JP2011117086A - High-strength hardened body having excellent corrosion resistance and fatigue resistance - Google Patents

High-strength hardened body having excellent corrosion resistance and fatigue resistance Download PDF

Info

Publication number
JP2011117086A
JP2011117086A JP2011060986A JP2011060986A JP2011117086A JP 2011117086 A JP2011117086 A JP 2011117086A JP 2011060986 A JP2011060986 A JP 2011060986A JP 2011060986 A JP2011060986 A JP 2011060986A JP 2011117086 A JP2011117086 A JP 2011117086A
Authority
JP
Japan
Prior art keywords
corrosion resistance
strength
mass
heating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011060986A
Other languages
Japanese (ja)
Other versions
JP5414722B2 (en
Inventor
Shinichi Suzuki
眞一 鈴木
Toshimasa Tomokiyo
寿雅 友清
Hideji Soma
秀次 相馬
Katsuji Nakajima
勝司 中嶋
Masashi Ozawa
正史 小澤
Takayuki Suzuki
貴之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Nippon Steel Corp
Original Assignee
Aisin Takaoka Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd, Nippon Steel Corp filed Critical Aisin Takaoka Co Ltd
Priority to JP2011060986A priority Critical patent/JP5414722B2/en
Publication of JP2011117086A publication Critical patent/JP2011117086A/en
Application granted granted Critical
Publication of JP5414722B2 publication Critical patent/JP5414722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength hardened body having excellent corrosion resistance and fatigue resistance in which the corrosion resistance of a hardened product is equivalent to or higher than that of a cold-formed product. <P>SOLUTION: A galvanized steel is heated for hot stamp, and formed and hardened to form a high-strength hardened formed body. A galvanized layer consisting mainly of Zn, containing ≥0.15 mass% single Al having the galvannealing delay function and the easily oxidable function, and containing ≥9mass% and ≤30 mass% Fe measured by the following measuring method is formed by ≥30g/m<SP>2</SP>on a steel surface of the formed body after the hardening. In the method for measuring the concentration of Fe in the galvanized layer, the electrolysis is performed to a Γ layer at the point of large change to ≤-800 mVvs.SCE by the constant current electrolysis with a saturated calomel electrode being a reference electrode at 4mA/cm2 in aqueous solution of NH<SB>4</SB>Cl:150g/l, and the amount and the composition ratio of Fe and Zn are measured by ICP of the electrolyte. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐食性、耐疲労性に優れ高強度化を目的とした焼き入れ加工を施してなる成形体に関するものである。   The present invention relates to a molded article that is excellent in corrosion resistance and fatigue resistance and is subjected to quenching for the purpose of increasing strength.

近年、自動車の軽量化、安全性向上を目的として自動車部品およびそれに使用される素材の高強度化が進められており、その代表的な素材である鋼板も高強度鋼板の使用比率が高まってきている。しかしながら、高強度鋼板は一般に、高強度で硬いが故に、プレス成形性での、成形自由度が小さく、またプレス製品の形状凍結性が悪く成形品の寸法精度が不良、プレス金型の寿命が短いなどの課題がある。これらの課題に対して素材からの改善も進められているが、近年より一層の高強度部品を形状精度良く得ることを目的に、鋼板を800℃以上に加熱して柔らかくし、プレス成形と同時に急速に冷却し、焼き入れして高強度の部品とする、熱間加工、ホットプレス技術が普及してきており、また冷間で加工後同様に焼入れして高強度の部品とする冷間加工−焼き入れ技術も工業技術として使用されるようになってきた。   In recent years, the strength of automobile parts and materials used for them has been increased for the purpose of reducing the weight and safety of automobiles, and the use ratio of high-strength steel sheets is increasing for steel plates that are representative materials. Yes. However, high-strength steel sheets are generally high-strength and hard, so the press formability is low, the degree of freedom of forming is low, the shape freezeability of the pressed product is poor, the dimensional accuracy of the molded product is poor, and the press mold life is shortened. There are issues such as shortness. Although improvements from the raw materials have been promoted for these problems, the steel plate is heated to 800 ° C. or more to be softened in order to obtain higher strength parts with higher shape accuracy in recent years. Hot working and hot pressing technology that rapidly cools and quenches to make high strength parts have become widespread, and cold working to make high strength parts after quenching in the same way- Quenching technology has also been used as an industrial technology.

一方、自動車に代表される産業機械は、使用環境における耐食性が十分必要な為、現在、低コストで耐食性に優れる亜鉛系めっき鋼板を冷間で成形した部品が使用されており、表面処理鋼材を加熱焼入れする多くの発明が公知である。   On the other hand, because industrial machinery represented by automobiles requires sufficient corrosion resistance in the usage environment, parts that are cold-formed zinc-coated steel sheets that are low in cost and excellent in corrosion resistance are currently used. Many inventions for heat quenching are known.

例えば特許文献1には、加熱、冷却により亜鉛または亜鉛合金を5μm〜30μmにより腐食、脱炭の保護と潤滑機能を確保した高強度の成形部品の製造方法が、特許文献2には加熱時の亜鉛の蒸発を防止するバリア層を備えた熱間プレス用鋼板が、特許文献3には亜鉛系めっき鋼板の熱間プレス方法が、特許文献4には鉄−亜鉛固溶層が存在する熱間プレス成形品が開示されている。しかしながら、これらの方法は、何れもめっきの無い鉄を焼入れした成型品よりは耐食性に優れるものの、通常の冷間加工にて成型されためっき鋼板の成型品の耐食性と比べると不十分である。これら問題に対し、通常のめっき鋼板並みに耐食性が要求される用途には、アルミめっき鋼板が使用されているが、コストが高いだけでなく、やはり焼入れ後の耐食性は冷間成型材より低下する。一方、これら亜鉛系めっき材は粒界にわれを生じやすく、割れを回避するために、事前に冷間で加工した後に焼き入れるための方法があるが、生産性が悪いなどの問題がある。これら問題に対し溶接性、コストでより優位な亜鉛系めっき材で生産性良く、焼き入れ高強度鋼材を生産する技術が強く望まれている。   For example, Patent Document 1 discloses a method for producing a high-strength molded part that ensures corrosion and decarburization protection and a lubrication function by heating or cooling zinc or a zinc alloy by 5 to 30 μm. A steel sheet for hot pressing provided with a barrier layer for preventing evaporation of zinc is disclosed in Patent Document 3 as a hot pressing method for a zinc-based plated steel sheet, and Patent Document 4 as a hot material in which an iron-zinc solid solution layer exists. A press-formed product is disclosed. However, although these methods are superior in corrosion resistance to molded products obtained by quenching iron without plating, they are insufficient compared to the corrosion resistance of molded products of plated steel sheets formed by ordinary cold working. To solve these problems, aluminum plated steel sheets are used for applications where corrosion resistance is required in the same way as normal plated steel sheets. However, not only is the cost high, but also the corrosion resistance after quenching is lower than that of cold-formed materials. . On the other hand, these zinc-based plated materials tend to crack at the grain boundaries, and there is a method of quenching after cold working in advance in order to avoid cracking, but there are problems such as poor productivity. To solve these problems, a technique for producing a quenched high-strength steel material with high productivity with a zinc-based plated material that is more advantageous in weldability and cost is strongly desired.

特開2001−353548号公報JP 2001-353548 A 特開2003−73774号公報JP 2003-73774 A 特開2003−126920号公報JP 2003-126920 A 特開2003−126921号公報JP 2003-126921 A

本発明は上記の問題に鑑み、コスト的に優位な亜鉛系めっき鋼材にて、生産性に優れた方法で、焼き入れ後の成形品の耐食性を冷間成型品と同等以上とした、耐食性と粒界割れを回避して耐疲労性に優れた高強度焼き入れ成形体を提供することを目的とするものである。   In view of the above problems, the present invention is a cost-effective zinc-based plated steel material, and is a method with excellent productivity, and the corrosion resistance of a molded product after quenching is equal to or higher than that of a cold molded product, An object of the present invention is to provide a high-strength quenched molded body that is excellent in fatigue resistance by avoiding intergranular cracking.

本発明者は、まず焼き入れるのに必要な800℃以上の熱間加工後で、亜鉛系めっき鋼材の耐食性が通常の亜鉛めっき鋼材、例えば合金化溶融亜鉛めっき鋼板の耐食性より劣る原因について鋭意検討を行った。この結果、耐食性が劣化する原因はZnが揮発しめっき量が減じる為のみならず、めっき層がFe中に固溶してFeを主体としたFe−Zn合金層となる為であるとの結論に達した。つまり、通常の亜鉛めっき鋼材は、犠牲防食効果以上に、腐食時に酸化されるZnが緻密な保護膜となる効果により耐食性が発揮される。しかしながら、800℃以上の熱間加工された亜鉛系めっき鋼材は、Fe−Zn合金層が、通常の亜鉛系めっき鋼材よりもZn分として鋼材表面に量的に十二分にあっても耐食性は発揮されない。これは、通常焼き入れによって生成したFe−Zn合金層はFeが主体となっている為、腐食時に酸化されたFeの体積膨張により、Znの酸化膜が緻密となりえないためである。故に、耐食性を発揮させるには、Znを主体とした質の良いZn−Fe合金層が量的にも十分にあることが重要である。また、焼き入れ強度と耐食性とを両立させるためには、加熱温度や急冷速度などの条件が重要であり、ホットスタンプ時の加工による母材の粒界割れを抑制するために、ホットスタンプ工程に入る直前において所定条件で急冷する必要があることが判明した。   The present inventor first studied earnestly about the cause that the corrosion resistance of the galvanized steel material is inferior to that of a normal galvanized steel material, for example, an alloyed hot-dip galvanized steel sheet, after hot working at 800 ° C. or higher necessary for quenching. Went. As a result, it is concluded that the corrosion resistance is deteriorated not only because Zn volatilizes and the amount of plating decreases, but also because the plating layer becomes a Fe—Zn alloy layer mainly composed of Fe by solid solution in Fe. Reached. That is, the normal galvanized steel material exhibits corrosion resistance more than the sacrificial anticorrosive effect due to the effect that Zn oxidized during corrosion becomes a dense protective film. However, the hot-worked zinc-based plated steel material of 800 ° C. or higher has corrosion resistance even if the Fe—Zn alloy layer is more than the amount of Zn on the steel material surface as the Zn content than normal zinc-based plated steel material. It is not demonstrated. This is because the Fe—Zn alloy layer generated by normal quenching is mainly composed of Fe, so that the Zn oxide film cannot become dense due to the volume expansion of Fe oxidized during corrosion. Therefore, in order to exhibit the corrosion resistance, it is important that the Zn-Fe alloy layer of good quality mainly composed of Zn is sufficient in quantity. Also, in order to achieve both quenching strength and corrosion resistance, conditions such as heating temperature and quenching speed are important, and in order to suppress intergranular cracking of the base metal due to processing during hot stamping, It turned out that it was necessary to cool rapidly under predetermined conditions immediately before entering.

本発明は上記の知見に基づいてなされたものであって、本発明の耐食性、耐疲労性に優れた高強度焼き入れ成形体は、亜鉛めっき系鋼材をホットスタンプのため加熱し、成形して焼き入れした高強度焼き入れ成形体であって、焼き入れ後の成形体鋼材表面に、Znを主成分とし、合金化遅延機能および易酸化性機能を有するAlを単独で0.15質量%以上含有し、Feが下記測定方法で9質量%以上、30質量%以下である亜鉛めっき層が、30g/m以上形成されていることを特徴とするものである。なお本発明における亜鉛めっき層中のFe濃度測定方法は、「NHCl:150g/lの水溶液中で4mA/cmで飽和カロメル電極を参照電極として定電流電解により−800mVvs.SCE以下に大きく変化する点でのГ層までを電解し電解液をICPによりFe、Znの量、組成比を測定する方法」である。 The present invention has been made on the basis of the above knowledge, and the high-strength quenched molded body having excellent corrosion resistance and fatigue resistance according to the present invention is formed by heating and forming a galvanized steel material for hot stamping. Quenched high-strength quenched molded body, on the surface of the molded steel material after quenching, Zn is the main component, and Al having an alloying delay function and an easily oxidizable function alone is 0.15% by mass or more A galvanized layer containing Fe in an amount of 9% by mass to 30% by mass in the following measurement method is formed in an amount of 30 g / m 2 or more. The method for measuring the Fe concentration in the galvanized layer in the present invention is as follows: “NH 4 Cl: in an aqueous solution of 150 g / l, 4 mA / cm 2 and a saturated calomel electrode as a reference electrode, and a large current of −800 mV vs. “Method of electrolyzing up to Γ layer at changing point and measuring amount and composition ratio of Fe and Zn by ICP of electrolyte”.

本発明によれば、亜鉛めっき層のZnの地鉄への拡散を飛躍的に抑制して質のよいZn-Fe合金層を量的にも十分確保でき、かつ、めっき表面で緻密な酸化皮膜を形成しめっき量を確保するため、コスト的に優位な亜鉛めっき鋼材を用いて、冷間成型品と同等以上の耐食性を発揮する高強度焼き入れ成形体を製造することが可能となる。また温度条件、急冷条件を特定したことにより、焼き入れ性が良好でしかも加工時の母材に粒界割れのない高強度焼き入れ成形体を得ることができる。   According to the present invention, a Zn-Fe alloy layer having a high quality can be sufficiently secured in a quantitative manner by dramatically suppressing the diffusion of Zn in the galvanized layer to the ground iron, and a dense oxide film on the plating surface. Therefore, it is possible to manufacture a high-strength quenched molded body that exhibits corrosion resistance equivalent to or better than that of a cold-molded product using a galvanized steel material that is superior in cost. Further, by specifying the temperature condition and the rapid cooling condition, it is possible to obtain a high-strength quenched molded body having good quenchability and free from grain boundary cracks in the base material during processing.

製造設備のブロック図である。It is a block diagram of manufacturing equipment. 加工試験片の断面形状図である。It is a cross-sectional shape figure of a processing test piece.

以下、本発明について詳細に説明する。
まず、本発明の耐食性に優れた高強度焼き入れ成形体は、合金化遅延機能および易酸化機能を有するAl,Siを各々単独もしくは複合して0.15質量%以上含有する亜鉛めっき層を備えた亜鉛めっき鋼材を母材とし、これを酸素0.1体積%以上の酸化雰囲気下で800℃以上950℃以下に加熱後、730℃以下500℃以上に60sec以内で冷却した後、加工急冷することで得られる。鋼材としては、通常の焼き入れ鋼材なら何れでも使用可能であるが、質量%にて、C:0.15%以上、Mn:0.5%以上、Cr:0.1%以上、B:0.0005%以上を含有するものであることが好ましい。
Hereinafter, the present invention will be described in detail.
First, the high-strength quench-molded article excellent in corrosion resistance according to the present invention includes a galvanized layer containing 0.15% by mass or more of Al and Si each having an alloying delay function and an easily oxidizable function, either alone or in combination. A galvanized steel material is used as a base material, heated to 800 ° C. or higher and 950 ° C. or lower in an oxidizing atmosphere containing 0.1% by volume or more of oxygen, cooled to 730 ° C. or lower and 500 ° C. or higher within 60 seconds, and then rapidly quenched. Can be obtained. As a steel material, any ordinary hardened steel material can be used, but in mass%, C: 0.15% or more, Mn: 0.5% or more, Cr: 0.1% or more, B: 0 It is preferable that it contains 0.005% or more.

Znのめっき量としては目的とする耐食目標にもよるが、40g/m以上あれば良いが、加熱炉のハンドリングの時間、温度の変動を考慮し、好ましくは60g/m以上、炉内での鋼材の置き方による亜鉛の垂れを考慮すれば300g/m以下が好ましく、特に垂直に置いても垂れの発生が殆ど認められない180g/m以下が好ましい。亜鉛系めっき鋼材は、溶融亜鉛めっき法で作成されたものが良く、事前に合金化された合金化溶融亜鉛めっき材は合金化遅延元素の余分な消失を招き効果が低減し、電気亜鉛めっき法では合金化遅延元素の添加にプレ処理がいるなどコストがかかるので好ましくない。 Although the amount of Zn plating depends on the target corrosion resistance target, it should be 40 g / m 2 or more, but considering the handling time and temperature fluctuation of the heating furnace, preferably 60 g / m 2 or more, In consideration of the sag of zinc due to the way the steel material is placed, the amount is preferably 300 g / m 2 or less, and particularly preferably 180 g / m 2 or less where the occurrence of sag is hardly observed even when placed vertically. Zinc-based galvanized steel materials are preferably prepared by hot dip galvanizing, and pre-alloyed galvanized steel materials cause excessive disappearance of alloying delay elements, reducing the effect, and electrogalvanizing In this case, it is not preferable because the pretreatment is required to add the alloying retarding element.

通常、800℃以上の熱間加工ではZnは十分な蒸気圧を有する為、加熱炉内に揮散する。易酸化性元素としてAl、SiをZnめっき層中に0.15質量%以上含有させ、かつ炉内を0.1体積%以上酸素の存在する酸化雰囲気下としてやることで、めっき表面で易酸化性元素が、熱による膨張変化に対しても継続的に酸化され緻密な酸化皮膜を形成する為、800℃以上950℃以下の加熱温度範囲でZnの蒸発の抑制が可能となる。逆に、これら易酸化性元素が0.15質量%未満あるいは炉内雰囲気が酸素0.1体積%未満の中性〜還元雰囲気下では亜鉛表面に易酸化性元素の緻密な皮膜を十分形成できずZnの揮散がなされ防錆のためのZn量が減じられる。また、加熱温度が800℃未満では、Znの揮発防止には有利であるが、本来の目的である高強度成形体を得る為の焼き入れがなされず、950℃超では易酸化性元素による酸化膜をもってしてもZnの沸騰による揮散を抑えることが出来ない。以上の手段により加熱によるZnの揮発は大きく抑制できる。   Usually, in hot working at 800 ° C. or higher, Zn has a sufficient vapor pressure, and therefore volatilizes in the heating furnace. Easily oxidize on the plating surface by containing 0.15% by mass or more of Al or Si as an easily oxidizable element in the Zn plating layer and making the inside of the furnace in an oxidizing atmosphere containing 0.1% by volume or more of oxygen. Since the oxidative element is continuously oxidized against the expansion change due to heat to form a dense oxide film, the evaporation of Zn can be suppressed in the heating temperature range of 800 ° C. or higher and 950 ° C. or lower. Conversely, a dense film of easily oxidizable elements can be sufficiently formed on the zinc surface in a neutral to reducing atmosphere where these oxidizable elements are less than 0.15 mass% or the furnace atmosphere is less than 0.1 volume% oxygen. Zinc is volatilized and the amount of Zn for rust prevention is reduced. Further, if the heating temperature is less than 800 ° C., it is advantageous for preventing the volatilization of Zn. However, if the heating temperature is higher than 950 ° C., oxidation by an easily oxidizable element is not performed. Even with a film, volatilization due to boiling of Zn cannot be suppressed. By the above means, volatilization of Zn by heating can be greatly suppressed.

さらに、耐食性を通常のめっき同等以上にするには、Znを主体としたFe:30質量%以下からなるZn−Fe合金層を30g/m以上にしなければならない。30g/m未満では、焼き入れ時の加熱により生成されるめっき層がFeを主体とした合金層となり腐食時にFe錆を生じ体積膨張するので十分な耐食性が得られない。さらに、合金化遅延元素として易酸化性元素を兼ねるAl,Siを各々単独もしくは複合して0.15質量%以上含有することが重要である。これらの元素が、加熱前の亜鉛めっき層中に0.15質量%以上あれば、800℃以上の高温の加熱でも飛躍的にZnの地鉄への拡散を抑制できるので、Fe:30質量%以下からなるZn−Fe合金層を30g/m以上にすることができる。逆に、0.15質量%未満では合金化遅延効果が失われるためZnの地鉄への拡散が速すぎて、鋼材の温度が800℃に到達するまでにZnを主体としたFe:30質量%以下からなるZn−Fe合金層が、殆ど消失し耐食性が発揮されない。なお、亜鉛めっき層中のFe濃度測定方法は、NHCl:150g/lの水溶液中で4mA/cmで飽和カロメル電極を参照電極として定電流電解により−800mVvs.SCE以下に大きく変化する点でのГ層までを電解し電解液をICPによりFe、Znの量、組成比を測定する方法である。 Furthermore, in order to make the corrosion resistance equal to or higher than that of normal plating, the Zn—Fe alloy layer composed mainly of Zn: Fe: 30% by mass or less must be 30 g / m 2 or more. If it is less than 30 g / m 2 , the plated layer produced by heating during quenching becomes an alloy layer mainly composed of Fe, and Fe rust is generated during corrosion and volume expansion occurs, so that sufficient corrosion resistance cannot be obtained. Furthermore, it is important to contain 0.15% by mass or more of Al and Si, which also serve as easily oxidizable elements, as alloying retarding elements, each alone or in combination. If these elements are 0.15% by mass or more in the galvanized layer before heating, the diffusion of Zn into the ground iron can be remarkably suppressed even by heating at a high temperature of 800 ° C. or higher, so that Fe: 30% by mass The Zn—Fe alloy layer comprising the following can be made 30 g / m 2 or more. On the contrary, if the content is less than 0.15% by mass, the effect of retarding alloying is lost, so that diffusion of Zn into the ground iron is too fast, and Fe: 30 masses mainly composed of Zn until the temperature of the steel material reaches 800 ° C. % Of Zn—Fe alloy layer is almost disappeared and corrosion resistance is not exhibited. The method for measuring the Fe concentration in the galvanized layer was -800 mV vs. by constant current electrolysis using a saturated calomel electrode as a reference electrode at 4 mA / cm 2 in an aqueous solution of NH 4 Cl: 150 g / l. In this method, electrolysis is performed up to the Γ layer at a point that greatly changes to SCE or less, and the amount and composition ratio of Fe and Zn are measured by ICP of the electrolytic solution.

本発明では上記のような亜鉛めっき鋼材を、800℃以上950℃以下に加熱する。加熱時間は、加熱する鋼材(鋼板)の厚み(板厚)によるが、Zn70%以上のめっき層を30g/m以上残すようにする。鋼材全体が焼き入れに必要な温度に到達すればよい。また、加熱時間が、鋼材の厚みや炉長、ハンドリング装置により長くなる場合は、単位面積あたりのめっき層中の合金化遅延元素量を増加(めっき層中のこれら元素の濃度増やめっき量の増)させることが好ましい。加熱方法は、誘導加熱のような内部加熱でも、赤外加熱、ガス加熱、電気炉のような外部加熱でも、加熱時間短縮の為これらの併用の何れでも良い。 In the present invention, the above galvanized steel is heated to 800 ° C. or higher and 950 ° C. or lower. The heating time depends on the thickness (plate thickness) of the steel material (steel plate) to be heated, but a plating layer of Zn 70% or more is left at 30 g / m 2 or more. It is only necessary that the entire steel material reaches a temperature necessary for quenching. Also, when the heating time becomes longer due to the thickness of steel, furnace length, or handling equipment, increase the amount of alloying retarding elements in the plating layer per unit area (increasing the concentration of these elements in the plating layer or the amount of plating) Increase). The heating method may be internal heating such as induction heating, infrared heating, gas heating, external heating such as an electric furnace, or any combination thereof for shortening the heating time.

加熱温度は前記したように800℃以上950℃以下とする。800℃未満では焼き入れに必要な母材のAc3点を超えないので焼き入れ不足となり、十分な強度が得られない。また950℃を超えると亜鉛めっき層中の亜鉛が沸騰揮散するので好ましくない。800℃以上950℃以下の温度域では亜鉛の沸騰をAl、SiOの酸化膜で防止することができる。 As described above, the heating temperature is set to 800 ° C. or more and 950 ° C. or less. If it is less than 800 ° C., it does not exceed the Ac 3 point of the base material necessary for quenching, so that quenching is insufficient and sufficient strength cannot be obtained. On the other hand, when the temperature exceeds 950 ° C., the zinc in the galvanized layer evaporates and is not preferable. In the temperature range of 800 ° C. or higher and 950 ° C. or lower, boiling of zinc can be prevented by an oxide film of Al 2 O 3 or SiO 2 .

本発明では、亜鉛めっき層を十分固化してホットスタンプ加工時における母材の粒界割れを抑制するために、加熱設備である炉から取り出した後に、730℃以下500℃以上に60sec以内で冷却する。この亀裂は母材の引っ張り側において発生するもので、本発明者の検討によれば母材の旧オーステナイト粒界に溶融亜鉛が浸入することが原因である。そこで図1に示すように、加熱設備1とホットスタンプ設備3との間に、加熱された亜鉛めっき鋼板を急冷する設備2を設け、730℃以下にまで60sec以内で急冷する。730℃以下に冷却すれば溶融亜鉛の浸入はなくなり、ホットスタンプ加工時における母材表面の亀裂を防止できる。なおこのための冷却手段としては、ガス冷却または気水冷却が適当である。また、冷却設備は加熱設備とホットスタンプ設備の間にあればよく、その態様としてゾーンでもよく、また加熱設備からホットスタンプ設備へ移送する設備に付加し移送しながら冷却する方法でも良い。   In the present invention, in order to sufficiently solidify the galvanized layer and suppress intergranular cracking of the base material during hot stamping, it is cooled to 730 ° C. or lower and 500 ° C. or higher within 60 seconds after being taken out from the furnace. To do. This crack is generated on the tensile side of the base material, and according to the study of the present inventor, it is caused by the penetration of molten zinc into the prior austenite grain boundary of the base material. Therefore, as shown in FIG. 1, a facility 2 for rapidly cooling the heated galvanized steel sheet is provided between the heating facility 1 and the hot stamp facility 3 and rapidly cooled to 730 ° C. or less within 60 seconds. Cooling to 730 ° C. or lower eliminates the intrusion of molten zinc and can prevent cracking of the base metal surface during hot stamping. As cooling means for this purpose, gas cooling or air-water cooling is appropriate. Further, the cooling facility may be between the heating facility and the hot stamp facility, and may be a zone, or may be a method of cooling while being added to the facility for transferring from the heating facility to the hot stamp facility.

このように本発明ではホットスタンプ加工の開始前に亜鉛を固化させるための冷却が行われるが、ホットスタンプ加工はオーステナイト状態で行われることが好ましく、このためホットスタンプ加工前の母材温度は500℃以上とする。500℃未満ではマルテンサイトが生成されてしまい、成形性が悪化するからである。また冷却時間は60秒以内とする。冷却をこれよりゆっくりと行うとフェライトが生成されて軟質となり、目的とする高強度が得られないからである。   As described above, in the present invention, cooling for solidifying zinc is performed before the start of hot stamping, but the hot stamping is preferably performed in an austenite state. Therefore, the base material temperature before hot stamping is 500. ℃ or more. This is because if it is less than 500 ° C., martensite is generated and the moldability deteriorates. The cooling time is 60 seconds or less. This is because if cooling is performed more slowly than this, ferrite is generated and becomes soft, and the desired high strength cannot be obtained.

その後に加工急冷を伴うホットスタンプ設備においてホットスタンプ加工が行われ、所望形状に加工される。形状確保と焼き入れのために、母材を30℃/sec以上で200℃以下まで加工急冷することが好ましい。これによりZn70%以上のめっき層を30g/m以上持つ高強度高耐食成形体を製造することができる。 Thereafter, hot stamping is performed in a hot stamping facility that involves rapid cooling of the workpiece, and the workpiece is processed into a desired shape. For securing the shape and quenching, it is preferable to rapidly quench the base material at 30 ° C./sec or more to 200 ° C. or less. As a result, a high-strength, high-corrosion-resistant molded body having a Zn 70% or more plating layer of 30 g / m 2 or more can be produced.

以下に本発明の実施例を示す。
表1に示すABCDの鋼材を用い、表2に示す条件で亜鉛めっきと加熱とを行った。めっき処理条件(めっき方法、めっき量、内Zn量、組成、上層めっき)とめっき処理の施された鋼板に対して加熱する加熱条件(加熱方法、加熱温度、保持時間、加熱雰囲気、酸素濃度)とを表2に示す。更に、加熱後の鋼板に対して表3に示す条件で冷却とホットスタンプによる加工焼き入れとを行った。熱間処理は大気雰囲気下または所定空気比の雰囲気下にて電気炉または高周波誘導加熱炉またはガス炉または赤外加熱炉を用い、鋼板を加熱し、炉から鋼板を取り出し、その後、該鋼板を水冷または金型冷却またはガス冷却した。
Examples of the present invention are shown below.
Using the ABCD steel materials shown in Table 1, galvanization and heating were performed under the conditions shown in Table 2. Plating treatment conditions (plating method, plating amount, inner Zn amount, composition, upper layer plating) and heating conditions for heating the steel plate subjected to plating treatment (heating method, heating temperature, holding time, heating atmosphere, oxygen concentration) Are shown in Table 2. Furthermore, the steel plate after heating was subjected to cooling and work quenching by hot stamping under the conditions shown in Table 3. In the hot treatment, an electric furnace, a high frequency induction heating furnace, a gas furnace or an infrared heating furnace is used in an air atmosphere or an atmosphere having a predetermined air ratio, the steel plate is heated, and the steel plate is taken out from the furnace. Water cooled or mold cooled or gas cooled.

Znを主成分としてFe:30質量%以下からなる層は、めっき処理の施された鋼板に対し表2及び表3に示した各処理条件(加熱条件及び冷却方法)にて処理を施すことにより作成され、この層の作成によって得られた製造物を、NHCl:150g/lの水溶液中で4mA/cmで飽和カロメル電極を参照電極として定電流電解により−800mV vs.SCE以下に大きく変化する点のΓ層までを電解し電解液をICPにより測定し、防錆効果のあるめっき量としてFe、Znの量、組成比を求め、それらを表3に示した。尚、Fe:30%超のZn−Fe合金層の測定は上記Γ層までの電解後、電解液を新しい液に代えて引き続き鉄の電位(約−560mV vs.SCE)までを電解し、同様に電解液をICPにより測定しFe、Znの量、組成比を求め、それらを表3に示した。
強度は、表3に示す条件で、金型を定盤にして冷却した後、JIS5号引張試験片のL方向引張にて評価し、その評価結果を表3に示し、800MPaを超えるものを良好とした。
A layer composed of Zn as a main component and Fe: 30% by mass or less is obtained by subjecting a steel sheet subjected to plating treatment to the treatment conditions (heating conditions and cooling methods) shown in Tables 2 and 3. The product produced by the creation of this layer was subjected to constant current electrolysis at 4 mA / cm 2 in an aqueous solution of NH 4 Cl: 150 g / l using a saturated calomel electrode as a reference electrode at −800 mV vs. Electrolysis was performed up to the Γ layer at a point that greatly changed below SCE, and the electrolytic solution was measured by ICP. The amounts of Fe and Zn and the composition ratio were determined as plating amounts having a rust-preventing effect. In addition, the measurement of the Zn-Fe alloy layer of Fe: more than 30% was conducted by electrolyzing up to the Γ layer, and then electrolyzing up to the electric potential of iron (about -560 mV vs. SCE) by replacing the electrolytic solution with a new solution. The electrolyte solution was measured by ICP to determine the amounts and composition ratios of Fe and Zn, and these are shown in Table 3.
The strength was evaluated by L-direction tension of a JIS No. 5 tensile test piece after cooling the mold with a surface plate under the conditions shown in Table 3, and the evaluation results are shown in Table 3, and those exceeding 800 MPa are good. It was.

割れの有無は、表3に示す条件で、ホットスタンプつまりプレス加工・冷却して図2に示すような断面形状の試験片を作成し、曲げ部の断面観察を行い、割れの有無を調べた。その結果を表3に示す。
耐食性は、製造後の表面に対し、脱脂、およびパルボンドLA35(日本パーカーライジング社製)にて、メーカー処方通り化成処理を行い、さらにカチオン電着塗装(パワーニクス110:日本ペイント社製)を15μm実施し、クロスカットを施した後、アメリカ自動車工業会規格SAE−J2334腐食試験条件にて300サイクル実施後のクロスカット部からの塗膜フクレ巾(片側)を測定した。その測定結果を表3に示す。
The presence / absence of cracks was determined by checking the presence / absence of cracks by creating a test piece having a cross-sectional shape as shown in FIG. . The results are shown in Table 3.
For corrosion resistance, the surface after production is degreased and subjected to chemical conversion treatment with Palbond LA35 (Nihon Parker Rising Co., Ltd.) as prescribed by the manufacturer. After carrying out and carrying out the crosscut, the coating film width (one side) from the crosscut part after 300 cycles implementation on American Automobile Manufacturers Association standard SAE-J2334 corrosion test conditions was measured. The measurement results are shown in Table 3.

比較例11はホットスタンプ加工前の急冷を行わなかった例で、加工時に母材の粒界割れが生じた。比較例12は冷却に60秒以上かけたため、焼きが入らず強度が低下している。比較例13は500℃以下にまで冷却したためマルテンサイトが生成され、加工中に破断した。比較例14は加工中の冷却速度が遅いため強度が低下している。   Comparative Example 11 was an example in which rapid cooling before hot stamping was not performed, and grain boundary cracking of the base material occurred during processing. Since the comparative example 12 took 60 seconds or more for cooling, baking did not enter and the intensity | strength fell. Since the comparative example 13 was cooled to 500 degrees C or less, the martensite was produced | generated and it fractured | ruptured during processing. Since the comparative example 14 has a slow cooling rate during processing, the strength is low.

比較例1と比較例2は亜鉛めっき組成が本発明範囲を外れており、亜鉛揮発量が多く、耐食性が低下している。比較例3はめっき量が不足しており、耐食性が低下している。比較例4は加熱温度が低く、強度が出ない。比較例5は加熱過多のため、耐食性が低下している。比較例6は加熱温度が高すぎるため、亜鉛揮発量が多く耐食性が低下している。比較例7は還元雰囲気中で加熱したため、亜鉛揮発量が多く耐食性が低下している。   In Comparative Examples 1 and 2, the zinc plating composition is out of the scope of the present invention, the zinc volatilization amount is large, and the corrosion resistance is lowered. In Comparative Example 3, the plating amount is insufficient, and the corrosion resistance is reduced. In Comparative Example 4, the heating temperature is low and the strength does not appear. In Comparative Example 5, the corrosion resistance is lowered due to excessive heating. In Comparative Example 6, since the heating temperature is too high, the amount of volatilized zinc is large and the corrosion resistance is low. Since Comparative Example 7 was heated in a reducing atmosphere, the amount of volatilized zinc was large and the corrosion resistance was reduced.

このように本発明の範囲を外れた比較例では強度や耐食性が劣るが、本発明の範囲内にある実施例11〜26では、Znを主成分としてFe:30質量%以下からなる層が30g/m以上あり、また焼き入れの加熱により生成したFeを主体とする合金層が5g/m以上形成されている。この結果、コスト的に優位な亜鉛系めっき鋼材にて、焼き入れ後の成形品の耐食性を冷間成型品と同等以上とした、耐食性と耐疲労性に優れた高強度焼き入れ成形体を得ることができる。 Thus, although the strength and corrosion resistance are inferior in the comparative example out of the scope of the present invention, in Examples 11 to 26 within the scope of the present invention, the layer composed of Zn as a main component and Fe: 30% by mass or less is 30 g. / m are 2 or more, are formed alloy layer consisting mainly of Fe produced by heating the quenching is 5 g / m 2 or more. As a result, a high-strength quenched molded body with excellent corrosion resistance and fatigue resistance is obtained, with the corrosion resistance of the molded product after quenching equal to or higher than that of cold molded products, with a zinc-based plated steel material that is superior in cost. be able to.

Figure 2011117086
Figure 2011117086

Figure 2011117086
Figure 2011117086

Figure 2011117086
Figure 2011117086

1 加熱設備
2 急冷設備
3 ホットスタンプ設備
1 Heating equipment 2 Rapid cooling equipment 3 Hot stamping equipment

Claims (1)

亜鉛めっき系鋼材をホットスタンプのため加熱し、成形して焼き入れした高強度焼き入れ成形体であって、焼き入れ後の成形体鋼材表面に、Znを主成分とし、合金化遅延機能および易酸化性機能を有するAlを単独で0.15質量%以上含有し、Feが下記測定方法で9質量%以上、30質量%以下である亜鉛めっき層が、30g/m以上形成されていることを特徴とする耐食性、耐疲労性に優れた高強度焼き入れ成形体。
亜鉛めっき層中のFe濃度測定方法;NHCl:150g/lの水溶液中で4mA/cmで飽和カロメル電極を参照電極として定電流電解により−800mVvs.SCE以下に大きく変化する点でのГ層までを電解し電解液をICPによりFe、Znの量、組成比を測定する方法。
A high-strength quench-molded body obtained by heating, forming, and quenching a galvanized steel material for hot stamping. The surface of the molded steel material after quenching is mainly composed of Zn and has an alloying delay function and easy A zinc plating layer containing 0.15% by mass or more of Al having an oxidizing function and Fe of 9% by mass or more and 30% by mass or less by the following measuring method is formed in an amount of 30g / m 2 or more. A high-strength quenched and molded product with excellent corrosion resistance and fatigue resistance.
Method for measuring Fe concentration in galvanized layer; NH 4 Cl: −800 mV vs. by constant current electrolysis using saturated calomel electrode as reference electrode at 4 mA / cm 2 in an aqueous solution of 150 g / l. A method of electrolyzing up to the Γ layer at a point that greatly changes below SCE and measuring the amount and composition ratio of Fe and Zn by ICP of the electrolytic solution.
JP2011060986A 2011-03-18 2011-03-18 High-strength quenched molded body with excellent corrosion resistance and fatigue resistance Active JP5414722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060986A JP5414722B2 (en) 2011-03-18 2011-03-18 High-strength quenched molded body with excellent corrosion resistance and fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060986A JP5414722B2 (en) 2011-03-18 2011-03-18 High-strength quenched molded body with excellent corrosion resistance and fatigue resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006001562A Division JP4733522B2 (en) 2006-01-06 2006-01-06 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance

Publications (2)

Publication Number Publication Date
JP2011117086A true JP2011117086A (en) 2011-06-16
JP5414722B2 JP5414722B2 (en) 2014-02-12

Family

ID=44282728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060986A Active JP5414722B2 (en) 2011-03-18 2011-03-18 High-strength quenched molded body with excellent corrosion resistance and fatigue resistance

Country Status (1)

Country Link
JP (1) JP5414722B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031984A1 (en) * 2011-09-01 2013-03-07 株式会社神戸製鋼所 Hot-stamp molded part and method for manufacturing same
JP2013202619A (en) * 2012-03-27 2013-10-07 Aisin Takaoka Ltd Hot press molding apparatus and hot press molding method
JP2014521833A (en) * 2011-07-25 2014-08-28 マグナ インターナショナル インコーポレイテッド Products and processes by local heat treatment of sheet steel.
EP2979771A4 (en) * 2013-03-26 2016-11-02 Kobe Steel Ltd Press-molded article and method for manufacturing same
CN109323062A (en) * 2018-10-31 2019-02-12 武汉市计量测试检定(研究)所 A kind of reducing type flow cardan and preparation method thereof
WO2021182465A1 (en) 2020-03-12 2021-09-16 日本製鉄株式会社 Plated steel plate for hot stamping
WO2024122124A1 (en) * 2022-12-09 2024-06-13 日本製鉄株式会社 Hot-stamp molded body
WO2024122118A1 (en) * 2022-12-09 2024-06-13 日本製鉄株式会社 Plated steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311372A (en) * 1992-05-08 1993-11-22 Sumitomo Metal Ind Ltd Galvannealed steel sheet for adhesive structure
JPH07292452A (en) * 1994-04-26 1995-11-07 Sumitomo Metal Ind Ltd Galvannealed steel sheet excellent in film breaking resistance
JPH0933455A (en) * 1995-07-14 1997-02-07 Sumitomo Metal Ind Ltd Method for measuring alloyed degree of alloying plated layer
JP2000239820A (en) * 1998-12-25 2000-09-05 Nippon Steel Corp Hot-dip aluminized steel sheet excellent in corrosion resistance
JP2004270029A (en) * 2003-02-18 2004-09-30 Nippon Steel Corp Galvanized steel sheet excellent in zinc volatility resistance
JP2005240072A (en) * 2004-02-24 2005-09-08 Nippon Steel Corp Zinc-base plated hot press steel
JP2006022395A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp High strength quenched molding having excellent corrosion resistance and its production method
JP2007182608A (en) * 2006-01-06 2007-07-19 Nippon Steel Corp Method for manufacturing high-strength formed and quenched body superior in corrosion resistance and fatigue resistance, and manufacturing facility therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311372A (en) * 1992-05-08 1993-11-22 Sumitomo Metal Ind Ltd Galvannealed steel sheet for adhesive structure
JPH07292452A (en) * 1994-04-26 1995-11-07 Sumitomo Metal Ind Ltd Galvannealed steel sheet excellent in film breaking resistance
JPH0933455A (en) * 1995-07-14 1997-02-07 Sumitomo Metal Ind Ltd Method for measuring alloyed degree of alloying plated layer
JP2000239820A (en) * 1998-12-25 2000-09-05 Nippon Steel Corp Hot-dip aluminized steel sheet excellent in corrosion resistance
JP2004270029A (en) * 2003-02-18 2004-09-30 Nippon Steel Corp Galvanized steel sheet excellent in zinc volatility resistance
JP2005240072A (en) * 2004-02-24 2005-09-08 Nippon Steel Corp Zinc-base plated hot press steel
JP2006022395A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp High strength quenched molding having excellent corrosion resistance and its production method
JP2007182608A (en) * 2006-01-06 2007-07-19 Nippon Steel Corp Method for manufacturing high-strength formed and quenched body superior in corrosion resistance and fatigue resistance, and manufacturing facility therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521833A (en) * 2011-07-25 2014-08-28 マグナ インターナショナル インコーポレイテッド Products and processes by local heat treatment of sheet steel.
EP2752257A4 (en) * 2011-09-01 2015-10-28 Kobe Steel Ltd Hot-stamp molded part and method for manufacturing same
CN103764310A (en) * 2011-09-01 2014-04-30 株式会社神户制钢所 Hot-stamp molded part and method for manufacturing same
US20140186655A1 (en) * 2011-09-01 2014-07-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Press hardened parts and method of producing the same
JP2013091099A (en) * 2011-09-01 2013-05-16 Kobe Steel Ltd Hot press molded product and production method thereof
WO2013031984A1 (en) * 2011-09-01 2013-03-07 株式会社神戸製鋼所 Hot-stamp molded part and method for manufacturing same
JP2013202619A (en) * 2012-03-27 2013-10-07 Aisin Takaoka Ltd Hot press molding apparatus and hot press molding method
US9744744B2 (en) 2013-03-26 2017-08-29 Kobe Steel, Ltd. Press-formed article and method for manufacturing same
EP2979771A4 (en) * 2013-03-26 2016-11-02 Kobe Steel Ltd Press-molded article and method for manufacturing same
CN109323062A (en) * 2018-10-31 2019-02-12 武汉市计量测试检定(研究)所 A kind of reducing type flow cardan and preparation method thereof
WO2021182465A1 (en) 2020-03-12 2021-09-16 日本製鉄株式会社 Plated steel plate for hot stamping
KR20220154177A (en) 2020-03-12 2022-11-21 닛폰세이테츠 가부시키가이샤 Galvanized steel sheet for hot stamping
US11866828B2 (en) 2020-03-12 2024-01-09 Nippon Steel Corporation Plated steel sheet for hot stamping
WO2024122124A1 (en) * 2022-12-09 2024-06-13 日本製鉄株式会社 Hot-stamp molded body
WO2024122118A1 (en) * 2022-12-09 2024-06-13 日本製鉄株式会社 Plated steel sheet

Also Published As

Publication number Publication date
JP5414722B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP4733522B2 (en) Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4825882B2 (en) High-strength quenched molded body and method for producing the same
JP5414722B2 (en) High-strength quenched molded body with excellent corrosion resistance and fatigue resistance
US8697253B2 (en) High-strength quenched formed body with good corrosion resistance
JP2019056180A (en) Steel sheet used for hot stamping
JP5218404B2 (en) Manufacturing method of molded products
JP6656379B2 (en) Hot press-formed product excellent in corrosion resistance and method for producing the same
KR20160049540A (en) Zinc-based anti-corrosion coating for steel sheets, for producing a component at an elevated temperature by hot forming die quenching
JP2006051543A (en) Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JPWO2015098653A1 (en) Automobile parts and method of manufacturing auto parts
KR101639843B1 (en) Steel for hot press forming and mmehtod for manufacturing the same
JP2015165049A (en) Hot press molded article
KR20150124456A (en) High strength steel sheet and method for manufacturing the same
JP6032221B2 (en) Manufacturing method of high-strength steel sheet
KR101528011B1 (en) Plated steel sheet for hot-press forming and hot-press formed products, method for manufacturing thereof
JP2010018856A (en) High-strength automobile component excellent in corrosion resistance after coating, and plated steel sheet for hot press
KR101719446B1 (en) Press-molded article and method for manufacturing same
JP2011184797A (en) High strength hardened molded body having excellent corrosion resistance and fatigue resistance
KR101889230B1 (en) Hot pressed part having excellent corrosion resistance and method for manufacturing same
KR101630991B1 (en) Steel for warm press forming with excellent formability and weldability, forming part, and method for manufacturing thereof
KR101560915B1 (en) Galvanized Steel Sheet For Hot Press Forming Suppressed Crack, Hot Pressed Parts Using The Same And Method For Manufacturing Thereof
KR101143072B1 (en) Ultra-high strength galvinized steel sheet having excellent coatability and bending-workability and method for manufacturing the same
TWI637069B (en) Surface treated steel
JPWO2019066063A1 (en) Galvanized steel sheet, galvanized steel sheet coil, hot press-formed product manufacturing method, and automobile parts
JP2016079497A (en) Hot pressing method and hot pressing molded part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250