JP2011116967A - Conductive polymer solution and method for manufacturing the same - Google Patents

Conductive polymer solution and method for manufacturing the same Download PDF

Info

Publication number
JP2011116967A
JP2011116967A JP2010243887A JP2010243887A JP2011116967A JP 2011116967 A JP2011116967 A JP 2011116967A JP 2010243887 A JP2010243887 A JP 2010243887A JP 2010243887 A JP2010243887 A JP 2010243887A JP 2011116967 A JP2011116967 A JP 2011116967A
Authority
JP
Japan
Prior art keywords
conductive polymer
solution
basic substance
water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010243887A
Other languages
Japanese (ja)
Other versions
JP5630647B2 (en
Inventor
Hiroaki Iriyama
浩彰 入山
Tamae Takagi
珠衣 高木
Masashi Uzawa
正志 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010243887A priority Critical patent/JP5630647B2/en
Publication of JP2011116967A publication Critical patent/JP2011116967A/en
Application granted granted Critical
Publication of JP5630647B2 publication Critical patent/JP5630647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive polymer solution to form a conductive coating film in which polymer conductivity and water resistance are excellent, and to provide a method for manufacturing the same. <P>SOLUTION: The conductive polymer solution and the method for manufacturing the same are characterized in that a basic substance is removed from a solution containing a conductive polymer which is obtained by polymerizing aniline substituted by acid groups, such as alkoxy substituted aminobenzenesulfonic acid using an oxidizing agent under the presence of the basic substance, by an ion exchange method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性高分子溶液及びその製造方法に関する。該導電性高分子溶液はスプレー、ディップ等の簡便な手法で各種帯電防止用途に適応可能である   The present invention relates to a conductive polymer solution and a method for producing the same. The conductive polymer solution can be applied to various antistatic uses by a simple method such as spraying or dipping.

導電性高分子として、ドープされたポリアニリンは良く知られているが、それらは殆ど全ての溶剤に不溶であり、成形、加工性に難点がある。近年ドープ剤を添加することなく導電性を発現する自己ドープ性かつ可溶性の導電性高分子として、スルホン酸基置換アニリンまたはカルボキシ基置換アニリンなどの酸性基置換アニリンを塩基性物質の存在下で酸化剤により重合し導電性高分子を得る方法が提案されている。該導電性高分子は溶剤に溶解した後、スプレー、ディップ等の簡便な手法で各種帯電防止用途に適応可能である。   As conductive polymers, doped polyanilines are well known, but they are insoluble in almost all solvents and have difficulty in molding and workability. In recent years, acidic group-substituted anilines such as sulfonic acid group-substituted anilines or carboxy group-substituted anilines are oxidized in the presence of basic substances as self-doping and soluble conductive polymers that exhibit conductivity without the addition of dopants. A method of obtaining a conductive polymer by polymerizing with an agent has been proposed. After the conductive polymer is dissolved in a solvent, it can be applied to various antistatic uses by a simple method such as spraying or dipping.

しかしこの方法では、導電性高分子を重合する際に塩基性物質を用いることが必要となり、得られた導電性高分子の酸性基の一部が該塩基性化合物と塩を形成した状態で得られる。   However, in this method, it is necessary to use a basic substance when polymerizing the conductive polymer, and some of the acidic groups of the obtained conductive polymer are obtained in a state of forming a salt with the basic compound. It is done.

このため導電性高分子の自己ドープが阻害されてしまい、本来、導電性高分子が有する導電性を十分に発揮できていない。また、酸性基の一部が該塩基性物質と塩を形成しているために、加熱によるスルホン酸基の脱離が阻害されてしまい、基材に塗布後、加熱処理を行なっても導電性塗膜に十分な耐水性を付与することができなかった。   For this reason, the self-doping of the conductive polymer is hindered, and the electrical conductivity inherent to the conductive polymer cannot be sufficiently exhibited. In addition, since some of the acidic groups form a salt with the basic substance, the elimination of the sulfonic acid groups due to heating is hindered. Sufficient water resistance could not be imparted to the coating film.

このため特許文献1には、酸性基置換アニリンを塩基性物質の存在下で酸化剤により重合した導電性高分子を酸含有溶液で処理することで導電性高分子を精製した後、水に溶解し導電性高分子溶液を得る方法が記載されている。   For this reason, Patent Document 1 discloses that a conductive polymer obtained by polymerizing an acidic group-substituted aniline with an oxidizing agent in the presence of a basic substance is treated with an acid-containing solution and then dissolved in water. A method for obtaining a conductive polymer solution is described.

特開平7−196791号公報JP-A-7-196791

しかし、この方法では導電性高分子を固体状態で処理するため、導電性高分子の酸性基の一部と塩を形成している塩基性物質の除去が十分ではなく、導電性高分子の導電性を十分に発揮できておらず、導電性高分子組成物から得られた導電性塗膜の導電性、基材に塗布後の加熱処理を行なった後の耐水性がまだ不十分であるという課題があった。また、該導電性高分子水溶液を酸で処理する場合には、酸が該導電性高分子水溶液中に溶解して混入してしまう為、塩基性物質を十分に除去することは出来ないだけでなく、混入した酸を分離する新たな工程が必要となる。
また、重合時に塩基性物質を使用しない水溶性導電性高分子であっても溶液の安定性を向上させるために塩基性物質を添加する場合があったが、この場合も導電性等の性質が経時変化するという問題があった。
However, since this method treats the conductive polymer in a solid state, it is not sufficient to remove a basic substance that forms a salt with some of the acidic groups of the conductive polymer. The conductivity of the conductive coating film obtained from the conductive polymer composition is insufficient, and the water resistance after the heat treatment after application to the substrate is still insufficient. There was a problem. In addition, when the conductive polymer aqueous solution is treated with an acid, the basic substance cannot be sufficiently removed because the acid dissolves and mixes in the conductive polymer aqueous solution. In addition, a new process for separating the mixed acid is required.
In addition, even in the case of a water-soluble conductive polymer that does not use a basic substance at the time of polymerization, a basic substance may be added in order to improve the stability of the solution. There was a problem of changing over time.

本発明はこれらの課題を解決することを目的とする。   The present invention aims to solve these problems.

本発明の要旨は、水溶性導電性高分子、溶剤及び塩基性物質を含有する導電性高分子溶液であり、水溶性導電性高分子に対する塩基性物質の比率が1質量%以下である導電性高分子溶液である。特に酸性基置換アニリンを塩基性物質の存在下で重合させて得られた導電性高分子を含む溶液から、イオン交換法にて塩基性物質を除去する、導電性高分子溶液ならびにその製造方法である。なお、本発明において「水溶性」とは、水10g(液温25℃)に、0.1g以上均一に溶解することを意味する。「導電性」とは、10Ω・cm以下の体積抵抗率を有することである。 The gist of the present invention is a conductive polymer solution containing a water-soluble conductive polymer, a solvent and a basic substance, wherein the ratio of the basic substance to the water-soluble conductive polymer is 1% by mass or less. It is a polymer solution. In particular, a conductive polymer solution that removes a basic substance by an ion exchange method from a solution containing a conductive polymer obtained by polymerizing acidic group-substituted aniline in the presence of a basic substance, and a method for producing the same. is there. In the present invention, “water-soluble” means that 0.1 g or more is uniformly dissolved in 10 g of water (liquid temperature: 25 ° C.). “Conductivity” means having a volume resistivity of 10 9 Ω · cm or less.

本発明によれば、導電性及び耐水性に優れた導電性塗膜が得られる。   According to the present invention, a conductive coating film excellent in conductivity and water resistance can be obtained.

本発明は、水溶性導電性高分子、溶剤及び塩基性物質を含有する導電性高分子溶液であり、水溶性導電性高分子に対する塩基性物質の比率が1質量%以下である導電性高分子溶液である。塩基性物質の含有率が低いため、導電性及び耐水性に優れる。本発明では、酸性基置換アニリンを、塩基性物質の存在下で重合させて得られた導電性高分子を含む溶液から、イオン交換法にて塩基性物質を除去することが必要である。塩基性物質は導電性高分子溶液において導電性高分子に対する塩基性物質の比率が1質量%以下となるように除去することが好ましい。   The present invention is a conductive polymer solution containing a water-soluble conductive polymer, a solvent, and a basic substance, and the ratio of the basic substance to the water-soluble conductive polymer is 1% by mass or less. It is a solution. Since the content of the basic substance is low, the conductivity and water resistance are excellent. In the present invention, it is necessary to remove the basic substance by an ion exchange method from a solution containing a conductive polymer obtained by polymerizing acidic group-substituted aniline in the presence of the basic substance. The basic substance is preferably removed so that the ratio of the basic substance to the conductive polymer in the conductive polymer solution is 1% by mass or less.

本発明のイオン交換法とは、陽イオン交換高分子を用いたイオン交換方法、電気透析法が挙げられる。   Examples of the ion exchange method of the present invention include an ion exchange method using a cation exchange polymer and an electrodialysis method.

イオン交換法を用いることにより、溶液状態で導電性高分子の酸性基と塩を形成している塩基性物質を除去することができ、従来の固体状態で導電性高分子を処理する方法に比べ、導電性高分子溶液から得られた塗膜の導電性が向上する。   By using the ion exchange method, it is possible to remove the basic substance that forms a salt with the acidic group of the conductive polymer in the solution state, compared with the conventional method of processing the conductive polymer in the solid state. The conductivity of the coating film obtained from the conductive polymer solution is improved.

陽イオン交換高分子を用いる場合、陽イオン交換高分子に対する導電性溶液の量は、例えば5%のアニリン系導電性ポリマー水溶液の場合、陽イオン交換高分子に対して10倍の容積までが好ましく、5倍の容積までがより好ましい。   When a cation exchange polymer is used, the amount of the conductive solution with respect to the cation exchange polymer is preferably up to 10 times the volume with respect to the cation exchange polymer in the case of, for example, a 5% aniline-based conductive polymer aqueous solution. A volume up to 5 times is more preferable.

電気透析法の場合、電気透析法のイオン交換膜は特に限定はされないが、不純物の拡散による浸透を抑制するために、一価イオン選択透過処理が施されたイオン交換膜であって、分画分子量が300以下のものを使用することが好ましい。このようなイオン交換膜として、ネオセプタCMK(カチオン交換膜、分画分子量300、株式会社アストム製)や、ネオセプタAMX(アニオン交換膜、分画分子量300、株式会社アストム製)を例示することができる。   In the case of the electrodialysis method, the ion exchange membrane of the electrodialysis method is not particularly limited, but is an ion exchange membrane that has been subjected to monovalent ion selective permeation treatment in order to suppress permeation due to diffusion of impurities. It is preferable to use one having a molecular weight of 300 or less. Examples of such an ion exchange membrane include Neocepta CMK (cation exchange membrane, molecular weight cut-off 300, manufactured by Astom Co., Ltd.) and Neoceptor AMX (anion exchange membrane, molecular weight cut-off 300, manufactured by Astom Co., Ltd.). .

また、アニオン交換層、カチオン交換層を張り合わせた構造を持ったイオン交換膜であるバイポーラ膜を用いてもよい。このようなバイポーラ膜としてPB−1E/CMB(株式会社アストム製)を例示することができる。   Alternatively, a bipolar membrane which is an ion exchange membrane having a structure in which an anion exchange layer and a cation exchange layer are bonded together may be used. An example of such a bipolar film is PB-1E / CMB (manufactured by Astom Co., Ltd.).

電気透析における電流密度は限界電流密度以下であることが好ましい。バイポーラ膜での印加電圧は、10〜50Vの範囲が好ましく、25〜35Vの範囲がさらに好ましい。   The current density in electrodialysis is preferably less than the limit current density. The applied voltage in the bipolar film is preferably in the range of 10 to 50V, more preferably in the range of 25 to 35V.

なお、導電性高分子を含む溶液の溶剤としては、導電性高分子を溶解するものであれば特に限定されないが、水または水と水に可溶な有機溶媒との混合溶媒が好ましい。   Note that the solvent of the solution containing the conductive polymer is not particularly limited as long as it dissolves the conductive polymer, but water or a mixed solvent of water and an organic solvent soluble in water is preferable.

水に可溶な有機溶媒としては、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール等のアルコール類;アセトン、エチルイソブチルケトン等のケトン類;エチレングリコール、エチレングリコールメチルエーテル等のエチレングリコール類;プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のプロピレングリコール類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;N−メチルピロリドン、N−エチルピロリドン等のピロリドン類等が挙げられる。イオン交換の効率の観点では、水が好ましい。   Examples of water-soluble organic solvents include alcohols such as methanol, ethanol, isopropyl alcohol, propyl alcohol, and butanol; ketones such as acetone and ethyl isobutyl ketone; ethylene glycols such as ethylene glycol and ethylene glycol methyl ether; propylene Propylene glycols such as glycol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether, propylene glycol propyl ether; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methylpyrrolidone, N -Pyrrolidones such as ethyl pyrrolidone and the like can be mentioned. From the viewpoint of ion exchange efficiency, water is preferred.

また導電性高分子は、酸性基置換アニリンを塩基性物質の存在下で酸化剤により公知の方法で重合させて得ることができる。また、酸性基置換ピロールや酸性基置換チオフェンを公知の方法で重合させたものでもよい。   The conductive polymer can be obtained by polymerizing acidic group-substituted aniline with an oxidizing agent in the presence of a basic substance by a known method. Moreover, what polymerized acidic group substituted pyrrole and acidic group substituted thiophene by the well-known method may be used.

酸性基置換アニリンとしては、スルホン基置換アニリンまたはカルボキシル基置換アニリンが挙げられ、好ましくはスルホン基置換アニリンであり、カルボキシル基置換アニリンに比べ導電性が高い傾向を示す。   Examples of acidic group-substituted anilines include sulfone group-substituted anilines and carboxyl group-substituted anilines, preferably sulfone group-substituted anilines, which tend to have higher conductivity than carboxyl group-substituted anilines.

スルホン基置換アニリンとして代表的なものは、アミノベンゼンスルホン酸類であり、具体的には、アルキル基置換アミノベンゼンスルホン酸類、アルコキシ置換アミノベンゼンスルホン酸類、ヒドロキシ基置換アミノベンゼンスルホン酸類、ニトロ基置換アミノベンゼンスルホン酸類、フルオロアミノベンゼンスルホン酸、クロロアミノベンゼンスルホン酸、ブロムアミノベンゼンスルホン酸などのハロゲン基置換アミノベンゼンスルホン酸類などが挙げられ、アルコキシ置換アミノベンゼンスルホン酸が重合率の向上の点で好ましい。なお、アルコキシ置換アミノベンゼンスルホン酸としては、例えば2−アミノアニソール−3−スルホン酸,2−アミノアニソール−4−スルホン酸,2−アミノアニソール−6−スルホン酸,3−アミノアニソール−2−スルホン酸,3−アミノアニソール−4−スルホン酸,3−アミノアニソール−5−スルホン酸が挙げられる。   Representative examples of the sulfone group-substituted anilines are aminobenzene sulfonic acids, specifically, alkyl group-substituted aminobenzene sulfonic acids, alkoxy-substituted aminobenzene sulfonic acids, hydroxy group-substituted aminobenzene sulfonic acids, nitro group-substituted amino. Examples include halogen-substituted aminobenzene sulfonic acids such as benzene sulfonic acids, fluoroaminobenzene sulfonic acid, chloroaminobenzene sulfonic acid, and bromoaminobenzene sulfonic acid, and alkoxy-substituted aminobenzene sulfonic acids are preferred in terms of improving the polymerization rate. . Examples of the alkoxy-substituted aminobenzenesulfonic acid include 2-aminoanisole-3-sulfonic acid, 2-aminoanisole-4-sulfonic acid, 2-aminoanisole-6-sulfonic acid, and 3-aminoanisole-2-sulfone. Examples include acid, 3-aminoanisole-4-sulfonic acid, and 3-aminoanisole-5-sulfonic acid.

また、塩基性物質としては、脂式アミン類、環式飽和アミン類、環式不飽和アミン類、無機塩基などが好ましく用いられる。   In addition, as the basic substance, aliphatic amines, cyclic saturated amines, cyclic unsaturated amines, inorganic bases and the like are preferably used.

脂式アミン類としてメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチルメチルアミン、エチルジメチルアミン、ジエチルメチルアミン、アンモニウムヒドロキシド化合物を挙げることができる。   Examples of the aliphatic amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylmethylamine, ethyldimethylamine, diethylmethylamine, and ammonium hydroxide compounds.

環式飽和アミン類としては、ピペリジン、ピロリジン、モルホリン、ピペラジンおよびこれらの骨格を有する誘導体ならびにこれらのアンモニウムヒドロキシド化合物などが好ましく用いられる。   As cyclic saturated amines, piperidine, pyrrolidine, morpholine, piperazine, derivatives having these skeletons, and ammonium hydroxide compounds thereof are preferably used.

環式不飽和アミン類としては、ピリジン、α−ピコリン、β−ピコリン、γ−ピコリン、キノリン、イソキノリン、ピロリンおよびこれらの骨格を有する誘導体ならびにこれらのアンモニウムヒドロキシド化合物などが好ましく用いられる。   As the cyclic unsaturated amines, pyridine, α-picoline, β-picoline, γ-picoline, quinoline, isoquinoline, pyrroline, derivatives having these skeletons, and ammonium hydroxide compounds thereof are preferably used.

これら塩基性物質の中でも特に好ましいものとしては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチルメチルアミン、エチルジメチルアミン、ジエチルメチルアミン、ピリジン、α−ピコリン、β−ピコリン、γ−ピコリン等が挙げられる。   Among these basic substances, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylmethylamine, ethyldimethylamine, diethylmethylamine, pyridine, α-picoline, β-picoline, γ- Examples include picoline.

これらの塩基性物質のうち、イオン交換での除去のし易さで強塩基よりも弱塩基が好ましい。なおこれらの塩基性化合物は、それぞれ任意の割合で混合して用いることもできる。   Of these basic substances, weak bases are preferable to strong bases because they are easily removed by ion exchange. In addition, these basic compounds can also be mixed and used in arbitrary ratios, respectively.

また前記塩基性物質の濃度は0.1〜10.0mol/lが好ましく、0.2〜8.0mol/lがさらに好ましい。塩基性物質の濃度が0.1mol/l未満の場合、得られるポリマーの収率が低下し、10.0mol/lを超える場合、導電性が低下する傾向を示す。
前記スルホン酸基置換アニリンと塩基性物質の質量比は、スルホン酸基置換アニリン:塩基性物質=1:100〜100:1であることが好ましく、より好ましくは10:90〜90:10である。ここで、塩基性物質の割合が低いと反応性が低下したり、得られる導電性高分子の導電性が低下したりすることがある。一方、塩基性物質の割合が高いと、得られる導電性高分子中の酸性基と塩基性化合物が塩を形成する割合が高くなり、導電性高分子の導電性が低下することがある。
The concentration of the basic substance is preferably 0.1 to 10.0 mol / l, more preferably 0.2 to 8.0 mol / l. When the concentration of the basic substance is less than 0.1 mol / l, the yield of the resulting polymer is lowered, and when it exceeds 10.0 mol / l, the conductivity tends to be lowered.
The mass ratio of the sulfonic acid group-substituted aniline and the basic substance is preferably sulfonic acid group-substituted aniline: basic substance = 1: 100 to 100: 1, more preferably 10:90 to 90:10. . Here, when the ratio of the basic substance is low, the reactivity may decrease, or the conductivity of the obtained conductive polymer may decrease. On the other hand, when the proportion of the basic substance is high, the proportion of the acidic group and the basic compound in the resulting conductive polymer forming a salt may be increased, and the conductivity of the conductive polymer may be reduced.

重合方法としては、酸化剤による公知の酸化重合を行えばよく、酸化剤溶液中にモノマー溶液を滴下する方法、モノマー溶液中に酸化剤溶液を滴下する方法、別の反応器に酸化剤溶液およびモノマー溶液を同時に滴下する反応方法が挙げられる。また、このとき、触媒として、鉄、銅などの遷移金属化合物を添加してもよい。塩基性物質はモノマー溶液中に存在させることが好ましい。   As the polymerization method, a known oxidative polymerization with an oxidant may be performed. A method of dropping a monomer solution into an oxidant solution, a method of dropping an oxidant solution into a monomer solution, an oxidant solution and A reaction method in which the monomer solution is added dropwise at the same time can be mentioned. Moreover, you may add transition metal compounds, such as iron and copper, as a catalyst at this time. The basic substance is preferably present in the monomer solution.

また酸化剤としては、特に限定されないが、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム及びペルオキソ二硫酸カリウムなどのペルオキソ二硫酸類、過酸化水素等が挙げられ、重合率の点でペルオキソ二硫酸アンモニウムが好ましい。   The oxidizing agent is not particularly limited, and examples thereof include peroxodisulfuric acids such as peroxodisulfuric acid, ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate, hydrogen peroxide, and the like. Ammonium sulfate is preferred.

重合は、重合系内を撹拌しながら行うことが好ましい。重合時の反応温度は、50℃以下が好ましく、−15〜50℃がより好ましく、−10〜40℃がさらに好ましい。該反応温度が50℃を越えると、副反応の進行や、主鎖の酸化還元構造の変化により導電性が低下するおそれがある。また、−15℃未満では、反応時間が長引くことがある。重合時間は1〜24時間が好ましい。導電性高分子は重合度が、3〜5000、好ましくは5〜5000であり、数平均分子量は約1900〜3240000、好ましくは3200〜3240000である。   The polymerization is preferably performed while stirring the inside of the polymerization system. The reaction temperature during polymerization is preferably 50 ° C. or lower, more preferably −15 to 50 ° C., and further preferably −10 to 40 ° C. If the reaction temperature exceeds 50 ° C., the conductivity may decrease due to the progress of side reactions or the change in the redox structure of the main chain. Moreover, if it is less than -15 degreeC, reaction time may be prolonged. The polymerization time is preferably 1 to 24 hours. The conductive polymer has a polymerization degree of 3 to 5000, preferably 5 to 5000, and a number average molecular weight of about 1900 to 3240000, preferably 3200 to 3240000.

重合後、得られた反応液中には未反応のモノマーが溶解している。そのため、該反応液から重合体を分離する操作を行う。この際用いる分離装置としては、減圧濾過、加圧濾過、遠心分離、遠心濾過等が用いられるが、特に遠心分離、遠心濾過などの分離装置を用いることが、高純度のものが得られやすく好ましい。   After polymerization, unreacted monomers are dissolved in the obtained reaction solution. Therefore, operation which isolate | separates a polymer from this reaction liquid is performed. As the separation device used at this time, vacuum filtration, pressure filtration, centrifugal separation, centrifugal filtration or the like is used, and it is particularly preferable to use a separation device such as centrifugal separation or centrifugal filtration because a high-purity one can be easily obtained. .

また、重合体を分離後、洗浄溶剤により洗浄しても良い。該洗浄溶剤としては、メタノール、エタノール、iso−プロパノール、n−プロパノール、t−ブタノール等のアルコール類、アセトン、アセトニトリル、N,N−ジメチルホルムアミド,N−メチルピロリドン、ジメチルスルホキシド等が、高純度のものが得られるため好ましい。特にメタノール、エタノール、iso−プロパノール、アセトン、アセトニトリルが効果的である。   Alternatively, the polymer may be separated and then washed with a washing solvent. Examples of the cleaning solvent include alcohols such as methanol, ethanol, iso-propanol, n-propanol, and t-butanol, acetone, acetonitrile, N, N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, and the like having high purity. Since a thing is obtained, it is preferable. In particular, methanol, ethanol, iso-propanol, acetone, and acetonitrile are effective.

次に、得られた重合体を乾燥した後、溶剤に溶解することで導電性高分子溶液が得られ、該導電性高分子溶液を前述のイオン交換法にて塩基性物質を除去することで、本発明の導電性高分子溶液が得られる。導電性高分子溶液中の導電性高分子の濃度は1〜10質量%が好ましい。   Next, the obtained polymer is dried and then dissolved in a solvent to obtain a conductive polymer solution. By removing the basic substance from the conductive polymer solution by the ion exchange method described above, Thus, the conductive polymer solution of the present invention is obtained. The concentration of the conductive polymer in the conductive polymer solution is preferably 1 to 10% by mass.

本発明の製造方法によって得られた導電性高分子溶液は、一般の塗料に用いられる方法によって基材の表面に塗布される。例えばグラビアコーター、ロールコーター、カーテンフローコーター、スピンコーター、バーコーター、リバースコーター、キスコーター、ファンテンコーター、ロッドコーター、エアドクターコーター、ナイフコーター、ブレードコーター、キャストコーター、スクリーンコーター等の塗布方法、スプレーコーティング等の噴霧方法、ディップ等の浸漬方法等が用いられる。
さらに本発明の導電性高分子溶液からなる塗膜に耐水性を与える手段として、120℃〜280℃の範囲、好ましくは130℃〜250℃の範囲で塗膜を加熱することが好ましい。120℃未満であると塗膜の耐水性が不十分となりやすい。また、280℃より高いと塗膜の導電性が低下しやすい。
The conductive polymer solution obtained by the production method of the present invention is applied to the surface of a substrate by a method used for general paints. For example, gravure coater, roll coater, curtain flow coater, spin coater, bar coater, reverse coater, kiss coater, fan ten coater, rod coater, air doctor coater, knife coater, blade coater, cast coater, screen coater, etc. A spraying method such as coating or a dipping method such as dip is used.
Furthermore, as a means for imparting water resistance to the coating film comprising the conductive polymer solution of the present invention, it is preferable to heat the coating film in the range of 120 ° C to 280 ° C, preferably in the range of 130 ° C to 250 ° C. If it is less than 120 ° C., the water resistance of the coating film tends to be insufficient. On the other hand, if it is higher than 280 ° C., the conductivity of the coating film tends to be lowered.

また、加熱処理時間は、10分〜30分、好ましくは15分〜25分の範囲である。10分より短い時間であると耐水性が不十分となりやすく、30分を越えると塗膜の導電性が低下しやすい。   The heat treatment time ranges from 10 minutes to 30 minutes, preferably from 15 minutes to 25 minutes. If the time is shorter than 10 minutes, the water resistance tends to be insufficient, and if it exceeds 30 minutes, the conductivity of the coating film tends to decrease.

導電性高分子溶液を塗工する基材としては、高分子化合物、木材、紙材、セラミックス及びそれらフィルムまたはガラス板などが用いられる。例えば高分子化合物及びフィルムとしては、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ABS高分子、AS高分子、メタクリル高分子、ポリブタジエン、ポリカーボネート、ポリアリレート、ポリフッ化ビニリデン、ポリアミド、ポリイミド、ポリアラミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリエーテルニトリル、ポリアミドイミド、ポリエーテルサルホン、ポリサルホン、ポリエーテルイミド、ポリブチレンテレフタレート及びそのフィルムなどが挙げられる。これらの高分子フィルムは、少なくともその一つの面上に透明導電性高分子膜を形成させるため、該高分子膜の密着性を向上させる目的で上記フィルム表面をコロナ表面処理またはプラズマ処理することが好ましい。   As the base material on which the conductive polymer solution is applied, a polymer compound, wood, paper material, ceramics, and films or glass plates thereof are used. For example, polymer compounds and films include polyethylene, polyvinyl chloride, polypropylene, polystyrene, ABS polymer, AS polymer, methacrylic polymer, polybutadiene, polycarbonate, polyarylate, polyvinylidene fluoride, polyamide, polyimide, polyaramid, polyphenylene sulfide. , Polyether ether ketone, polyphenylene ether, polyether nitrile, polyamide imide, polyether sulfone, polysulfone, polyether imide, polybutylene terephthalate, and films thereof. Since these polymer films form a transparent conductive polymer film on at least one surface thereof, the film surface may be subjected to corona surface treatment or plasma treatment for the purpose of improving the adhesion of the polymer film. preferable.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。なお、実施例中の評価方法は以下の通りである。各評価結果は表1に示した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the evaluation method in an Example is as follows. The evaluation results are shown in Table 1.

<表面抵抗値>
5cm×5cmのガラス基材に導電性高分子溶液をスピンコート塗布(2000rpm×60sec)し、膜厚約0.1μmの導電体膜を形成後、ホットプレートにて80℃で2分間加熱処理を行った。得られたガラス基板を温度23℃、湿度55%の条件下でハイレスタMCP−HT260(三菱化学社製)を用い2端子法(電極間距離20mm)にて表面抵抗値を測定し、導電性の指標とした。
<Surface resistance value>
A conductive polymer solution is spin-coated on a 5 cm × 5 cm glass substrate (2000 rpm × 60 sec) to form a conductor film with a film thickness of about 0.1 μm, and then heated at 80 ° C. for 2 minutes on a hot plate. went. The surface resistance of the obtained glass substrate was measured by a two-terminal method (distance between electrodes: 20 mm) using Hiresta MCP-HT260 (manufactured by Mitsubishi Chemical Corporation) under the conditions of a temperature of 23 ° C. and a humidity of 55%. It was used as an index.

<耐水性試験>
上記と同様の条件で導電性高分子溶液をスピンコート塗布したガラス基板を120℃のホットプレートで15分間加熱し、ビーカー中の常温の水200mlに浸漬して目視で透明導電性高分子膜の溶解(溶出)の具合を観察した。なお、耐水性評価は以下の基準とした。
○:透明導電性高分子膜を形成したガラス基板をビーカー中の水に浸漬し3時間後、目視観察で透明導電性高分子膜が完全に残り、水に膜から由来する溶出(着色)が認められない。
×:透明導電性高分子膜を形成したガラス基板をビーカー中の水に浸漬した直後に、目視観察で透明導電性高分子膜の完全溶解が認められる。
<塩基性物質の定量>
固形分5%の導電性高分子溶液0.5mg中に、2mol/lの水酸化ナトリウム水溶液1mlを加え、この混合溶液をヘキサン5mlで4回抽出した。ヘキサン抽出液を合わせた後、内部標準として酢酸ブチル5μlを添加し、ガスクロマトグラフィー分析により塩基性物質を定量した。導電性高分子固形分中の塩基性物質の質量%を求めた。
<Water resistance test>
A glass substrate coated with a conductive polymer solution under the same conditions as described above was heated on a hot plate at 120 ° C. for 15 minutes, immersed in 200 ml of water at room temperature in a beaker, and the transparent conductive polymer film was visually observed. The degree of dissolution (elution) was observed. The water resistance evaluation was based on the following criteria.
○: The glass substrate on which the transparent conductive polymer film was formed was immersed in water in a beaker, and after 3 hours, the transparent conductive polymer film remained completely by visual observation, and elution (coloring) derived from the film in water. unacceptable.
X: Immediately after immersing the glass substrate on which the transparent conductive polymer film is formed in water in a beaker, complete dissolution of the transparent conductive polymer film is observed by visual observation.
<Quantification of basic substances>
1 ml of a 2 mol / l aqueous sodium hydroxide solution was added to 0.5 mg of a conductive polymer solution having a solid content of 5%, and this mixed solution was extracted four times with 5 ml of hexane. After the hexane extracts were combined, 5 μl of butyl acetate was added as an internal standard, and the basic substance was quantified by gas chromatography analysis. The mass% of the basic substance in the conductive polymer solid was determined.

(導電性高分子A)
2−アミノアニソール−4−スルホン酸1molを0℃で4mol/l濃度のトリエチルアミンの溶液(水:アセトニトリル=3:7)300mlに溶解し、ペルオキソ二硫酸アンモニウム1molを含む溶液(水:アセトニトリル=3:7)1L中に冷却下で滴下した。滴下終了後25℃で12時間攪拌したのち、反応生成物を遠心濾過器にて濾別後、メチルアルコールにて洗浄後乾燥し、導電性高分子Aの粉末185gを得た。Mwは13,700, Mnは3,400であった。
(Conductive polymer A)
1 mol of 2-aminoanisole-4-sulfonic acid is dissolved in 300 ml of a 4 mol / l triethylamine solution (water: acetonitrile = 3: 7) at 0 ° C., and a solution containing 1 mol of ammonium peroxodisulfate (water: acetonitrile = 3: 7) It was dripped in 1 L under cooling. After the completion of dropping, the mixture was stirred at 25 ° C. for 12 hours, and then the reaction product was filtered off with a centrifugal filter, washed with methyl alcohol and dried to obtain 185 g of a conductive polymer A powder. Mw was 13,700 and Mn was 3,400.

(導電性高分子水溶液A−0)
導電性高分子Aの粉末170gを水3230gに溶解し、固形分5質量%の導電性高分子の水溶液A−0を3400gを得た。
(Conductive polymer aqueous solution A-0)
170 g of the conductive polymer A powder was dissolved in 3230 g of water to obtain 3400 g of a conductive polymer aqueous solution A-0 having a solid content of 5% by mass.

(導電性高分子B)
2−アミノアニソール−4−スルホン酸1molを0℃で4mol/l濃度のピリジンの溶液(水:アセトニトリル=3:7)300mlに溶解し、ペルオキソ二硫酸アンモニウム1molを含む溶液(水:アセトニトリル=3:7)1L中に冷却下で滴下した。滴下終了後25℃で12時間攪拌したのち、反応生成物を遠心濾過器にて濾別後、メチルアルコールにて洗浄後乾燥し、導電性高分子Bの粉末185gを得た。Mwは12,100,Mnは3,100であった。
(Conductive polymer B)
1 mol of 2-aminoanisole-4-sulfonic acid is dissolved in 300 ml of a 4 mol / l pyridine solution (water: acetonitrile = 3: 7) at 0 ° C., and a solution containing 1 mol of ammonium peroxodisulfate (water: acetonitrile = 3: 7) It was dripped in 1 L under cooling. After the completion of dropping, the mixture was stirred at 25 ° C. for 12 hours, and then the reaction product was filtered off with a centrifugal filter, washed with methyl alcohol and dried to obtain 185 g of a conductive polymer B powder. Mw was 12,100 and Mn was 3,100.

(導電性高分子水溶液B−0)
導電性高分子Bの粉末160gを水3040gに溶解し、固形分5%の導電性高分子Bの水溶液3200gを得た。
(Conductive polymer aqueous solution B-0)
160 g of conductive polymer B powder was dissolved in 3040 g of water to obtain 3200 g of an aqueous solution of conductive polymer B having a solid content of 5%.

実施例1(導電性高分子水溶液A−1)
超純水により良く洗浄した陽イオン交換高分子(オルガノ製アンバーライトIR−120H)約100mlのカラムに、導電性高分子水溶液A−0を200g、10ml/分(SV=6)の速度で通すことで塩基を除去し、固形分5質量%の導電性高分子A−1の水溶液を得た。なお、1スベルドラップ(SV)は 1×10/s(1GL/s)と定義される。得られた導電性高分子水溶液の評価結果を表1に示す。
Example 1 (conductive polymer aqueous solution A-1)
Pass the aqueous conductive polymer solution A-0 at a rate of 200 g, 10 ml / min (SV = 6) through a column of about 100 ml of a cation exchange polymer (organo Amberlite IR-120H) washed thoroughly with ultrapure water. Then, the base was removed, and an aqueous solution of conductive polymer A-1 having a solid content of 5% by mass was obtained. One swedl lap (SV) is defined as 1 × 10 6 m 3 / s (1GL / s). Table 1 shows the evaluation results of the obtained conductive polymer aqueous solution.

実施例2(導電性高分子水溶液A−2)
導電性高分子水溶液A−0を300g、バイポーラ膜(BP−1E/CMB)を設置した電気透析装置(株式会社アストム製 アシライザーEX3B)の脱イオン室に入れ、電極液として1Nの水酸化ナトリウム水溶液、アルカリ液として0.1Nの水酸化ナトリウム水溶液を使用し、電圧31Vで電気透析を60分間行い、脱イオン室より固形分5質量%の導電性高分子水溶液A−2を320g得た。得られた導電性高分子水溶液の評価結果を表1に示す。
Example 2 (conductive polymer aqueous solution A-2)
300 g of conductive polymer aqueous solution A-0 and put in a deionization chamber of an electrodialysis apparatus (Assimilator EX3B manufactured by Astom Co., Ltd.) equipped with a bipolar membrane (BP-1E / CMB), and a 1N sodium hydroxide aqueous solution as an electrode solution Then, 0.1N sodium hydroxide aqueous solution was used as an alkaline solution, and electrodialysis was performed for 60 minutes at a voltage of 31 V, and 320 g of a conductive polymer aqueous solution A-2 having a solid content of 5% by mass was obtained from the deionization chamber. Table 1 shows the evaluation results of the obtained conductive polymer aqueous solution.

実施例3(導電性高分子水溶液B−1)
超純水により良く洗浄した陽イオン交換高分子(オルガノ製アンバーライトIR−120H)約100mlのカラムに、導電性高分子水溶液B−0を200g、10ml/分(SV=6)の速度で通し、固形分5質量%の導電性高分子B−1水溶液を得た。
得られた導電性高分子水溶液の評価結果を表1に示す。
Example 3 (Conductive polymer aqueous solution B-1)
Through a column of about 100 ml of a cation exchange polymer (organo Amberlite IR-120H) washed well with ultrapure water, 200 g of the conductive polymer aqueous solution B-0 was passed at a rate of 10 ml / min (SV = 6). A conductive polymer B-1 aqueous solution having a solid content of 5% by mass was obtained.
Table 1 shows the evaluation results of the obtained conductive polymer aqueous solution.

比較例1(導電性高分子水溶液A−0)
導電性高分子水溶液A−0をイオン交換法による処理を行わずに各評価を行った。評価結果を表1に示す。塩基性物質が除去されていないため、導電性、耐水性が不十分なものとなった。
Comparative Example 1 (Conductive Polymer Aqueous Solution A-0)
Each evaluation was performed for the conductive polymer aqueous solution A-0 without performing the treatment by the ion exchange method. The evaluation results are shown in Table 1. Since the basic substance was not removed, the conductivity and water resistance were insufficient.

比較例2(導電性高分子水溶液B−0)
導電性高分子水溶液B−0をイオン交換法による処理を行わずに導電体膜を形成し、各評価を行った。評価結果を表1に示す。塩基性物質が除去されていないため、導電性、耐水性が不十分なものとなった。
Comparative Example 2 (Conductive polymer aqueous solution B-0)
A conductive film was formed on the conductive polymer aqueous solution B-0 without performing the treatment by the ion exchange method, and each evaluation was performed. The evaluation results are shown in Table 1. Since the basic substance was not removed, the conductivity and water resistance were insufficient.

比較例3(導電性高分子水溶液A−3)
導電性高分子Aの粉末15gを1モル/リットルのp−トルエンスルホン酸のアセトン溶液中で1時間攪拌し、ろ別洗浄後、乾燥し、重合体粉末を10g得た。
この重合体粉末5重量部を水100重量部に室温下にて溶解して固形分5質量%の導電性高分子水溶液A−3の5%水溶液を得た。
得られた導電性高分子水溶液の評価結果を表1に示す。導電性高分子Aを酸含有溶液で処理したが、塩基性物質の除去が不十分で、導電性、耐水性が不十分なものとなった。
Comparative Example 3 (Conductive Polymer Aqueous Solution A-3)
15 g of the conductive polymer A powder was stirred in an acetone solution of 1 mol / liter of p-toluenesulfonic acid for 1 hour, washed by filtration and dried to obtain 10 g of polymer powder.
5 parts by weight of this polymer powder was dissolved in 100 parts by weight of water at room temperature to obtain a 5% aqueous solution of a conductive polymer aqueous solution A-3 having a solid content of 5% by mass.
Table 1 shows the evaluation results of the obtained conductive polymer aqueous solution. Although the conductive polymer A was treated with an acid-containing solution, the basic substance was not sufficiently removed, and the conductivity and water resistance were insufficient.

Claims (3)

水溶性導電性高分子、溶剤及び塩基性物質を含有する導電性高分子溶液であり、水溶性導電性高分子に対する塩基性物質の比率が1質量%以下である導電性高分子溶液。 A conductive polymer solution containing a water-soluble conductive polymer, a solvent and a basic substance, wherein the ratio of the basic substance to the water-soluble conductive polymer is 1% by mass or less. 酸性基置換アニリンがアルコキシ置換アミノベンゼンスルホン酸である請求項1記載の導電性高分子脂溶液。 The conductive polymer fat solution according to claim 1, wherein the acidic group-substituted aniline is an alkoxy-substituted aminobenzenesulfonic acid. 酸性基置換アニリンを塩基性物質の存在下で重合させて得られた導電性高分子を含む溶液から、イオン交換法にて塩基性物質を除去する請求項1または2記載の導電性高分子溶液の製造方法。 The conductive polymer solution according to claim 1 or 2, wherein the basic substance is removed by an ion exchange method from a solution containing a conductive polymer obtained by polymerizing acidic group-substituted aniline in the presence of the basic substance. Manufacturing method.
JP2010243887A 2009-10-29 2010-10-29 Conductive polymer solution and method for producing the same Active JP5630647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243887A JP5630647B2 (en) 2009-10-29 2010-10-29 Conductive polymer solution and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009248521 2009-10-29
JP2009248521 2009-10-29
JP2010243887A JP5630647B2 (en) 2009-10-29 2010-10-29 Conductive polymer solution and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011116967A true JP2011116967A (en) 2011-06-16
JP5630647B2 JP5630647B2 (en) 2014-11-26

Family

ID=44282647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243887A Active JP5630647B2 (en) 2009-10-29 2010-10-29 Conductive polymer solution and method for producing the same

Country Status (1)

Country Link
JP (1) JP5630647B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144608A1 (en) * 2011-04-20 2012-10-26 三菱レイヨン株式会社 Conductive composition, conductor using conductive composition, and solid electrolytic capacitor
US9799420B2 (en) 2010-10-26 2017-10-24 Mitsubishi Chemical Corporation Conductive aniline polymer, method for producing same, and method for producing conductive film
JP2020132667A (en) * 2019-02-13 2020-08-31 三菱ケミカル株式会社 Conductive polymer and conductive composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741756A (en) * 1993-05-28 1995-02-10 Showa Denko Kk Antistatic material, elimination, observation or check of static charge therewith and article made antistatic
JPH07179754A (en) * 1993-12-22 1995-07-18 Fujitsu Ltd Composition for forming electrically conductive agent and method for forming pattern
JPH08259673A (en) * 1995-03-24 1996-10-08 Showa Denko Kk Aqueous solution of electrically-conductive polymer and its manufacture and storage
JP2006213924A (en) * 1993-05-31 2006-08-17 Showa Denko Kk Aqueous and organic solution including conductive polymer and support medium including conductive polymer obtained from the solution
JP2009079092A (en) * 2007-09-25 2009-04-16 Mitsui Chemicals Inc Polymer compound and organic electroluminescent element containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741756A (en) * 1993-05-28 1995-02-10 Showa Denko Kk Antistatic material, elimination, observation or check of static charge therewith and article made antistatic
JP2006213924A (en) * 1993-05-31 2006-08-17 Showa Denko Kk Aqueous and organic solution including conductive polymer and support medium including conductive polymer obtained from the solution
JPH07179754A (en) * 1993-12-22 1995-07-18 Fujitsu Ltd Composition for forming electrically conductive agent and method for forming pattern
JPH08259673A (en) * 1995-03-24 1996-10-08 Showa Denko Kk Aqueous solution of electrically-conductive polymer and its manufacture and storage
JP2009079092A (en) * 2007-09-25 2009-04-16 Mitsui Chemicals Inc Polymer compound and organic electroluminescent element containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799420B2 (en) 2010-10-26 2017-10-24 Mitsubishi Chemical Corporation Conductive aniline polymer, method for producing same, and method for producing conductive film
WO2012144608A1 (en) * 2011-04-20 2012-10-26 三菱レイヨン株式会社 Conductive composition, conductor using conductive composition, and solid electrolytic capacitor
JP6020165B2 (en) * 2011-04-20 2016-11-02 三菱レイヨン株式会社 Conductive composition, conductor using the conductive composition, and solid electrolytic capacitor
US9679673B2 (en) 2011-04-20 2017-06-13 Mitsubishi Rayon Co., Ltd. Conductive composition, conductor and solid electrolytic capacitor using conductive composition
JP2020132667A (en) * 2019-02-13 2020-08-31 三菱ケミカル株式会社 Conductive polymer and conductive composition
JP7279389B2 (en) 2019-02-13 2023-05-23 三菱ケミカル株式会社 Method for producing conductive polymer and method for producing conductive composition

Also Published As

Publication number Publication date
JP5630647B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP6604357B2 (en) Conductive composition
EP2965803B1 (en) Functional polymer membrane and manufacturing method therefor
Wang et al. Polyelectrolyte complex/PVA membranes for diffusion dialysis
CN104725856B (en) Conductive composition and the electric conductor and solid electrolytic capacitor of above-mentioned conductive composition are used
TWI537306B (en) Conductive aniline-type polymer, method for producing thereof, and method for producing conductive film
JP2010116441A (en) Conductive composition for capacitor electrode
Mondal et al. Preparation of polyvinylidene fluoride blend anion exchange membranes via non-solvent induced phase inversion for desalination and fluoride removal
JP6903864B2 (en) Antistatic film, laminate and its manufacturing method, and photomask manufacturing method
CN102869702A (en) Conductive polymer, quality control method for conductive polymer and method for purifying conductive polymer
JP5630647B2 (en) Conductive polymer solution and method for producing the same
CN105289338B (en) Polyether sulfone/polyvinylidene fluoride blending film with supporting layer and preparation method thereof
Mandal et al. Selective recovery of carboxylic acid through PVDF blended anion exchange membranes using electrodialysis
CN103157388A (en) Hydrophilic reverse osmosis composite membrane and preparation method thereof
CN102179189A (en) Preparation method of pollution-resisting polyvinylidene fluoride ultrafiltration membrane
JP2010067448A (en) Manufacturing method of conductor
CN112742222A (en) Preparation method of PVC aliphatic zwitterionic ion exchange membrane
JP5533172B2 (en) Method for producing conductive resin composition
CN104548963A (en) Method for hydrophilic charged ultrafiltration membrane by blending with AM-AMPS copolymer
JPH08143664A (en) Aniline-based electrically conductive polymeric film and its production
JP2022011547A (en) Separation membrane and method for producing the same
CN111992259A (en) Side chain type anion exchange membrane and preparation method thereof
CN111135876A (en) Preparation method of anti-pollution aliphatic PVC anion exchange membrane
JP2014201733A (en) Production method for aniline-based conductive polymer
JP2014098062A (en) Method for producing conductive aniline-based polymer
JP2015081299A (en) Method of purifying aniline-based conductive polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140813

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R151 Written notification of patent or utility model registration

Ref document number: 5630647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250