JP2011114905A - Micro-grid system - Google Patents

Micro-grid system Download PDF

Info

Publication number
JP2011114905A
JP2011114905A JP2009267489A JP2009267489A JP2011114905A JP 2011114905 A JP2011114905 A JP 2011114905A JP 2009267489 A JP2009267489 A JP 2009267489A JP 2009267489 A JP2009267489 A JP 2009267489A JP 2011114905 A JP2011114905 A JP 2011114905A
Authority
JP
Japan
Prior art keywords
power
power supply
grid
load
operation mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009267489A
Other languages
Japanese (ja)
Other versions
JP5468883B2 (en
Inventor
Hiroyuki Masuno
宏幸 増野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009267489A priority Critical patent/JP5468883B2/en
Publication of JP2011114905A publication Critical patent/JP2011114905A/en
Application granted granted Critical
Publication of JP5468883B2 publication Critical patent/JP5468883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine a target value of power at an interconnection point based on a predicted value of power generation by a naturally varying power supply without use of climate forecasting information to enhance the power quality at the interconnection point, and to provide a simple and inexpensive micro-grid system. <P>SOLUTION: The micro-grid system 1 includes a photovoltaic power generating device 10 having a power conditioner 2 converting DC power into AC power, a storage battery power supply 4 having an automatic control mode transition function for a grid-connected operation mode and an independent operation mode, and a system stabilization device 7 monitoring and controling the operating states of the photovoltaic power generating device 10 and the storage battery power supply 4, and supplies power to a load 9. In the grid-connected operation mode, the system stabilization device 7 computes a target value of power at an interconnection point before a preset time. This computation is carried out for output of the photovoltaic power generating device 10 and prediction of a change of the load 9 through comparison with past values. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、マイクログリッドシステムに係り、特に、系統連系点における電力品質を向上することのできるマイクログリッドシステムに関するものである。   The present invention relates to a microgrid system, and more particularly to a microgrid system capable of improving power quality at a grid connection point.

一般に、自然変動電源装置を利用した発電システム、例えば太陽光発電システムにおいては、連系される電力系統に対して、天候条件によって変動する発電量をそのまま出力しているので、太陽光発電システムの規模が大きくなると、発電電力変動にともない発電周波数が大きく変動するか、または発電電圧が大きく変動するという問題がある。
そこで、従来から、太陽光発電出力を事前に予測することにより系統連系点での潮流目標値を決定した上で、発電量の変動分を補うように他の発電システムとの組合せ運転を行い、太陽光発電システムが連系される電力系統全体の安定化を図る系統安定化装置が用いられている。
In general, in a power generation system using a natural power supply device, for example, a solar power generation system, a power generation amount that fluctuates depending on weather conditions is output as it is to a connected power system. When the scale increases, there is a problem that the generated frequency fluctuates greatly or the generated voltage fluctuates greatly as the generated power fluctuates.
Therefore, conventionally, the tidal current target value at the grid connection point is determined by predicting the photovoltaic power generation output in advance, and then combined operation with other power generation systems is performed to compensate for the fluctuation in power generation amount. A system stabilizing device that stabilizes the entire power system connected to the photovoltaic power generation system is used.

この系統安定化装置として、例えば特許文献1においては、系統連系点での潮流目標値を事前に決定する際、気象予測情報に基づき予め決められた太陽光発電の発電予測値に基づいて決定されている。また、例えば特許文献2においては、この予め決められた太陽光発電の発電予測値と実際の太陽光発電電力との誤差を予測して系統連系点での潮流目標値を決定している。   As this system stabilization device, for example, in Patent Document 1, when the tidal current target value at the grid connection point is determined in advance, it is determined based on the predicted power generation value of photovoltaic power generation that is determined in advance based on weather prediction information. Has been. Further, for example, in Patent Document 2, a target current value at a grid interconnection point is determined by predicting an error between the predetermined power generation predicted value of solar power generation and actual solar power generation power.

特開2004−312797号公報JP 2004-312797 A 特開2008−54385号公報JP 2008-54385 A

前記特許文献1あるいは特許文献2に開示された従来の系統安定化装置では、季節、天候、風速、風向、気温などの気象予測情報と相関関係のあるデータ、および地形データに基づき予め決められた太陽光発電の発電予測値に基づいて系統連系点での潮流目標値を決定しているので、必ず気象予測情報を持つ自然エネルギー予測装置が必要となって、装置が複雑となり、高価なものとなる課題があった。   In the conventional system stabilizing device disclosed in Patent Document 1 or Patent Document 2, it is predetermined based on data correlated with weather forecast information such as season, weather, wind speed, wind direction, temperature, and terrain data. Since the tidal current target value at the grid connection point is determined based on the predicted power generation value of photovoltaic power generation, a natural energy prediction device that always has weather prediction information is required, making the device complicated and expensive. There was a problem.

