JP2011114057A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2011114057A
JP2011114057A JP2009267236A JP2009267236A JP2011114057A JP 2011114057 A JP2011114057 A JP 2011114057A JP 2009267236 A JP2009267236 A JP 2009267236A JP 2009267236 A JP2009267236 A JP 2009267236A JP 2011114057 A JP2011114057 A JP 2011114057A
Authority
JP
Japan
Prior art keywords
floating gate
insulating film
film
gate
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009267236A
Other languages
English (en)
Other versions
JP5537130B2 (ja
Inventor
Takaei Kanemura
村 貴 永 金
Tomomi Kusaka
下 朋 美 日
Takashi Izumida
田 貴 士 泉
Masaki Kondo
藤 正 樹 近
Nobutoshi Aoki
木 伸 俊 青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009267236A priority Critical patent/JP5537130B2/ja
Priority to US12/719,193 priority patent/US8354706B2/en
Priority to KR1020100024200A priority patent/KR20110058631A/ko
Publication of JP2011114057A publication Critical patent/JP2011114057A/ja
Application granted granted Critical
Publication of JP5537130B2 publication Critical patent/JP5537130B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0441Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】書込み速度や正気よ速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能な半導体記憶装置を提供する。
【解決手段】半導体記憶装置は、基板101と、基板上に形成され、FNトンネル膜として機能する第1のゲート絶縁膜111と、第1のゲート絶縁膜上に形成された第1の浮遊ゲート112と、第1の浮遊ゲート上に形成され、FNトンネル膜として機能する第2のゲート絶縁膜113と、第2のゲート絶縁膜上に形成された第2の浮遊ゲート114と、第2の浮遊ゲート上に形成されており、電荷ブロック膜として機能するゲート間絶縁膜115と、ゲート間絶縁膜上に形成された制御ゲート116とを備え、第1及び第2の浮遊ゲートの少なくともいずれかは、メタル層を含んでいる。
【選択図】図2

Description

本発明は、半導体記憶装置に関する。
従来のNAND型フラッシュメモリのセルトランジスタは、基板内の活性領域(Active Area)上に、トンネル絶縁膜、浮遊ゲート、IPD(Inter Poly-Si Dielectric)膜、及び制御ゲートが順に積層された構造を有している。一般に、活性領域、トンネル絶縁膜、浮遊ゲート、IPD膜、及び制御ゲートの材質はそれぞれ、p−シリコン、シリコン酸化膜、n+ポリシリコン、シリコン窒酸化膜、及びn+ポリシリコンである。
セルトランジスタの微細化を進める場合、トンネル絶縁膜を薄膜化すれば、短チャネル効果や隣接セル間干渉効果を効果的に抑制することが可能である。しかしながら、微細化を進めて、ゲート長が20nm未満となるようトンネル絶縁膜を薄くすると、浮遊ゲート内に電荷が保持されている場合に、トンネル絶縁膜に印加される電界が非常に大きくなってしまう。大きな電界がトンネル絶縁膜に印加されると、浮遊ゲート内の電荷がトンネル電流として基板に漏れてしまう。このように、セルトランジスタの微細化には、セルトランジスタの電荷保持特性が悪化するという問題がある。
セルトランジスタに求められる性能には、良好な電荷保持特性のほか、書き込み速度や消去速度の高速性がある。しかしながら、n+ポリシリコンによる浮遊ゲートには、n+ドーピングが不十分な場合、書き込み時に浮遊ゲートの下部が空乏化してしまうという問題がある。このような空乏化が発生すると、書き込み電流であるトンネル電流が流れにくくなり、書き込み速度が低下してしまう。
特開2009−141354号公報 特開2007−250974号公報 特開2001−24077号公報
本発明は、書き込み速度や消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能な半導体記憶装置を提供することを課題とする。
本発明の一の態様は例えば、基板と、前記基板上に形成され、FN(Fowler-Nordheim)トンネル膜として機能する第1のゲート絶縁膜と、前記第1のゲート絶縁膜上に形成された第1の浮遊ゲートと、前記第1の浮遊ゲート上に形成され、FNトンネル膜として機能する第2のゲート絶縁膜と、前記第2のゲート絶縁膜上に形成された第2の浮遊ゲートと、前記第2の浮遊ゲート上に形成されており、電荷ブロック膜として機能するゲート間絶縁膜と、前記ゲート間絶縁膜上に形成された制御ゲートとを備え、前記第1及び第2の浮遊ゲートの少なくともいずれかは、メタル層を含んでいることを特徴とする半導体記憶装置である。
本発明によれば、書き込み速度や消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能な半導体記憶装置を提供することが可能となる。
第1実施形態の半導体記憶装置の構成を概略的に示す平面図である。 第1実施形態の半導体記憶装置の構成を示す側方断面図である。 直接トンネル膜とFNトンネル膜について説明するための概念図である。 直接トンネル電流とFNトンネル電流の実測値を示したグラフである。 読み出し動作の流れを示したタイミングチャートである。 第1実施形態の半導体記憶装置の製造方法を示す側方断面図(1/2)である。 第1実施形態の半導体記憶装置の製造方法を示す側方断面図(2/2)である。 第4実施形態の半導体記憶装置の構成を示す側方断面図である。 第4実施形態の半導体記憶装置の製造方法を示す側方断面図(1/2)である。 第4実施形態の半導体記憶装置の製造方法を示す側方断面図(2/2)である。 書き込み前のセルトランジスタの状態を説明するためのバンド図である。 書き込み時のセルトランジスタの状態を説明するためのバンド図である。 書き込み後のセルトランジスタの状態を説明するためのバンド図である。 第7実施形態の変形例の半導体記憶装置の構成を示す側方断面図である。
従来のNAND型フラッシュメモリには、書き込みや消去を多く繰り返すと、トンネル絶縁膜中に欠陥が発生するという問題がある。このような欠陥が発生すると、セルトランジスタの反転閾値がシフトしてしまい、更には、トンネル絶縁膜の絶縁不良が起こってしまう。その結果、セルトランジスタがメモリセルとして正常に動作しなくなってしまう。
特許文献1には、2つの層を含む浮遊ゲートを備える不揮発性メモリデバイスの例が記載されている。このデバイスでは、これらの層間に絶縁膜が形成されており、当該絶縁膜の厚さは、直接トンネリングが可能な厚さとなっている。そのため、浮遊ゲートを構成する上位の層内に電荷を保持し続けるのが難しいという問題がある。
また、特許文献2には、複数のフローティング領域を備える不揮発性半導体記憶装置の例が記載されている。この装置では、半導体基板とフローティング領域との間の絶縁膜の膜種及び膜厚と、フローティング領域とゲート電極(制御ゲート)との間の絶縁膜の膜種及び膜厚が、同種及び同程度となっている。そのため、メモリセルへのデータの書き込みを行うと、これらの絶縁膜に同程度の電圧がかかり、基板からフローティング領域に注入された電荷が、ゲート電極へと通り抜けてしまうという問題がある。
また、特許文献3には、第1及び第2ポリシリコン層間に電荷障壁層が形成された浮遊ゲートを有するフラッシュメモリセルの製造方法の例が記載されている。
以下、本発明の実施形態を、図面に基づいて説明する。
(第1実施形態)
図1は、第1実施形態の半導体記憶装置の構成を概略的に示す平面図である。図1の半導体記憶装置は、NAND型フラッシュメモリとなっている。
図1では、メモリセルアレイ領域がRCで示され、選択トランジスタ領域がRSで示されている。図1には更に、基板の表面に平行な第1の方向に伸びる複数のビット線BLと、基板の表面に平行な第2の方向に伸びる複数のワード線WL及び複数の選択線Sが示されている。上記第1及び第2の方向は、それぞれ矢印X及びYで示されており、互いに直交している。
メモリセルアレイ領域RCでは、ビット線BLとワード線WLとの各交点PCに、セルトランジスタ(メモリセル)が設けられている。また、選択トランジスタ領域RSでは、ビット線BLと選択線Sとの各交点PSに、選択トランジスタが設けられている。セルトランジスタは、ビット線BLとワード線WLとに電気的に接続されており、選択トランジスタは、ビット線BLと選択線Sとに電気的に接続されている。
図1には更に、素子分離領域R1と、活性領域(素子領域)R2が示されている。素子分離領域R1と活性領域R2は、ともにX方向に伸びており、Y方向に沿って基板内に交互に設けられている。セルトランジスタと選択トランジスタは、いずれも活性領域R2上に形成されている。本実施形態の活性領域R2は、p−領域となっている。
図2は、第1実施形態の半導体記憶装置の構成を示す側方断面図である。
図2(A)は、図1に示すI断面(AA(Active Area)断面)における断面図、図2(B)は、図1に示すII断面(GC(Gate Conductor)断面)における断面図となっている。図2(A)及び(B)は、メモリセルアレイ領域RCにおける断面図となっており、セルトランジスタがCで示されている。
各セルトランジスタCは、基板101上に形成されており、基板101上に順に形成された第1のトンネル絶縁膜111と、第1の浮遊ゲート112と、第2のトンネル絶縁膜113と、第2の浮遊ゲート114と、IPD(Inter Poly-Si Dielectric)膜115と、制御ゲート116とを含んでいる。
基板101は例えば、シリコン基板等の半導体基板である。図2(A)に示すように、基板101の表面付近には素子分離絶縁膜121が形成されており、これにより、基板101内に素子分離領域R1と活性領域R2が形成されている。また、図2(B)には、基板101上に形成され、セルトランジスタCを覆う層間絶縁膜122と、基板101内にセルトランジスタCを挟むよう形成され、セルトランジスタC同士を電気的に直列接続するソースドレイン拡散層131が示されている。素子分離絶縁膜121及び層間絶縁膜122は例えば、シリコン酸化膜である。
第1のトンネル絶縁膜111は、基板101上(活性領域R2上)に形成されており、本発明の第1のゲート絶縁膜の例に相当する。第1のトンネル絶縁膜111は例えば、シリコン酸化膜である。第1のトンネル絶縁膜111は適宜、TOX1と表記する。
本実施形態の第1のトンネル絶縁膜111は、FN(Fowler-Nordheim)トンネル膜として機能する。FNトンネル膜とは、FNトンネリングによる電荷の透過が支配的となる厚さを有する絶縁膜である。本実施形態の第1のトンネル絶縁膜111の厚さは例えば、EOT(Equivalent Oxide Thickness)換算、即ち、シリコン酸化膜厚換算で、3nm以上、好ましくは3〜5nmである。FNトンネル膜の詳細については、後述する。
第1の浮遊ゲート112は、第1のトンネル絶縁膜111上に形成されており、電荷を蓄積するための電荷蓄積膜として機能する。本実施形態の第1の浮遊ゲート112は、導電性のメタル材料で形成されたメタル層である。第1の浮遊ゲート112は適宜、FG1と表記する。
第2のトンネル絶縁膜113は、第1の浮遊ゲート112上に形成されており、本発明の第2のゲート絶縁膜の例に相当する。第2のトンネル絶縁膜113は例えば、シリコン酸化膜である。第2のトンネル絶縁膜113は適宜、TOX2と表記する。
本実施形態の第2のトンネル絶縁膜113は、第1のトンネル絶縁膜111と同様、FNトンネル膜として機能する。第2のトンネル絶縁膜113の厚さは例えば、EOT換算で、3nm以上、好ましくは3〜5nmである。第1のトンネル絶縁膜111の厚さと、第2のトンネル絶縁膜113の厚さは、EOT換算の実効膜厚で同程度とすることが望ましいが、物理膜厚は同程度でなくても構わない。
第2の浮遊ゲート114は、第2のトンネル絶縁膜113上に形成されており、第1の浮遊ゲート112と同様、電荷を蓄積するための電荷蓄積膜として機能する。本実施形態の第2の浮遊ゲート114は、ポリシリコンで形成されたポリシリコン層である。第2の浮遊ゲート114は、nポリシリコン層でもpポリシリコン層でもよいが、本実施形態ではn+ポリシリコン層とする。第2の浮遊ゲート114は適宜、FG2と表記する。
IPD膜115は、第2の浮遊ゲート114上に形成されており、本発明のゲート間絶縁膜の例に相当する。IPD膜115は例えば、シリコン窒酸化膜である。IPD膜115は、第1の浮遊ゲート112から第2の浮遊ゲート114に注入された電荷が、制御ゲート116へと通り抜けるのをブロックする電荷ブロック膜として機能する。本実施形態のIPD膜115の厚さは、EOT換算の実効膜厚で、第1のトンネル絶縁膜111の厚さや、第2のトンネル絶縁膜113の厚さよりも厚くなっている。
制御ゲート116は、IPD膜115上に形成されており、セルトランジスタCの電位を制御するための制御電極として機能する。制御ゲート116は例えば、ポリシリコンで形成されたポリシリコン層である。制御ゲート116は、nポリシリコン層でもpポリシリコン層でもよいが、本実施形態ではn+ポリシリコン層とする。制御ゲート116は適宜、CGと表記する。
以上のように、本実施形態では、セルトランジスタCの浮遊ゲートを、第1及び第2の浮遊ゲート112,114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に第2のトンネル絶縁膜113を介在させる。これにより、第2の浮遊ゲート114と制御ゲート116のカップリング比が向上し、第1のトンネル絶縁膜111に印加される電界が増加するため、セルトランジスタCの書き込み特性が改善される。更には、セル内の容量が増加し、カップリング比が大きくなるため、近接セル干渉効果が抑制される。
なお、第1のトンネル絶縁膜111、第2のトンネル絶縁膜113、及びIPD膜115はそれぞれ、1層の絶縁膜のみを含む単層膜でも、2層以上の絶縁膜を含む積層膜でも構わない。単層膜の例としては、シリコン酸化膜やシリコン窒酸化膜が挙げられ、積層膜の例としては、シリコン酸化膜とhigh−k絶縁膜(例えばSi膜)とを含む二層膜が挙げられる。
また、各セルトランジスタCは、本実施形態では2層の浮遊ゲート112及び114を含んでいるが、3層以上の浮遊ゲートを含んでいても構わない。各セルトランジスタCがN層(Nは2以上の整数)の浮遊ゲートを含む場合、各セルトランジスタCは更にN層のトンネル絶縁膜を含み、トンネル絶縁膜と浮遊ゲートとが交互に積層される。
ここで、第1及び第2の浮遊ゲート112,114の材質について説明する。
本実施形態では、各セルトランジスタCの浮遊ゲートが、2つの電荷蓄積膜(112,114)で構成されるのに対し、従来の半導体記憶装置では、浮遊ゲートが、1つの電荷蓄積膜、例えば、n+ポリシリコン層で構成される。しかしながら、n+ポリシリコンによる浮遊ゲートには、n+ドーピングが不十分な場合、書き込み時に浮遊ゲートの下部が空乏化してしまうという問題がある。こうした空乏化が発生すると、書き込み電流であるトンネル電流が流れにくくなり、書き込み速度が低下してしまう。
また、本実施形態では、第1及び第2の浮遊ゲート112,114を、ともにn+シリコン層とすることも考えられる。しかしながら、この場合には、第1の浮遊ゲート112のn+ドーピングが不十分な場合、書き込み時に第1の浮遊ゲート112の下部が空乏化すると共に、消去時に第1の浮遊ゲート112の上部が空乏化してしまう。こうした空乏化が発生すると、書き込み電流又は消去電流であるトンネル電流が流れにくくなり、書き込み速度及び消去速度が低下してしまう。
そこで、本実施形態では、第1の浮遊ゲート112をメタル層とし、第2の浮遊ゲート114をポリシリコン層とする。これにより、書き込み時に第1の浮遊ゲート112の下部が空乏化しなくなると共に、消去時に第1の浮遊ゲート112の上部が空乏化しなくなり、書き込み速度及び消去速度が改善される。
また、「Chen et al., Appl. Phys. Lett., vol.49, pp669 (1986)」によれば、ゲート酸化膜から注入される高エネルギー電子が、ゲート電極で衝突イオン化を起こし、衝突イオン化で発生したホールが、再びゲート酸化膜に突入して欠陥を生成する。この説明に従えば、第1の浮遊ゲート112をポリシリコン層からメタル層に変更することで、衝突イオン化の頻度が減少して、第1のトンネル絶縁膜111中の欠陥生成は減少し、書き込みや消去に伴う閾値電圧の変動が抑制される。よって、本実施形態によれば、書き込みや消去の繰り返し可能な回数を増やすことができる。
以上のように、本実施形態では、第1の浮遊ゲート112をメタル層とし、第2の浮遊ゲート114をポリシリコン層とする。これにより、本実施形態では、書き込み速度及び消去速度を向上させることができ、更には、書き込みや消去の繰り返し可能な回数を増やすことができる。
次に、IPD膜115及び制御ゲート116の断面形状について説明する。
図2(A)に示すように、第1のトンネル絶縁膜111、第1の浮遊ゲート112、第2のトンネル絶縁膜113、及び第2の浮遊ゲート114は、各セルトランジスタC毎に分割されている。図2(A)では、第1のトンネル絶縁膜111、第1の浮遊ゲート112、第2のトンネル絶縁膜113、及び第2の浮遊ゲート114は、活性領域R2上に積層されており、素子分離絶縁膜121同士の間に挟まれている。
これに対し、IPD膜115及び制御ゲート116は、Y方向(ワード線WLに平行な方向)に隣接するセルトランジスタC間にまたがって形成されている。また、図2(A)では、素子分離絶縁膜121の上面S1の高さが、第2の浮遊ゲート114の上面S2の高さよりも低くなっている。その結果、セルトランジスタC間における制御ゲート116の下面σ1の高さは、セルトランジスタC上における制御ゲート116の下面σ2の高さよりも低くなっており、制御ゲート116が、セルトランジスタC間に落とし込まれている。
以上のように、本実施形態では、IPD膜115及び制御ゲート116が、ワード線に平行な方向に隣接するセルトランジスタC間にまたがって形成されている。更には、セルトランジスタC間における制御ゲート116の下面の高さが、セルトランジスタC上における制御ゲート116の下面の高さよりも低くなっており、制御ゲート116が、セルトランジスタC間に落とし込まれている。これにより、第2の浮遊ゲート114と制御ゲート116との間の容量を増加させ、容量結合を強くすることができる。その結果、本実施形態では、セルトランジスタCの書き込み特性が更に改善される。
なお、本実施形態では、素子分離絶縁膜121の上面の高さは、第2のトンネル絶縁膜113の上面の高さと等しくなっている。しかしながら、素子分離絶縁膜121の上面の高さは、第2の浮遊ゲート114の上面と第2のトンネル絶縁膜113の上面との間の高さとしても構わない。
また、本実施形態では、セルトランジスタC間におけるIPD膜115の厚さは、セルトランジスタC上におけるIPD膜115の厚さと等しくても異なっていても構わない。本実施形態では、セルトランジスタC間におけるIPD膜115の厚さと、セルトランジスタC上におけるIPD膜115の厚さは、EOT換算の実効膜厚で、いずれも第1及び第2のトンネル絶縁膜111,113の厚さよりも厚く設定される。
次に、直接トンネル膜とFNトンネル膜について説明する。
図3は、直接トンネル膜とFNトンネル膜について説明するための概念図である。図3における横方向は、絶縁膜の厚さ方向を表し、図3における縦方向は、絶縁膜の内部及び外部における電位の高さ方向を表す。
図3(A)には、膜厚の薄い絶縁膜が示されている。図3(A)に示す絶縁膜は、直接トンネル膜に相当する。直接トンネル膜とは、直接トンネリングによる電荷の透過が支配的となる厚さを有する絶縁膜である。直接トンネル膜の近傍に位置する電荷は、矢印Aで示すように、ある確率で直接トンネリングを起こし、直接トンネル膜を透過する。
一方、図3(B)には、膜厚の厚い絶縁膜が示されている。図3(B)に示す絶縁膜は、FNトンネル膜に相当する。FNトンネル膜とは、上述の通り、FNトンネリングによる電荷の透過が支配的となる厚さを有する絶縁膜である。FNトンネル膜の近傍に位置する電荷が、直接トンネリングによりFNトンネル膜を透過する確率は低い。しかしながら、FNトンネル膜に電界を印加すると、FNトンネル膜のポテンシャル障壁が傾き、障壁が薄くなる。これにより、FNトンネル膜の近傍に位置する電荷は、矢印Bで示すように、FNトンネリングを起こし、FNトンネル膜を透過するようになる。
図4は、直接トンネル電流とFNトンネル電流の実測値を示したグラフである。図4における横軸は、n+polyによるnMOSFETに印加するゲート電圧[V]を表し、図4における縦軸は、当該nMOSFETにおけるゲート電流の電流密度[μA/cm]を表す。
図4には、nMOSFETのゲート絶縁膜(TOX膜(トンネル絶縁膜))の実効膜厚が2.58nm、3.65nm、4.55nm、5.70nmの場合に関し、直接トンネル電流とFNトンネル電流とを含むゲート電流の実測値と、FNトンネル電流の理論値が示されている。
図4によれば、TOX膜の実効膜厚が3.65nm、4.55nm、5.70nmの場合には、ゲート電流は、ゲート電流が流れ始めるゲート電圧以上のほぼ全ゲート電圧領域において、FNトンネル電流におおむね一致している。一方、TOX膜の実効膜厚が2.58nmの場合には、ゲート電流は、上記ゲート電圧領域における所定の電圧以上の領域内に限り、FNトンネル電流に一致している。
このことから、実効膜厚がおおむね3nm以上の絶縁膜では、FNトンネリングによる電荷の透過が支配的となることが解る。よって、実効膜厚が3nm以上の絶縁膜は、FNトンネル膜とみなすことができる。よって、本実施形態では、第1及び第2のトンネル絶縁膜111,113の実効膜厚をそれぞれ、3nm以上に設定する。これにより、第1及び第2のトンネル絶縁膜111,113は、FNトンネル膜となる。
なお、図4に示すグラフの詳細については、「A. Gupta et al., IEEE Trans. Electron Device Lett. 18 (1977) 580.」を参照されたい。
以上のように、本実施形態では、第1及び第2のトンネル絶縁膜111,113が、FNトンネル膜となっている。これにより、第1の浮遊ゲート112内の電荷が、基板101に抜けることが抑止されると共に、第2の浮遊ゲート114内の電荷が、第1の浮遊ゲート112に抜けることが抑止される。その結果、本実施形態では、これらの浮遊ゲート112,114に蓄積される電荷については、第2の浮遊ゲート114に蓄積される電荷の割合が多くなり、第1の浮遊ゲート112に蓄積される電荷の割合が少なくなる。これにより、本実施形態では、セルトランジスタCに長時間電荷を保持し続けることが可能となる。即ち、本実施形態によれば、セルトランジスタCの電荷保持特性を向上させることが可能となる。
また、本実施形態では、IPD膜115が電荷ブロック膜となっている。これにより、基板101から第1及び第2の浮遊ゲート112,114に注入された電荷が、制御ゲート116へと通り抜けてしまうことが抑止される。
また、本実施形態では、第1及び第2のトンネル絶縁膜111,113の厚さを、EOT換算で、共に3nm以上に設定する。これにより、これらの絶縁膜を、FNトンネル膜とすることができる。本実施形態では更に、第1及び第2のトンネル絶縁膜111,113の厚さを、EOT換算で、共に3〜5nmに設定してもよい。これにより、これらの絶縁膜を、FNトンネリングによる書き込みが容易なFNトンネル膜とすることができる。
また、本実施形態では、IPD膜115の実効膜厚を、FNトンネル膜である第1及び第2のトンネル絶縁膜111,113の実効膜厚よりも厚くする。これにより、IPD膜115を、電荷ブロック膜とすることができる。
以上のような本実施形態の半導体記憶装置の構成は、メモリセル(セルトランジスタ)の微細化に適している。本実施形態によれば、半導体記憶装置のパフォーマンスの低下を抑制しつつ、メモリセルを微細化することが可能となる。具体的には、書き込み特性の低下、近接セル干渉効果、電荷抜け等を抑制しつつ、メモリセルを微細化することが可能となる。
ここで、図2を参照して、セルトランジスタへの書き込み動作、及びセルトランジスタからの読み出し動作について説明する。書き込みや読み出しの際には、メモリセルアレイ領域RC内に配置されたセルトランジスタの中から、書き込み対象又は読み出し対象となるセルトランジスタ(選択セル)が選択され、選択セル及び非選択セルにそれぞれ所定の電圧が印加される。
本実施形態では、選択セルへのデータの書き込み時には、基板101から選択セルの第1及び第2の浮遊ゲート112,114に電荷が注入され、これらの浮遊ゲートに電荷が蓄積される。本実施形態では、上述の通り、電荷は主に第2の浮遊ゲート114に蓄積される。選択セルへのデータの書き込み時には、選択セルに電気的に接続されたワード線に、書き込み電圧Vpgmが印加される。
一方、選択セルからデータを読み出す際には、図5に示す読み出し制御により読み出しが行われる。図5は、読み出し動作の流れを示したタイミングチャートである。
本実施形態では、電荷は、第2の浮遊ゲート114だけでなく第1の浮遊ゲート112にも蓄積されている。また、本実施形態では、本来、第2の浮遊ゲート114に蓄積された電荷が、読み出し時までに、第1の浮遊ゲート112に一部抜けている可能性がある。第1の浮遊ゲート112内の電荷は、セルトランジスタの閾値電圧を変動させる可能性がある。
そこで、本実施形態では、選択セルからのデータの読み出し前に、読み出し電圧Vreadよりも大きな電圧Vrewを、選択セルに電気的に接続されたワード線に印加する(図5参照)。これにより、選択セルの第1の浮遊ゲート112内の電荷が、選択セルの第2の浮遊ゲート114へと戻される。
その後、本実施形態では、選択セルに電気的に接続されたワード線に、読み出し電圧Vreadを印加すると共に、選択セルに電気的に接続されたビット線に、読み出し電圧Vreadより小さいセンス電圧Vsenceを印加して、読み出しを行う(図5参照)。これにより、正確な閾値電圧のもと、選択セルからのデータの読み出しを行うことができる。
なお、本実施形態では、電圧Vrew(再書き込み電圧)は、読み出し電圧Vreadよりも大きく、且つ、書き込み電圧Vpgmよりも小さい電圧に設定される。
以下、本実施形態の半導体記憶装置の製造方法について説明する。
図6及び図7は、第1実施形態の半導体記憶装置の製造方法を説明するための側方断面図である。
まず、図6(A)に示すように、基板101上に、第1のトンネル絶縁膜111の材料となる第1絶縁膜211、第1の浮遊ゲート112の材料となる第1電極層212、第2のトンネル絶縁膜113の材料となる第2絶縁膜213、第2の浮遊ゲート114の材料となる第2電極層214、及び第1のマスク層301を順に形成する。第1絶縁膜211、第2絶縁膜213、及び第1のマスク層301は例えば、シリコン酸化膜である。また、本実施形態においては、第1電極層212はメタル層、第2電極層214はポリシリコン層である。
次に、リソグラフィ及びエッチングにより、第1のマスク層301のパターニングを行う(図6(B))。次に、第1のマスク層301を利用したエッチングにより、素子分離溝に相当する複数の第1の溝T1を形成する。第1の溝T1は、X方向(ビット線BLに平行な方向)に伸びており、第2電極層214、第2絶縁膜213、第1電極層212、及び第1絶縁膜211を貫通している。また、第1の溝T1は、基板101の内部にまで至っており、第1の溝T1の底面は、基板101の上面よりも低くなっている。
次に、図6(C)に示すように、第1の溝T1に素子分離絶縁膜121を埋め込む。素子分離絶縁膜121の材料は例えば、シリコン酸化膜である。素子分離絶縁膜121の第1の溝T1への埋め込みは、基板101の全面に素子分離絶縁膜121の材料を堆積し、当該材料の表面をCMP(化学機械研磨)により平坦化することで行われる。当該CMPは、素子分離絶縁膜121の上面S1の高さが、第2電極層214の上面S2の高さと同じになるまで行われる。
本実施形態では次に、素子分離絶縁膜121のエッチング加工を行い、素子分離絶縁膜121の上面S1の高さを、第2電極層214の上面S2の高さよりも低くする(図6(C))。本実施形態では、当該エッチングは、素子分離絶縁膜121の上面の高さが、第2絶縁膜213の上面の高さと等しくなるまで行われる。
次に、図7(A)に示すように、第2電極層214及び素子分離絶縁膜121上に、IPD膜115の材料となる第3絶縁膜215、制御ゲート116の材料となる第3電極層216、及び第2のマスク層302を順に形成する。第3絶縁膜215は例えばシリコン窒酸化膜、第3電極層216は例えばポリシリコン層、第2のマスク層302は例えばシリコン酸化膜である。図7(A)では、S1の高さがS2の高さよりも低いことに起因して、セルトランジスタ間における第3電極層216の下面σ1の高さが、セルトランジスタ上における第3電極層216の下面σ2の高さよりも低くなっている。
次に、リソグラフィ及びエッチングにより、第2のマスク層302のパターニングを行う(図7(B))。次に、第2のマスク層302を利用したエッチングにより、複数の第2の溝T2を形成する。第2の溝T2は、Y方向(ワード線WLに平行な方向)に伸びており、第3電極層216、第3絶縁膜215、第2電極層214、第2絶縁膜213、第1電極層212、及び第1絶縁膜211を貫通している。また、本実施形態では、第2の溝T2の底面は、基板101の上面と同じ高さとなっている。
以上のようにして、基板101上に、第1のトンネル絶縁膜111、第1の浮遊ゲート112、第2のトンネル絶縁膜113、第2の浮遊ゲート114、IPD膜115、及び制御ゲート116を含むセルトランジスタが形成される。その後、基板101内に、ソースドレイン拡散層131が形成され、更に、基板101上に、セルトランジスタを覆うように層間絶縁膜122が形成される(図7(C))。更には、基板101上に、コンタクトプラグ、ビアプラグ、種々の配線層等が形成される。
以上のように、本実施形態では、セルトランジスタの浮遊ゲートを、第1及び第2の浮遊ゲート114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に、FNトンネル膜である第2のトンネル絶縁膜113を介在させる。更には、第1の浮遊ゲート112をメタル層とし、第2の浮遊ゲート114をポリシリコン層とする。これにより、本実施形態では、書き込み速度及び消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
以下、本発明の第2から第8実施形態について説明する。これらの実施形態は、第1実施形態の変形例であり、これらの実施形態については、第1実施形態との相違点を中心に説明する。
(第2実施形態)
第2実施形態については、第1実施形態と同様、図2を参照して説明する。
第1実施形態では、第1の浮遊ゲート112をメタル層とし、第2の浮遊ゲート114をポリシリコン層とする。これに対し、第2実施形態では、第1の浮遊ゲート112をポリシリコン層とし、第2の浮遊ゲート114をメタル層とする。第1の浮遊ゲート112は、nポリシリコン層でもpポリシリコン層でもよいが、本実施形態ではn+ポリシリコン層とする。
以上のように、本実施形態では、第1実施形態と同様、セルトランジスタCの浮遊ゲートを、第1及び第2の浮遊ゲート112,114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に第2のトンネル絶縁膜113を介在させる。これにより、第2の浮遊ゲート114と制御ゲート116のカップリング比が向上し、第1のトンネル絶縁膜111に印加される電界が増加するため、セルトランジスタCの書き込み特性が改善される。更には、セル内の容量が増加し、カップリング比が大きくなるため、近接セル干渉効果が抑制される。
また、本実施形態では、第1の浮遊ゲート112をポリシリコン層とし、第2の浮遊ゲート114をメタル層とする。この場合、第2の浮遊ゲート114を形成するためのメタル堆積工程より前に、第1の浮遊ゲート112を形成するためのポリシリコン堆積工程が行われる。よって、これらの浮遊ゲート112,114には、製造工程が量産プロセスに近く、製造が容易であるという利点がある。多くの量産プロセスでは、例えば、プラグや配線用のメタル堆積工程より前に、ゲート電極用のポリシリコン堆積工程が行われるからである。
また、第2の浮遊ゲート114をメタル層とすることには、書き込み時に第2の浮遊ゲート114の下部が空乏化しなくなるという利点がある。これにより、本実施形態では、書き込み速度が改善される。
また、本実施形態では、第2の浮遊ゲート114をポリシリコン層からメタル層に変更することで、書き込み時に第2の浮遊ゲート114内で起こる衝突イオン化の頻度が減少し、書き込みに伴う閾値電圧の変動が抑制される。よって、本実施形態によれば、第1実施形態と同様、書き込みや消去の繰り返し可能な回数を増やすことができる。
以上のように、本実施形態では、セルトランジスタの浮遊ゲートを、第1及び第2の浮遊ゲート114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に、FNトンネル膜である第2のトンネル絶縁膜113を介在させる。更には、第1の浮遊ゲート112をポリシリコン層とし、第2の浮遊ゲート114をメタル層とする。これにより、本実施形態では、書き込み速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
(第3実施形態)
第3実施形態については、第1及び第2実施形態と同様、図2を参照して説明する。
第1及び第2実施形態では、第1及び第2の浮遊ゲート112,114のいずれか一方をメタル層とする。これに対し、第3実施形態では、第1及び第2の浮遊ゲート112,114の両方をメタル層とする。第1の浮遊ゲート112を形成するメタル材料と、第2の浮遊ゲート114を形成するメタル材料は、同じ材料でも異なる材料でも構わない。
以上のように、本実施形態では、第1及び第2実施形態と同様、セルトランジスタCの浮遊ゲートを、第1及び第2の浮遊ゲート112,114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に第2のトンネル絶縁膜113を介在させる。これにより、第2の浮遊ゲート114と制御ゲート116のカップリング比が向上し、第1のトンネル絶縁膜111に印加される電界が増加するため、セルトランジスタCの書き込み特性が改善される。更には、セル内の容量が増加し、カップリング比が大きくなるため、近接セル干渉効果が抑制される。
また、本実施形態では、第1及び第2の浮遊ゲート112,114を、共にメタル層とする。第1の浮遊ゲート112をメタル層とすることには、書き込み時に第1の浮遊ゲート112の下部が空乏化しなくなると共に、消去時に第1の浮遊ゲート112の上部が空乏化しなくなり、書き込み速度及び消去速度が改善されるという利点がある。また、第2の浮遊ゲート114をメタル層とすることには、書き込み時に第2の浮遊ゲート114の下部が空乏化しなくなり、書き込み速度が改善されるという利点がある。
また、本実施形態では、第1及び第2の浮遊ゲート112,114を共にポリシリコン層からメタル層に変更することで、書き込み時や消去時に第1及び第2の浮遊ゲート112,114内で起こる衝突イオン化の頻度が減少し、書き込みや消去に伴う閾値電圧の変動が抑制される。よって、本実施形態によれば、第1及び第2実施形態と同様、書き込みや消去の繰り返し可能な回数を増やすことができる。
以上のように、本実施形態では、セルトランジスタの浮遊ゲートを、第1及び第2の浮遊ゲート114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に、FNトンネル膜である第2のトンネル絶縁膜113を介在させる。更には、第1及び第2の浮遊ゲート112,114を共にメタル層とする。これにより、本実施形態では、第1及び第2実施形態よりも更に書き込み速度及び消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。さらには、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
(第4実施形態)
図8は、第4実施形態の半導体記憶装置の構成を示す側方断面図である。
図8(A)では、図2(A)と同様、IPD膜115及び制御ゲート116が、Y方向(ワード線WLに平行な方向)に隣接するセルトランジスタC間にまたがって形成されている。しかしながら、図8(A)では、図2(A)と異なり、素子分離絶縁膜121の上面S1の高さが、上部浮遊ゲート114の上面S2の高さと等しくなっている。その結果、図8(A)では、IPD膜115の下面及び制御ゲート116の下面は、平坦になっており、セルトランジスタC間における制御ゲート116の下面σ1の高さは、セルトランジスタC上における制御ゲート116の下面σ2の高さと等しくなっている。
これにより、本実施形態では、隣接セル間の容量を小さくすることができると共に、制御ゲート116の落とし込みのばらつきの発生が回避される。制御ゲート116の落とし込みを行う際には、セルトランジスタCの形成プロセスのばらつきにより、制御ゲート116が落とし込まれる部分と落とし込まれない部分が生じることが問題となる。このことは特に、セルトランジスタCの微細化が進んだときに問題となる。微細化が進むと、制御ゲート116の落とし込みが困難となるからである。また、セルトランジスタCの微細化においては、隣接セル間におけるカップリングが増加し、各メモリセルが、その隣接セルにおけるポテンシャル変動の影響を大きく受けるようになることが問題となる。
しかしながら、本実施形態では、制御ゲート116の落とし込みを行わないため、制御ゲート116の落とし込みに伴う問題の発生が回避される。更には、隣接セル間の容量を小さくすることができるため、各メモリセルが、その隣接セルにおけるポテンシャル変動の影響を大きく受けるという問題が回避される。
以下、本実施形態の半導体記憶装置の製造方法について説明する。
図9及び図10は、第4実施形態の半導体記憶装置の製造方法を説明するための側方断面図である。
まず、図9(A)に示すように、基板101上に、第1のトンネル絶縁膜111の材料となる第1絶縁膜211、第1の浮遊ゲート112の材料となる第1電極層212、第2のトンネル絶縁膜113の材料となる第2絶縁膜213、第2の浮遊ゲート114の材料となる第2電極層214、及び第1のマスク層301を順に形成する。
次に、リソグラフィ及びエッチングにより、第1のマスク層301のパターニングを行う(図9(B))。次に、第1のマスク層301を利用したエッチングにより、素子分離溝に相当する複数の第1の溝T1を形成する。
次に、図9(C)に示すように、第1の溝T1に素子分離絶縁膜121を埋め込む。素子分離絶縁膜121の第1の溝T1への埋め込みは、基板101の全面に素子分離絶縁膜121の材料を堆積し、当該材料の表面をCMP(化学機械研磨)により平坦化することで行われる。当該CMPは、素子分離絶縁膜121の上面S1の高さが、第2電極層214の上面S2の高さと同じになるまで行われる。
次に、図10(A)に示すように、第2電極層214及び素子分離絶縁膜121上に、IPD膜115の材料となる第3絶縁膜215、制御ゲート116の材料となる第3電極層216、及び第2のマスク層302を順に形成する。図10(A)では、S1の高さがS2の高さと等しいことに起因して、セルトランジスタ間における第3電極層216の下面σ1の高さが、セルトランジスタ上における第3電極層216の下面σ2の高さと等しくなっている。
次に、リソグラフィ及びエッチングにより、第2のマスク層302のパターニングを行う(図10(B))。次に、第2のマスク層302を利用したエッチングにより、複数の第2の溝T2を形成する。
以上のようにして、基板101上に、第1のトンネル絶縁膜111、第1の浮遊ゲート112、第2のトンネル絶縁膜113、第2の浮遊ゲート114、IPD膜115、及び制御ゲート116を含むセルトランジスタが形成される。その後、基板101内に、ソースドレイン拡散層131が形成され、更に、基板101上に、セルトランジスタを覆うように層間絶縁膜122が形成される(図10(C))。更には、基板101上に、コンタクトプラグ、ビアプラグ、種々の配線層等が形成される。
なお、本実施形態の第1及び第2の浮遊ゲート112,114は、いずれか一方のみをメタル層としても、両方をメタル層としても構わない。前者の場合には、第1又は第2実施形態と同様のメリットを享受することができ、後者の場合には、第3実施形態と同様のメリットを享受することができる。
以上のように、本実施形態では、セルトランジスタの浮遊ゲートを、第1及び第2の浮遊ゲート114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に、FNトンネル膜である第2のトンネル絶縁膜113を介在させる。更には、第1及び第2の浮遊ゲート112,114の少なくともいずれかをメタル層とする。これにより、本実施形態では、書き込み速度、消去速度、及び電荷保持特性に関し、第1から第3実施形態のいずれかと同様のメリットを享受することができる。
また、本実施形態では、セルトランジスタC間における制御ゲート116の下面σ1の高さが、セルトランジスタC上における制御ゲート116の下面σ2の高さと等しくなっている。これにより、本実施形態では、隣接セル間の容量を小さくすることができると共に、制御ゲート116の落とし込みのばらつきの発生が回避される。
(第5実施形態)
第5実施形態については、図2を参照して説明する。
本実施形態では、第1実施形態と同様、第1の浮遊ゲート112をメタル層とし、第2の浮遊ゲート114をポリシリコン層とする。第2の浮遊ゲート114は、nポリシリコン層でもpポリシリコン層でもよいが、本実施形態ではn+ポリシリコン層とする。
そして、本実施形態では、第1の浮遊ゲート112を、第2の浮遊ゲート114を形成しているポリシリコン(n+ポリシリコン)よりも仕事関数の高いメタル材料で形成する。n+ポリシリコンの仕事関数は、ポリシリコン内の不純物濃度にもよるが、約4.1eVである。そこで、本実施形態では、第1の浮遊ゲート112を、仕事関数が4.1eVよりも高いメタル材料で形成する。n+ポリシリコンよりも仕事関数の高いメタル材料の例としては、Co(5.0eV)、Ni(5.1eV)、CoSi(4.5eV)、NiSi(4.7eV)等が挙げられる。なお、CoやNiには、CoSiやNiSIよりも抵抗が低いという利点がある。
以下、図11から図13のバンド図を参照して、本実施形態の半導体記憶装置の利点について説明する。
図11は、書き込み前のセルトランジスタの状態を説明するためのバンド図である。
図11では、伝導帯の下端のエネルギーEcと、荷電子帯の上端のエネルギーEvが、実線で示されている。図11には更に、真性フェルミエネルギーEiと、フェルミエネルギーEfが示されている。
図11は、基板101及び制御ゲート116の電位Vsub,Vcgが、0Vに設定され、第1及び第2の浮遊ゲート112,114が、電荷中性のときのバンド図となっている。図11中の細線は、第1の浮遊ゲート112の仕事関数Wfg1が、n+ポリシリコンの仕事関数Wnpolyと等しい場合のエネルギーバンドを表す。一方、太線は、第1の浮遊ゲート112の仕事関数Wfg1が、n+ポリシリコンの仕事関数Wnpolyよりも高い場合のエネルギーバンドを表す。図11では、第2の浮遊ゲート114の仕事関数Wfg2が、n+ポリシリコンの仕事関数Wnpolyに等しいと想定されている。
図11から解るように、第1及び第2のトンネル絶縁膜111,113内のポテンシャルの傾きは、第1の浮遊ゲート112の仕事関数Wfg1の違いに起因して、Wfg1>Wnpolyの場合とWfg1=Wnpoly の場合とで異なっている。これに起因して、第1及び第2のトンネル絶縁膜111,113内の電界は、後述するように、Wfg1>Wnpolyの場合とWfg1=Wnpoly の場合とで異なることとなる。
なお、Wfg1>Wnpolyの場合、第1のトンネル絶縁膜111内のポテンシャルの傾きは、Wfg1=Wnpoly の場合と比べてゆるやかになっているのに対し、第2のトンネル絶縁膜113内のポテンシャルの傾きは、Wfg1=Wnpoly の場合と比べて急になっていることに留意されたい。
図12は、書き込み時のセルトランジスタの状態を説明するためのバンド図である。
図12に示すように、書き込み時には、20V程度の電圧が、制御ゲート116に印加される(Vcg=20V)。これにより、第1及び第2のトンネル絶縁膜111,113内の電界が大きくなり、これらの絶縁膜にトンネル電流が流れる。
この際、Wfg1>Wnpolyの場合には、Wfg1=Wnpoly の場合と比べて、第1のトンネル絶縁膜111内の電界は小さくなり、第2のトンネル絶縁膜113中の電界は大きくなる。これは、図11に示すように、Wfg1>Wnpolyの場合とWfg1=Wnpoly の場合とで上記ポテンシャルの傾きが異なることに起因するものである。
従って、Wfg1>Wnpolyの場合には、Wfg1=Wnpoly の場合と比べて、第1のトンネル絶縁膜111ではトンネル電流が流れにくくなり、第2のトンネル絶縁膜113ではトンネル電流が流れやすくなる。よって、第1の浮遊ゲート112よりも第2の浮遊ゲート114に電荷が溜まりやすくなり、この結果、電荷保持時に、基板101へと流れるトンネル電流が抑制され、セルトランジスタの電荷保持能力が高まる。
また、Wfg1>Wnpolyの場合において、第1の浮遊ゲート112がp+ポリシリコン層であるとすると、p+ポリシリコン層の少数キャリアである電子が、第2のトンネル絶縁膜113へトンネルする必要があるため、十分なトンネル電流が流れない可能性がある。しかしながら、本実施形態では、第1の浮遊ゲート112はメタル層であるため、十分なトンネル電流が得られる。
図13は、書き込み後(電荷保持時)のセルトランジスタの状態を説明するためのバンド図である。
図13に示すように、電荷保持時には、制御ゲート116の電圧Vcgは、0Vに設定される。書き込み時と同様、Wfg1>Wnpolyの場合には、Wfg1=Wnpoly の場合と比べて、第1のトンネル絶縁膜111内の電界は小さくなり、第2のトンネル絶縁膜113中の電界は大きくなる。第1のトンネル絶縁膜111内の電界が小さくなるため、基板101へと流れるトンネル電流が抑制され、セルトランジスタの電荷保持能力が高まる。
また、本実施形態では、消去時には、制御ゲート116の電圧Vcgは、負の値に設定される。本実施形態では、第1の浮遊ゲート112がメタル層であるため、第1の浮遊ゲート112内に多数のキャリア(電子)が存在する。そのため、本実施形態によれば、消去動作を比較的短時間で行うことが可能となる。
以上のように、本実施形態では、第2の浮遊ゲート114を、ポリシリコンで形成し、第1の浮遊ゲート112を、当該ポリシリコンよりも仕事関数の高いメタル材料で形成する。これにより、本実施形態では、書き込み速度及び消去速度を向上させつつ、第1実施形態よりも更にセルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
(第6実施形態)
第6実施形態については、図2を参照して説明する。
本実施形態では、第2実施形態と同様、第1の浮遊ゲート112をポリシリコン層とし、第2の浮遊ゲート114をメタル層とする。第1の浮遊ゲート112は、nポリシリコン層でもpポリシリコン層でもよいが、本実施形態ではn+ポリシリコン層とする。
そして、本実施形態では、第2の浮遊ゲート114を、第1の浮遊ゲート112を形成しているポリシリコン(n+ポリシリコン)よりも仕事関数の高いメタル材料で形成する。第5実施形態と同様である。n+ポリシリコンの仕事関数は、ポリシリコン内の不純物濃度にもよるが、約4.1eVである。そこで、本実施形態では、第2の浮遊ゲート114を、仕事関数が4.1eVよりも高いメタル材料で形成する。
ここで、第5実施形態と第6実施形態との比較を行う。
第5実施形態では、上述のように、電荷保持時における第1のトンネル絶縁膜111内の電界が、Wfg1>Wnpolyの場合に、Wfg1=Wnpoly の場合と比べて小さくなる。これにより、第1の浮遊ゲート112から基板101へと流れるトンネル電流が抑制され、セルトランジスタの電荷保持能力が第1実施形態よりも高くなる。
同様に、第6実施形態では、電荷保持時における第2のトンネル絶縁膜113内の電界が、Wfg2>Wnpolyの場合に、Wfg2=Wnpoly の場合と比べて小さくなる。これにより、第2の浮遊ゲート114から第1の浮遊ゲート112へと流れるトンネル電流が抑制され、セルトランジスタの電荷保持能力が第2実施形態よりも高くなる。
以上のように、本実施形態では、第1の浮遊ゲート112を、ポリシリコンで形成し、第2の浮遊ゲート114を、当該ポリシリコンよりも仕事関数の高いメタル材料で形成する。これにより、本実施形態では、書き込み速度を向上させつつ、第2実施形態よりも更にセルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
また、本実施形態によれば、第2実施形態と同様、第1及び第2の浮遊ゲート112,114の作製が容易になるという利点が得られる。
(第7実施形態)
第7実施形態については、図2を参照して説明する。
本実施形態では、第2の浮遊ゲート114の下面を形成する材料の仕事関数を、第1の浮遊ゲート112の上面を形成する材料の仕事関数よりも高く設定する。このような設定は、例えば、第3実施形態の構成を採用して、第2の浮遊ゲート114を形成するメタル材料の仕事関数を、第1の浮遊ゲート112を形成するメタル材料の仕事関数よりも高く設定することや、第6実施形態の構成を採用することで実現可能である。
このように、本実施形態では、第2の浮遊ゲート114の下面を形成する材料の仕事関数を、第1の浮遊ゲート112の上面を形成する材料の仕事関数よりも高く設定する。その結果、本実施形態では、第6実施形態と同様、電荷保持時における第2のトンネル絶縁膜113内の電界が小さくなる。これにより、本実施形態では、第2の浮遊ゲート114から第1の浮遊ゲート112へと流れるトンネル電流が抑制され、セルトランジスタの電荷保持能力が高まる。
また、第3実施形態の構成を採用して、第2の浮遊ゲート114を形成するメタル材料の仕事関数を、第1の浮遊ゲート112を形成するメタル材料の仕事関数よりも高く設定する場合には、第1の浮遊ゲート112を形成するメタル材料の仕事関数を、n+ポリシリコンの仕事関数よりも高く設定してもよい。この場合、第1の浮遊ゲート112のメタル材料の例としては、Co(5.0eV)、Ni(5.1eV)、CoSi(4.5eV)、NiSi(4.7eV)等が挙げられ、第2の浮遊ゲート114のメタル材料の例としては、Pt(5.6eV)等が挙げられる。
このように、本実施形態では、第1の浮遊ゲート112を形成するメタル材料の仕事関数を、n+ポリシリコンの仕事関数よりも高く設定してもよい。その結果、本実施形態では、第5実施形態と同様、電荷保持時における第1のトンネル絶縁膜111内の電界が小さくなる。これにより、本実施形態では、第1の浮遊ゲート112から基板101へと流れるトンネル電流が抑制され、セルトランジスタの電荷保持能力が更に高まる。
また、第3実施形態では、上述のように、第1及び第2の浮遊ゲート112,114を共にメタル層とすることで、第1及び第2実施形態よりも更に書き込み速度及び消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。
これと同様に、本実施形態では、第3実施形態の構成を採用して、第2の浮遊ゲート114を形成するメタル材料の仕事関数を、第1の浮遊ゲート112を形成するメタル材料の仕事関数よりも高く設定することで、第5及び第6実施形態よりも更に書き込み速度及び消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
以上のように、本実施形態では、第2の浮遊ゲート114の下面を形成する材料の仕事関数を、第1の浮遊ゲート112の上面を形成する材料の仕事関数よりも高く設定する。このような設定は、図14に示す構成を採用することでも実現可能である。
図14は、第7実施形態の変形例の半導体記憶装置の構成を示す側方断面図である。
図14(A)に示す第1変形例では、第1及び第2の浮遊ゲート112,114が、共に複数の層を含んでいる。具体的には、第1の浮遊ゲート112が、2つの層112A,Bを含んでおり、第2の浮遊ゲート114が、2つの層114A,Bを含んでいる。
本変形例では、第1の浮遊ゲート112の上位層112Bと、第2の浮遊ゲート114の下位層114Aを、共にメタル材料で形成する。更には、第2の浮遊ゲート114の下位層114Aを形成するメタル材料の仕事関数を、第1の浮遊ゲート112の上位層112Bを形成するメタル材料の仕事関数よりも高く設定する。これにより、本変形例では、第2の浮遊ゲート114の下面を形成する材料の仕事関数が、第1の浮遊ゲート112の上面を形成する材料の仕事関数よりも高いという、第7実施形態の構成を実現することができる。本変形例では更に、第1の浮遊ゲート112の上位層112Bを形成するメタル材料の仕事関数を、n+ポリシリコンの仕事関数より高く設定してもよい。
なお、本変形例では、第2の浮遊ゲート114の下位層114Aのメタル材料の仕事関数を、第1の浮遊ゲート112の上位層112Bのメタル材料の仕事関数より高く設定しなくても構わない。本変形例では、このような構成により、第3実施形態と同様の効果を得ることが可能である。
また、本変形例では、第1及び第2の浮遊ゲート112,114はそれぞれ、3つ以上の層を含んでいても構わない。この場合、本変形例では、第1の浮遊ゲート112の最上位層と、第2の浮遊ゲート114の最下位層が、共にメタル材料で形成される。
また、本変形例では、第1の浮遊ゲート112の下位層112Aと、第2の浮遊ゲート114の上位層114Bはそれぞれ、メタル層としてもよいし、n+ポリシリコン層等のポリシリコン層としてもよい。
図14(B)に示す第2変形例では、第1の浮遊ゲート112が、1つの層のみを含んでおり、第2の浮遊ゲート114が、複数の層(具体的には2つの層114A,B)を含んでいる。
本変形例では、第1の浮遊ゲート112を、n+ポリシリコンで形成すると共に、第2の浮遊ゲート114の下位層114Aを、メタル材料で形成する。更には、第2の浮遊ゲート114の下位層114Aを形成するメタル材料の仕事関数を、n+ポリシリコンの仕事関数よりも高く設定する。これにより、本変形例では、第2の浮遊ゲート114の下面を形成する材料の仕事関数が、第1の浮遊ゲート112の上面を形成する材料の仕事関数よりも高いという、第7実施形態の構成を実現することができる。更には、第2の浮遊ゲート114に含まれるメタル層の仕事関数が、n+ポリシリコンの仕事関数よりも高いことにより、第6実施形態と同様の効果を得ることができる。
なお、本変形例では、第2の浮遊ゲート114の下位層114Aのメタル材料の仕事関数を、n+ポリシリコンの仕事関数より高く設定しなくても構わない。本変形例では、このような構成により、第2実施形態と同様の効果を得ることが可能である。
また、本変形例では、第2の浮遊ゲート114は、3つ以上の層を含んでいても構わない。この場合、本変形例では、第2の浮遊ゲート114の最下位層が、メタル材料で形成される。
また、本変形例では、第2の浮遊ゲート114の上位層114Bは、メタル層としてもよいし、n+ポリシリコン層等のポリシリコン層としてもよい。同様に、第1の浮遊ゲート112は、メタル層としてもよいし、n+ポリシリコン層以外のポリシリコン層としてもよい。
図14(C)に示す第3変形例では、第1の浮遊ゲート112が、複数の層(具体的には2つの層112A,B)を含んでおり、第2の浮遊ゲート114が、1つの層のみを含んでいる。
本変形例では、第1の浮遊ゲート112の上位層112Bを、メタル材料で形成すると共に、第2の浮遊ゲート114を、n+ポリシリコンで形成する。更には、第1の浮遊ゲート112の上位層112Bを形成するメタル材料の仕事関数を、n+ポリシリコンの仕事関数よりも高く設定する。これにより、本変形例では、第1浮遊ゲート112に含まれるメタル層の仕事関数が、n+ポリシリコンの仕事関数よりも高いことにより、第5実施形態と同様の効果を得ることができる。
なお、本変形例では、第1の浮遊ゲート112の上位層112Bのメタル材料の仕事関数を、n+ポリシリコンの仕事関数より高く設定しなくても構わない。本変形例では、このような構成により、第1実施形態と同様の効果を得ることが可能である。
また、本変形例では、第1の浮遊ゲート112は、3つ以上の層を含んでいても構わない。この場合、本変形例では、第1の浮遊ゲート112の最上位層が、メタル材料で形成される。
また、本変形例では、第1の浮遊ゲート114の下位層112Aは、メタル層としてもよいし、n+ポリシリコン層等のポリシリコン層としてもよい。同様に、第2の浮遊ゲート114は、メタル層としてもよいし、n+ポリシリコン層以外のポリシリコン層としてもよい。
以上のように、第1から第3変形例によれば、第7実施形態の構成を実現することができ、或いは、第5又は第6実施形態と同様の効果を得ることができる。
なお、第1の浮遊ゲート112をメタル層及びポリシリコン層で形成することには、メタル層のみで形成する場合に比べて、高温処理に強いという利点がある。同様に、第2の浮遊ゲート114をメタル層及びポリシリコン層で形成することには、メタル層のみで形成する場合に比べて、高温処理に強いという利点がある。
また、第1の浮遊ゲート112の最上位層と、第2の浮遊ゲート114の最下位層はそれぞれ、バリアメタル材料で形成しても構わない。
また、複数の層を含む第1の浮遊ゲート112や、複数の層を含む第2の浮遊ゲート114は、これらの浮遊ゲートを構成するポリシリコン層の一部(上部)をシリサイド化することで形成してもよい。また、複数の層を含む第1の浮遊ゲート112や、複数の層を含む第2の浮遊ゲート114は、これらの浮遊ゲートをポリシリコン層と1以上のその他の層とで構成し、当該ポリシリコン層の全体をシリサイド化することで形成してもよい。また、これらの例とは別に、第1及び第2の浮遊ゲート112,114はそれぞれ、その全体がシリサイド化されていても構わない。
以上のように、本実施形態では、第2の浮遊ゲート114の下面を形成する材料の仕事関数を、第1の浮遊ゲート112の上面を形成する材料の仕事関数よりも高く設定する。これにより、本実施形態では、第6実施形態と同様、書き込み時や電荷保持時に第2のトンネル絶縁膜113に印加される電界が小さくなる。これにより、本実施形態では、書き込み速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
また、本実施形態では、第1の浮遊ゲート112の上面及び第2の浮遊ゲート114の下面をメタル材料で形成し、第2の浮遊ゲート114の下面を形成するメタル材料の仕事関数を、第1の浮遊ゲート112の上面を形成するメタル材料の仕事関数よりも高く設定してもよい。これにより、本実施形態では、第5及び第6実施形態よりも更に書き込み速度及び消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。
(第8実施形態)
図2を参照して、第8実施形態の第1から第3の例について説明する。
本実施形態の第1の例では、第1の浮遊ゲート112の上面を形成する材料の仕事関数と、第1の浮遊ゲート112の下面を形成する材料の仕事関数とを異なる値に設定する。このような設定は例えば、第7実施形態における第3変形例の構成を採用することで実現可能である。
この第1の例では、上記第3変形例と同様、第1の浮遊ゲート112を部分的にメタル材料で形成することが可能となる。これにより、第1の例では、第3変形例と同様、第1実施形態と同様の効果を得ることが可能となる。即ち、書き込み速度及び消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
また、本実施形態の第2の例では、第2の浮遊ゲート114の上面を形成する材料の仕事関数と、第2の浮遊ゲート114の下面を形成する材料の仕事関数とを異なる値に設定する。このような設定は例えば、第7実施形態における第2変形例の構成を採用することで実現可能である。
この第2の例では、上記第2変形例と同様、第2の浮遊ゲート114を部分的にメタル材料で形成することが可能となる。これにより、第2の例では、第2変形例と同様、第2実施形態と同様の効果を得ることが可能となる。即ち、書き込み速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
また、本実施形態の第3の例では、第1の例と第2の例を組み合わせる。即ち、第1の浮遊ゲート112の上面を形成する材料の仕事関数と、第1の浮遊ゲート112の下面を形成する材料の仕事関数とを異なる値に設定すると共に、第2の浮遊ゲート114の上面を形成する材料の仕事関数と、第2の浮遊ゲート114の下面を形成する材料の仕事関数とを異なる値に設定する。このような設定は例えば、第7実施形態における第1変形例の構成を採用することで実現可能である。
この第3の例では、上記第1変形例と同様、第1及び第2の浮遊ゲート112,114を部分的にメタル材料で形成することが可能となる。これにより、第3の例では、第1変形例と同様、第3実施形態と同様の効果を得ることが可能となる。即ち、第1及び第2の例よりも更に書き込み速度及び消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。更には、書き込みや消去の繰り返し可能な回数を増やすことが可能となる。
以上のように、本発明の第1〜第8実施形態では、セルトランジスタの浮遊ゲートを、第1及び第2の浮遊ゲート114で構成し、第1の浮遊ゲート112と第2の浮遊ゲート114との間に、FNトンネル膜である第2のトンネル絶縁膜113を介在させる。さらには、第1及び第2の浮遊ゲート112,114の少なくともいずれかが、メタル層を含んでいる。これにより、これらの実施形態では、書き込み速度及び/又は消去速度を向上させつつ、セルトランジスタの電荷保持特性を向上させることが可能となる。
以上、本発明の具体的な態様の例を、第1から第8実施形態により説明したが、本発明は、これらの実施形態に限定されるものではない。
101 基板
111 第1のトンネル絶縁膜
112 第1の浮遊ゲート
113 第2のトンネル絶縁膜
114 第2の浮遊ゲート
115 IPD膜
116 制御ゲート
121 素子分離絶縁膜
122 層間絶縁膜
131 ソースドレイン拡散層
211 第1絶縁膜
212 第1電極層
213 第2絶縁膜
214 第2電極層
215 第3絶縁膜
216 第3電極層
301 第1のマスク層
302 第2のマスク層

Claims (5)

  1. 基板と、
    前記基板上に形成され、FN(Fowler-Nordheim)トンネル膜として機能する第1のゲート絶縁膜と、
    前記第1のゲート絶縁膜上に形成された第1の浮遊ゲートと、
    前記第1の浮遊ゲート上に形成され、FNトンネル膜として機能する第2のゲート絶縁膜と、
    前記第2のゲート絶縁膜上に形成された第2の浮遊ゲートと、
    前記第2の浮遊ゲート上に形成されており、電荷ブロック膜として機能するゲート間絶縁膜と、
    前記ゲート間絶縁膜上に形成された制御ゲートとを備え、
    前記第1及び第2の浮遊ゲートの少なくともいずれかは、メタル層を含んでいることを特徴とする半導体記憶装置。
  2. 前記第1の浮遊ゲートは、メタル材料で形成されており、前記第2の浮遊ゲートは、ポリシリコンで形成されていることを特徴とする請求項1に記載の半導体記憶装置。
  3. 前記第1の浮遊ゲートは、ポリシリコンで形成されており、前記第2の浮遊ゲートは、メタル材料で形成されていることを特徴とする請求項1に記載の半導体記憶装置。
  4. 前記第1の浮遊ゲートは、複数の層を含んでおり、
    前記第1の浮遊ゲートの最上位層は、メタル材料で形成されていることを特徴とする請求項1に記載の半導体記憶装置。
  5. 前記第2の浮遊ゲートは、複数の層を含んでおり、
    前記第2の浮遊ゲートの最下位層は、メタル材料で形成されていることを特徴とする請求項1に記載の半導体記憶装置。
JP2009267236A 2009-11-25 2009-11-25 半導体記憶装置 Expired - Fee Related JP5537130B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009267236A JP5537130B2 (ja) 2009-11-25 2009-11-25 半導体記憶装置
US12/719,193 US8354706B2 (en) 2009-11-25 2010-03-08 Semiconductor memory device
KR1020100024200A KR20110058631A (ko) 2009-11-25 2010-03-18 반도체 메모리 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267236A JP5537130B2 (ja) 2009-11-25 2009-11-25 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2011114057A true JP2011114057A (ja) 2011-06-09
JP5537130B2 JP5537130B2 (ja) 2014-07-02

Family

ID=44061466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267236A Expired - Fee Related JP5537130B2 (ja) 2009-11-25 2009-11-25 半導体記憶装置

Country Status (3)

Country Link
US (1) US8354706B2 (ja)
JP (1) JP5537130B2 (ja)
KR (1) KR20110058631A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201254A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 半導体装置及びその製造方法
JP2014036048A (ja) * 2012-08-07 2014-02-24 Toshiba Corp 半導体記憶装置およびその製造方法
JP2014063883A (ja) * 2012-09-21 2014-04-10 Toshiba Corp 半導体記憶装置
US8803219B2 (en) 2012-06-20 2014-08-12 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing
US9029933B2 (en) 2012-09-11 2015-05-12 Kabushiki Kaisha Toshiba Non-volatile memory device and method for manufacturing same
US9379200B2 (en) 2013-12-13 2016-06-28 Kabushiki Kaisha Toshiba Memory with a silicide charge trapping layer
WO2016139725A1 (ja) * 2015-03-02 2016-09-09 株式会社 東芝 半導体記憶装置及びその製造方法
US10910401B2 (en) 2019-03-15 2021-02-02 Toshiba Memory Corporation Semiconductor device and method of manufacturing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039116B2 (ja) * 2009-11-24 2012-10-03 株式会社東芝 半導体記憶装置
US8575678B2 (en) * 2011-01-13 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device with floating gate
US9001564B2 (en) 2011-06-29 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method for driving the same
JP2014049731A (ja) * 2012-09-04 2014-03-17 Toshiba Corp 半導体装置
US9123822B2 (en) * 2013-08-02 2015-09-01 Silicon Storage Technology, Inc. Split gate non-volatile flash memory cell having a silicon-metal floating gate and method of making same
US9768270B2 (en) * 2014-06-25 2017-09-19 Sandisk Technologies Llc Method of selectively depositing floating gate material in a memory device
CN105514105B (zh) 2014-09-26 2019-08-06 联华电子股份有限公司 集成电路与其形成方法
US11133226B2 (en) 2018-10-22 2021-09-28 Taiwan Semiconductor Manufacturing Company, Ltd. FUSI gated device formation
CN110634875A (zh) * 2019-09-24 2019-12-31 上海华力微电子有限公司 一种存储单元、nand闪存架构及其形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024077A (ja) * 1999-06-30 2001-01-26 Hyundai Electronics Ind Co Ltd フラッシュメモリセルの製造方法
JP2005536888A (ja) * 2002-08-22 2005-12-02 アトメル・コーポレイション ナノ結晶電子デバイス
JP2007134681A (ja) * 2005-10-14 2007-05-31 Toshiba Corp 不揮発性半導体記憶装置
JP2008047704A (ja) * 2006-08-16 2008-02-28 Toshiba Corp 不揮発性半導体メモリ
JP2008311325A (ja) * 2007-06-13 2008-12-25 Toshiba Corp 不揮発性半導体記憶素子及び不揮発性半導体記憶装置
JP2009076764A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 不揮発性半導体メモリおよびその書き込み方法ならびにその消去方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111430A (en) * 1989-06-22 1992-05-05 Nippon Telegraph And Telephone Corporation Non-volatile memory with hot carriers transmitted to floating gate through control gate
JPH0737996A (ja) * 1993-07-26 1995-02-07 Mitsubishi Electric Corp メモリセルにトランジスタを用いない半導体記憶装置およびその製造方法
JP2000311956A (ja) * 1999-04-27 2000-11-07 Toshiba Corp 不揮発性半導体記憶装置とその製造方法
US7087954B2 (en) * 2001-08-30 2006-08-08 Micron Technology, Inc. In service programmable logic arrays with low tunnel barrier interpoly insulators
US7154779B2 (en) * 2004-01-21 2006-12-26 Sandisk Corporation Non-volatile memory cell using high-k material inter-gate programming
KR100676204B1 (ko) 2005-08-25 2007-01-30 삼성전자주식회사 이이피롬 셀 트랜지스터
JP4719035B2 (ja) 2006-03-13 2011-07-06 株式会社東芝 不揮発性半導体メモリ装置及びその製造方法
JP2007250974A (ja) 2006-03-17 2007-09-27 Tokyo Institute Of Technology 不揮発性半導体記憶装置
US8816422B2 (en) * 2006-09-15 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-trapping layer flash memory cell
KR100885797B1 (ko) 2007-03-15 2009-02-26 주식회사 하이닉스반도체 비휘발성 메모리 및 그의 소자의 제조 방법
EP2068351A1 (en) 2007-12-03 2009-06-10 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) Floating gate non-volatile memory device and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024077A (ja) * 1999-06-30 2001-01-26 Hyundai Electronics Ind Co Ltd フラッシュメモリセルの製造方法
JP2005536888A (ja) * 2002-08-22 2005-12-02 アトメル・コーポレイション ナノ結晶電子デバイス
JP2007134681A (ja) * 2005-10-14 2007-05-31 Toshiba Corp 不揮発性半導体記憶装置
JP2008047704A (ja) * 2006-08-16 2008-02-28 Toshiba Corp 不揮発性半導体メモリ
JP2008311325A (ja) * 2007-06-13 2008-12-25 Toshiba Corp 不揮発性半導体記憶素子及び不揮発性半導体記憶装置
JP2009076764A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 不揮発性半導体メモリおよびその書き込み方法ならびにその消去方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201254A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 半導体装置及びその製造方法
US8803219B2 (en) 2012-06-20 2014-08-12 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing
JP2014036048A (ja) * 2012-08-07 2014-02-24 Toshiba Corp 半導体記憶装置およびその製造方法
US9029933B2 (en) 2012-09-11 2015-05-12 Kabushiki Kaisha Toshiba Non-volatile memory device and method for manufacturing same
JP2014063883A (ja) * 2012-09-21 2014-04-10 Toshiba Corp 半導体記憶装置
US8901633B2 (en) 2012-09-21 2014-12-02 Kabushiki Kaisha Toshiba Semiconductor storage device and method for manufacturing the same
US9379200B2 (en) 2013-12-13 2016-06-28 Kabushiki Kaisha Toshiba Memory with a silicide charge trapping layer
WO2016139725A1 (ja) * 2015-03-02 2016-09-09 株式会社 東芝 半導体記憶装置及びその製造方法
US11257832B2 (en) 2015-03-02 2022-02-22 Kioxia Corporation Semiconductor memory device and method for manufacturing same
US10910401B2 (en) 2019-03-15 2021-02-02 Toshiba Memory Corporation Semiconductor device and method of manufacturing the same
US11335699B2 (en) 2019-03-15 2022-05-17 Kioxia Corporation Semiconductor device and method of manufacturing the same
US11785774B2 (en) 2019-03-15 2023-10-10 Kioxia Corporation Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
US20110121381A1 (en) 2011-05-26
US8354706B2 (en) 2013-01-15
KR20110058631A (ko) 2011-06-01
JP5537130B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5537130B2 (ja) 半導体記憶装置
JP5039116B2 (ja) 半導体記憶装置
US8149628B2 (en) Operating method of non-volatile memory device
KR100924983B1 (ko) 적층된 비휘발성 메모리 소자 및 그것을 제조하기 위한방법
JP2008098602A (ja) 積層型薄膜トランジスタ型不揮発性メモリ装置、およびその製造方法
JP2007053171A (ja) 不揮発性半導体メモリ装置
JP2009152498A (ja) 不揮発性半導体メモリ
JP2007258612A (ja) 不揮発性半導体メモリ装置
JP2006339599A (ja) 半導体装置およびその製造方法
JP2008016681A (ja) 不揮発性半導体記憶装置
JP2009289950A (ja) 半導体記憶装置
JP2011142246A (ja) 半導体記憶装置
JP5787855B2 (ja) 半導体記憶装置
JP5132330B2 (ja) 不揮発性半導体記憶装置およびその製造方法
JP2020013850A (ja) 半導体装置およびその製造方法
JP2010050285A (ja) 半導体記憶装置
JP2014007392A (ja) 不揮発性半導体記憶装置
JP2022079032A (ja) 半導体装置
JP5351274B2 (ja) 不揮発性半導体記憶装置
JP2022080348A (ja) 半導体装置
JP2011096772A (ja) 半導体装置およびその製造方法
JP2012044059A (ja) 半導体記憶装置
EP1870904B1 (en) Operating method of non-volatile memory device
US8921924B2 (en) Semiconductor memory device
JP2010109185A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R151 Written notification of patent or utility model registration

Ref document number: 5537130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees