JP2011112464A - Electric power monitoring system - Google Patents

Electric power monitoring system Download PDF

Info

Publication number
JP2011112464A
JP2011112464A JP2009268094A JP2009268094A JP2011112464A JP 2011112464 A JP2011112464 A JP 2011112464A JP 2009268094 A JP2009268094 A JP 2009268094A JP 2009268094 A JP2009268094 A JP 2009268094A JP 2011112464 A JP2011112464 A JP 2011112464A
Authority
JP
Japan
Prior art keywords
power
unit
measurement
branch
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268094A
Other languages
Japanese (ja)
Other versions
JP5427007B2 (en
Inventor
Yoshitaka Tezuka
義隆 手塚
Yasuhiro Yanagi
康裕 柳
Yoshihisa Honma
義久 本間
Hitoshi Nomura
仁志 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009268094A priority Critical patent/JP5427007B2/en
Publication of JP2011112464A publication Critical patent/JP2011112464A/en
Application granted granted Critical
Publication of JP5427007B2 publication Critical patent/JP5427007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric power monitoring system which allows common use of an electricity measuring unit, regardless of the electricity supply configuration and measurement locations. <P>SOLUTION: The electric power measuring unit 3 includes a first measurement unit for measuring the amount of electricity which is transferred through a circuit; a location information setting means for setting the place information of a measurement location; and a first transmitting means for transmitting the measured result of the amount of electricity by the first measurement unit and the location information set by the location information setting means to an integrated calculation unit 1 via a local bus W1. The integrated calculation unit 1 generates electricity information on the amount of electricity consumption and the amount of electric power generation of a solar power generating unit Uv and a gas power generating unit Ug in a household, on the basis of the measured result and the location information received from each electricity measuring unit 3. A display monitor 2 displays the electricity information generated by the integrated calculation unit 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、宅内の電力監視システムに関するものである。   The present invention relates to an in-house power monitoring system.

従来、各家庭等で消費される商用電源の電力量は、電力供給会社から送付される請求書で確認したり、電力供給会社が作成したウェブコンテンツで確認できる。   Conventionally, the amount of commercial power consumed in each home or the like can be confirmed with an invoice sent from the power supply company or with web content created by the power supply company.

一方、家庭の分電盤内で主幹電力量や分岐電力量を計測し、その計測結果をウェブ画面上でモニタリングできる電力監視システムがある。   On the other hand, there is a power monitoring system that can measure the main power amount and the branch power amount in a distribution board at home and monitor the measurement result on a web screen.

また近年、一般の家庭に太陽電池による太陽光発電ユニットを導入し、余剰電力を売電する系統連系システムや、燃料電池等の分散電源による発電ユニットを導入し、宅内の機器の電源として用いる配電システムの普及が進んでおり、発電量や売電量をモニタリング可能な電力監視システムも提案されている(例えば、特許文献1参照)。   In recent years, solar power generation units using solar cells have been introduced into ordinary homes, and grid-connected systems that sell surplus power and power generation units using distributed power sources such as fuel cells have been introduced and used as power sources for household devices. A power distribution system has been widely spread, and a power monitoring system capable of monitoring a power generation amount and a power sales amount has also been proposed (for example, see Patent Document 1).

特開2008−202983号公報JP 2008-202983 A

上記のように、商用電源と、太陽電池や燃料電池等の分散電源とを組み合わせて宅内の電力供給に用いるシステムでは、各電源が宅内に供給する電力を電力計測ユニットが計測する。そして、宅内に設けた統合演算部が、各電力計測ユニットによる計測結果に基づいて、商用電源の使用量、各電源の発電量、余剰電力による売電量を算出して、モニタ装置に表示させる。   As described above, in a system that uses a commercial power source and a distributed power source such as a solar cell or a fuel cell for use in power supply in a home, the power measurement unit measures the power that each power source supplies to the home. Then, an integrated calculation unit provided in the home calculates the amount of commercial power used, the amount of power generated by each power source, and the amount of power sold by surplus power based on the measurement result of each power measurement unit, and displays it on the monitor device.

ここで、分散電源には、太陽光発電装置のように売電可能な分散電源と、ガス発電装置のように売電不可能な分散電源とがあり、売電可能な分散電源と売電不可能な分散電源との両方を用いる配電システムでは、住戸全体の電力収支や、発電/消費の内訳を算出するために、売電可能な分散電源の発電電力を主幹ブレーカの一次側に供給し、売電不可能な分散電源の発電電力を主幹ブレーカの二次側に供給する必要がある。而して、売電可能な分散電源の発電量を計測する電力計測ユニットは、主幹ブレーカの一次側に設けられ、売電不可能な分散電源の発電量を計測する電力計測ユニットは、主幹ブレーカの二次側に設けられる。   Here, distributed power sources include distributed power sources that can sell power, such as solar power generation devices, and distributed power sources that cannot sell power, such as gas power generation devices. In a power distribution system that uses both a distributed power source and a power source, the power generated by the distributed power source that can be sold is supplied to the primary side of the main breaker in order to calculate the power balance of the entire dwelling unit and the breakdown of power generation / consumption. It is necessary to supply the power generated by the distributed power source that cannot be sold to the secondary side of the main breaker. Therefore, the power measurement unit that measures the power generation amount of the distributed power source that can sell power is provided on the primary side of the main breaker, and the power measurement unit that measures the power generation amount of the distributed power source that cannot be sold is the main circuit breaker. Is provided on the secondary side.

しかし、売電可能な分散電源のみを用いる場合、売電可能な分散電源の発電電力は、主幹ブレーカの二次側に供給される。而して、売電可能な分散電源の発電量を計測する電力計測ユニットは、主幹ブレーカの二次側に設けられる。   However, when only the distributed power source that can sell power is used, the generated power of the distributed power source that can sell power is supplied to the secondary side of the main breaker. Thus, the power measurement unit that measures the amount of power generated by the distributed power source that can sell power is provided on the secondary side of the main breaker.

そして、これらの電力計測ユニットの各計測結果を用いて各種演算を行う統合演算部は、主幹ブレーカの一次側に設けられた電力計測ユニットと、主幹ブレーカの二次側に設けられた電力計測ユニットとでは、演算時の処理が異なるため、各電力計測ユニットの計測結果が、主幹ブレーカの一次側と二次側とのいずれで計測されたものであるかを認識する必要がある。しかし、従来のシステムでは、電力計測ユニット毎にその計測場所を設定する手段は備えておらず、例えば、主幹ブレーカの一次側と二次側とでは互いに異なる電力計測ユニットを用いることで、統合演算部が各電力計測ユニットの計測場所を判別しており、電力計測ユニットを計測場所に関わらず共用することができなかった。   And the integrated calculation part which performs various calculations using each measurement result of these electric power measurement units is the electric power measurement unit provided in the primary side of the main breaker, and the electric power measurement unit provided in the secondary side of the main breaker Since the processing at the time of calculation is different, it is necessary to recognize whether the measurement result of each power measurement unit is measured on the primary side or the secondary side of the main breaker. However, the conventional system does not have a means for setting the measurement location for each power measurement unit. For example, by using different power measurement units on the primary side and the secondary side of the main breaker, integrated calculation is possible. Have determined the measurement location of each power measurement unit, and the power measurement unit could not be shared regardless of the measurement location.

本発明は、上記事由に鑑みてなされたものであり、その目的は、配電システムの構成、計測場所に関わらず、電力計測ユニットを共用できる電力監視システムを提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the electric power monitoring system which can share an electric power measurement unit irrespective of the structure of a power distribution system, and a measurement place.

請求項1の発明は、商用電源および分散電源からの電力を負荷へ供給するために宅内に配設された電路に設置された1乃至複数の電力計測ユニットと、1乃至複数の電力計測ユニットとの間で情報授受を行って電力情報を生成する統合演算部と、統合演算部が生成した電力情報を表示する表示部と、前記電路に介挿されて商用電源から宅内への電力供給を導通・遮断する主幹ブレーカとを備えて、主幹ブレーカの一次側の電路または二次側の電路には分散電源の出力が接続され、電力計測ユニットは、電路を通して授受される電気量を計測する第1の計測手段と、計測場所の場所情報を設定する場所情報設定手段と、第1の計測手段による電気量の計測結果および場所情報設定手段によって設定された場所情報を統合演算部へ送信する第1の送信手段とを具備し、1乃至複数の電力計測ユニットのうち少なくともいずれか1つは、分散電源の発電量を計測し、当該電力計測ユニットの場所情報設定手段は、主幹ブレーカの一次側または二次側を場所情報として設定し、統合演算部は、各電力計測ユニットから受信した計測結果および場所情報に基づいて宅内における電力の消費量および分散電源の発電量に関する電力情報を生成し、表示部は、統合演算部が生成した電力情報を表示することを特徴とする。   According to a first aspect of the present invention, there is provided one or more power measurement units installed in an electric circuit disposed in a house for supplying power from a commercial power source and a distributed power source to a load, and one or more power measurement units. An integrated calculation unit that exchanges information with each other to generate power information, a display unit that displays the power information generated by the integrated calculation unit, and a power supply from the commercial power supply to the home through the electric circuit A main circuit breaker to be cut off, and a primary power circuit or a secondary circuit of the main circuit breaker is connected to the output of the distributed power source, and the power measurement unit measures the amount of electricity transferred through the power circuit. Measuring means, a place information setting means for setting place information of the place to be measured, and a first measurement means for transmitting the measurement result of the electric quantity by the first measuring means and the place information set by the place information setting means to the integrated arithmetic unit. of And at least one of the one or more power measurement units measures the amount of power generated by the distributed power source, and the location information setting means of the power measurement unit is configured to be connected to the primary breaker or the secondary side of the main breaker. The next side is set as the location information, and the integrated calculation unit generates power information related to the power consumption in the house and the power generation amount of the distributed power source based on the measurement result and location information received from each power measurement unit, and the display unit Is characterized by displaying the power information generated by the integrated arithmetic unit.

この発明によれば、売電可能な発電ユニットと売電不可能な発電ユニットとを併用する配電システム、売電可能な発電ユニットのみを用いる配電システムのいずれであっても、同一の電力計測ユニットを各計測場所で使用可能となる。すなわち、配電システムの構成、計測場所に関わらず、電力計測ユニットを共用でき、構成の簡易化を図ることが可能となり、使い勝手が向上する。   According to the present invention, the same power measurement unit can be used in either a power distribution system that uses a power generation unit that can sell power and a power generation unit that cannot sell power, or a power distribution system that uses only a power generation unit that can sell power. Can be used at each measurement location. That is, regardless of the configuration of the power distribution system and the measurement location, the power measurement unit can be shared, the configuration can be simplified, and the usability is improved.

請求項2の発明は、請求項1において、前記電路は、前記主幹ブレーカが介挿された主幹電路と、主幹ブレーカの二次側に接続した主幹電路から分岐する複数の分岐電路とで構成されて、各分岐電路には負荷または分散電源を接続可能であり、各分岐電路を通して授受される電気量を計測する第2の計測手段と、分岐電路毎に分岐識別情報を設定する分岐情報設定手段と、第2の計測手段による分岐電路毎の電気量の計測結果および分岐情報設定手段によって設定された分岐識別情報を前記統合演算部へ送信する第2の送信手段とを具備した分岐電力計測部を備えており、統合演算部は、分岐電力計測部から受信した計測結果および分岐識別情報に基づいて電力の消費量に関する電力情報を分岐電路毎に生成し、分岐情報設定手段は、各分岐電路の電気量の計測結果を統合演算部が生成する電力情報に含めるか否かを分岐電路毎に設定する機能を有することを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the electric circuit is composed of a main electric circuit in which the main circuit breaker is inserted and a plurality of branch electric circuits branched from the main electric circuit connected to the secondary side of the main circuit breaker. In addition, a load or a distributed power source can be connected to each branch circuit, and a second measurement unit that measures the amount of electricity exchanged through each branch circuit and a branch information setting unit that sets branch identification information for each branch circuit And a second transmission means for transmitting the measurement result of the electric quantity for each branch electric circuit by the second measurement means and the branch identification information set by the branch information setting means to the integrated calculation section. The integrated calculation unit generates power information related to power consumption for each branch circuit based on the measurement result and branch identification information received from the branch power measurement unit, and the branch information setting means And having a function of setting whether to include the measurement result of the quantity of electricity road to power information integration arithmetic unit is generated for each electric branch.

この発明によれば、ユーザは分岐電路毎の消費電力を把握し易くなり、省電力化のための対応を適切に実行可能となる。さらに、分岐電路の接続先に応じて、当該分岐電路の電力計測の有効・無効が設定可能となり、電力計測ユニットと分岐電力計測部との併用が容易となり、使い勝手が向上する。   According to this invention, it becomes easy for the user to grasp the power consumption for each branch electric circuit, and it is possible to appropriately execute measures for power saving. Furthermore, it becomes possible to set validity / invalidity of the power measurement of the branch circuit according to the connection destination of the branch circuit, and the combined use of the power measurement unit and the branch power measurement unit is facilitated, and the usability is improved.

請求項3の発明は、請求項1または2において、前記第1,第2の計測手段による電気量の計測結果が予め設定された基準範囲外である場合に、当該計測手段の異常を検出する異常検出手段を備えることを特徴とする。   The invention of claim 3 detects an abnormality of the measurement means in claim 1 or 2 when the measurement result of the electric quantity by the first and second measurement means is outside a preset reference range. An abnormality detection means is provided.

この発明によれば、施工ミスによる誤計測を防止できる。   According to the present invention, erroneous measurement due to construction errors can be prevented.

請求項4の発明は、請求項1乃至3いずれかにおいて、前記分散電源は、前記第1,第2の計測手段の少なくとも一方を設置した第1の電路を介して負荷へ発電電力を供給し、第1,第2の計測手段のいずれも設置していない第2の電路を介して負荷ユニットへ発電電力を供給するとともに、第2の電路を介して負荷ユニットへ供給した発電量の情報を前記統合演算部へ送信し、統合演算部は、分散電源の全発電量および第2の電路を介して負荷ユニットへ供給した発電量に関する電力情報を生成することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the distributed power source supplies generated power to a load via a first electric circuit provided with at least one of the first and second measuring means. In addition to supplying generated power to the load unit via the second electric circuit in which neither of the first and second measuring means is installed, information on the amount of electric power supplied to the load unit via the second electric circuit is provided. The integrated calculation unit transmits to the integrated calculation unit, and the integrated calculation unit generates power information related to the total power generation amount of the distributed power source and the power generation amount supplied to the load unit via the second electric circuit.

この発明によれば、配電システムの構成に依らず、電力監視が可能となる。   According to the present invention, power monitoring can be performed regardless of the configuration of the power distribution system.

以上説明したように、本発明では、電力監視システムにおいて、配電システムの構成、計測場所に関わらず、電力計測ユニットを共用できるという効果がある。   As described above, according to the present invention, the power monitoring system can share the power measurement unit regardless of the configuration of the power distribution system and the measurement location.

実施形態1のシステム構成を示す図である。1 is a diagram illustrating a system configuration of a first embodiment. 同上の別のシステム構成を示す図である。It is a figure which shows another system configuration same as the above. 同上の電力計測ユニットの構成を示す図である。It is a figure which shows the structure of an electric power measurement unit same as the above. 実施形態2のシステム構成を示す図である。It is a figure which shows the system configuration | structure of Embodiment 2. FIG. 同上の分岐回路の構成を示す図である。It is a figure which shows the structure of a branch circuit same as the above. 同上の別のシステム構成を示す図である。It is a figure which shows another system configuration same as the above. 実施形態3のシステム構成を示す図である。FIG. 6 is a diagram illustrating a system configuration of a third embodiment. (a)(b)実施形態4の換算係数を示す図である。(A) (b) It is a figure which shows the conversion factor of Embodiment 4.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本実施形態の電力監視システムの構成を示し、商用電源ACから単相3線式200Vが住戸内に導入されて、引込盤Hを介して住戸内の一次側主幹電路La1に接続され、一次側主幹電路La1は、主幹ブレーカBmの一次側に接続される。主幹ブレーカBmの二次側は、二次側主幹電路La2に接続され、宅内の負荷Xは、図示しないコンセント等を介して二次側主幹電路La2から電力を供給される。
(Embodiment 1)
FIG. 1 shows the configuration of the power monitoring system of this embodiment. A single-phase three-wire system 200V is introduced from a commercial power supply AC into a dwelling unit and connected to the primary main electrical circuit La1 in the dwelling unit via a lead-in panel H. The primary side main electric circuit La1 is connected to the primary side of the main breaker Bm. The secondary side of the main breaker Bm is connected to the secondary main electric circuit La2, and the load X in the home is supplied with power from the secondary main electric circuit La2 via an outlet (not shown).

そして、主幹ブレーカBmの一次側に接続した一次側主幹電路La1には、太陽光発電を行う太陽発電ユニットUvが発電用ブレーカBvを介して接続し、主幹ブレーカBmの二次側に接続した二次側主幹電路La2には、ガス発電を行うガス発電ユニットUgが発電用ブレーカBgを介して接続している。太陽発電ユニットUvは、太陽電池によって発電し、発電した直流電力を交流電力に変換して出力するパワーコンディショナを備えており、さらに太陽発電ユニットUvが発電した電力は、商用電源AC側へ逆潮流させることで売電を行うことが可能である。ガス発電ユニットUgは、ガスエンジンによって発電し、発電した交流電力を出力するとともに、ガスエンジンの発熱は給湯、暖房等の熱源としても利用される。   A solar power generation unit Uv that performs solar power generation is connected to the primary side main electric circuit La1 connected to the primary side of the main breaker Bm via the power generation breaker Bv, and is connected to the secondary side of the main breaker Bm. A gas power generation unit Ug that performs gas power generation is connected to the secondary main electrical circuit La2 via a power generation breaker Bg. The solar power generation unit Uv includes a power conditioner that generates electric power with a solar cell, converts the generated DC power into AC power, and outputs the AC power. Further, the power generated by the solar power generation unit Uv is reversed to the commercial power source AC side. It is possible to sell electricity by making it flow. The gas power generation unit Ug generates power with the gas engine and outputs the generated AC power, and the heat generated by the gas engine is also used as a heat source for hot water supply and heating.

本システムでは、宅内に電力を供給する電力供給源として、商用電源AC、太陽発電ユニットUv、ガス発電ユニットUgがあり、統合演算部1が、住戸全体の電力収支や、発電/消費の内訳を算出して電力情報を生成し、当該生成した電力情報を含むウェブコンテンツを、LAN等のネットワークNTを介して接続されたパーソナルコンピュータ等の表示モニタ2(表示部)に表示させる。なお、統合演算部1と表示モニタ2との間は、電力線搬送通信を用いて情報授受を行ってもよく、さらに統合演算部1および表示モニタ2は、一体構成でもよい。   In this system, there are a commercial power supply AC, a solar power generation unit Uv, and a gas power generation unit Ug as power supply sources for supplying power to the home, and the integrated calculation unit 1 determines the power balance of the entire dwelling unit and the breakdown of power generation / consumption. Power information is generated by calculation, and web content including the generated power information is displayed on a display monitor 2 (display unit) such as a personal computer connected via a network NT such as a LAN. Information may be exchanged between the integrated calculation unit 1 and the display monitor 2 using power line carrier communication, and the integrated calculation unit 1 and the display monitor 2 may have an integrated configuration.

そして、3つの電力計測ユニット3(31,32,33)が、電路上の各部の電力を計測しており、1つ目の電力計測ユニット31は、主幹ブレーカBmの二次側に設置されて、主幹ブレーカBmから二次側主幹電路La2に供給される主幹電力Pmを計測する。2つ目の電力計測ユニット32は、発電用ブレーカBvの一次側(太陽発電ユニットUv側)に設置されて、太陽発電ユニットUvが一次側主幹電路La1に供給する発電電力Pv(太陽発電電力Pv)を計測する。3つ目の電力計測ユニット33は、発電用ブレーカBgの一次側(ガス発電ユニットUg側)に設置されて、ガス発電ユニットUgが二次側主幹電路La2に供給する発電電力Pg(ガス発電電力Pg)を計測する。そして、電力計測ユニット31,32,33は、宅内ネットワークを構成する共通のローカルバスW1によって統合演算部1に接続しており、電力計測ユニット31,32,33の各計測結果は、ローカルバスW1を介して統合演算部1へ送信される。なお、電力計測ユニット3は、太陽発電電力Pv、ガス発電電力Pg等の発電電力が負値となるように電路に対して設置され、負荷X等での消費電力が正値となるように電路に対して設定される。   And three electric power measurement units 3 (31, 32, 33) measure electric power of each part on an electric circuit, and the first electric power measurement unit 31 is installed in the secondary side of main breaker Bm. The main power Pm supplied from the main circuit breaker Bm to the secondary main power circuit La2 is measured. The second power measurement unit 32 is installed on the primary side (solar power generation unit Uv side) of the power generation breaker Bv, and the generated power Pv (solar power generation power Pv) that the solar power generation unit Uv supplies to the primary main trunk La1. ). The third power measurement unit 33 is installed on the primary side (gas power generation unit Ug side) of the power generation breaker Bg, and the power generation power Pg (gas power generation power) that the gas power generation unit Ug supplies to the secondary main trunk circuit La2 is provided. Pg) is measured. The power measurement units 31, 32, and 33 are connected to the integrated calculation unit 1 by a common local bus W1 that constitutes a home network, and the measurement results of the power measurement units 31, 32, and 33 are the local bus W1. Is transmitted to the integrated arithmetic unit 1 via. The power measuring unit 3 is installed on the electric circuit so that the generated electric power such as the solar generated electric power Pv and the gas generated electric power Pg has a negative value, and the electric circuit so that the power consumption at the load X or the like becomes a positive value. Set for.

電力計測ユニット3は、図3に示すように、センサ部3a、電力演算部3b、機器情報設定部3c、場所情報設定部3d、送信部3e(第1の送信手段)を備えて、ロゴスキーコイルおよび電圧センサで構成されるセンサ部3aが各電路を流れる電流および電圧を検出し、電力演算部3bは、検出した電流値と当該電路の電圧とを用いて電力を算出しており、センサ部3aと電力演算部3bとで計測手段(第1の計測手段)を構成している。   As shown in FIG. 3, the power measurement unit 3 includes a sensor unit 3a, a power calculation unit 3b, a device information setting unit 3c, a location information setting unit 3d, and a transmission unit 3e (first transmission means). A sensor unit 3a including a coil and a voltage sensor detects a current and a voltage flowing through each electric circuit, and a power calculation unit 3b calculates electric power using the detected current value and the voltage of the electric circuit. The unit 3a and the power calculation unit 3b constitute measurement means (first measurement means).

ここで、分散電源には、太陽発電ユニットUvのように売電可能な分散電源(売電可能な他の分散電源としては、風力発電、バイオマス発電等がある)と、ガス発電ユニットUgのように売電不可能な分散電源(売電不可能な他の分散電源としては、燃料電池発電等がある)とがあり、売電可能な太陽発電ユニットUvと売電不可能なガス発電ユニットUgとの両方を用いる配電システムでは、住戸全体の電力収支や、発電/消費の内訳を算出するために、売電可能な太陽発電ユニットUvの発電電力を主幹ブレーカBmの一次側に供給し、売電不可能なガス発電ユニットUgの発電電力を主幹ブレーカBmの二次側に供給する必要がある。而して、太陽発電ユニットUvの発電電力Pvを計測する電力計測ユニット32は、主幹ブレーカBmの一次側に設けられ、ガス発電ユニットUgの発電電力Pgを計測する電力計測ユニット33は、主幹ブレーカBmの二次側に設けられる。   Here, the distributed power source includes a distributed power source that can sell power like the solar power generation unit Uv (other distributed power sources that can sell power include wind power generation and biomass power generation), and a gas power generation unit Ug. There are distributed power sources that cannot sell power (other distributed power sources that cannot sell power include fuel cell power generation, etc.), solar power generation unit Uv that can sell power and gas power generation unit Ug that cannot sell power. In order to calculate the power balance of the whole dwelling unit and the breakdown of power generation / consumption, the power generation system that can sell power is supplied to the primary side of the main breaker Bm. It is necessary to supply the generated power of the gas power generation unit Ug that cannot be supplied to the secondary side of the main breaker Bm. Thus, the power measurement unit 32 for measuring the generated power Pv of the solar power generation unit Uv is provided on the primary side of the main breaker Bm, and the power measurement unit 33 for measuring the generated power Pg of the gas power generation unit Ug is the main breaker. Provided on the secondary side of Bm.

しかし、図2に示すように、売電可能な太陽発電ユニットUvのみを用いる場合、太陽発電ユニットUvの発電電力は、主幹ブレーカBmの二次側に供給される。而して、太陽発電ユニットUvの発電電力を計測する電力計測ユニット32は、主幹ブレーカBmの二次側に設けられる。   However, as shown in FIG. 2, when only the solar power generation unit Uv capable of selling power is used, the generated power of the solar power generation unit Uv is supplied to the secondary side of the main breaker Bm. Thus, the power measurement unit 32 that measures the generated power of the solar power generation unit Uv is provided on the secondary side of the main breaker Bm.

そして、統合演算部1は、これらの電力計測ユニット31,32,33の各計測結果を用いて各種演算を行うのであるが、演算時には、電力計測ユニット31,32,33の計測対象だけでなく、設置場所(主幹ブレーカBmの一次側または二次側)も認識する必要がある。   And the integrated calculation part 1 performs various calculations using each measurement result of these electric power measurement units 31, 32, and 33, but at the time of calculation, not only the measurement object of the electric power measurement units 31, 32, and 33 It is also necessary to recognize the installation location (primary side or secondary side of the main breaker Bm).

そこで、本実施形態では、電力計測ユニット31,32,33の各計測対象の機器情報を機器情報設定部3cで設定し、電力計測ユニット31,32,33の各設置場所の場所情報を場所情報設定部3dで設定する。   Therefore, in the present embodiment, the device information setting unit 3c sets the measurement target device information of the power measurement units 31, 32, and 33, and the location information of the installation locations of the power measurement units 31, 32, and 33 is the location information. Setting is performed by the setting unit 3d.

機器情報設定部3cは、DIPスイッチ等で構成され、計測対象の機器情報を設定する。図1のシステム構成において、電力計測ユニット31は、機器情報「主幹ブレーカ」に設定され、電力計測ユニット32は、機器情報「太陽発電ユニット」に設定され、電力計測ユニット33は、機器情報「ガス発電ユニット」に設定される。一方、図2のシステム構成において、電力計測ユニット31は、機器情報「主幹ブレーカ」に設定され、電力計測ユニット32は、機器情報「太陽発電ユニット」に設定される。   The device information setting unit 3c is configured by a DIP switch or the like, and sets device information to be measured. In the system configuration of FIG. 1, the power measurement unit 31 is set to the device information “main breaker”, the power measurement unit 32 is set to the device information “solar power generation unit”, and the power measurement unit 33 is set to the device information “gas”. Set to “Power generation unit”. On the other hand, in the system configuration of FIG. 2, the power measurement unit 31 is set to the device information “main trunk breaker”, and the power measurement unit 32 is set to the device information “solar power generation unit”.

場所情報設定部3dは、DIPスイッチ等で構成され、計測場所の場所情報を設定する。この場所情報は、「主幹ブレーカの一次側」および「主幹ブレーカの二次側」のいずれかに設定される。図1のシステム構成において、電力計測ユニット31は、場所情報「主幹ブレーカの二次側」に設定され、電力計測ユニット32は、場所情報「主幹ブレーカの一次側」に設定され、電力計測ユニット33は、場所情報「主幹ブレーカの二次側」に設定される。一方、図2のシステム構成においては、電力計測ユニット31,32ともに、場所情報「主幹ブレーカの二次側」に設定される。   The location information setting unit 3d is configured by a DIP switch or the like, and sets location information on the measurement location. This location information is set to either “primary side of the main breaker” or “secondary side of the main breaker”. In the system configuration of FIG. 1, the power measurement unit 31 is set to the location information “secondary side of the main breaker”, the power measurement unit 32 is set to the location information “primary side of the main breaker”, and the power measurement unit 33. Is set in the location information “secondary side of the main breaker”. On the other hand, in the system configuration of FIG. 2, both the power measurement units 31 and 32 are set to the location information “secondary side of the main breaker”.

なお、機器情報設定部3cおよび場所情報設定部3dを一体化して、機器情報および場所情報の両方を一括して設定する構成でもよい。   Note that the device information setting unit 3c and the location information setting unit 3d may be integrated to set both the device information and the location information collectively.

そして、送信部3eは、電力演算部3bが算出した計測電力、機器情報設定部3cによって設定された機器情報、場所情報設定部3dによって設定された場所情報を、ローカルバスW1を介して統合演算部1へ送信する。   Then, the transmission unit 3e integrates the measured power calculated by the power calculation unit 3b, the device information set by the device information setting unit 3c, and the location information set by the location information setting unit 3d via the local bus W1. Send to part 1.

統合演算部1は、電力計測ユニット3から各々受信した計測電力、機器情報、場所情報に基づいて、住戸全体の電力収支や、発電/消費の内訳を算出して、電力情報を生成し、生成した電力情報を含むウェブコンテンツを表示モニタ2に表示させる。以下、この電力情報の生成処理について説明する。   Based on the measured power, device information, and location information received from the power measurement unit 3, the integrated calculation unit 1 calculates the power balance of the entire dwelling unit and the breakdown of power generation / consumption, and generates power information. The web content including the power information is displayed on the display monitor 2. The power information generation process will be described below.

まず、統合演算部1は、電力計測ユニット3から各々受信した機器情報、場所情報に基づいて、図1に示すような太陽発電ユニットUvとガス発電ユニットUgとの両方を用いる配電システムと、図2に示すような太陽発電ユニットUvのみを用いる配電システムとのいずれであるかを判定する。具体的には、各電力計測ユニット3の「機器情報」「場所情報」が、電力計測ユニット31「主幹ブレーカ」「主幹ブレーカの二次側」、電力計測ユニット32「太陽発電ユニット」「主幹ブレーカの一次側」、電力計測ユニット33「ガス発電ユニット」「主幹ブレーカの二次側」であれば、太陽発電ユニットUvとガス発電ユニットUgとの両方を用いる配電システムであると判定する。また、各電力計測ユニット3の「機器情報」「場所情報」が、電力計測ユニット31「主幹ブレーカ」「主幹ブレーカの二次側」、電力計測ユニット32「太陽発電ユニット」「主幹ブレーカの二次側」であれば、太陽発電ユニットUvのみを用いる配電システムであると判定する。   First, the integrated calculation unit 1 includes a power distribution system that uses both the solar power generation unit Uv and the gas power generation unit Ug as shown in FIG. Whether it is a power distribution system using only the solar power generation unit Uv as shown in FIG. Specifically, the “device information” and “location information” of each power measurement unit 3 are the power measurement unit 31 “main trunk breaker” “secondary side of the main breaker”, power measurement unit 32 “solar power generation unit” “main breaker”. If it is “primary side”, power measurement unit 33 “gas power generation unit” “secondary side of main breaker”, it is determined that the power distribution system uses both the solar power generation unit Uv and the gas power generation unit Ug. Further, the “equipment information” and “location information” of each power measurement unit 3 are the power measurement unit 31 “master breaker” “secondary side of the main breaker”, power measurement unit 32 “solar power generation unit”, “secondary breaker secondary” If it is “side”, it is determined that the power distribution system uses only the solar power generation unit Uv.

そして、太陽発電ユニットUvとガス発電ユニットUgとの両方を用いる配電システムの場合、統合演算部1が生成する電力情報は、
主幹電力Pm
太陽発電電力Pv
ガス発電電力Pg
家全体の電力収支P1(総合電力収支P1)=Pm+Pv
家全体の発電電力P2(総合発電電力P2)=Pv+Pg
家全体で実際に消費した電力P3(実質消費電力P3)=Pm−Pg
となる。なお、太陽発電電力Pv、ガス発電電力Pg、総合発電電力P2は、発電電力のため、負値となる。また、総合電力収支P1は、正値であれば買電、負値であれば売電となる。
And in the case of the power distribution system using both the solar power generation unit Uv and the gas power generation unit Ug, the power information generated by the integrated arithmetic unit 1 is
Main power Pm
Solar power Pv
Gas power generation Pg
Entire house power balance P1 (total power balance P1) = Pm + Pv
Generated power P2 of the entire house (total generated power P2) = Pv + Pg
Electric power P3 actually consumed in the whole house (real power consumption P3) = Pm−Pg
It becomes. Note that the solar power generation power Pv, the gas power generation power Pg, and the total power generation power P2 are negative values because they are generated power. Further, if the total power balance P1 is a positive value, it will be purchased, and if it is a negative value, it will be sold.

例えば、主幹電力Pm=3KWh、太陽発電電力Pv=−2KWh、ガス発電電力Pg=−0.5KWhの場合、
総合電力収支P1=3KWh−2KWh=1KWh(1KWhの買電)
総合発電電力P2=−2KWh−0.5KWh=−2.5KWh(2.5KWhの発電)
実質消費電力P3=3KWh−(−0.5KWh)=3.5KWh
となる。
For example, when the main power Pm = 3 kWh, the solar power generation power Pv = −2 kWh, and the gas power generation power Pg = −0.5 kWh,
Total power balance P1 = 3 kWh-2 kWh = 1 kWh (1 kWh power purchase)
Total generated power P2 = -2 kWh-0.5 kWh = -2.5 kWh (2.5 kWh power generation)
Real power consumption P3 = 3 kWh − (− 0.5 kWh) = 3.5 kWh
It becomes.

一方、太陽発電ユニットUvのみを用いる配電システムの場合、統合演算部1が生成する電力情報は、
主幹電力Pm
太陽発電電力Pv
家全体の電力収支P1(総合電力収支P1)=Pm
家全体の発電電力P2(総合発電電力P2)=Pv
家全体で実際に消費した電力P3(実質消費電力P3)=Pm
となる。なお、太陽発電電力Pv、総合発電電力P2は、発電電力のため、負値となる。また、総合電力収支P1は、正値であれば買電、負値であれば売電となる。
On the other hand, in the case of a power distribution system using only the solar power generation unit Uv, the power information generated by the integrated arithmetic unit 1 is
Main power Pm
Solar power Pv
Total household power balance P1 (total power balance P1) = Pm
Generated power P2 of the entire house (total generated power P2) = Pv
Electric power P3 actually consumed in the entire house (real power consumption P3) = Pm
It becomes. Note that the solar power generation power Pv and the total power generation power P2 are negative values because they are generated power. Further, if the total power balance P1 is a positive value, it will be purchased, and if it is a negative value, it will be sold.

例えば、主幹電力Pm=3KWh、太陽発電電力Pv=−2KWhの場合、
総合電力収支P1=3KWh=3KWh(3KWhの買電)
総合発電電力P2=−2KWh=−2KWh(2KWhの発電)
実質消費電力P3=3KWh=3KWh
となる。
For example, when the main power Pm = 3 kWh and the solar power generation Pv = −2 kWh,
Total power balance P1 = 3 kWh = 3 kWh (3 kWh power purchase)
Total generated power P2 = -2 kWh = -2 kWh (2 kWh power generation)
Real power consumption P3 = 3 kWh = 3 kWh
It becomes.

このように、電力計測ユニット3の各計測結果に対して、機器情報だけでなく場所情報も容易に設定することができるので、売電可能な発電ユニットと売電不可能な発電ユニットとを併用する配電システム、売電可能な発電ユニットのみを用いる配電システムのいずれであっても、計測場所(特に、売電可能な発電ユニットの計測場所)に関わらず、同一の電力計測ユニット3を各計測場所で使用可能となる。したがって、配電システムの構成、計測場所に関わらず、電力計測ユニット3を共用でき、構成の簡易化、使い勝手の向上を実現している。また、場所情報として、「主幹ブレーカの一次側」「主幹ブレーカの二次側」を例示しているが、統合演算部1における演算処理に応じて、他の計測場所の場所情報も設定可能に構成してもよい。   Thus, not only device information but also location information can be easily set for each measurement result of the power measurement unit 3, so that a power generation unit that can sell power and a power generation unit that cannot sell power are used in combination. Regardless of the measurement location (especially the measurement location of the power generation unit capable of selling power), the same power measurement unit 3 is measured regardless of the distribution system that uses only the power generation unit that can sell power. Can be used in places. Therefore, the power measurement unit 3 can be shared regardless of the configuration of the power distribution system and the measurement location, thereby realizing a simplified configuration and improved usability. In addition, as the location information, “primary side of the main breaker” and “secondary side of the main breaker” are illustrated, but the location information of other measurement locations can be set according to the calculation processing in the integrated calculation unit 1 It may be configured.

また、ヒートポンプ式の給湯システム等の蓄熱設備を負荷として接続してもよく、例えば、一次側主幹電路La1に、売電可能な分散電源の代わりにヒートポンプ式の給湯システム等を接続し、一次側主幹電路La1から供給される電力によって蓄熱を行う場合、電力計測ユニット32によって一次側主幹電路La1から蓄熱設備に供給される電力(蓄熱用電力Pt)を計測すると、蓄熱用電力Ptの計測結果は正値となる。この場合、電力計測ユニット32は、機器情報「蓄熱設備」に設定され、場所情報「主幹ブレーカの一次側」に設定される。   In addition, a heat storage facility such as a heat pump hot water supply system may be connected as a load. For example, a heat pump hot water supply system or the like is connected to the primary main electrical circuit La1 instead of a distributed power source capable of selling power, and the primary side When heat storage is performed using the power supplied from the main electrical path La1, when the power measurement unit 32 measures the power (heat storage power Pt) supplied from the primary main power path La1 to the heat storage facility, the measurement result of the heat storage power Pt is Positive value. In this case, the power measurement unit 32 is set in the device information “heat storage facility”, and is set in the location information “primary breaker primary side”.

そして、図1において、太陽発電ユニットUvの代わりに図示しない蓄熱設備を用いる配電システムの場合、統合演算部1が生成する電力情報は、
主幹電力Pm
蓄熱用電力Pt
ガス発電電力Pg
家全体の電力収支P1(総合電力収支P1)=Pm+Pt
家全体の発電電力P2(総合発電電力P2)=Pg
家全体で実際に消費した電力P3(実質消費電力P3)=Pm−Pg
となる。なお、ガス発電電力Pg、総合発電電力P2は、発電電力のため、負値となる。また、総合電力収支P1は、正値であれば買電、負値であれば売電となり、蓄熱用電力Ptは、正値となる。
And in FIG. 1, in the case of the power distribution system which uses the thermal storage equipment which is not illustrated instead of the solar power generation unit Uv, the electric power information which the integrated calculating part 1 produces | generates is
Main power Pm
Thermal storage power Pt
Gas power generation Pg
Entire house power balance P1 (total power balance P1) = Pm + Pt
Total power generation P2 (total power generation P2) = Pg
Electric power P3 actually consumed in the whole house (real power consumption P3) = Pm−Pg
It becomes. The gas power generation power Pg and the total power generation power P2 are negative values because they are generated power. Further, if the total power balance P1 is a positive value, it is purchased, and if it is a negative value, it is sold, and the heat storage power Pt is a positive value.

このように、本電力監視システムは、発電ユニットだけでなく、蓄熱設備等の蓄エネルギー設備を用いた配電システムにも適用可能であり、さらに高い汎用性を実現している。   As described above, the power monitoring system can be applied not only to the power generation unit but also to a power distribution system using energy storage equipment such as heat storage equipment, and realizes higher versatility.

また、電力計測ユニット3の電力演算部3bは、計測対象(発電電力を供給する分散電源、電力を消費して蓄熱を行う蓄熱設備等)に応じて、センサ部3aが検出した電流値の許容範囲を設定されており、例えば、計測対象が分散電源の場合は、発電電力を供給することから、センサ部3aによる検出電流の許容範囲は0以下(0〜負値)となり、計測対象が蓄エネルギー設備の場合は、電力を消費して蓄エネルギーを行うことから、センサ部3aによる検出電流の許容範囲は0以上(0〜正値)となる。そして、電力演算部3bは、機器情報設定部3cによって設定された機器情報に基づいて計測対象を認識し、当該計測対象に対応する検出電流の許容範囲を設定し、センサ部3aによる検出電流が自己に設定された許容範囲外であれば、電路に対するセンサ部3aの施工ミス(例えば、ロゴスキーコイルの設置方向が逆方向)であると判断して、ローカルバスW1を介して統合演算部1へ異常信号を送信する(異常検出手段)。   In addition, the power calculation unit 3b of the power measurement unit 3 accepts the current value detected by the sensor unit 3a according to the measurement target (distributed power supply that supplies generated power, heat storage facility that consumes power and stores heat). For example, when the measurement target is a distributed power supply, the generated power is supplied, so that the allowable range of the current detected by the sensor unit 3a is 0 or less (0 to negative value), and the measurement target is stored. In the case of energy equipment, since electric power is consumed to store energy, the allowable range of current detected by the sensor unit 3a is 0 or more (0 to positive value). And the electric power calculating part 3b recognizes a measuring object based on the apparatus information set by the apparatus information setting part 3c, sets the permissible range of the detected current corresponding to the said measuring object, and the detected current by the sensor part 3a is set. If it is outside the allowable range set by itself, it is determined that the construction error of the sensor unit 3a with respect to the electric path (for example, the installation direction of the Rogowski coil is reverse), and the integrated calculation unit 1 is connected via the local bus W1. An abnormality signal is transmitted to (abnormality detection means).

電力計測ユニット3から異常信号を受信した統合演算部1は、電路に対するセンサ部3aの施工ミスを示す異常情報を生成し、生成した異常情報を含むウェブコンテンツを表示モニタ2に表示させる。また、統合演算部1が、電力計測ユニット3からの機器情報に基づいて計測対象を認識し、当該計測対象に対応する計測電力の許容範囲を設定し、電力計測ユニット3からの計測電力が許容範囲外か否かを判定することで、異常検出手段として機能してもよい。   The integrated calculation unit 1 that has received the abnormality signal from the power measurement unit 3 generates abnormality information indicating a construction error of the sensor unit 3a with respect to the electric circuit, and causes the display monitor 2 to display web content including the generated abnormality information. Further, the integrated arithmetic unit 1 recognizes the measurement target based on the device information from the power measurement unit 3, sets the allowable range of the measured power corresponding to the measurement target, and allows the measured power from the power measurement unit 3 to be allowed. It may function as an abnormality detection means by determining whether or not it is out of range.

したがって、センサ部3aの電路に対する設置は、現場施工であるため、センサ部3aを電路に対して逆方向に取り付ける施工ミスが発生する虞があるが、このような施工ミスによる誤計測を防止できる。   Therefore, since the installation of the sensor unit 3a on the electric circuit is an on-site application, there is a possibility that an installation error for attaching the sensor unit 3a in the opposite direction to the electric circuit may occur. However, erroneous measurement due to such an installation error can be prevented. .

(実施形態2)
本実施形態は、図4に示すように、実施形態1の構成に分岐回路4を設けたものであり、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
In this embodiment, as shown in FIG. 4, the branch circuit 4 is provided in the configuration of the first embodiment. The same reference numerals are given to the same configurations as those in the first embodiment, and the description thereof is omitted.

分岐回路4は、図5に示すように、二次側主幹電路La2から分岐した分岐電路Lb毎に分岐ブレーカ41を介挿し、分岐電力計測部42が、各分岐電路Lbから負荷Xに供給される電力を計測している。   As shown in FIG. 5, the branch circuit 4 has a branch breaker 41 inserted for each branch circuit Lb branched from the secondary main circuit La2, and a branch power measuring unit 42 is supplied to the load X from each branch circuit Lb. Power to be measured.

分岐電力計測部42は、センサ部42a、電力演算部42b、分岐情報設定部42c、送信部42d(第2の送信手段)を備え、ロゴスキーコイルおよび電圧センサで構成されるセンサ部42aが各分岐電路Lbを流れる電流および電圧を検出し、電力演算部42bは、検出した電流値と当該分岐電路Lbの電圧とを用いて電力を算出しており、センサ部42aと電力演算部42bとで計測手段(第2の計測手段)を構成している。また、分岐情報設定部42cは、押ボタン等で構成され、計測対象の分岐電路Lbの情報(分岐電路情報)を設定する。分岐電路情報には、当該分岐電路Lbに設けられた分岐ブレーカ41の定格電流(15A,20A,30A,...)や接続される負荷Xの名称(照明機器,空調装置,避雷器,地震計,...)等が設定される。   The branch power measurement unit 42 includes a sensor unit 42a, a power calculation unit 42b, a branch information setting unit 42c, and a transmission unit 42d (second transmission means). Each sensor unit 42a including a Rogowski coil and a voltage sensor The current and voltage flowing through the branch circuit Lb are detected, and the power calculation unit 42b calculates power using the detected current value and the voltage of the branch circuit Lb, and the sensor unit 42a and the power calculation unit 42b It constitutes measuring means (second measuring means). The branch information setting unit 42c is configured by a push button or the like, and sets information (branch circuit information) of the branch circuit Lb to be measured. The branch circuit information includes the rated current (15A, 20A, 30A,...) Of the branch breaker 41 provided in the branch circuit Lb and the name of the load X to be connected (lighting equipment, air conditioner, lightning arrester, seismometer). , ...) etc. are set.

そして、送信部42dは、電力演算部42bが算出した計測電力、分岐情報設定部42cによって設定された分岐情報を、ローカルバスW1を介して統合演算部1へ送信する。   Then, the transmission unit 42d transmits the measured power calculated by the power calculation unit 42b and the branch information set by the branch information setting unit 42c to the integrated calculation unit 1 via the local bus W1.

統合演算部1は、電力計測ユニット31,32,33から各々受信した計測電力、機器情報、場所情報に基づく、住戸全体の電力収支や、発電/消費の内訳以外に、分岐電力計測部42から各々受信した計測電力、分岐情報に基づく、分岐電路Lb毎の消費電力も含んで電力情報を生成し、生成した電力情報を含むウェブコンテンツを表示モニタ2に表示させる。分岐電路Lb毎の消費電力は、分岐情報設定部42cで設定した分岐ブレーカ41の定格電流や名称等とともに表示され、ユーザは分岐電路Lb毎の消費電力を把握し易くなり、省電力化のための対応を適切に実行可能となる。   The integrated calculation unit 1 receives from the branch power measurement unit 42 in addition to the power balance of the entire dwelling unit and the breakdown of power generation / consumption based on the measured power, device information, and location information received from the power measurement units 31, 32, and 33, respectively. Power information is generated including the power consumption for each branch circuit Lb based on the received measured power and branch information, and the web content including the generated power information is displayed on the display monitor 2. The power consumption for each branch circuit Lb is displayed together with the rated current, name, etc. of the branch breaker 41 set by the branch information setting unit 42c, so that the user can easily grasp the power consumption for each branch circuit Lb for power saving. Can be appropriately implemented.

また、当該分岐電路Lbには、負荷Xだけでなく、分散電源が接続されてもよく、この場合、分岐情報設定部42cは、分岐電路情報として、当該分岐電路Lbに接続される分散電源の名称(ガス発電ユニット,太陽発電ユニット,...)が設定される。さらに、分散電源が接続された分岐ブレーカ41は、分散電源の発電用ブレーカとして機能する。例えば、図6に示すように、ガス発電ユニットUgが分岐電路Lbに接続された場合、ガス発電ユニットUgの発電電力は、分岐回路4を介して二次側主幹電路La2に供給される。   Further, not only the load X but also a distributed power supply may be connected to the branch circuit Lb. In this case, the branch information setting unit 42c uses the distributed power supply connected to the branch circuit Lb as the branch circuit information. Names (gas power generation unit, solar power generation unit, ...) are set. Further, the branch breaker 41 connected to the distributed power supply functions as a power generation breaker for the distributed power supply. For example, as shown in FIG. 6, when the gas power generation unit Ug is connected to the branch circuit Lb, the generated power of the gas power generation unit Ug is supplied to the secondary main circuit La2 via the branch circuit 4.

この場合、送信部42dは、電力演算部42bが算出したガス発電ユニットUgの発電電力、分岐情報設定部42cによって設定された分岐情報を、ローカルバスW1を介して統合演算部1へ送信し、統合演算部1は、分岐電力計測部42から受信したガス発電ユニットUgの発電電力を当該分岐電路Lbに対応させた電力情報を生成してもよい。   In this case, the transmission unit 42d transmits the generated power of the gas power generation unit Ug calculated by the power calculation unit 42b and the branch information set by the branch information setting unit 42c to the integrated calculation unit 1 via the local bus W1, The integrated calculation unit 1 may generate power information in which the generated power of the gas power generation unit Ug received from the branch power measurement unit 42 is associated with the branch circuit Lb.

または、ガス発電ユニットUgの発電電力は電力計測ユニット33で計測されているため、分岐回路4の分岐電力計測部42による電力計測を、分岐情報設定部42cによって無効に設定し、送信部42dは、無効に設定された分岐電力計測部42の計測電力を、統合演算部1へ送信しない構成でもよい。   Alternatively, since the power generated by the gas power generation unit Ug is measured by the power measurement unit 33, the power measurement by the branch power measurement unit 42 of the branch circuit 4 is disabled by the branch information setting unit 42c, and the transmission unit 42d The measurement power of the branch power measurement unit 42 set to invalid may not be transmitted to the integrated calculation unit 1.

すなわち、分岐情報設定部42cは、分岐電力計測部42による電力計測の有効・無効も設定可能に構成されている。したがって、分岐電路Lbの接続先(負荷、分散電源)に応じて、分岐電力計測部42による電力計測の有効・無効を設定可能となり、電力計測ユニット3と分岐回路4(分岐電力計測部42)との併用が容易となり、使い勝手が向上する。   That is, the branch information setting unit 42c is configured to be able to set validity / invalidity of power measurement by the branch power measurement unit 42. Therefore, it becomes possible to set the validity / invalidity of power measurement by the branch power measurement unit 42 according to the connection destination (load, distributed power source) of the branch circuit Lb, and the power measurement unit 3 and the branch circuit 4 (branch power measurement unit 42). Can be used in combination with ease of use.

なお、分岐情報設定部42cは、計測電力が正値であれば、当該分岐電路Lbに負荷Xが接続されていると判断して、分岐電力計測部42による電力計測を有効に設定し、計測電力が負値であれば、当該分岐電路Lbに分散電源が接続されていると判断して、分岐電力計測部42による電力計測を無効に設定してもよい。   If the measured power is a positive value, the branch information setting unit 42c determines that the load X is connected to the branch electric circuit Lb, sets the power measurement by the branch power measurement unit 42 to be effective, and performs measurement. If the power is a negative value, it may be determined that a distributed power source is connected to the branch circuit Lb, and power measurement by the branch power measurement unit 42 may be set to be invalid.

また、分岐回路4の電力演算部42aも、計測対象(分散電源、負荷)に応じて、センサ部42aが検出した電流値の許容範囲を設定されており、例えば、計測対象が分散電源の場合は、発電電力を供給することから、センサ部3aによる検出電流の許容範囲は0以下(0〜負値)となり、計測対象が負荷の場合は、電力を消費することから、センサ部42aによる検出電流の許容範囲は0以上(0〜正値)となる。そして、電力演算部42bは、分岐情報設定部42cによって設定された分岐情報に基づいて計測対象を認識し、当該計測対象に対応する検出電流の許容範囲を設定し、センサ部42aによる検出電流が自己に設定された許容範囲外であれば、電路に対するセンサ部42aの施工ミス(例えば、ロゴスキーコイルの設置方向が逆方向)であると判断し、ローカルバスW1を介して統合演算部1へ異常信号を送信する(異常検出手段)。   The power calculation unit 42a of the branch circuit 4 is also set with an allowable range of the current value detected by the sensor unit 42a according to the measurement target (distributed power supply, load). For example, when the measurement target is a distributed power supply Since the generated power is supplied, the permissible range of the detection current by the sensor unit 3a is 0 or less (0 to negative value), and when the measurement target is a load, power is consumed. The allowable range of current is 0 or more (0 to positive value). Then, the power calculation unit 42b recognizes the measurement target based on the branch information set by the branch information setting unit 42c, sets an allowable range of the detection current corresponding to the measurement target, and detects the current detected by the sensor unit 42a. If it is out of the allowable range set for itself, it is determined that the construction of the sensor unit 42a with respect to the electric circuit is wrong (for example, the installation direction of the Rogowski coil is reverse), and the integrated arithmetic unit 1 is connected via the local bus W1. An abnormal signal is transmitted (abnormality detection means).

分岐回路4から異常信号を受信した統合演算部1は、電路に対するセンサ部42aの施工ミスを示す異常情報を生成し、生成した異常情報を含むウェブコンテンツを表示モニタ2に表示させる。また、統合演算部1が、分岐回路4からの分岐情報に基づいて計測対象を認識し、当該計測対象に対応する計測電力の許容範囲を設定し、分岐回路4からの計測電力が許容範囲外か否かを判定することで、異常検出手段として機能してもよい。   The integrated arithmetic unit 1 that has received the abnormal signal from the branch circuit 4 generates abnormal information indicating a construction error of the sensor unit 42a with respect to the electric circuit, and causes the display monitor 2 to display the web content including the generated abnormal information. Further, the integrated arithmetic unit 1 recognizes the measurement target based on the branch information from the branch circuit 4, sets the allowable range of the measured power corresponding to the measurement target, and the measured power from the branch circuit 4 is outside the allowable range. It may function as an abnormality detection means by determining whether or not.

したがって、センサ部42aの電路に対する設置は、現場施工であるため、センサ部42aを電路に対して逆方向に取り付ける施工ミスが発生する虞があるが、このような施工ミスによる誤計測を防止できる。   Therefore, since the installation of the sensor unit 42a on the electric circuit is an on-site operation, there is a possibility that an installation error for attaching the sensor unit 42a in the opposite direction with respect to the electric circuit may occur. However, erroneous measurement due to such an installation error can be prevented. .

(実施形態3)
本実施形態は、図7に示すように、実施形態2の構成に貯湯ユニット5(負荷ユニット)を設けたものであり、実施形態2と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 3)
In this embodiment, as shown in FIG. 7, a hot water storage unit 5 (load unit) is provided in the configuration of the second embodiment. Omitted.

貯湯ユニット5は、ガス発電ユニットUgの発電電力の一部を用いて湯を生成する蓄熱設備であり、ガス発電ユニットUgは、貯湯ユニット5へ供給する電力の情報を、専用通信線W2を介して統合演算部1へ送信する。電力計測ユニット33は、ガス発電ユニットUgの発電電力から貯湯ユニット5への供給電力を引いた値を計測結果として、ローカルバスW1を介して統合演算部1へ送信する。   The hot water storage unit 5 is a heat storage facility that generates hot water using a part of the power generated by the gas power generation unit Ug. The gas power generation unit Ug transmits information on the power supplied to the hot water storage unit 5 via the dedicated communication line W2. To the integrated calculation unit 1. The power measurement unit 33 transmits a value obtained by subtracting the power supplied to the hot water storage unit 5 from the power generated by the gas power generation unit Ug as a measurement result to the integrated calculation unit 1 via the local bus W1.

したがって、統合演算部1は、ガス発電ユニットUgが貯湯ユニット5へ直接供給する電力も含めて電力情報を生成できるので、配電システムの構成に依らず、電力監視が可能となる。なお、ガス発電ユニットUgの代わりに、燃料電池による発電電力を利用した燃料電池発電ユニットを用いてもよい。   Therefore, the integrated calculation unit 1 can generate power information including the power directly supplied from the gas power generation unit Ug to the hot water storage unit 5, so that power monitoring is possible regardless of the configuration of the power distribution system. Instead of the gas power generation unit Ug, a fuel cell power generation unit using power generated by the fuel cell may be used.

(実施形態4)
本実施形態は、実施形態1乃至3いずれかにおいて、統合演算部1が下記の動作を行うものであり、実施形態1乃至3と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 4)
In the present embodiment, in any one of the first to third embodiments, the integrated arithmetic unit 1 performs the following operation. The same components as those in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. .

統合演算部1は、太陽発電ユニットUv、ガス発電ユニットUg等の分散電源の各発電電力量をCO排出量に換算するための換算係数や(図8(a)参照)、分散電源の各発電電力量を電力料金(売電価格、買電価格)に換算するための換算係数(図8(b)参照)を予め記憶しており、電力計測ユニット3の各計測結果に基づいて、分散電源の各発電電力量をCO排出量や電力料金に換算した換算情報を生成し(換算手段)、生成した換算情報を含むウェブコンテンツを表示モニタ2に表示させる。したがって、ユーザに対して、環境への意識や、コスト意識を提起できる。 The integrated calculation unit 1 includes conversion factors for converting each power generation amount of the distributed power sources such as the solar power generation unit Uv and the gas power generation unit Ug into CO 2 emission amounts (see FIG. 8A), A conversion coefficient (see FIG. 8B) for converting the amount of generated power into a power rate (power selling price, power purchasing price) is stored in advance, and distributed based on each measurement result of the power measuring unit 3 Conversion information obtained by converting each power generation amount of the power source into CO 2 emission amount and power rate is generated (converting means), and the web content including the generated conversion information is displayed on the display monitor 2. Accordingly, it is possible to raise environmental awareness and cost awareness for the user.

また、電力計測ユニット3の機器情報設定部3cにおいて、機器情報(「太陽発電ユニット」、「ガス発電ユニット」等)に換算係数を予め対応付けておき、送信部3eが、設定された機器情報に対応する換算係数を、計測電力、機器情報、場所情報とともにローカルバスW1を介して統合演算部1へ送信してもよい。   Further, in the device information setting unit 3c of the power measurement unit 3, a conversion coefficient is associated in advance with device information (“solar power generation unit”, “gas power generation unit”, etc.), and the transmission unit 3e sets the set device information. The conversion coefficient corresponding to the above may be transmitted to the integrated arithmetic unit 1 through the local bus W1 together with the measured power, device information, and location information.

さらに、分岐回路4の分岐情報設定部42cにおいて、分岐情報に換算係数を予め対応付けておき、送信部42dが、設定された分岐情報に対応する換算係数を、計測電力、分岐情報とともにローカルバスW1を介して統合演算部1へ送信してもよい。   Further, in the branch information setting unit 42c of the branch circuit 4, a conversion coefficient is associated with the branch information in advance, and the transmission unit 42d converts the conversion coefficient corresponding to the set branch information together with the measured power and the branch information to the local bus. You may transmit to the integrated calculating part 1 via W1.

1 統合演算部
2 表示モニタ
3 電力計測ユニット
3a センサ部
3b 電力演算部
3c 機器情報設定部
3d 場所情報設定部
3e 送信部
Bm 主幹ブレーカ
Uv 太陽発電ユニット
Ug ガス発電ユニット
X 負荷
La1 一次側主幹電路
La2 二次側主幹電路
W1 ローカルバス
DESCRIPTION OF SYMBOLS 1 Integrated calculation part 2 Display monitor 3 Electric power measurement unit 3a Sensor part 3b Power calculation part 3c Equipment information setting part 3d Location information setting part 3e Transmission part Bm Master breaker Uv Solar power generation unit Ug Gas power generation unit X Load La1 Primary side main electric circuit La2 Secondary main trunk W1 local bus

Claims (4)

商用電源および分散電源からの電力を負荷へ供給するために宅内に配設された電路に設置された1乃至複数の電力計測ユニットと、1乃至複数の電力計測ユニットとの間で情報授受を行って電力情報を生成する統合演算部と、統合演算部が生成した電力情報を表示する表示部と、前記電路に介挿されて商用電源から宅内への電力供給を導通・遮断する主幹ブレーカとを備えて、主幹ブレーカの一次側の電路または二次側の電路には分散電源の出力が接続され、
電力計測ユニットは、電路を通して授受される電気量を計測する第1の計測手段と、計測場所の場所情報を設定する場所情報設定手段と、第1の計測手段による電気量の計測結果および場所情報設定手段によって設定された場所情報を統合演算部へ送信する第1の送信手段とを具備し、
1乃至複数の電力計測ユニットのうち少なくともいずれか1つは、分散電源の発電量を計測し、当該電力計測ユニットの場所情報設定手段は、主幹ブレーカの一次側または二次側を場所情報として設定し、
統合演算部は、各電力計測ユニットから受信した計測結果および場所情報に基づいて宅内における電力の消費量および分散電源の発電量に関する電力情報を生成し、
表示部は、統合演算部が生成した電力情報を表示する
ことを特徴とする電力監視システム。
Information is exchanged between one or more power measurement units and one or more power measurement units installed on the electric circuit installed in the house to supply power from the commercial power source and the distributed power source to the load. An integrated calculation unit that generates power information, a display unit that displays the power information generated by the integrated calculation unit, and a main breaker that is inserted in the electric path and that conducts and blocks power supply from the commercial power source to the home. The output of the distributed power source is connected to the primary circuit or secondary circuit of the main breaker,
The power measurement unit includes a first measurement unit that measures the amount of electricity exchanged through the electric circuit, a location information setting unit that sets location information of the measurement location, and a measurement result and location information of the amount of electricity by the first measurement unit. First transmission means for transmitting the location information set by the setting means to the integrated arithmetic unit,
At least one of the one or more power measurement units measures the amount of power generated by the distributed power source, and the location information setting unit of the power measurement unit sets the primary or secondary side of the main breaker as location information. And
The integrated calculation unit generates power information related to the power consumption in the house and the power generation amount of the distributed power source based on the measurement results and location information received from each power measurement unit,
The display unit displays power information generated by the integrated calculation unit.
前記電路は、前記主幹ブレーカが介挿された主幹電路と、主幹ブレーカの二次側に接続した主幹電路から分岐する複数の分岐電路とで構成されて、各分岐電路には負荷または分散電源を接続可能であり、
各分岐電路を通して授受される電気量を計測する第2の計測手段と、分岐電路毎に分岐識別情報を設定する分岐情報設定手段と、第2の計測手段による分岐電路毎の電気量の計測結果および分岐情報設定手段によって設定された分岐識別情報を前記統合演算部へ送信する第2の送信手段とを具備した分岐電力計測部を備えており、
統合演算部は、分岐電力計測部から受信した計測結果および分岐識別情報に基づいて電力の消費量に関する電力情報を分岐電路毎に生成し、
分岐情報設定手段は、各分岐電路の電気量の計測結果を統合演算部が生成する電力情報に含めるか否かを分岐電路毎に設定する機能を有する
ことを特徴とする請求項1記載の電力監視システム。
The electric circuit is composed of a main electric circuit in which the main circuit breaker is inserted, and a plurality of branch electric circuits branched from the main electric circuit connected to the secondary side of the main circuit breaker, and each branch electric circuit is provided with a load or a distributed power source. Is connectable,
Second measurement means for measuring the amount of electricity exchanged through each branch circuit, branch information setting means for setting branch identification information for each branch circuit, and measurement results of the amount of electricity for each branch circuit by the second measurement means And a branch power measuring unit including a second transmission unit that transmits the branch identification information set by the branch information setting unit to the integrated calculation unit,
The integrated calculation unit generates power information related to power consumption for each branch circuit based on the measurement result and branch identification information received from the branch power measurement unit,
2. The power according to claim 1, wherein the branch information setting unit has a function of setting, for each branch circuit, whether or not to include the measurement result of the electric quantity of each branch circuit in the power information generated by the integrated arithmetic unit. Monitoring system.
前記第1,第2の計測手段による電気量の計測結果が予め設定された基準範囲外である場合に、当該計測手段の異常を検出する異常検出手段を備えることを特徴とする請求項1または2記載の電力監視システム。   2. The apparatus according to claim 1, further comprising an abnormality detection unit that detects an abnormality of the measurement unit when the measurement result of the electric quantity by the first and second measurement units is outside a preset reference range. 2. The power monitoring system according to 2. 前記分散電源は、前記第1,第2の計測手段の少なくとも一方を設置した第1の電路を介して負荷へ発電電力を供給し、第1,第2の計測手段のいずれも設置していない第2の電路を介して負荷ユニットへ発電電力を供給するとともに、第2の電路を介して負荷ユニットへ供給した発電量の情報を前記統合演算部へ送信し、
統合演算部は、分散電源の全発電量および第2の電路を介して負荷ユニットへ供給した発電量に関する電力情報を生成する
ことを特徴とする請求項1乃至3いずれか記載の電力監視システム。
The distributed power supply supplies generated power to a load via a first electric circuit in which at least one of the first and second measuring means is installed, and neither of the first and second measuring means is installed. While supplying the generated power to the load unit via the second electric circuit, the information on the amount of power supplied to the load unit via the second electric circuit is transmitted to the integrated arithmetic unit,
4. The power monitoring system according to claim 1, wherein the integrated calculation unit generates power information regarding the total power generation amount of the distributed power source and the power generation amount supplied to the load unit via the second electric circuit. 5.
JP2009268094A 2009-11-25 2009-11-25 Power monitoring system Active JP5427007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268094A JP5427007B2 (en) 2009-11-25 2009-11-25 Power monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268094A JP5427007B2 (en) 2009-11-25 2009-11-25 Power monitoring system

Publications (2)

Publication Number Publication Date
JP2011112464A true JP2011112464A (en) 2011-06-09
JP5427007B2 JP5427007B2 (en) 2014-02-26

Family

ID=44234908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268094A Active JP5427007B2 (en) 2009-11-25 2009-11-25 Power monitoring system

Country Status (1)

Country Link
JP (1) JP5427007B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217573A (en) * 2012-01-18 2013-07-24 欧姆龙株式会社 Electric energy monitoring device, electric energy monitoring system and electric energy monitoring method
JP2013210289A (en) * 2012-03-30 2013-10-10 Panasonic Corp Power measurement device
JP2015100212A (en) * 2013-11-19 2015-05-28 大和ハウス工業株式会社 Power supply system
JP2017189106A (en) * 2017-06-01 2017-10-12 京セラ株式会社 Power management apparatus, power management system, and power management method
JP2020022220A (en) * 2018-07-30 2020-02-06 京セラ株式会社 Power supply system and method for constructing power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317558A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd High voltage receiving equipment
JPH11118844A (en) * 1997-10-09 1999-04-30 Mt Technology Kk Power use condition display device, power use condition and power selling condition control device, and power use condition control method
JP2002098720A (en) * 2000-09-26 2002-04-05 Sekisui Chem Co Ltd Power monitoring system in power supply system
JP2004328856A (en) * 2003-04-23 2004-11-18 Nitto Electric Works Ltd Distribution board system
JP2006200948A (en) * 2005-01-18 2006-08-03 Chugoku Electric Power Co Inc:The Faulty part detection system, detector and information processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317558A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd High voltage receiving equipment
JPH11118844A (en) * 1997-10-09 1999-04-30 Mt Technology Kk Power use condition display device, power use condition and power selling condition control device, and power use condition control method
JP2002098720A (en) * 2000-09-26 2002-04-05 Sekisui Chem Co Ltd Power monitoring system in power supply system
JP2004328856A (en) * 2003-04-23 2004-11-18 Nitto Electric Works Ltd Distribution board system
JP2006200948A (en) * 2005-01-18 2006-08-03 Chugoku Electric Power Co Inc:The Faulty part detection system, detector and information processing system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217573A (en) * 2012-01-18 2013-07-24 欧姆龙株式会社 Electric energy monitoring device, electric energy monitoring system and electric energy monitoring method
JP2013210289A (en) * 2012-03-30 2013-10-10 Panasonic Corp Power measurement device
JP2015100212A (en) * 2013-11-19 2015-05-28 大和ハウス工業株式会社 Power supply system
JP2017189106A (en) * 2017-06-01 2017-10-12 京セラ株式会社 Power management apparatus, power management system, and power management method
JP2020022220A (en) * 2018-07-30 2020-02-06 京セラ株式会社 Power supply system and method for constructing power supply system
JP7057245B2 (en) 2018-07-30 2022-04-19 京セラ株式会社 Power supply system and construction method of power supply system

Also Published As

Publication number Publication date
JP5427007B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5072378B2 (en) Power storage device and system
KR101220773B1 (en) Intelligent Cabinet-Panel Having Energy Managing Function in the Smart Grid Environment
WO2011055208A1 (en) Electric power interchange system
JP2012019653A (en) Apparatus and method for controlling electric power
JP5153959B1 (en) Energy management system
JP5427007B2 (en) Power monitoring system
JP5325604B2 (en) Energy monitoring system
WO2013146768A1 (en) Control device, control system, and control method
JP2013255394A (en) Energy management control system
JP5461445B2 (en) Power usage system
JP2014059245A (en) Electric power display device
JP5243516B2 (en) Power generation amount and load amount measuring device in power generation system
JP2010283936A (en) Power converter
JP5410118B2 (en) Energy monitoring system
JP5892892B2 (en) Indicator for photovoltaic power generation
JP2014059244A (en) Power display
JP2005102432A (en) System interconnection system
JP2021193865A (en) Operation control system and operation control method
JP2016034218A (en) Photovoltaic power generation display apparatus
JP7377759B2 (en) Power monitoring and control device, power monitoring and control program
JP2014011863A (en) Photovoltaic power generation system
JP5845455B2 (en) Grid connection protection device
JP5456746B2 (en) Energy meter with reverse power flow detection function
JP2013258788A (en) Cogeneration system
JP5932625B2 (en) Energy management apparatus, energy management system, and energy management method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150