JP2011110852A - Laminate with fine structure, and method for manufacturing the same - Google Patents

Laminate with fine structure, and method for manufacturing the same Download PDF

Info

Publication number
JP2011110852A
JP2011110852A JP2009270298A JP2009270298A JP2011110852A JP 2011110852 A JP2011110852 A JP 2011110852A JP 2009270298 A JP2009270298 A JP 2009270298A JP 2009270298 A JP2009270298 A JP 2009270298A JP 2011110852 A JP2011110852 A JP 2011110852A
Authority
JP
Japan
Prior art keywords
resin
laminate
fine structure
molten resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270298A
Other languages
Japanese (ja)
Other versions
JP5328040B2 (en
Inventor
Hiroshi Ito
伊東  宏
Kazutoshi Yakimoto
数利 焼本
Kenichi Furuki
賢一 古木
Shota Ochi
昭太 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2009270298A priority Critical patent/JP5328040B2/en
Publication of JP2011110852A publication Critical patent/JP2011110852A/en
Application granted granted Critical
Publication of JP5328040B2 publication Critical patent/JP5328040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate having a fine structure excelling in strength, heat resistance and optical characteristics, or a laminate having a fine structure reducing mechanical strain and residual stress in the fine structure or excelling in gas barrier performance and water vapor barrier performance, and a method for manufacturing the laminate. <P>SOLUTION: A lower die 10 having a fine structure, and an upper die 20 having a plane part or a fine structure, are used, and after the upper face of the lower die 10 held to a predetermined temperature is recoated with molten resin 45 one after another into a predetermined thickness, the upper die 20 is pressed to the upper face of the molten resin 45 recoated in multiple layers to manufacture the laminate 40 in which each boundary part between the respective layers is fused without including an adhesive layer and the fine structure 16 is transfer-formed on the front face or on both front and rear faces. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表面又は表と裏の両面に微細構造を有する熱可塑性樹脂の積層体及びその製造方法に関する。 The present invention relates to a laminate of a thermoplastic resin having a microstructure on the front surface or both front and back surfaces and a method for producing the same.

微細構造を有する樹脂成形体は、電子デバイス、光デバイス、記録メディア、バイオデバイス等種々の分野に利用が拡大している。このような樹脂成形体は、一種類の樹脂から形成される場合が多いが、微細構造部分の機械的又は光学的特性等の向上のため、あるいは微細構造部分と本体部分の要求される特性が異なるため、特性や材質等が異なる積層体から微細構造を有する樹脂成形体が形成される場合がある。   Use of a resin molded body having a fine structure is expanding in various fields such as electronic devices, optical devices, recording media, and biodevices. Such a resin molded body is often formed from a single type of resin, but for the purpose of improving the mechanical or optical characteristics of the fine structure part or the required characteristics of the fine structure part and the main body part. Because of the difference, a resin molded body having a fine structure may be formed from a laminate having different characteristics and materials.

このような微細構造を有し、特性や材質等が異なる樹脂を積層させてなる積層体に関し、例えば特許文献1に、屈折率が異なる複数の層から構成され、その上面及び下面に微細構造を有する直下型バックライトモジュールの拡散板が提案されている。そして、その拡散板は、微細構造を有するローラを備えた共押出法によって成形することができることが記載されている。   With regard to a laminate having such a fine structure and a laminate of resins having different characteristics and materials, for example, Patent Document 1 is composed of a plurality of layers having different refractive indexes, and the fine structure is formed on the upper and lower surfaces thereof. A diffusion plate for a direct type backlight module has been proposed. It is described that the diffusion plate can be formed by a coextrusion method provided with a roller having a fine structure.

また、特許文献2に、スタンパの凹凸微細パターンが転写されたベースフィルムの転写面に記録膜と保護層が積層された表面記録型のフレキシブル光ディスクにおいて、前記ベースフィルムの転写面と反対側のベースフィルム(基材)の表面に、導電性粒子が含有されたガイド面側保護層を設けたフレキシブル光ディスクが提案されている。そして、そのフレキシブル光ディスクは公知の方法で成形することができるとされる。例えば、先ず、可撓性を有するシートをロールトゥロール方式で搬送しながらシート表面に熱可塑性樹脂若しくは熱硬化性樹脂を塗布して、スタンパの微細凹凸パターンを転写して熱硬化させてから記録膜とする方法(熱プレス法)、可撓性シート表面に紫外線硬化型樹脂を塗布してスタンパの微細パターンを転写して紫外線硬化させてから記録膜を成膜する2P法(Photo Polymerization法)、あるいは、可撓性有機物シートを軟化点以上に加熱し、スタンパを圧着後、冷却してシートとスタンパを剥離する方法により記録膜を成形する。次に、スピンナーコート、グラビア塗布、スプレーコート、ディッピング等の種々の公知の方法によりガイド面側保護層を形成し、加熱処理した後に紫外線照射処理を行うことにより保護膜を形成してフレキシブル光ディスクを成形することができると記載されている。   Further, in Patent Document 2, in a surface recording type flexible optical disc in which a recording film and a protective layer are laminated on a transfer surface of a base film onto which a concavo-convex fine pattern of a stamper is transferred, a base opposite to the transfer surface of the base film is disclosed. A flexible optical disk has been proposed in which a guide surface side protective layer containing conductive particles is provided on the surface of a film (base material). The flexible optical disk can be formed by a known method. For example, first, a thermoplastic sheet or a thermosetting resin is applied to the surface of a sheet while a flexible sheet is conveyed by a roll-to-roll method, and the fine uneven pattern of the stamper is transferred and thermally cured before recording. Film forming method (hot press method), 2P method (Photo Polymerization method), in which a UV-curable resin is applied to the surface of a flexible sheet, a fine pattern of the stamper is transferred and UV cured, and then a recording film is formed. Alternatively, the recording film is formed by a method in which the flexible organic material sheet is heated to the softening point or higher, the stamper is pressure-bonded, and then cooled to peel off the sheet and the stamper. Next, a guide surface side protective layer is formed by various known methods such as spinner coating, gravure coating, spray coating, dipping, etc., heat treatment and then ultraviolet irradiation treatment to form a protective film to form a flexible optical disk. It is described that it can be molded.

また、特許文献3に、微細構造体の製造において微細構造パターンの転写に使用される可とう性成形型であって、ポリマー材料及び強化材の複合材料からなる支持体(基材)と、前記支持体によって支持された、微細構造表面をその表面に備えた賦形層と、を有する微細パターン転写用可とう性成形型が提案されている。そして、強化ポリプロピレンフィルムに紫外線硬化性樹脂組成物を塗布し、微細構造を転写して硬化させることにより微細構造を備えた賦形層が支持体によって支持された可とう性成形型を作製する実施例が記載されている。   Patent Document 3 discloses a flexible mold used for transfer of a fine structure pattern in the production of a fine structure, and a support (base material) made of a composite material of a polymer material and a reinforcing material, There has been proposed a flexible mold for transferring a fine pattern, which has a shaping layer supported by a support and having a microstructured surface on the surface. Then, an ultraviolet curable resin composition is applied to a reinforced polypropylene film, and a flexible forming mold in which a shaping layer having a fine structure is supported by a support is prepared by transferring and hardening the fine structure. An example is given.

特許文献4には、プラスチックフィルムと、表面にメッシュ状の突起を有するプラスチックフィルムを、粘着剤を介して貼合した積層プラスチックフィルムおよびその製造方法が提案されている。   Patent Document 4 proposes a laminated plastic film in which a plastic film and a plastic film having mesh-like protrusions on the surface are bonded via an adhesive and a method for producing the same.

特開2007-25619号公報JP 2007-25619 特開2005-11412号公報JP 2005-11412 A 特開2005-288933号公報JP 2005-288933 A 特開2008-291102号公報JP 2008-291102 A

上記のような微細構造を有する積層体の製造は、積層させる樹脂の特性が異なるために、また、樹脂の積層技術と微細構造形成技術を両立させる必要があることから容易ではない。特許文献1に記載されたような微細構造を有するローラを備えた共押出法により微細構造が転写された樹脂積層体を製造する方法は、積層される樹脂の溶融温度や粘度が異なる等の理由から共押出可能な樹脂に限定されること、また、各層の厚み調整が困難で層間接着力が劣る等の問題がある。さらに、積層体表面に形成可能な微細構造は、積層体からローラが剥離する、すなわちローラ表面の微細構造が積層体表面から抜ける際に、微細構造が破壊されないような形状に限定されるという問題がある。   The production of a laminate having the above-described microstructure is not easy because the characteristics of the resin to be laminated are different, and it is necessary to satisfy both the resin lamination technique and the microstructure formation technique. The method for producing a resin laminate in which a microstructure is transferred by a coextrusion method provided with a roller having a microstructure as described in Patent Document 1 is because the melting temperature and viscosity of the laminated resin are different. In other words, the resin is limited to a resin that can be co-extruded, and the thickness of each layer is difficult to adjust, resulting in poor interlayer adhesion. Furthermore, the fine structure that can be formed on the surface of the laminate is limited to a shape in which the roller is peeled off from the laminate, that is, the microstructure is not destroyed when the fine structure on the roller surface is removed from the laminate surface. There is.

特許文献2〜3に記載されている微細構造を形成させる溶融樹脂を基材に塗布して積層させた後、これに微細構造を転写成形する方法は、積層させる樹脂が基材に塗布可能な樹脂に限定されるという問題がある。また、溶融樹脂を基材に塗布する方法として、特許文献2にスピンナーコート、グラビア塗布、スプレーコート、ディッピング等の方法が列挙され、特許文献3にナイフコータ、バーコータ等の方法が列挙されていることからも推察されるように、特許文献2〜3に記載されている方法では高粘度の熱可塑性樹脂の塗布は困難であり、そのような熱可塑性樹脂からなる積層体は製造することが困難であるという問題がある。   The method of transferring the fine structure to the base material after the molten resin for forming the fine structure described in Patent Documents 2 to 3 is applied to the base material and laminated thereon, the resin to be laminated can be applied to the base material. There is a problem that it is limited to resin. In addition, as a method for applying the molten resin to the substrate, Patent Document 2 lists methods such as spinner coating, gravure coating, spray coating, and dipping, and Patent Document 3 lists methods such as knife coater and bar coater. As can be inferred from this, it is difficult to apply a high-viscosity thermoplastic resin by the methods described in Patent Documents 2 to 3, and it is difficult to produce a laminate made of such a thermoplastic resin. There is a problem that there is.

特許文献4に記載されている予め微細構造が作製された樹脂と他の樹脂を接着剤等で接合して微細構造を備えた樹脂積層体を製造する方法は、適合する接着剤を選定する手間及び接着させるための施工の手間を要するだけでなく、接着剤により樹脂積層体の機能が損なわれかねない等の問題がある。   The method of manufacturing a resin laminate having a fine structure by bonding a resin having a fine structure prepared in advance and another resin described in Patent Document 4 with an adhesive or the like is an effort to select a suitable adhesive. In addition, it requires not only labor for the bonding work but also has a problem that the function of the resin laminate may be impaired by the adhesive.

本発明は、微細構造を有する積層体に対するこのような従来技術の問題点と、需用者のますます厳しくなる要求に鑑み、強度、耐熱性、光学特性又は生体適合性に優れた微細構造を有する積層体、または、微細構造部分に機械的歪や残留応力の少ない、あるいはガスバリヤ性能や水蒸気バリヤ性能に優れた微細構造を有する積層体を提供することを目的とする。また、そのような積層体を好適に製造することができる方法を提供することを目的とする。   In view of the problems of the prior art for laminates having a fine structure and the increasingly demanding demands of consumers, the present invention provides a fine structure excellent in strength, heat resistance, optical properties or biocompatibility. It is an object of the present invention to provide a laminated body having a fine structure with little mechanical strain or residual stress in a fine structure portion or having a fine structure excellent in gas barrier performance and water vapor barrier performance. Moreover, it aims at providing the method which can manufacture such a laminated body suitably.

本発明に係る積層体は、表面又は表と裏の両面に微細構造が転写成形された積層体であって、前記微細構造を形成する凸部又は凹部の断面形状について直径、辺長又は幅が10nm〜1mm、高さ又は深さが10nm〜1mm、前記積層体の各層の境界部は接着剤層を含まず融着されている。   The laminate according to the present invention is a laminate in which a microstructure is transferred and molded on both the front surface and the front and back surfaces, and has a diameter, a side length, or a width with respect to a cross-sectional shape of a convex portion or a concave portion forming the fine structure. 10 nm to 1 mm, height or depth is 10 nm to 1 mm, and the boundary part of each layer of the laminate is fused without including an adhesive layer.

また、本発明に係る積層体は、表面又は表と裏の両面に微細構造が転写成形された積層体であって、その各層の境界部は融着されており、積層される樹脂の相隣る層間における粘度比が3倍以上である層を含む積層体である。ここに、樹脂の粘度は、相隣る各々の樹脂がゴム状態を示す温度以上の同一温度、同一せん断速度の下で測定される粘度をいう。   Further, the laminate according to the present invention is a laminate in which a fine structure is transferred and molded on both the front surface and the front and back surfaces, and the boundary portions of the respective layers are fused, and adjacent to the laminated resin. It is a laminated body including a layer having a viscosity ratio of 3 times or more. Here, the viscosity of the resin refers to a viscosity measured under the same temperature and the same shear rate that is equal to or higher than the temperature at which the adjacent resins show a rubber state.

上記積層体は、以下の製造方法により好適に製造することができる。すなわち、微細構造を有する下金型と平面部又は微細構造を有する上金型を用い、所定温度に保持された下金型の上面に、溶融樹脂を所定厚さにつぎつぎに塗り重ねた後、その塗り重ねた多層の溶融樹脂の上面から上金型を押しつけることにより、各層の境界部が接着剤層を含まずに融着されており表面又は表と裏の両面に微細構造が転写成形された積層体を好適に製造することができる。   The said laminated body can be suitably manufactured with the following manufacturing methods. That is, using a lower mold having a fine structure and an upper mold having a planar portion or a fine structure, after the molten resin is successively applied to a predetermined thickness on the upper surface of the lower mold held at a predetermined temperature, By pressing the upper mold from the top surface of the multi-layered molten resin, the boundary between each layer is fused without including the adhesive layer, and the microstructure is transferred and molded on both the front and back and back sides. The laminated body can be preferably manufactured.

上記製造方法の発明において、下金型の所定温度Tsは、前記下金型上に塗布される溶融樹脂の荷重たわみ温度をTdとした場合に、Td≦Ts≦Td+100 であるのがよい。なお、上記温度及び以下に示す温度は、すべてセ氏温度(℃)を示す。   In the above manufacturing method, the predetermined temperature Ts of the lower mold is preferably Td ≦ Ts ≦ Td + 100, where Td is the deflection temperature under load of the molten resin applied onto the lower mold. . The above temperatures and the temperatures shown below all represent degrees Celsius (° C.).

また、つぎつぎに塗り重ねる溶融樹脂のn番目に塗り重ねられるn層目の溶融樹脂の温度Tnは、そのn層目の樹脂が非晶性樹脂の場合はガラス転移温度Tg(n)、結晶性樹脂の場合は融点Tm(n)、およびその前に塗り重ねられた(n-1)層目の樹脂が非晶性樹脂の場合はガラス転移温度Tg(n-1)、結晶性樹脂の場合は融点Tm(n-1)のうち最も高い温度をTpとしたときに、Tn≧2×Tp-Tsであるのがよい。ここに、nは2以上の整数である。   In addition, the temperature Tn of the n-th layer of the molten resin to be repainted next is the glass transition temperature Tg (n) when the n-layer resin is an amorphous resin, In the case of a resin, the melting point Tm (n), and the glass transition temperature Tg (n-1) when the resin of the (n-1) layer applied before that is an amorphous resin, the case of a crystalline resin Is preferably Tn ≧ 2 × Tp−Ts, where Tp is the highest temperature among the melting points Tm (n−1). Here, n is an integer of 2 or more.

また、つぎつぎに塗り重ねる溶融樹脂の所定厚さは、それぞれ50μm〜3mmとすることができ、つぎつぎに塗り重ねる溶融樹脂の塗布は、その前に塗布された溶融樹脂の上面にゲージ圧で動圧0.1〜5MPaを与えるように行うことができる。そして、前記動圧は、その前に塗布された溶融樹脂の上面から溶融樹脂を供給するTダイの樹脂供給口の先端までの距離、前記Tダイの水平方向移動速度及び供給される溶融樹脂の吐出流量を調整することにより制御することができる。   In addition, the predetermined thickness of the molten resin to be repeatedly applied can be set to 50 μm to 3 mm, respectively, and the application of the molten resin to be successively applied is a dynamic pressure with a gauge pressure on the upper surface of the previously applied molten resin. Can be done to give 0.1-5MPa. The dynamic pressure is determined by the distance from the upper surface of the molten resin applied before the tip to the tip of the resin supply port of the T die that supplies the molten resin, the horizontal movement speed of the T die, and the molten resin to be supplied. It can be controlled by adjusting the discharge flow rate.

本発明に係る積層体を得る製造方法は、表面又は表と裏の両面に微細構造を有し、各種の熱可塑性樹脂が積層された積層体を好適に製造することができ、また、積層体中に金属層を含む積層体であっても好適に製造することができる。   The production method for obtaining a laminate according to the present invention can suitably produce a laminate having a microstructure on the front surface or both the front and back surfaces and laminated with various thermoplastic resins. Even a laminate including a metal layer therein can be preferably produced.

本発明によれば、種々の特性を有する樹脂が積層された、また、さらには金属層を含む層が積層された積層体であって、その層間結合性が高く精度の高い微細構造を有する積層体を提供することができる。このため、微細構造部分を形成する樹脂層と本体部分を形成する樹脂層のそれぞれが所要の特性を有する積層体を提供することができ、例えば、強度、耐熱性又は光学特性に優れた微細構造を有する積層体を提供することができる。また、微細構造部分に機械的歪や残留応力が少ない微細構造を有する積層体、あるいはガスバリヤ性能や水蒸気バリヤ性能に優れた微細構造を有する積層体を提供することができる。そして、そのような微細構造を有する積層体が多種少量であっても効率的かつ経済的に製造することができる方法を提供することができる。   According to the present invention, a laminated body in which resins having various characteristics are laminated, and further, a layer including a metal layer is laminated, and the laminated structure has a fine structure with high interlaminar connectivity. The body can be provided. For this reason, each of the resin layer forming the fine structure portion and the resin layer forming the main body portion can provide a laminate having the required characteristics, for example, a fine structure excellent in strength, heat resistance, or optical properties. The laminated body which has can be provided. In addition, it is possible to provide a laminated body having a fine structure with little mechanical strain and residual stress in a fine structure part, or a laminated body having a fine structure excellent in gas barrier performance and water vapor barrier performance. And the method which can be manufactured efficiently and economically even if the laminated body which has such a fine structure is many kinds can be provided.

また、本発明の場合は、微細構造を有するローラを備えた共押出法による方法のように、樹脂積層体がローラ間に供給されて加圧され、転写成形された後に送り出されるような工程を経ないから、転写成形された樹脂積層体の走行方向に平行な溝形状、あるいは走行方向に直行する溝や格子状形状の損傷の問題が無い。このため、本発明によればアスペクト比の高い微細構造を樹脂積層体の表面又は表と裏の両面に成形することができる。   Further, in the case of the present invention, a process in which the resin laminate is supplied between the rollers, pressed, transferred and molded, as in a method by a co-extrusion method including a roller having a fine structure. Therefore, there is no problem of damage to the groove shape parallel to the running direction of the transferred resin laminate, or to the groove or lattice shape perpendicular to the running direction. For this reason, according to the present invention, a fine structure having a high aspect ratio can be formed on the front surface or both the front and back surfaces of the resin laminate.

本発明に係る積層体の例を示す模式図である。It is a schematic diagram which shows the example of the laminated body which concerns on this invention. 熱可塑性樹脂の弾性率と温度との関係を示すグラフである。It is a graph which shows the relationship between the elasticity modulus of a thermoplastic resin, and temperature. 本発明に係る積層体が有する微細構造部分のアスペクト比の範囲を示すグラフである。It is a graph which shows the range of the aspect-ratio of the fine structure part which the laminated body which concerns on this invention has. 本発明に係る製造方法において、最初の溶融樹脂を塗布している状態を示す図面である。It is drawing which shows the state which has apply | coated the first molten resin in the manufacturing method which concerns on this invention. 本発明に係る製造方法において、つぎつぎに塗り重ねられる溶融樹脂部分を示す図面である。In the manufacturing method which concerns on this invention, it is drawing which shows the molten resin part coated one after another. 本発明に係る製造方法を各工程ごとに説明する模式図である。It is a schematic diagram explaining the manufacturing method which concerns on this invention for every process.

以下、発明を実施するための形態について図面を基に説明する。図1に示す積層体は、本発明に係る積層体の例を示す模式図である。図1(a)に示す二層の積層体40はその表面に微細構造を有し、図1(b)に示す四層の積層体40はその表と裏の両面に微細構造を有している。図1(b)に示す積層体40は、微細構造を有する層41(41A、41B)と本体部を形成する層43(この例は二層から構成されている)からなる。積層体40の各層の境界部は接着剤層を含まず融着されている。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. The laminate shown in FIG. 1 is a schematic view showing an example of a laminate according to the present invention. The two-layer laminate 40 shown in FIG. 1 (a) has a microstructure on its surface, and the four-layer laminate 40 shown in FIG. 1 (b) has a microstructure on both the front and back surfaces. Yes. A laminated body 40 shown in FIG. 1B is composed of a layer 41 (41A, 41B) having a fine structure and a layer 43 (this example is composed of two layers) forming a main body. The boundary portion of each layer of the laminate 40 is fused without including the adhesive layer.

積層体40を形成する熱可塑性樹脂は、特に種類を問わず、非晶性樹脂同士の組合せが好適であるが、非結晶性樹脂同士、場合によっては非晶性樹脂と結晶性樹脂であってもよい。例えば、ポリカーボネート(PC)樹脂からなる微細構造を有する層41とポリエチレンテレフタレート(PET)樹脂からなる本体部を形成する層43とから積層体40を形成することができる。   The thermoplastic resin that forms the laminate 40 is not limited to a particular type, and a combination of amorphous resins is suitable, but the amorphous resins may be amorphous resins and crystalline resins in some cases. Also good. For example, the laminate 40 can be formed from a layer 41 having a fine structure made of polycarbonate (PC) resin and a layer 43 forming a main body portion made of polyethylene terephthalate (PET) resin.

また、積層体40の相隣る層を形成する熱可塑性樹脂の種類についても特に問わない。相隣る層を形成する熱可塑性樹脂は、それぞれその特性、例えばガラス転移温度、荷重たわみ温度、融点、粘度等が異なるものであってもよい。相隣る層を形成する熱可塑性樹脂の粘度が異なる場合、粘度比が3倍以上であってもよい。この粘度比の上限は特にないが、粘度比が数十倍であってもよい。なお、ここで言う粘度比とは、相隣る各々の樹脂がゴム状態を示す温度以上の同一温度、同一せん断速度の下で測定した粘度の比をいう。粘度は、例えばJIS K7117-2により測定することができる。   Further, the type of the thermoplastic resin forming the adjacent layers of the laminate 40 is not particularly limited. The thermoplastic resins forming adjacent layers may have different properties, such as glass transition temperature, deflection temperature under load, melting point, viscosity, and the like. When the thermoplastic resins forming the adjacent layers have different viscosities, the viscosity ratio may be 3 times or more. There is no particular upper limit on the viscosity ratio, but the viscosity ratio may be several tens of times. In addition, the viscosity ratio said here means the ratio of the viscosity measured under the same temperature and the same shear rate more than the temperature in which each adjacent resin shows a rubber state. The viscosity can be measured by, for example, JIS K7117-2.

ゴム状態を示す温度以上の温度とは、例えば、図2のような弾性率の温度変化を示す熱可塑性樹脂の場合は、温度Ta以上の温度をいう。なお、図2において、横軸は温度を示し、縦軸は各温度における特定周波数tで測定した縦弾性率を示す。Tgはガラス転移温度を示す。   The temperature equal to or higher than the temperature indicating the rubber state refers to a temperature equal to or higher than the temperature Ta in the case of a thermoplastic resin exhibiting a temperature change in elastic modulus as shown in FIG. In FIG. 2, the horizontal axis represents temperature, and the vertical axis represents the longitudinal elastic modulus measured at a specific frequency t at each temperature. Tg indicates the glass transition temperature.

積層体40の積層される各層の厚さは、所望の厚さにすることができ、50μm〜3mmにすることができる。相隣る層の厚さは、異なっていてもよく、例えば数十μmの樹脂層の上に数mmの樹脂層を積層させることができる。なお、積層体40の全体の厚さは、製品に求められる仕様によって決まるため制約はないが、微細構造部分の転写精度、各層間の融着性等を確保する観点からは3mm以下であるのがよい。   The thickness of each layer of the stacked body 40 can be set to a desired thickness, and can be 50 μm to 3 mm. The thicknesses of adjacent layers may be different. For example, a resin layer of several mm can be laminated on a resin layer of several tens of μm. The total thickness of the laminate 40 is not limited because it is determined by the specifications required for the product, but it is 3 mm or less from the viewpoint of ensuring the transfer accuracy of the fine structure part, the adhesion between layers, etc. Is good.

また、本積層体40は、図1に示す微細構造部分を形成する凸状部の直径、辺長(a)を10nm〜1mmにすることができ、高さ(b)を10nm〜1mmにすることができる。また、微細構造部分を形成する凹部の幅(c)を10nm〜1mmにすることができ、深さ(d)を10nm〜1mmにすることができる。   Further, in the laminate 40, the diameter and the side length (a) of the convex portion forming the fine structure portion shown in FIG. 1 can be set to 10 nm to 1 mm, and the height (b) can be set to 10 nm to 1 mm. be able to. Further, the width (c) of the concave portion forming the fine structure portion can be set to 10 nm to 1 mm, and the depth (d) can be set to 10 nm to 1 mm.

特に、後述する図6に示す製造方法によれば、積層体40の微細構造部分(凸部、凹部)の転写成形を高精度に行うことが可能で、微細構造部分の転写率を体積比率で90%以上の精度にすることができる。   In particular, according to the manufacturing method shown in FIG. 6 to be described later, it is possible to perform the transfer molding of the fine structure portion (convex portion, concave portion) of the laminate 40 with high accuracy, and the transfer rate of the fine structure portion by the volume ratio. The accuracy can be over 90%.

また、本積層体40は、微細構造を有する層41と本体部を形成する層43を所望の特性、例えば成形性、強度等について所望の特性を有する熱可塑性樹脂を組み合わせて形成することができ、各層間の境界部は平坦度に優れている。このため、微細構造を有する層41を本体部を形成する層43に対して薄くできるばかりでなく、図1に示す微細構造を有する層41の基台部分の厚さtを凸部又は凹部の高さ(b)又は深さ(d)に対して t>0.2b(又はt>0.2d) とすることができる。   Further, in the laminate 40, the layer 41 having a fine structure and the layer 43 forming the main body portion can be formed by combining desired properties, for example, a thermoplastic resin having desired properties with respect to moldability, strength, and the like. The boundary portion between each layer is excellent in flatness. For this reason, the layer 41 having the fine structure can be made thinner than the layer 43 forming the main body portion, and the thickness t of the base portion of the layer 41 having the fine structure shown in FIG. For height (b) or depth (d), t> 0.2b (or t> 0.2d).

本微細構造部分は、上述のように転写精度に優れ、所望の特性を有する熱可塑性樹脂から形成することができるので、高アスペクト比を有するものとすることができる。例えば、図3の斜線部に示すアスペクト比を有する微細構造を形成することができる。図3において、横軸は凸部又は凹部の直径、辺長又は幅(a又はc)を示し、縦軸は凸部又は凹部の高さ又は深さ(b又はd)を直径、辺長又は幅(a又はc)で除したアスペクト比((b又はd)/(a又はc))を示す。   Since the fine structure portion can be formed of a thermoplastic resin having excellent transfer accuracy and desired characteristics as described above, it can have a high aspect ratio. For example, a fine structure having an aspect ratio indicated by the hatched portion in FIG. 3 can be formed. In FIG. 3, the horizontal axis indicates the diameter, side length, or width (a or c) of the convex portion or the concave portion, and the vertical axis indicates the height, depth (b or d) of the convex portion or concave portion, the diameter, the side length, or Aspect ratio ((b or d) / (a or c)) divided by width (a or c).

図3は、転写成形された積層体40の微細構造部分の転写事例を示す。本積層体40の微細構造部分は、図3に示すように、幅15μmで高さ120μmのアスペクト比8、幅7μmで高さ40μmのアスペクト比約6など、高アスペクト比にすることができる。直径が0.2〜0.25μmでアスペクト比が2前後のピラー状の微細構造を転写形成することもできる。また、mmスケールの凹凸形状の表面にサブミクロンオーダの微細凹凸を形成することもできる。   FIG. 3 shows a transfer example of the fine structure portion of the laminated body 40 that has been transfer-molded. As shown in FIG. 3, the microstructure portion of the laminate 40 can have a high aspect ratio such as an aspect ratio of 8 having a width of 15 μm and a height of 120 μm, and an aspect ratio of about 6 having a width of 7 μm and a height of 40 μm. A pillar-like microstructure having a diameter of 0.2 to 0.25 μm and an aspect ratio of about 2 can be transferred and formed. Further, it is possible to form fine irregularities on the order of submicron on the surface of the irregularities on the mm scale.

図3に示す積層体40を構成する樹脂材料は、種々の熱可塑性樹脂を使用することができる。例えば、ポリカーボネート(PC)、ポリメタクリル酸メチル(PMMA)、シクロオレフィンポリマー(COP)、環状オレフィンコポリマー(COC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリスチレン(PS)、メチルメタクリレートブタジエンスチレン(MBS)などの樹脂材料を好適に使用することができる。本発明においては、例えば、帝人化成(株)のPC樹脂パンライトL-1225(登録商標、250℃,1000s-1での粘度は約10000Pa・s)と住友化学(株)のPMMA樹脂スミペックスLG35(登録商標、250℃,1000s-1での粘度は約1000Pa・s)とを積層させることができ、両者の粘度比が10程度もあるような樹脂を積層させることができる。また、その樹脂材料の供給形態についても特段の制限はなく、市場に流通する多種類・多グレードのペレット状樹脂材料であれば問題なく使用することができる。 Various thermoplastic resins can be used as the resin material constituting the laminate 40 shown in FIG. For example, polycarbonate (PC), polymethyl methacrylate (PMMA), cycloolefin polymer (COP), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polystyrene (PS), methyl methacrylate butadiene Resin materials such as styrene (MBS) can be suitably used. In the present invention, for example, Teijin Chemicals Co., Ltd. PC resin Panlite L-1225 (registered trademark, the viscosity at 250 ℃, 1000 s -1 is about 10000 Pa · s) and Sumitomo Chemical Co., Ltd. PMMA resin Sumipex LG35 (Registered trademark, viscosity at 250 ° C., 1000 s −1 is about 1000 Pa · s), and a resin having a viscosity ratio of about 10 can be laminated. Moreover, there is no special restriction | limiting also about the supply form of the resin material, If it is a multi-type and multi-grade pellet-shaped resin material distribute | circulating to a market, it can be used without a problem.

本積層体40は、以下に示す製造方法により好適に製造することができる。すなわち、微細構造を有する下金型と平面部又は微細構造を有する上金型を用い、所定温度に保持された下金型の上面に、溶融樹脂を所定厚さにつぎつぎに塗り重ねた後、その塗り重ねた多層の溶融樹脂の上面から上金型を押しつけることにより、各層の境界部が接着剤層を含まずに融着され表面又は表と裏の両面に微細構造が転写成形された積層体を製造することができる。   The laminate 40 can be suitably manufactured by the following manufacturing method. That is, using a lower mold having a fine structure and an upper mold having a planar portion or a fine structure, after the molten resin is successively applied to a predetermined thickness on the upper surface of the lower mold held at a predetermined temperature, By pressing the upper mold from the upper surface of the multi-layered molten resin, the boundary between each layer is fused without including the adhesive layer, and the microstructure is transferred and molded on both the front and back surfaces The body can be manufactured.

本製造方法において、下金型又は上金型は、例えば公知のプレス式の微細構造転写成形装置に用いられる下金型又は上金型を使用することができる。微細構造を有する下金型は、下金型自体が微細構造を有するもの、または、微細構造を有するスタンパを下金型に組み込んだものでもよい。下金型及び上金型が微細構造を有する場合は、その微細構造が積層体の表及び裏の両面に転写成形される。下金型が微細構造を有し、上金型が平面部を有しており上金型の押圧面が平面状である場合は、積層体の表面にのみ微細構造を有する積層体を得ることができる。   In this production method, the lower mold or the upper mold can be, for example, a lower mold or an upper mold used in a known press-type fine structure transfer molding apparatus. The lower mold having a fine structure may be one in which the lower mold itself has a fine structure or a stamper having a fine structure incorporated in the lower mold. When the lower mold and the upper mold have a fine structure, the fine structure is transferred and molded on both the front and back surfaces of the laminate. When the lower mold has a fine structure, the upper mold has a flat portion, and the pressing surface of the upper mold is flat, a laminated body having a fine structure only on the surface of the laminated body is obtained. Can do.

本製造方法は、先ず図4に示すように微細構造を有する下金型10に溶融樹脂を塗りつけた後、図5に示すように先に塗りつけた溶融樹脂に重ねてつぎつぎに溶融樹脂を塗りつけることによって積層体を得る方法である。なお、図4は、微細構造を有するスタンパ15が組み込まれた下金型10に溶融樹脂供給装置の樹脂供給口36から供給される溶融樹脂45が塗布される様子を示している。白色太矢印Aは溶融樹脂の流れ方向を示し、その塗布される溶融樹脂により空気が黒細矢印Bで示すように排出される様子を示す。図5は、n−3層、n−2層、n−1層が積層された後、n層を塗布する様子を示す。図4及び図5において、矢印Fは、樹脂供給口36の移動方向を示す。   In this manufacturing method, first, a molten resin is applied to the lower mold 10 having a fine structure as shown in FIG. 4, and then, the molten resin is applied one after another over the previously applied molten resin as shown in FIG. Is a method for obtaining a laminate. FIG. 4 shows a state where the molten resin 45 supplied from the resin supply port 36 of the molten resin supply device is applied to the lower mold 10 in which the stamper 15 having a fine structure is incorporated. The white thick arrow A indicates the flow direction of the molten resin, and the state in which air is discharged as indicated by the thin black arrow B by the applied molten resin. FIG. 5 shows a state in which the n layer is applied after the n-3 layer, the n-2 layer, and the n-1 layer are stacked. 4 and 5, the arrow F indicates the moving direction of the resin supply port 36.

本製造方法において、下金型10は、所定温度Ts、すなわち、下金型上に塗布される溶融樹脂の荷重たわみ温度をTdとした場合に、Td≦Ts≦Td+100 を満たす温度範囲に保持するのがよい。例えば、塗布される溶融樹脂がPC樹脂である場合は、荷重たわみ温度(0.45MPa)が概ね140℃であるから、140≦Ts≦140+100 となり、下金型10の温度を例えば150℃とすることができる。下金型10の温度Tsは、生産性等を考慮すればできるだけ低い方が好ましく、積層される溶融樹脂の下記に説明する樹脂供給温度を考慮して決められる。なお、荷重たわみ温度は、JIS K 7191-1,2(ISO 75-1,2) により求めることができる。荷重たわみ温度に対して熱変形温度(Heat Deflection Temperature、ASTM D648)を使用してもよい。なお、通常は、積層させる樹脂を塗り重ねているときに金型温度Tsを変更する必要はない。しかし、積層させる樹脂の組合せによって、Tn≧2×Tp-Tsを満足する温度が塗り重ねようとする樹脂の分解温度以上になる場合には、必要に応じて金型温度を変更してもよい。   In this manufacturing method, the lower mold 10 has a predetermined temperature Ts, that is, a temperature range satisfying Td ≦ Ts ≦ Td + 100, where Td is the deflection temperature under load of the molten resin applied onto the lower mold. It is good to hold. For example, when the molten resin to be applied is a PC resin, the deflection temperature under load (0.45 MPa) is approximately 140 ° C., so 140 ≦ Ts ≦ 140 + 100, and the temperature of the lower mold 10 is, for example, 150 ° C. can do. The temperature Ts of the lower mold 10 is preferably as low as possible in consideration of productivity and the like, and is determined in consideration of the resin supply temperature described below of the molten resin to be laminated. The deflection temperature under load can be obtained according to JIS K 7191-1, 2 (ISO 75-1, 2). Heat deformation temperature (Heat Deflection Temperature, ASTM D648) may be used for the deflection temperature under load. Normally, it is not necessary to change the mold temperature Ts when the resin to be laminated is applied. However, depending on the combination of resins to be laminated, if the temperature satisfying Tn ≧ 2 × Tp-Ts is equal to or higher than the decomposition temperature of the resin to be applied, the mold temperature may be changed as necessary. .

また、つぎつぎに塗り重ねる溶融樹脂のn番目に塗り重ねられるn層目の溶融樹脂の温度(樹脂供給口から供給される溶融樹脂の供給温度)Tnは、そのn層目の樹脂が非晶性樹脂の場合はガラス転移温度Tg(n)、結晶性樹脂の場合は融点Tm(n)、およびその前に塗り重ねられた(n-1)層目の樹脂が非晶性樹脂の場合はガラス転移温度Tg(n-1)、結晶性樹脂の場合は融点Tm(n-1)のうち最も高い温度をTpとしたときに、Tn≧2×Tp-Ts を満たすようにするのがよい。ここでTnは、相隣る樹脂同士が互いに溶融して融着するための最低温度である。Tnは、上述のように、(2×Tp-Ts)を満たす温度以上であるが、かつ、n番目に塗り重ねる樹脂を溶融樹脂供給装置の樹脂供給口36から円滑に吐出可能な温度であるのが好ましい。なお、nは2以上の整数である。また、最初に塗布する溶融樹脂(n=1の層)の供給温度は、非晶性樹脂の場合はガラス転移温度、結晶性樹脂の場合は融点をTpとして算出されるTn以上の温度で、かつ、樹脂を溶融樹脂供給装置の樹脂供給口36から円滑に吐出可能な温度であることが好ましい。   In addition, the temperature of the n-th layer of molten resin to be re-coated next (the supply temperature of the molten resin supplied from the resin supply port) Tn is the amorphous resin of the n-th layer. Glass transition temperature Tg (n) in the case of resin, melting point Tm (n) in the case of crystalline resin, and glass in the case where the (n-1) -th layer resin applied before is a non-crystalline resin In the case of a transition temperature Tg (n-1), in the case of a crystalline resin, it is preferable to satisfy Tn ≧ 2 × Tp−Ts, where Tp is the highest temperature among the melting points Tm (n−1). Here, Tn is the lowest temperature at which adjacent resins melt and fuse with each other. As described above, Tn is equal to or higher than a temperature satisfying (2 × Tp-Ts), and is a temperature at which the nth resin can be smoothly discharged from the resin supply port 36 of the molten resin supply device. Is preferred. Note that n is an integer of 2 or more. In addition, the supply temperature of the molten resin (n = 1 layer) to be applied first is a glass transition temperature in the case of an amorphous resin, or a temperature equal to or higher than Tn calculated as Tp in the case of a crystalline resin. In addition, the temperature is preferably such that the resin can be smoothly discharged from the resin supply port 36 of the molten resin supply device.

上記において、例えば、n-1層目の樹脂がアクリル(PMMA)樹脂であり、n層目に塗布しようとする樹脂がPC樹脂である場合は、PC樹脂のガラス転移温度Tg(n)が概ね145℃、PMMA樹脂のガラス転移温度Tg(n-1)が概ね100℃であるから。温度Tpは145℃とすることができる。ここで金型温度Tsが、例えば150℃である場合は、n層目に塗布しようとするポリカーボネート樹脂の温度Tnは、2×145-150=140(℃)以上となる。この温度140℃が、上述のように、PMMAとPCの界面が溶着するための最低温度である。従って、温度Tnは、140℃以上であって、かつ、その樹脂を溶融樹脂供給装置の樹脂供給口36から円滑に吐出可能な温度であることが好ましい。   In the above, for example, when the resin of the (n-1) th layer is an acrylic (PMMA) resin and the resin to be applied to the nth layer is a PC resin, the glass transition temperature Tg (n) of the PC resin is approximately This is because the glass transition temperature Tg (n-1) of PMMA resin is approximately 100 ° C at 145 ° C. The temperature Tp can be 145 ° C. Here, when the mold temperature Ts is, for example, 150 ° C., the temperature Tn of the polycarbonate resin to be applied to the n-th layer is 2 × 145−150 = 140 (° C.) or more. This temperature of 140 ° C. is the minimum temperature for welding the interface between PMMA and PC as described above. Therefore, it is preferable that the temperature Tn is 140 ° C. or higher and that the resin can be smoothly discharged from the resin supply port 36 of the molten resin supply device.

また、本製造方法において、塗り重ねる溶融樹脂は、図4に示すように、その前に塗布された溶融樹脂の上面にゲージ圧で動圧0.1〜5MPaを与えるように塗布するのがよい。これにより、各層境界部の融着が促進されると共に、微細構造部分に残留しやすい空気を追い出すことができる。   Moreover, in this manufacturing method, as shown in FIG. 4, it is good to apply | coat the molten resin to reapply so that dynamic pressure 0.1-5MPa may be given to the upper surface of the molten resin applied before that with a gauge pressure. Thereby, fusion of each layer boundary portion is promoted, and air that tends to remain in the fine structure portion can be expelled.

本製造方法は、このように下金型10の温度Ts及び塗り重ねる溶融樹脂の温度Tnを所定の温度に制御し、また、溶融樹脂の上面にゲージ圧で動圧0.1〜5MPaを与えるように塗布することにより実施される。このため、本製造方法によれば、微細構造部分の転写精度が高く、各層境界部が平坦で強固に融着している微細構造を有する積層体を得ることができる。   In this manufacturing method, the temperature Ts of the lower mold 10 and the temperature Tn of the molten resin to be applied are controlled to a predetermined temperature as described above, and a dynamic pressure of 0.1 to 5 MPa is applied to the upper surface of the molten resin with a gauge pressure. It is carried out by applying. For this reason, according to this manufacturing method, the laminated body which has the fine structure where the transfer precision of the fine structure part is high, and each layer boundary part is flat and firmly fused can be obtained.

また、本製造方法においては、微細構造を転写成形するために、プレス圧よって塗布された溶融樹脂をマクロ的に流動変形させる必要がほとんどなく、低いプレス圧で微細構造を有する積層体を成形することができる。そして、プレス加圧中に金型内で溶融樹脂を大きく流動させる必要がないので、溶融樹脂の流動に伴う高分子鎖の配向を最小限に抑えることができ、本製造方法によれば歪、反り又は光学的歪が極めて小さい積層体を得ることができる。   Further, in this production method, in order to transfer and mold the fine structure, there is almost no need to macroscopically deform the molten resin applied by the press pressure, and a laminate having a fine structure is formed at a low press pressure. be able to. And, since it is not necessary to greatly flow the molten resin in the mold during press pressurization, it is possible to minimize the orientation of the polymer chain accompanying the flow of the molten resin. A laminate with very little warpage or optical distortion can be obtained.

このような本発明に係る製造方法は、図6に示すプレス式の微細構造転写成形装置を用いて好適に実施することができる。先ず、スタンパ15が組み込まれた下金型10の上面に溶融樹脂供給装置30により溶融樹脂を供給する。溶融樹脂供給装置30は、ダイ35の樹脂供給口36から所望の流量の溶融樹脂を吐出可能なものであればよく、例えば図6(a)に示すインラインスクリュ式の可塑化・射出ユニットが連接された溶融樹脂供給装置30であってもよく、また、可塑化機構と吐出機構とが別置されたプリプラ式の溶融樹脂供給装置30であってもよい。溶融樹脂供給装置30は、積層体を構成する樹脂種ごとに設けるのがよい。溶融樹脂供給装置30は、可塑化機構を設けることにより、先に塗布された樹脂の上面にそれよりも高温の溶融樹脂を塗り重ねることができ、また、相隣る樹脂の界面を融着させることができるようになる。   Such a manufacturing method according to the present invention can be preferably carried out using a press-type microstructure transfer molding apparatus shown in FIG. First, the molten resin is supplied from the molten resin supply device 30 to the upper surface of the lower mold 10 in which the stamper 15 is incorporated. The molten resin supply device 30 only needs to be able to discharge a molten resin at a desired flow rate from the resin supply port 36 of the die 35. For example, an inline screw type plasticizing / injecting unit shown in FIG. The molten resin supply device 30 may be used, or the pre-plastic melt resin supply device 30 in which the plasticizing mechanism and the discharge mechanism are separately provided may be used. The molten resin supply device 30 is preferably provided for each resin type constituting the laminate. By providing a plasticizing mechanism, the molten resin supply device 30 can apply a molten resin having a higher temperature to the upper surface of the previously applied resin, and also fuse the interfaces of adjacent resins. Will be able to.

ダイ35は、スタンパ15の表面から樹脂供給口36までの高さ及び塗布方向への移動速度を調整する制御手段(図示せず)を備えている。そして、下金型10は、所定の温度に保持されている。なお、ダイ35は、Tダイを使用するのがよい。   The die 35 includes control means (not shown) for adjusting the height from the surface of the stamper 15 to the resin supply port 36 and the moving speed in the coating direction. The lower mold 10 is held at a predetermined temperature. The die 35 is preferably a T die.

溶融樹脂供給装置30から供給される溶融樹脂45は、図6(b)に示すように、スタンパ15に設けられた微細構造部分16の上面に塗布される。供給される溶融樹脂は、上記に説明した所定の温度で供給される。溶融樹脂の塗布は、スタンパ15又はその前に塗布された溶融樹脂の上面にゲージ圧で動圧0.1〜5MPaを与えるように塗布するのがよいことは上述したが、この動圧は、その前に塗布された溶融樹脂の上面から溶融樹脂を供給するTダイの樹脂供給口の先端までの距離、前記Tダイの水平方向移動速度及び供給される溶融樹脂の吐出流量を調整することにより制御することができる。   The molten resin 45 supplied from the molten resin supply device 30 is applied to the upper surface of the fine structure portion 16 provided in the stamper 15 as shown in FIG. The supplied molten resin is supplied at the predetermined temperature described above. As described above, the molten resin is preferably applied so that a dynamic pressure of 0.1 to 5 MPa is applied to the upper surface of the stamper 15 or the previously applied molten resin with a gauge pressure. It is controlled by adjusting the distance from the upper surface of the molten resin applied to the tip to the tip of the resin supply port of the T die that supplies the molten resin, the horizontal movement speed of the T die, and the discharge flow rate of the supplied molten resin. be able to.

例えば、先ず、溶融樹脂の吐出流量を、使用するTダイの樹脂供給口36の幅と前記水平移動速度との乗算値で除算し、溶融樹脂の厚みを求める。次に、その求めた厚みよりもTダイの樹脂供給口の先端までの距離を小さく設定する。これにより、塗布する溶融樹脂に高い動圧を印加することができる。   For example, first, the molten resin discharge flow rate is divided by the product of the width of the resin supply port 36 of the T die to be used and the horizontal movement speed to obtain the thickness of the molten resin. Next, the distance to the tip of the resin supply port of the T die is set smaller than the obtained thickness. Thereby, a high dynamic pressure can be applied to the molten resin to be applied.

塗布する溶融樹脂に動圧を印加することによって、本発明においては、樹脂塊を金型内に装填してプレスで板状に潰す工法とは異なり、プレス時にも塗布された溶融樹脂をマクロ的に流動変形させる必要がほとんどなく、低いプレス圧で微細構造を有する積層体を成形することができる。そして、プレス加圧中に金型内で溶融樹脂を大きく流動させる必要がないので、溶融樹脂の流動に伴う高分子鎖の配向を最小限に抑えることができ、歪、反り又は光学的歪が極めて小さい積層体を得ることができる。また、塗り重ねる樹脂のプレス時における厚み及び形状が最終製品の形状及び厚みにほぼ等しいので、高精度の微細構造を形成することができる。   In the present invention, by applying dynamic pressure to the molten resin to be applied, the molten resin applied at the time of pressing is macroscopically different from the method of loading a resin lump in a mold and crushing it into a plate shape with a press. Therefore, a laminate having a fine structure can be formed with a low pressing pressure. In addition, since it is not necessary to flow the molten resin greatly in the mold during press pressurization, the orientation of the polymer chain accompanying the flow of the molten resin can be minimized, and distortion, warpage, or optical distortion can be prevented. An extremely small laminate can be obtained. In addition, since the thickness and shape of the resin to be applied at the time of pressing are substantially equal to the shape and thickness of the final product, a highly accurate fine structure can be formed.

溶融樹脂は、図6(c)に示すように、つぎつぎに塗り重ねられる。この場合に図5に示すg寸法及び前記のTダイの樹脂供給口の先端までの距離、前記Tダイの水平方向移動速度及び供給される溶融樹脂の吐出流量を調整することにより、n層の厚さ及び印加する動圧を高精度で調整することができる。本積層体の製造方法は、このように積層体を形成する層を塗り重ねていく方法であるから、樹脂層の間に容易に金属層を含む積層体を形成することができる。この金属層は、樹脂層間の結合力を考慮すると箔状のものより網状のものが好ましい。   The molten resin is applied one after another as shown in FIG. In this case, by adjusting the g dimension shown in FIG. 5 and the distance to the tip of the T-die resin supply port, the horizontal movement speed of the T-die, and the discharge flow rate of the molten resin to be supplied, The thickness and the applied dynamic pressure can be adjusted with high accuracy. Since the manufacturing method of this laminated body is the method of applying the layer which forms a laminated body in this way, the laminated body which contains a metal layer easily between resin layers can be formed. This metal layer is preferably a net-like one rather than a foil-like one in consideration of the bonding strength between resin layers.

次に、図6(d)に示すように、上金型20を降下させて(矢印Pd方向)塗り重ねた溶融樹脂を押圧する。そして、図6(e)に示すように、加圧したままで下金型10及び上金型20を冷却する。最後に、図6(f)に示すように、上金型20を下金型10から開き(矢印Pu方向)、塗り重ねた溶融樹脂が冷却され形成された積層体40を上金型20から剥離する。積層体40の表面には、スタンパ15に設けられた微細構造が転写成形されている。   Next, as shown in FIG. 6 (d), the upper mold 20 is lowered (in the direction of the arrow Pd) and the molten resin applied is pressed. Then, as shown in FIG. 6E, the lower mold 10 and the upper mold 20 are cooled while being pressurized. Finally, as shown in FIG. 6 (f), the upper mold 20 is opened from the lower mold 10 (in the direction of the arrow Pu), and the laminated body 40 formed by cooling the coated molten resin is removed from the upper mold 20. Peel off. On the surface of the laminate 40, the fine structure provided in the stamper 15 is transferred and molded.

10 下金型
15 スタンパ
16 微細構造部分
20 上金型
30 溶融樹脂供給装置
35 ダイ
36 樹脂供給口
40 積層体
41、41A、41B 微細構造体を有する層
43 本体部を形成する層
45 溶融樹脂
10 Lower mold
15 Stamper
16 Microstructure part
20 Upper mold
30 Molten resin feeder
35 die
36 Resin supply port
40 Laminate
41, 41A, 41B Layer with microstructure
43 Layers forming the body
45 Molten resin

Claims (9)

表面又は表と裏の両面に微細構造が転写成形された積層体であって、前記微細構造を形成する凸部又は凹部の断面形状について直径、辺長又は幅が10nm〜1mm、高さ又は深さが10nm〜1mm、前記積層体の各層の境界部は接着剤層を含まず融着されている積層体。   It is a laminate in which a microstructure is transferred and formed on both the front surface and the front and back surfaces, and the diameter, side length or width is 10 nm to 1 mm, height or depth with respect to the cross-sectional shape of the protrusion or recess forming the microstructure. A laminate having a thickness of 10 nm to 1 mm, and a boundary portion of each layer of the laminate is fused without including an adhesive layer. 表面又は表と裏の両面に微細構造が転写成形された積層体であって、その各層の境界部は融着されており、積層される樹脂の相隣る層間における粘度比が3倍以上である層を含む積層体。
ここに、樹脂の粘度は、相隣る各々の樹脂がゴム状態を示す温度以上の同一温度、同一せん断速度の下で測定される粘度をいう。
It is a laminate in which the microstructure is transferred and molded on both the front surface and the front and back surfaces, and the boundary portion of each layer is fused, and the viscosity ratio between adjacent layers of the laminated resin is 3 times or more. A laminate comprising a layer.
Here, the viscosity of the resin refers to a viscosity measured under the same temperature and the same shear rate that is equal to or higher than the temperature at which the adjacent resins show a rubber state.
微細構造を有する下金型と平面部又は微細構造を有する上金型を用い、
所定温度に保持された下金型の上面に、溶融樹脂を所定厚さにつぎつぎに塗り重ねた後、その塗り重ねた多層の溶融樹脂の上面から上金型を押しつけ、各層の境界部が接着剤層を含まずに融着され表面又は表と裏の両面に微細構造が転写成形された積層体を得る製造方法。
Using a lower mold having a fine structure and an upper mold having a planar portion or a fine structure,
After the molten resin is successively applied to the upper surface of the lower mold held at a predetermined temperature to a predetermined thickness, the upper mold is pressed from the upper surface of the multi-layered molten resin, and the boundary between the layers adheres. A manufacturing method for obtaining a laminate in which a fine structure is transferred and molded on both the front surface and both the front and back surfaces without being bonded with an agent layer.
前記下金型の所定温度Tsは、前記下金型上に塗布される溶融樹脂の荷重たわみ温度をTdとした場合に、Td≦Ts≦Td+100 であることを特徴とする請求項3に記載の積層体の製造方法。   The predetermined temperature Ts of the lower mold is Td ≦ Ts ≦ Td + 100, where Td is a deflection temperature under load of the molten resin applied on the lower mold. The manufacturing method of the laminated body of description. 前記つぎつぎに塗り重ねる溶融樹脂のn番目に塗り重ねられるn層目の溶融樹脂の温度Tnは、そのn層目の樹脂が非晶性樹脂の場合はガラス転移温度Tg(n)、結晶性樹脂の場合は融点Tm(n)、およびその前に塗り重ねられた(n-1)層目の樹脂が非晶性樹脂の場合はガラス転移温度Tg(n-1)、結晶性樹脂の場合は融点Tm(n-1)のうち最も高い温度をTpとしたときに、Tn≧2×Tp-Tsであることを特徴とする請求項3又は4に記載の積層体の製造方法。
ここに、nは2以上の整数である。
The temperature Tn of the nth layer of the molten resin to be recoated next is the glass transition temperature Tg (n) when the nth layer resin is an amorphous resin, the crystalline resin In the case of the melting point Tm (n), the glass transition temperature Tg (n-1) when the resin of the (n-1) layer layered before that is an amorphous resin, in the case of a crystalline resin 5. The method for manufacturing a laminate according to claim 3, wherein Tn ≧ 2 × Tp−Ts, where Tp is the highest temperature among the melting points Tm (n−1).
Here, n is an integer of 2 or more.
前記つぎつぎに塗り重ねる溶融樹脂の所定厚さは、それぞれ50μm〜3mmであることを特徴とする請求項3〜5のいずれか一項に記載の積層体の製造方法。   The method for producing a laminate according to any one of claims 3 to 5, wherein a predetermined thickness of the molten resin to be successively applied is 50 µm to 3 mm. 前記つぎつぎに塗り重ねる溶融樹脂の塗布は、その前に塗布された溶融樹脂の上面にゲージ圧で動圧0.1〜5MPaを与えるように行われることを特徴とする請求項3〜6のいずれか一項に記載の積層体の製造方法。   The application of the molten resin to be successively applied is performed so as to apply a dynamic pressure of 0.1 to 5 MPa with a gauge pressure on the upper surface of the previously applied molten resin. The manufacturing method of the laminated body as described in a term. 前記動圧は、その前に塗布された溶融樹脂の上面から溶融樹脂を供給するTダイの樹脂供給口の先端までの距離、前記Tダイの水平方向移動速度及び供給される溶融樹脂の吐出流量を調整することにより制御されることを特徴とする請求項7に記載の積層体の製造方法。   The dynamic pressure includes the distance from the top surface of the molten resin applied before to the tip of the resin supply port of the T die that supplies the molten resin, the horizontal movement speed of the T die, and the discharge flow rate of the supplied molten resin. The method for producing a laminate according to claim 7, wherein the method is controlled by adjusting the value. 前記積層体中に金属層を含むことを特徴とする請求項3〜8のいずれか一項に記載の積層体の製造方法。   The method for producing a laminate according to any one of claims 3 to 8, wherein the laminate includes a metal layer.
JP2009270298A 2009-11-27 2009-11-27 Laminated body having fine structure and method for producing the same Expired - Fee Related JP5328040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270298A JP5328040B2 (en) 2009-11-27 2009-11-27 Laminated body having fine structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270298A JP5328040B2 (en) 2009-11-27 2009-11-27 Laminated body having fine structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011110852A true JP2011110852A (en) 2011-06-09
JP5328040B2 JP5328040B2 (en) 2013-10-30

Family

ID=44233552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270298A Expired - Fee Related JP5328040B2 (en) 2009-11-27 2009-11-27 Laminated body having fine structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP5328040B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184356A (en) * 2012-03-07 2013-09-19 Japan Steel Works Ltd:The Fiber-reinforced resin base material, and method of manufacturing resin molding and resin processing machine for carrying out the same
JP2016022603A (en) * 2014-07-16 2016-02-08 株式会社日本製鋼所 Molding die and molding method of microstructure
JP2016507406A (en) * 2013-01-24 2016-03-10 コーニング インコーポレイテッド Surface nanoreplication using polymer nanomasks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053867A (en) * 2001-08-09 2003-02-26 Dainippon Printing Co Ltd Laminate having compounded unevenness, method for manufacturing the same, mold manufacturing method and molding method for molded product
JP2004121986A (en) * 2002-10-02 2004-04-22 Japan Steel Works Ltd:The Method and apparatus for applying molten resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053867A (en) * 2001-08-09 2003-02-26 Dainippon Printing Co Ltd Laminate having compounded unevenness, method for manufacturing the same, mold manufacturing method and molding method for molded product
JP2004121986A (en) * 2002-10-02 2004-04-22 Japan Steel Works Ltd:The Method and apparatus for applying molten resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184356A (en) * 2012-03-07 2013-09-19 Japan Steel Works Ltd:The Fiber-reinforced resin base material, and method of manufacturing resin molding and resin processing machine for carrying out the same
JP2016507406A (en) * 2013-01-24 2016-03-10 コーニング インコーポレイテッド Surface nanoreplication using polymer nanomasks
JP2016022603A (en) * 2014-07-16 2016-02-08 株式会社日本製鋼所 Molding die and molding method of microstructure

Also Published As

Publication number Publication date
JP5328040B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
CN1832852B (en) Process and apparatus for fabricating precise microstructures and polymeric molds for making same
JP4335225B2 (en) Method and apparatus for manufacturing resin molded body
JP4444980B2 (en) Mold for molding molded body and method for producing molded body using the same
TWI461762B (en) Thin double-sided light guide plate
JP5328040B2 (en) Laminated body having fine structure and method for producing the same
TW201425025A (en) Multilayer film, film for decorative molding, and molded body
KR101627431B1 (en) A Light Guiding Decorative Composite Sheet and Components Made Thereof
TW201223742A (en) Optical sheet manufactured with micro-patterned carrier
TW201213086A (en) Printed double-sided light guide plate
JP2013046965A (en) Mold for pressure forming, pressure forming method, and molding
JP6284327B2 (en) Composite light guide plate
KR20110091666A (en) Forming methods
KR100899310B1 (en) Apparatus for fabricationg optical sheet, method for fabricating optical sheet, and optical sheet fabricated using the same
TW201202016A (en) Double sided light guide plate manufactured with micro-patterned carrier
TW201416223A (en) Method of manufacturing a composite light guide plate
TWI457219B (en) Mold member, manufacturing process thereof and forming process of photo-controlling member by using it
KR100823142B1 (en) Apparatus for fabricationg optical sheet, method for fabricating optical sheet, and optical sheet fabricated using the same
JP2014202947A (en) Production method of molded article having fine structure, and optical component obtained by the method
JP5755996B2 (en) Mold for pressure forming and method for forming pressure
KR100436699B1 (en) Replication mold
JP2000071257A (en) Production of molding
TW201504698A (en) Method for manufacturing light guide plate and light guide plate
JP6693077B2 (en) Molded body with nanostructure
US20150362656A1 (en) Light Guiding Decorative Composite Sheet and Components Made Thereof
JP6125299B2 (en) Laminated film consisting of a base film with a fine structure formed on the surface and a transfer resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5328040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees