A (en)
WO (1) WO2009122679A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004862A1 (en) * 2010-07-07 2012-01-12 株式会社センシングネットワーク Selectively permeable membrane using molecular recognition macromolecules
CN104592446B (en) * 2015-01-15 2016-11-23 宁波大学 The preparation method and application of the nanofiber molecularly imprinted polymer of tetracycline antibiotics

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890469B2 (en) * 1989-05-25 1999-05-17 東レ株式会社 Method for producing porous separation membrane
GB0216333D0 (en) * 2002-07-13 2002-08-21 Univ Cranfield Substance - selective polymer membranes
JP3921530B2 (en) * 2002-10-30 2007-05-30 独立行政法人産業技術総合研究所 DNA molecule identification material
JP4541715B2 (en) * 2004-01-23 2010-09-08 北越紀州製紙株式会社 Sheet with molecular adsorption function
JP2005264013A (en) * 2004-03-19 2005-09-29 Japan Science & Technology Agency Polymer composition having a function of molecular recognition/capturing and manufacturing process of polymer molding using the composition
DE112005001901T5 (en) * 2004-08-04 2007-07-12 Aspira Biosystems Inc., Incline Village Capture and remove biomolecules from body fluids using partial molecular imprints

Also Published As

Publication number Publication date
WO2009122679A1 (en) 2009-10-08
WO2009122679A8 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
Stroeve et al. Biotechnical and other applications of nanoporous membranes
Xie et al. Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: Role of initial permeate flux
Fan et al. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells
Van de Merbel et al. Membrane-based sample preparation for chromatography
Gaborski et al. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes
Nghiem et al. NF/RO filtration of the hydrophobic ionogenic compound triclosan: transport mechanisms and the influence of membrane fouling
Sae-Khow et al. Pervaporation in chemical analysis
US9725751B2 (en) Development of a detection microsystem
JP2016027345A (en) Sugar chain sample preparation method
Frenzel et al. Membrane-based sample preparation for ion chromatography—techniques, instrumental configurations and applications
CN104549593B (en) It is a kind of have ultrafiltration and solid phase extraction dual purification effect functionalized pipette tip and its application
JP2011120607A (en) Dialysis membrane
JP3499767B2 (en) Microelectrode for histamine measurement and sensor for histamine measurement
US20180348164A1 (en) Forward Osmosis Coupled Electrochemical Sensor
de Castro et al. Is dialysis alive as a membrane-based separation technique?
Nováková Advances in sample preparation for biological fluids
AU2015232998A1 (en) Device and method for separating a fluid mixture such as blood
US5679231A (en) Gel bed dialyzer
CN102495118A (en) Enzyme electrode for all-solid ethanol gas biosensor and method for manufacturing enzyme electrode
JPS61145447A (en) Immobilized enzyme membrane
EP1785431B1 (en) Fractionation apparatus
JPS60185153A (en) Immobilized enzyme membrane
US10509006B2 (en) Devices and methods for measuring the properties of macromolecules
WO2012004862A1 (en) Selectively permeable membrane using molecular recognition macromolecules
JP4892824B2 (en) Method for producing hollow fiber membrane separation membrane and method for using hollow fiber membrane separation membrane produced by the production method