また、マイクログリッド(小規模電力網)システムの需要が見込まれる離島などの気象予測情報が無い地域では、事前に気象予測情報を採取する必要があった。更に、気象予測情報という、自然の成り行き任せで制御不能の情報を用いてマイクログリッドシステムの地域内でエネルギーの自給自足を行うシステムにおいては、太陽光発電システムの発電電力変動によって、システム全体の電力品質(周波数変更許容値、電圧変動許容値など)が満足できないものとなる課題があった。   In areas where there is no weather forecast information such as remote islands where demand for microgrid (small power grid) systems is expected, it was necessary to collect weather forecast information in advance. Furthermore, in a system that performs self-sufficiency of energy within the area of the microgrid system using information that is uncontrollable due to natural events, such as weather forecast information, the power of the entire system is affected by fluctuations in the power generation of the solar power generation system. There has been a problem that the quality (frequency change allowable value, voltage fluctuation allowable value, etc.) cannot be satisfied.

この発明は、前記課題を解決するためになされたものであり、自然変動電源装置の発電予測値に基づいて系統連系点での潮流目標値を決定する際に、気象予測情報を用いることなく決定し、系統連系点における電力品質を向上すると共に、簡易で廉価なマイクログリッドシステムを提供するものである。   The present invention has been made to solve the above-mentioned problem, and without using weather prediction information when determining a tidal current target value at a grid interconnection point based on a power generation prediction value of a naturally varying power supply device. In addition to improving the power quality at the grid connection point, a simple and inexpensive microgrid system is provided.

この発明に係るマイクログリッドシステムは、直流電力を交流電力に変換するパワーコンディショナーを備えた自然変動電源装置と、連系運転モード及び自立運転モードの制御モード自動遷移機能を有する二次電池電源と、前記自然変動電源装置及び前記二次電池電源の運転状態を監視制御する系統安定化装置と、を備え、負荷へ電力を供給するマイクロ
グリッドシステムであって、前記系統安定化装置は、系統連系運転モード時に、設定時間前における連系点の潮流目標値を算出するものであって、前記算出は、前記自然変動電源装置の出力、及び前記負荷の変化の予測を、過去値との照合により実行するものである。
A microgrid system according to the present invention includes a natural variation power supply device including a power conditioner that converts direct current power into alternating current power, a secondary battery power source having a control mode automatic transition function of the interconnection operation mode and the independent operation mode, A grid stabilization device that monitors and controls the operating state of the natural fluctuation power supply device and the secondary battery power supply, and supplies power to a load, wherein the grid stabilization device is connected to a grid connection Calculating the tidal current target value of the interconnection point before the set time in the operation mode, wherein the calculation is performed by comparing the output of the natural variation power supply device and the change of the load with a past value. It is something to execute.

この発明に係るマイクログリッドシステムの系統安定化装置は、系統連系運転モード時に、設定時間前における連系点の潮流目標値を算出するものであって、前記算出は、自然変動電源装置の出力、及び前記負荷の変化の予測を、過去値との照合により実行するので、系統連系点での潮流目標値を決定する際に、気象予測情報を用いることなく決定し、系統連系点における電力品質を向上すると共に、簡易で廉価なマイクログリッドシステムを提供できる。   A grid stabilization device for a microgrid system according to the present invention calculates a target power value at a connection point before a set time in a grid connection operation mode, and the calculation is performed by an output of a naturally varying power supply device. , And the load change is predicted by comparing with the past value, so when determining the tidal current target value at the grid connection point, it is determined without using the weather forecast information, and at the grid connection point, In addition to improving power quality, a simple and inexpensive microgrid system can be provided.

この発明の実施の形態1に係るマイクログリッドシステムの構成図である。1 is a configuration diagram of a microgrid system according to Embodiment 1 of the present invention. FIG. この発明の実施の形態1に係る系統安定化装置の内部構成を示す図である。It is a figure which shows the internal structure of the system | strain stabilization apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る系統安定化装置での系統連系点に係る目標潮流値の策定方法を説明する図である。It is a figure explaining the formulation method of the target tidal current value which concerns on the grid connection point in the grid stabilization apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る系統安定化装置の内部構成を示す図である。It is a figure which shows the internal structure of the system | strain stabilization apparatus which concerns on Embodiment 2 of this invention.

以下、添付の図面を参照して、この発明に係るマイクログリッドシステムについて好適な実施の形態を説明する。なお、この実施の形態によりこの発明が限定されるものではなく、諸種の設計的変更をも包摂するものである。   Preferred embodiments of a microgrid system according to the present invention will be described below with reference to the accompanying drawings. It should be noted that the present invention is not limited to this embodiment, and includes various design changes.

実施の形態1.
図1は、実施の形態1に係るマイクログリッドシステムの構成図である。図1において、マイクログリッドシステム1は、主に太陽光発電パネル2、太陽光発電用パワーコンディショナー3、二次電池装置(以下、蓄電池電源という。)4、蓄電池電源用双方向インバータ5、熱機関発電装置であるディーゼル発電装置6、系統安定化装置7で構成され、遮断器8で系統と連系して負荷9に電力を供給する。蓄電池電源4は、連系運転モード及び自立運転モードの制御モード自動遷移機能を有している。また、ディーゼル発電装置6は、連系運転時は停止し、自立運転時の供給電力が不足した時に運転する。なお、太陽光発電パネル2と太陽光発電用パワーコンディショナー3により、太陽光発電装置10が構成されている。また、図1中の符号11乃至14は、それぞれ遮断器を示している。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a microgrid system according to the first embodiment. In FIG. 1, a microgrid system 1 mainly includes a photovoltaic power generation panel 2, a photovoltaic power conditioner 3, a secondary battery device (hereinafter referred to as a storage battery power supply) 4, a storage battery power bidirectional inverter 5, a heat engine. The power generator is composed of a diesel power generator 6 and a system stabilizing device 7. The circuit breaker 8 is connected to the system to supply power to the load 9. The storage battery power supply 4 has a control mode automatic transition function of the interconnection operation mode and the independent operation mode. The diesel power generator 6 is stopped during the interconnected operation, and is operated when the power supplied during the independent operation is insufficient. The photovoltaic power generation device 10 is configured by the photovoltaic power generation panel 2 and the photovoltaic power conditioner 3. Reference numerals 11 to 14 in FIG. 1 denote circuit breakers, respectively.

太陽光発電用パワーコンディショナー3は、太陽光発電パネル2から出力される直流電力を交流電力に変換するものであり、蓄電池電源用双方向インバータ5は、蓄電池電源4からの直流電力を交流電力に変換するものである。太陽光発電用パワーコンディショナー3及び蓄電池電源用双方向インバータ5は、それぞれ、系統安定化装置7から光ループネットワーク15で監視・制御されるようになっている。   The photovoltaic power conditioner 3 converts the DC power output from the photovoltaic panel 2 into AC power, and the storage battery power bidirectional inverter 5 converts the DC power from the storage battery power 4 into AC power. To convert. The photovoltaic power conditioner 3 and the storage battery power bidirectional inverter 5 are each monitored and controlled by the optical loop network 15 from the system stabilizing device 7.

また、系統安定化装置7は、太陽光発電用パワーコンディショナー3、蓄電池電源用双方向インバータ5、及びディーゼル発電装置6と光ループネットワーク15で通信し、後述するような系統安定化機能を有するものである。   The system stabilizing device 7 communicates with the photovoltaic power conditioner 3, the storage battery power bidirectional inverter 5, and the diesel power generating device 6 through the optical loop network 15, and has a system stabilizing function as described later. It is.

図2は、系統安定化装置7の内部構成を示す図である。系統安定化装置7は、図2に示すように、系統安定化機能(潮流通告値制御)、即ち、系統連系運転モード時、太陽光発電パネル2の出力、及び蓄電池電源4の残量を考慮し、設定時間(t分)前に連系点の目標潮流値の策定を実施する機能を有している。また、系統安定化装置7は、系統連系運転切替制御、太陽光発電パネル2の起動停止制御、太陽光発電パネル2の出力抑制制御、デ
ィーゼル発電装置6の起動停止制御、蓄電池電源4の起動停止制御、その他の制御機能を併せて有している。
FIG. 2 is a diagram showing an internal configuration of the system stabilizing device 7. As shown in FIG. 2, the grid stabilization device 7 determines the output of the photovoltaic power generation panel 2 and the remaining amount of the storage battery power supply 4 in the grid stabilization function (tidal distribution notification control), that is, in the grid interconnection operation mode. In consideration of this, it has a function of developing a target tidal current value at a connection point before a set time (t minutes). In addition, the grid stabilization device 7 includes grid interconnection operation switching control, startup / stop control of the photovoltaic power generation panel 2, output suppression control of the photovoltaic power generation panel 2, startup / stop control of the diesel power generation device 6, and startup of the storage battery power source 4. It also has stop control and other control functions.

実施の形態1に係るマイクログリッドシステム1は、前記のように構成されており、次に系統安定化装置7での系統連系点における目標潮流値の策定方法について説明する。   The microgrid system 1 according to the first embodiment is configured as described above. Next, a method for formulating a target power flow value at a grid interconnection point in the grid stabilization device 7 will be described.

図3は、系統連系点(図1の遮断器8)における目標潮流値の策定方法を説明する図である。図1の系統安定化装置7において、系統連系運転モード時、太陽光発電用パワーコンディショナー3の出力、及び蓄電池電源4の残量を考慮し、設定時間(例えば、0〜30分の可変時間)前に目標潮流値を電力会社に通告し、通告後からは通告値を30分間維持する制御を実施する。   FIG. 3 is a diagram for explaining a method of formulating a target power flow value at the grid connection point (breaker 8 in FIG. 1). In the grid stabilization device 7 of FIG. 1, a set time (for example, a variable time of 0 to 30 minutes) in consideration of the output of the power conditioner 3 for photovoltaic power generation and the remaining amount of the storage battery power supply 4 in the grid connection operation mode. ) Notify the target power flow value to the electric power company before, and implement the control to maintain the notification value for 30 minutes after the notification.

前記系統連系点における目標潮流値の策定に使用するデータは、蓄電池電源4の残量(SOC)、過去1週間分の現時点から30分毎の太陽光発電用パワーコンディショナー3における出力の30分積算値(ΣtPpv)、及び過去1週間分の現時点からの30分毎の負荷9の30分積算値(ΣtPld)となる。以後「積算値」とは「30分積算値」を意味する。なお、前記「過去1週間分」あるいは「30分毎」は一つの例であり、これに限定されるものではない。   The data used for formulating the target power flow value at the grid connection point is the remaining amount (SOC) of the storage battery power supply 4 and the output of the power conditioner 3 for photovoltaic power generation 3 every 30 minutes from the present for the past week. The integrated value (ΣtPpv) and the 30-minute integrated value (ΣtPld) of the load 9 every 30 minutes from the present time for the past one week. Hereinafter, “integrated value” means “30 minutes integrated value”. The “past week” or “every 30 minutes” is an example, and the present invention is not limited to this.

まず、類似の太陽光発電用パワーコンディショナー3の出力パターンを選定する方法について説明する。
図3より、過去の積算値との照合は、現在点の30分積算値ΣtPpvaと過去の積算値ΣtPpv‐との偏差が許容値α内かで実施する。
|ΣtPpva−ΣtPpv‐|≦α (1)
但し、αはΣtPpv‐の10%とする。
First, a method for selecting an output pattern of a similar photovoltaic power conditioner 3 will be described.
As shown in FIG. 3, the comparison with the past integrated value is performed when the deviation between the 30-minute integrated value ΣtPpva at the current point and the past integrated value ΣtPpv− is within the allowable value α.
| ΣtPpva−ΣtPpv− | ≦ α (1)
However, α is 10% of ΣtPpv−.

ここでは、前日の同時刻の30分間の積算値との照合を行う。この積算値が(1)式を満たさない場合は、過去1週間の同時刻の積算値と照合し、類似の発電状態の積算値を選定する。過去1週間のデータで合致するものが無い場合は、現在点の積算値ΣtPpvaを選定する。もし過去の積算値で選定し得るものがあればそれをΣtPpv‐とする。   Here, collation with the integrated value for 30 minutes at the same time on the previous day is performed. If this integrated value does not satisfy the expression (1), the integrated value at the same time in the past one week is collated and an integrated value in a similar power generation state is selected. If there is no match in the data for the past one week, the integrated value ΣtPpva at the current point is selected. If there is a past integrated value that can be selected, it is set as ΣtPpv−.

次に、類似の負荷9のパターンを選定する方法について説明する。
同様に、図3より、過去の積算値との照合は、現在点の30分積算値ΣtPldaと過去の積算値ΣtPld‐との偏差が許容値β内かで実施する。
|ΣtPlda−ΣtPld‐|≦β (2)
但し、βはΣtPld‐の10%とする。
Next, a method of selecting a similar load 9 pattern will be described.
Similarly, referring to FIG. 3, the comparison with the past integrated value is performed when the deviation between the 30-minute integrated value ΣtPlda at the current point and the past integrated value ΣtPld− is within the allowable value β.
| ΣtPlda−ΣtPld− | ≦ β (2)
However, β is 10% of ΣtPld−.

ここでは、前日の同時刻の30分間の積算値との照合を行う。この積算値が(2)式を満たさない場合は、過去1週間の同時刻の積算値と照合し、類似の負荷パターンの積算値を選定する。過去1週間のデータで合致するものが無い場合は、現在点の積算値ΣtPldaを選定する。もし過去の積算値で選定し得るものがあれば、それをΣtPld‐とする。   Here, collation with the integrated value for 30 minutes at the same time on the previous day is performed. If this integrated value does not satisfy the expression (2), the integrated value of the similar load pattern is selected by comparing with the integrated value at the same time in the past week. If there is no match in the data for the past week, the integrated value ΣtPlda at the current point is selected. If there is a past integrated value that can be selected, it is set as ΣtPld−.

以上より、予測値電力の求め方について説明する。
選定した過去の積算値「ΣtPpv‐、ΣtPld‐」の次の30分の積算値を「ΣtPpv0、ΣtPld0」、30分〜60分の積算値を「ΣtPpv1、ΣtPld1」として、30分、1時間の予測値を以下のようにして過去値からの比例値として求める。
From the above, how to obtain the predicted value power will be described.
The integrated value for the next 30 minutes of the selected past integrated value “ΣtPpv−, ΣtPld−” is set to “ΣtPpv0, ΣtPld0”, and the integrated value for 30 minutes to 60 minutes is set to “ΣtPpv1, ΣtPld1” for 30 minutes, 1 hour. The predicted value is obtained as a proportional value from the past value as follows.

太陽光発電用パワーコンディショナー3の出力において、図3で現時点〜t分後の予測電力積算値(電力量)ΣEtPpv0は、現在の次の30分の積算値がΣtPpv0であ
ることから見て、ΣtPpvaとΣtPpv‐の比に比例するものとし、更にt分後までは時間比がt/30であるから、
ΣEtPpv0=
ΣtPpv0×(ΣtPpva/ΣtPpv‐)×t/30 (3)のように算出される。
In the output of the power conditioner 3 for photovoltaic power generation, the predicted power integration value (power amount) ΣEtPpv0 after the current time to t minutes in FIG. Is proportional to the ratio of ΣtPpv−, and the time ratio is t / 30 until t minutes later.
ΣEtPpv0 =
ΣtPpv0 × (ΣtPpva / ΣtPpv−) × t / 30 (3)

また同様に、t分後(今回通告値での制御開始)〜(t+30分)後の予測電力積算値(電力量)ΣEPpv1は、
ΣEPpv1=
(ΣtPpv0×(30−t)/30+ΣtPpv1×t/30)×
(ΣtPpva/ΣtPpv‐) (4)
のように算出される。
Similarly, the predicted power integrated value (power amount) ΣEPpv1 after t minutes (control start at this notification value) to (t + 30 minutes) is
ΣEPpv1 =
(ΣtPpv0 × (30−t) / 30 + ΣtPpv1 × t / 30) ×
(ΣtPpva / ΣtPpv−) (4)
It is calculated as follows.

同じ考えで、負荷9における現時点〜t分後の予測電力積算値(電力量)ΣEtPld0は、
ΣEtPld0=
ΣtPld0×(ΣtPlda/ΣtPld‐)×t/30 (5)となり、t分後(今回通告値での制御開始)〜(t+30分)後の予測電力積算値(電力量)ΣEPld1は、
ΣEPld1=
(ΣtPld0×(30−t)/30+ΣtPld1×t/30)×
(ΣtPlda/ΣtPld‐) (6)
のように算出される。
Based on the same idea, the predicted power integrated value (power amount) ΣEtPld0 after the current to t minutes in the load 9 is
ΣEtPld0 =
ΣtPld0 × (ΣtPlda / ΣtPld−) × t / 30 (5), and the predicted power integrated value (power amount) ΣEPld1 after t minutes (control start at the current notification value) to (t + 30 minutes)
ΣEPld1 =
(ΣtPld0 × (30−t) / 30 + ΣtPld1 × t / 30) ×
(ΣtPlda / ΣtPld−) (6)
It is calculated as follows.

以上のように、実施の形態1に係るマイクログリッドシステム1の系統安定化装置7では、気象予測情報を使用せず過去値を使用して、太陽光発電用パワーコンディショナー3の出力積算量と負荷9の積算量を求め、系統連系点における目標潮流値を策定出来る。従って、系統連系点における電力品質を向上すると共に、簡易で廉価なマイクログリッドシステムを提供することができる。   As described above, in the system stabilizing device 7 of the microgrid system 1 according to the first embodiment, the past value is used without using the weather prediction information, and the integrated output amount and load of the photovoltaic power conditioner 3 are used. The integrated amount of 9 can be obtained, and the target power flow value at the grid connection point can be established. Therefore, it is possible to improve the power quality at the grid connection point and provide a simple and inexpensive microgrid system.

実施の形態2.
次に、実施の形態2に係るマイクログリッドシステムについて説明する。実施の形態1では、系統安定化装置7において、太陽光発電用パワーコンディショナーの出力、及び負荷の変化の予測を、過去値との照合により実施する方法について説明したが、実施の形態2は、太陽光発電用パワーコンディショナーの出力、及び負荷の変化の予測を、現状値が継続するとして実施するものである。
Embodiment 2. FIG.
Next, a microgrid system according to Embodiment 2 will be described. In Embodiment 1, although the system stabilization apparatus 7 demonstrated the method of implementing the output of a photovoltaic power conditioner, and prediction of a load change by collation with a past value, Embodiment 2 is The output of the power conditioner for photovoltaic power generation and the prediction of the load change are carried out assuming that the current value continues.

図4は、実施の形態2に係る系統安定化装置の内部構成を示す図である。実施の形態2に係る系統安定化装置7は、図4に示すように、系統安定化機能(潮流通告値制御)として、太陽光発電用パワーコンディショナーの出力、及び負荷の変化を現状値が継続するとして連系点の目標潮流値の策定を実施する機能を有している。なお、その他の構成については、実施の形態1と同様である。   FIG. 4 is a diagram illustrating an internal configuration of the system stabilizing device according to the second embodiment. As shown in FIG. 4, the system stabilization device 7 according to the second embodiment continues to output changes of the power conditioner for photovoltaic power generation and the load as a system stabilization function (tidal distribution notification value control). As a result, it has a function to formulate the target tidal current value of the connection point. Other configurations are the same as those in the first embodiment.

実施の形態2に係る系統安定化装置7においては、太陽光発電用パワーコンディショナー3の出力における、現時点〜t分後の予測電力積算値(電力量)ΣEtPpv0は、
ΣEtPpv0=ΣtPpva×t/30 (7)
In the system stabilizing device 7 according to Embodiment 2, the predicted power integrated value (power amount) ΣEtPpv0 after the current to t minutes in the output of the power conditioner 3 for photovoltaic power generation is
ΣEtPpv0 = ΣtPpva × t / 30 (7)

また同様に、t分後(今回通告値での制御開始)〜(t+30分)後の予測電力積算値(電力量)ΣEPpv1は、
ΣEPpv1=ΣtPpva (8)
のように算出される。
Similarly, the predicted power integrated value (power amount) ΣEPpv1 after t minutes (control start at this notification value) to (t + 30 minutes) is
ΣEPpv1 = ΣtPpva (8)
It is calculated as follows.

同じ考えで、負荷9における現時点〜t分後の予測電力積算値(電力量)は、
ΣEtPld0=ΣtPlda×t/30 (9)
となり、t分後(今回通告値での制御開始)〜(t+30分)後の予測電力積算値(電力量)ΣEPld1は、
ΣEPld1=ΣtPlda (10)
のように算出される。
Based on the same idea, the predicted power integrated value (power amount) after t minutes from the present time in the load 9 is
ΣEtPld0 = ΣtPlda × t / 30 (9)
The predicted power integrated value (power amount) ΣEPld1 after t minutes (control start at this notification value) to (t + 30 minutes) is
ΣEPld1 = ΣtPlda (10)
It is calculated as follows.

以上のように、実施の形態2に係るマイクログリッドシステム1の系統安定化装置7では、太陽光発電用パワーコンディショナー3の出力、及び負荷9において、過去のデータで合致するものが無かった場合においても、連系点の目標潮流値の策定を実施することができる。従って、実施の形態1と同様に、系統連系点における電力品質を向上すると共に、簡易で廉価なマイクログリッドシステムを提供することができる。   As described above, in the grid stabilization device 7 of the microgrid system 1 according to the second embodiment, when the output of the photovoltaic power conditioner 3 and the load 9 are not matched in past data. In addition, it is possible to formulate the target tidal current value at the connection point. Therefore, as in the first embodiment, it is possible to improve the power quality at the grid connection point and provide a simple and inexpensive microgrid system.

以上、実施の形態1あるいは実施の形態2に係るマイクログリッドシステム1について図示説明したが、マイクログリッドシステム1に、実施の形態1に係る機能と実施の形態2に係る機能と併せ持つ系統安定化装置7を備えると共に、両者を切替える手段を備えることにより、前記に説明した方法により、連系点の目標潮流値の策定を実施してもよい。なお、この場合、実施の形態1に係る機能と実施の形態2に係る機能と併せ持つ系統安定化装置7、及び両者を切替える手段は、一体に構成しても別体に構成してもかまわない。   As described above, the microgrid system 1 according to the first embodiment or the second embodiment has been illustrated and described. However, the system stabilization apparatus having the function according to the first embodiment and the function according to the second embodiment in the microgrid system 1. 7 and means for switching between the two may be used to formulate the target flow value at the interconnection point by the method described above. In this case, the system stabilizing device 7 having both the function according to the first embodiment and the function according to the second embodiment, and the means for switching both may be configured integrally or separately. .

1 マイクログリッド
2 太陽光発電パネル
3 太陽光発電用パワーコンディショナー
4 蓄電池電源
5 蓄電池電源用双方向インバータ
6 ディーゼル発電装置
7 系統安定化装置
8、11〜14 遮断器
9 負荷
10 太陽光発電装置
15 光ループネットワーク
DESCRIPTION OF SYMBOLS 1 Microgrid 2 Solar power generation panel 3 Photovoltaic power conditioner 4 Storage battery power supply 5 Bidirectional inverter 6 for storage battery power supply Diesel power generation apparatus 7 System stabilization apparatus 8, 11-14 Breaker 9 Load 10 Solar power generation apparatus 15 Light Loop network

Claims (4)

直流電力を交流電力に変換するパワーコンディショナーを有する自然変動電源装置と、連系運転モード及び自立運転モードの制御モード自動遷移機能を有する二次電池電源と、前記自然変動電源装置及び前記二次電池電源の運転状態を監視制御する系統安定化装置と、を備え、負荷へ電力を供給するマイクログリッドシステムであって、
前記系統安定化装置は、系統連系運転モード時に、設定時間前における連系点の潮流目標値を算出するものであって、前記算出は、前記自然変動電源装置の出力、及び前記負荷の変化の予測を、過去値との照合により実行することを特徴とするマイクログリッドシステム。
Naturally-variable power supply device having a power conditioner that converts DC power into AC power, a secondary battery power supply having a control mode automatic transition function in the interconnection operation mode and the independent operation mode, the natural-variable power supply device, and the secondary battery A grid stabilization device that monitors and controls the operating state of a power supply, and supplies power to a load,
The grid stabilization device calculates a power flow target value at a connection point before a set time in the grid connection operation mode, and the calculation is performed by changing the output of the natural variation power supply device and the load. The microgrid system is characterized in that the prediction is performed by comparing with past values.
直流電力を交流電力に変換するパワーコンディショナーを有する自然変動電源装置と、連系運転モード及び自立運転モードの制御モード自動遷移機能を有する二次電池電源と、前記自然変動電源装置及び前記二次電池電源の運転状態を監視制御する系統安定化装置と、を備え、負荷へ電力を供給するマイクログリッドシステムであって、
前記系統安定化装置は、系統連系運転モード時に、設定時間前における連系点の潮流目標値を算出するものであって、前記算出は、前記自然変動電源装置の出力、及び前記負荷の変化の予測を、現状値が継続するとして実行することを特徴とするマイクログリッドシステム。
Naturally-variable power supply device having a power conditioner that converts DC power into AC power, a secondary battery power supply having a control mode automatic transition function in the interconnection operation mode and the independent operation mode, the natural-variable power supply device, and the secondary battery A grid stabilization device that monitors and controls the operating state of a power supply, and supplies power to a load,
The grid stabilization device calculates a power flow target value at a connection point before a set time in the grid connection operation mode, and the calculation is performed by changing the output of the natural variation power supply device and the load. A microgrid system that executes the prediction of the current value as it continues.
直流電力を交流電力に変換するパワーコンディショナーを有する自然変動電源装置と、連系運転モード及び自立運転モードの制御モード自動遷移機能を有する二次電池電源と、前記自然変動電源装置及び前記二次電池電源の運転状態を監視制御する系統安定化装置と、を備え、負荷へ電力を供給するマイクログリッドシステムであって、
前記系統安定化装置は、系統連系運転モード時に、設定時間前における連系点の潮流目標値を算出するものであって、前記自然変動電源装置の出力、及び前記負荷の変化の予測を、過去値との照合により算出する第1手段と、前記自然変動電源装置の出力、及び前記負荷の変化の予測を、現状値が継続するとして算出する第2手段と、前記第1手段と前記第2手段とを切替える切替手段と、を備え、前記算出は、前記切替手段により、前記第1手段と、前記第2手段の何れかにより実行することを特徴とするマイクログリッドシステム。
Naturally-variable power supply device having a power conditioner that converts DC power into AC power, a secondary battery power supply having a control mode automatic transition function in the interconnection operation mode and the independent operation mode, the natural-variable power supply device, and the secondary battery A grid stabilization device that monitors and controls the operating state of a power supply, and supplies power to a load,
The grid stabilization device calculates a power flow target value at a grid connection point before a set time during the grid grid operation mode, and predicts the output of the natural variation power supply device and the load change. A first means for calculating by collating with past values; a second means for calculating the output of the natural variation power supply device and a prediction of the change of the load as a current value continues; the first means and the first 2. A microgrid system comprising: a switching unit that switches between two units, wherein the calculation is performed by the switching unit by the first unit or the second unit.
前記自然変動電源装置の出力の前記過去値は、過去所定期間分の現在時点から所定時間分毎の前記自然変動電源装置の出力の積算値であり、前記負荷の前記過去値は、過去所定期間分の現在時点から所定時間分毎の前記負荷の積算値であることを特徴とする請求項1又は請求項3に記載のマイクログリッドシステム。   The past value of the output of the natural variation power supply apparatus is an integrated value of the output of the natural variation power supply apparatus for every predetermined time from the present time point for the past predetermined period, and the past value of the load is the past predetermined period. The microgrid system according to claim 1 or 3, wherein the load is an integrated value of the load every predetermined time from the current time point of minutes.
JP2009267489A 2009-11-25 2009-11-25 Micro grid system Active JP5468883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267489A JP5468883B2 (en) 2009-11-25 2009-11-25 Micro grid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267489A JP5468883B2 (en) 2009-11-25 2009-11-25 Micro grid system

Publications (2)

Publication Number Publication Date
JP2011114905A true JP2011114905A (en) 2011-06-09
JP5468883B2 JP5468883B2 (en) 2014-04-09

Family

ID=44236853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267489A Active JP5468883B2 (en) 2009-11-25 2009-11-25 Micro grid system

Country Status (1)

Country Link
JP (1) JP5468883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092309A (en) * 2017-12-25 2018-05-29 国网上海市电力公司 A kind of virtual synchronous machine control device and method for adding in double-energy storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014128A (en) * 1996-06-24 1998-01-16 Sanyo Electric Co Ltd System linked power source system and power source system
JP2007295680A (en) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd Load control device
JP2009225641A (en) * 2008-03-18 2009-10-01 Toshiba Corp Power receiving point power operation controller and power receiving point power operation control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014128A (en) * 1996-06-24 1998-01-16 Sanyo Electric Co Ltd System linked power source system and power source system
JP2007295680A (en) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd Load control device
JP2009225641A (en) * 2008-03-18 2009-10-01 Toshiba Corp Power receiving point power operation controller and power receiving point power operation control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092309A (en) * 2017-12-25 2018-05-29 国网上海市电力公司 A kind of virtual synchronous machine control device and method for adding in double-energy storage
CN108092309B (en) * 2017-12-25 2019-12-10 国网上海市电力公司 control device and method for virtual synchronous machine with double energy storage

Also Published As

Publication number Publication date
JP5468883B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2017026287A1 (en) Control device, energy management device, system, and control method
JP4759587B2 (en) Wind farm
US8901893B2 (en) Electricity storage device and hybrid distributed power supply system
EP3018787B1 (en) Microgrid control device and control method therefor
US20120283888A1 (en) Seamless Transition Method and Apparatus for Micro-grid Connect/Disconnect from Grid
JP5626563B2 (en) Power system
WO2013046244A1 (en) System using direct-current power source, and direct-current-type microgrid network using same system
JP5836164B2 (en) Solar power system
JP2005312138A (en) Power controller, power generation system and power system
JP2007185008A (en) Power supply system and its control method
US20120235492A1 (en) Power supply system
JP2006311707A (en) Natural energy power generation system
JP2017038432A (en) Control device, system, and control method
US9705361B2 (en) Power supply device and method of controlling power supply
US8420240B2 (en) Method for controlling sodium-sulfur batteries
JP6109209B2 (en) Power supply system
JP5820240B2 (en) Power system control system and power system control method
JP2011060921A (en) Solar power generation facility
KR20130003409A (en) Power stabilizing system for renewable energy generation
JP7349840B2 (en) power supply system
JP5468883B2 (en) Micro grid system
Hurtt et al. Residential microgrid model for disaster recovery operations
JP5680525B2 (en) Power storage system, power storage control device, and power control method
Sachs et al. Two layer model predictive control for a cost efficient operation of island energy systems
JP2017050903A (en) Energy management system, energy management apparatus, and energy management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R151 Written notification of patent or utility model registration

Ref document number: 5468883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250