JP2011110494A - Si-Fe BASED COMPOSITE OXIDE AND METHOD FOR MANUFACTURING THE SAME - Google Patents

Si-Fe BASED COMPOSITE OXIDE AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2011110494A
JP2011110494A JP2009268952A JP2009268952A JP2011110494A JP 2011110494 A JP2011110494 A JP 2011110494A JP 2009268952 A JP2009268952 A JP 2009268952A JP 2009268952 A JP2009268952 A JP 2009268952A JP 2011110494 A JP2011110494 A JP 2011110494A
Authority
JP
Japan
Prior art keywords
composite
composite oxide
washing
drying
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009268952A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
憲司 鈴木
Daisuke Hirabayashi
大介 平林
Naotaka Tanahashi
尚貴 棚橋
Norio Iwasa
慶夫 岩佐
Sumio Watanabe
澂雄 渡邉
Tsutomu Sugiura
勉 杉浦
Manabu Asano
学 浅野
shun Sakaguchi
瞬 坂口
Kazuyuki Kawada
和之 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Chubu Electric Power Co Inc
Toyobo Co Ltd
Original Assignee
Nagoya University NUC
Chubu Electric Power Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Chubu Electric Power Co Inc, Toyobo Co Ltd filed Critical Nagoya University NUC
Priority to JP2009268952A priority Critical patent/JP2011110494A/en
Publication of JP2011110494A publication Critical patent/JP2011110494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel metal oxide catalyst with improved catalytic activity and a method for manufacturing the same. <P>SOLUTION: The composite oxide is a Si-Fe composite oxide containing Si and Fe and having an oxidation catalyst action, in which a grain size of a primary particle containing Fe is not more than 100 nm and an aspect ratio is not more than 2.0. The method for manufacturing the same includes: a slurry formation process for blending calcium hydroxide, silica and nitric acid iron and adding pure water for contamination and slurry formation; a hydrothermal treatment process for hydrothermally treating the formed slurry; a filtration and washing a process for filtrating and washing composite after the hydrothermal treatment; a drying process for drying the composite after filtration and washing; and a firing process for firing the composite after the drying. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、SiとFeとを含む複合酸化物であって、かつ、粒子状である新規なSi−Fe系複合酸化物およびその製造方法に関する。   The present invention relates to a novel Si—Fe based composite oxide which is a composite oxide containing Si and Fe and is in the form of particles, and a method for producing the same.

近年、環境汚染などに関する問題意識の向上の観点から、工場などから排出される揮発性有機化合物(VOC:Volatile Organic Compound)を除去するための手段が種々開発されている。一般的なVOC除去方法としては、VOCを燃焼して分解する方法の他、活性炭、シリカゲルなどの吸着剤などを用いて排出ガス中のVOCを吸着除去する方法などが知られている。中でも、比較的低温でVOCを酸化分解できるため、触媒活性を有する物質を用いてVOCを燃焼する触媒燃焼法が注目されている。   In recent years, various means for removing volatile organic compounds (VOC) discharged from factories and the like have been developed from the viewpoint of improving awareness of problems related to environmental pollution. As a general VOC removal method, there are known a method in which VOC in an exhaust gas is adsorbed and removed using an adsorbent such as activated carbon and silica gel, in addition to a method in which VOC is burned and decomposed. Among them, since a VOC can be oxidatively decomposed at a relatively low temperature, a catalytic combustion method in which VOC is burned using a substance having catalytic activity has attracted attention.

しかしながら従来、触媒燃焼法に用い得る触媒としては、白金などの高価な貴金属を用いる必要があり、このような高価な貴金属に代わる、安価でかつ実用的な触媒材料の開発が求められている。たとえば特開2003−126696号公報(特許文献1)には、カルシウム塩、非晶質シリカおよび銅化合物を含むVOC分解用燃焼触媒が開示されている。またたとえば特開2005−238192号公報(特許文献2)には、担体に触媒となる金属化合物が担持された金属酸化物担持触媒であって、BET比表面積が50〜500m2/g、且つJIS K6260に準拠した吸油量が50〜550ml/100gの多孔質珪酸カルシウムからなる担体に、金属化合物を担持させた金属酸化物担持触媒が開示されている。 However, conventionally, it is necessary to use an expensive noble metal such as platinum as a catalyst that can be used in the catalytic combustion method, and the development of an inexpensive and practical catalyst material to replace such an expensive noble metal is required. For example, Japanese Laid-Open Patent Publication No. 2003-126696 (Patent Document 1) discloses a combustion catalyst for VOC decomposition containing a calcium salt, amorphous silica and a copper compound. Further, for example, Japanese Patent Application Laid-Open No. 2005-238192 (Patent Document 2) discloses a metal oxide-supported catalyst in which a metal compound serving as a catalyst is supported on a carrier, having a BET specific surface area of 50 to 500 m 2 / g and JIS. A metal oxide-supported catalyst in which a metal compound is supported on a support made of porous calcium silicate having an oil absorption amount of 50 to 550 ml / 100 g according to K6260 is disclosed.

触媒燃焼法においては、より低い温度で効率よくVOCを燃焼する観点からは、金属酸化物触媒の触媒活性は高ければ高いほどよく、従来よりも触媒活性が改善された新規な金属酸化物触媒の開発が求められている。   In the catalytic combustion method, from the viewpoint of efficiently burning VOC at a lower temperature, the higher the catalytic activity of the metal oxide catalyst, the better, and a novel metal oxide catalyst with improved catalytic activity compared to the conventional ones. Development is required.

特開2003−126696号公報JP 2003-126696 A 特開2005−238192号公報JP 2005-238192 A

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、従来よりも触媒活性が改善された新規な金属酸化物触媒およびその製造方法を提供することである。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a novel metal oxide catalyst having improved catalytic activity as compared with the prior art and a method for producing the same. .

本発明は、SiとFeとを含む複合酸化物であって、Feを含む一次粒子の粒径が100nm以下、かつ、アスペクト比が2.0以下である、酸化触媒作用を有するSi−Fe系複合酸化物に関する。   The present invention is a composite oxide containing Si and Fe, wherein the primary particles containing Fe have a particle size of 100 nm or less and an aspect ratio of 2.0 or less, and have an oxidation catalytic action. The present invention relates to a composite oxide.

本発明のSi−Fe系複合酸化物において、Feの含有組成は酸化鉄として30〜50重量%であることが、好ましい。   In the Si—Fe-based composite oxide of the present invention, the Fe-containing composition is preferably 30 to 50% by weight as iron oxide.

本発明のSi−Fe系複合酸化物において、BET比表面積が100m2/g以上であることが好ましい。 In the Si—Fe based complex oxide of the present invention, the BET specific surface area is preferably 100 m 2 / g or more.

本発明はまた、水酸化カルシウムとシリカと硝酸鉄とを配合し、純水を加えて混濁させスラリーを生成するスラリー生成工程と、生成したスラリーを水熱処理する水熱処理工程と、水熱処理後の複合物をろ過・洗浄するろ過・洗浄工程と、ろ過・洗浄後の複合物を乾燥させる乾燥工程と、乾燥後の複合物を焼成する焼成工程とを含むSi−Fe系複合酸化物の製造方法についても提供する。   The present invention also includes a slurry generation step in which calcium hydroxide, silica, and iron nitrate are blended and turbidized by adding pure water to generate a slurry; a hydrothermal treatment step in which the generated slurry is hydrothermally treated; Filtration / washing step for filtering / washing composite, drying step for drying composite after filtration / washing, and method for producing Si-Fe-based composite oxide comprising firing step for firing composite after drying Also provide about.

本発明によれば、従来よりも触媒活性が改善された新規な金属酸化物触媒およびその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the novel metal oxide catalyst by which the catalyst activity was improved compared with the past, and its manufacturing method are provided.

実験例1で得られた各サンプルについての温度とトルエンの分解率との関係を示すグラフである。It is a graph which shows the relationship between the temperature about each sample obtained in Experimental example 1, and the decomposition rate of toluene. 実験例1で得られた各サンプルについてのSEM画像写真である。2 is a SEM image photograph of each sample obtained in Experimental Example 1. 実験例2で得られた各サンプルについての温度とトルエンの分解率との関係を示すグラフである。It is a graph which shows the relationship between the temperature about each sample obtained in Experimental example 2, and the decomposition rate of toluene. 実験例2で得られた各サンプルについてのSEM画像写真である。4 is a SEM image photograph of each sample obtained in Experimental Example 2.

本発明のSi−Fe系複合酸化物は、SiとFeとを含む複合酸化物であって、Feを含む一次粒子の粒径が100nm以下、かつ、アスペクト比が2.0以下であることを特徴とする。このように特定の一次粒子の粒径およびアスペクト比を兼ね備えた、いわば「粒子状」の本発明のSi−Fe系複合酸化物によれば、実験例にて詳細に上述するように優れた触媒活性が発揮される。水酸化カルシウムとシリカを出発物質とする複合体の場合、通常、板状または針状の(すなわち、アスペクト比が2.0を超える)結晶構造体となる。今回、本発明者らにより初めて、水酸化カルシウムとシリカに加え、出発物質として硝酸鉄をさらに用いる新規な製造方法が開発され、粒子状の(すなわち、アスペクト比が2.0以下の)複合体が得られた。   The Si—Fe-based composite oxide of the present invention is a composite oxide containing Si and Fe, wherein the primary particles containing Fe have a particle size of 100 nm or less and an aspect ratio of 2.0 or less. Features. Thus, according to the so-called “particulate” Si—Fe-based composite oxide of the present invention having both the particle size and the aspect ratio of specific primary particles, an excellent catalyst as described in detail in the experimental examples. Activity is demonstrated. In the case of a complex using calcium hydroxide and silica as starting materials, it usually has a plate-like or needle-like (that is, the aspect ratio exceeds 2.0) crystal structure. This time, for the first time, the inventors have developed a novel production method that further uses iron nitrate as a starting material in addition to calcium hydroxide and silica, and a particulate composite (that is, an aspect ratio of 2.0 or less). was gotten.

本発明のSi−Fe系複合酸化物において、Feを含む一次粒子の粒径が100nm以下である。Feを含む一次粒子の粒径が100nmを超えてしまうと、触媒活性が極端に減少してしまう。このような触媒活性の極端な減少を防ぐ観点から、本発明のSi−Fe系複合酸化物におけるFeを含む一次粒子の粒径は70nm以下であることが好ましい。また、本発明のSi−Fe系複合酸化物は、粒径がより小さくなるほど触媒活性は向上する傾向にあるため、Feを含む一次粒子の粒径の下限値は特に制限されるものではないが、2nm以上であることが好ましく、5nm以上であることがより好ましい。なお、このFeを含む一次粒子の粒径は、TEM画像を用いた解析手法により測定された値を指す。   In the Si—Fe composite oxide of the present invention, the primary particles containing Fe have a particle size of 100 nm or less. If the particle size of the primary particles containing Fe exceeds 100 nm, the catalytic activity is extremely reduced. From the viewpoint of preventing such an extreme decrease in catalytic activity, the primary particles containing Fe in the Si—Fe based composite oxide of the present invention preferably have a particle size of 70 nm or less. In addition, since the Si—Fe based composite oxide of the present invention tends to improve the catalytic activity as the particle size becomes smaller, the lower limit value of the particle size of the primary particles containing Fe is not particularly limited. The thickness is preferably 2 nm or more, and more preferably 5 nm or more. The particle size of the primary particles containing Fe indicates a value measured by an analysis method using a TEM image.

また本発明のSi−Fe系複合酸化物において、アスペクト比は2.0以下である。アスペクト比が2.0を超えてしまうと、触媒活性が極端に減少してしまう。このような触媒活性の極端な減少を防ぐ観点から、本発明のSi−Fe系複合酸化物におけるアスペクト比は1.5以下であることが好ましい。また、本発明のSi−Fe系複合酸化物におけるアスペクト比の下限値は特に制限されるものではないが、0.2以上であることが好ましく、0.5以上であることがより好ましい。なお、このアスペクト比は、TEM画像を用いた解析手法により測定された値を指す。   In the Si—Fe composite oxide of the present invention, the aspect ratio is 2.0 or less. When the aspect ratio exceeds 2.0, the catalytic activity is extremely reduced. From the viewpoint of preventing such an extreme decrease in catalytic activity, the aspect ratio of the Si—Fe based composite oxide of the present invention is preferably 1.5 or less. Further, the lower limit of the aspect ratio in the Si—Fe based composite oxide of the present invention is not particularly limited, but is preferably 0.2 or more, and more preferably 0.5 or more. In addition, this aspect ratio points out the value measured by the analysis method using a TEM image.

本発明のSi−Fe系複合酸化物において、Feの含有組成は酸化鉄として30〜50重量%であることが好ましく、30〜35重量%であることがより好ましい。Feの含有組成が酸化鉄として30重量%未満である場合には、球状のFe粒子がうまく発現しない傾向にあるためであり、また、Feの含有組成が酸化鉄として50重量%を超える場合には、球状のFe粒子の粒径が肥大化してしまう傾向にあるためである。なお、Si−Fe系複合酸化物における酸化鉄の含有組成は、たとえば蛍光X線を用いた無機元素分析を用いて測定することができる。   In the Si—Fe-based composite oxide of the present invention, the Fe-containing composition is preferably 30 to 50% by weight as iron oxide, and more preferably 30 to 35% by weight. This is because when the Fe-containing composition is less than 30% by weight as iron oxide, spherical Fe particles tend not to develop well, and when the Fe-containing composition exceeds 50% by weight as iron oxide. This is because the particle size of the spherical Fe particles tends to be enlarged. In addition, the content composition of the iron oxide in Si-Fe type complex oxide can be measured, for example using the inorganic element analysis which used the fluorescent X ray.

また本発明のSi−Fe系複合酸化物において、BET比表面積が100m2/g以上であることが好ましく、120m2/g以上であることがより好ましい。BET比表面積が100m2/g未満である場合には、触媒活性が減少してしまう傾向にあるためである。なお、一般的に金属酸化物触媒におけるBET比表面積は大きければ大きいほどよいので、その上限値は特に制限されるものではない。なお、Si−Fe系複合酸化物におけるBET比表面積は、たとえば自動比表面積測定装置ジェミニ2375(マイクロメリティックス社製)を用いて測定することができる。 In the Si—Fe based composite oxide of the present invention, the BET specific surface area is preferably 100 m 2 / g or more, and more preferably 120 m 2 / g or more. This is because the catalytic activity tends to decrease when the BET specific surface area is less than 100 m 2 / g. In general, the larger the BET specific surface area of a metal oxide catalyst, the better. Therefore, the upper limit is not particularly limited. In addition, the BET specific surface area in Si-Fe type complex oxide can be measured using the automatic specific surface area measuring device Gemini 2375 (made by Micromeritics), for example.

本発明はまた、上述した本発明のSi−Fe系複合酸化物の新規な製造方法も提供する。本発明のSi−Fe系複合酸化物の製造方法は、水酸化カルシウムとシリカと硝酸鉄とを配合し、純水を加えて混濁させスラリーを生成するスラリー生成工程と、生成したスラリーを水熱処理する水熱処理工程と、水熱処理後の複合物をろ過・洗浄するろ過・洗浄工程と、ろ過・洗浄後の複合物を乾燥させる乾燥工程と、乾燥後の複合物を焼成する焼成工程とを含むことを特徴とする。なお、本発明のSi−Fe系複合酸化物は、上述した特徴を有するものであればその製造方法は特に制限されるものではないが、本発明の方法によって製造されたものであることが好ましい。以下、本発明のSi−Fe系複合酸化物の製造方法の各工程について詳細に説明する。   The present invention also provides a novel method for producing the above-described Si—Fe based composite oxide of the present invention. The method for producing a Si—Fe-based composite oxide of the present invention includes a slurry generation step of mixing calcium hydroxide, silica, and iron nitrate, adding pure water to turbidity to generate a slurry, and hydrothermally treating the generated slurry. A hydrothermal treatment step, a filtration / washing step for filtering / washing the composite after hydrothermal treatment, a drying step for drying the composite after filtration / washing, and a firing step for firing the dried composite It is characterized by that. In addition, although the manufacturing method in particular is not restrict | limited if the Si-Fe type complex oxide of this invention has the characteristic mentioned above, It is preferable that it was manufactured by the method of this invention. . Hereafter, each process of the manufacturing method of the Si-Fe type complex oxide of this invention is demonstrated in detail.

〔1〕スラリー生成工程
スラリー生成工程ではまず、水酸化カルシウムとシリカと硝酸鉄とを配合し、純水を加えて混濁させスラリーを生成する。ここで、本発明においては、Fe粒子の粒径の肥大化を抑制するという理由から、出発物質として水酸化カルシウムを用いる。またFe粒子を固定化させるという理由から、Si源の出発物質としてシリカを用いる。さらに、溶液中に固溶化させる目的から、Fe源の出発物質として硝酸鉄を用いる。この際、上述したより好ましい本発明のSi−Fe系複合酸化物を製造する観点からは、Feの含有組成が酸化鉄として30〜50重量%の範囲となるような比率で出発物質を配合することが好ましい。
[1] Slurry generation step In the slurry generation step, first, calcium hydroxide, silica, and iron nitrate are blended, and pure water is added to cause turbidity to generate a slurry. Here, in the present invention, calcium hydroxide is used as a starting material because it suppresses the enlargement of the particle size of Fe particles. Also, silica is used as a starting material for the Si source because Fe particles are immobilized. Further, iron nitrate is used as a starting material for the Fe source for the purpose of forming a solid solution in the solution. Under the present circumstances, from a viewpoint of manufacturing the more preferable Si-Fe type complex oxide of this invention mentioned above, a starting material is mix | blended in the ratio which the content composition of Fe becomes in the range of 30 to 50 weight% as iron oxide. It is preferable.

ここで、従来、水酸化カルシウムとシリカを出発物質とする複合体は、Siの集合体が凝集した際に発現しうる形態の、板状または針状の結晶構造体となっていた。本発明の製造方法では、出発物質として硝酸鉄を配合していることで、その詳細な理由は不明であるが、上述したような特定のFeを含む一次粒子の粒子径およびアスペクト比を有する複合体が得られる。なお、得られるSi−Fe系複合酸化物のFeを含む一次粒子の粒子径およびアスペクト比は、その製造方法において出発物質である水酸化カルシウムの配合量を調整することで制御できる。   Heretofore, a complex using calcium hydroxide and silica as a starting material has conventionally been a plate-like or needle-like crystal structure that can be expressed when an aggregate of Si aggregates. In the production method of the present invention, since iron nitrate is blended as a starting material, the detailed reason is unknown, but the composite having the particle diameter and aspect ratio of the primary particles containing specific Fe as described above. The body is obtained. In addition, the particle diameter and aspect ratio of the primary particle containing Fe of the obtained Si—Fe composite oxide can be controlled by adjusting the blending amount of calcium hydroxide as a starting material in the production method.

本発明の製造方法において、当該工程で生成するスラリーは、pHを2〜7の範囲内とすることが好ましい。スラリーのpHが2未満である場合には、水熱処理中に溶解してしまい、ろ過工程を経ても固形分を得ることはできない傾向にあり、また、スラリーのpHは7を超える場合には、比表面積が低下し、結晶子径が肥大化することで触媒活性が減少する傾向にあるためである。よって、高比表面積、且つ、結晶子径の小さいSi−Fe系複合酸化物を得るために、スラリーのpHは2.0〜7.0の範囲内であることが好ましい。スラリーのpHは、たとえば出発物質に水酸化ナトリウムを滴下するというようにして調整することができる。   In the production method of the present invention, the slurry produced in this step preferably has a pH in the range of 2-7. When the pH of the slurry is less than 2, it is dissolved during the hydrothermal treatment, and there is a tendency that a solid content cannot be obtained even after passing through the filtration step. When the pH of the slurry exceeds 7, This is because the specific surface area is reduced and the crystallite diameter is enlarged so that the catalytic activity tends to decrease. Therefore, in order to obtain a Si—Fe based composite oxide having a high specific surface area and a small crystallite diameter, the pH of the slurry is preferably in the range of 2.0 to 7.0. The pH of the slurry can be adjusted, for example, by adding sodium hydroxide dropwise to the starting material.

〔2〕水熱処理工程
続く工程では、生成されたスラリーを水熱処理する。ここで、当該技術を使わず固相反応を行った場合には、固相内のイオン拡散により反応する。これに対し、水熱処理を行う場合には、イオンの溶解−析出機構によって反応が進行するため、水熱処理は通常の固相処理と比較して反応速度が速く、生成物組成の均一性が高く、形状制御が可能となる。このような理由により、本発明では水熱処理を採用する。水熱処理は、具体的には、オートクレーブを用いて行うことができ、その条件としては、圧力(飽和蒸気圧)が200kPa以上、処理温度が120〜190℃の範囲内、処理時間が1〜2時間の範囲内とすることが好適である。
[2] Hydrothermal treatment step In the subsequent step, the produced slurry is hydrothermally treated. Here, when a solid-phase reaction is performed without using the technique, the reaction occurs by ion diffusion in the solid phase. On the other hand, in the case of hydrothermal treatment, the reaction proceeds by the ion dissolution-precipitation mechanism. Therefore, the hydrothermal treatment has a higher reaction rate than that of a normal solid phase treatment, and the uniformity of the product composition is high. , Shape control becomes possible. For these reasons, hydrothermal treatment is employed in the present invention. Specifically, the hydrothermal treatment can be performed using an autoclave. The conditions include a pressure (saturated vapor pressure) of 200 kPa or higher, a processing temperature in the range of 120 to 190 ° C., and a processing time of 1 to 2. It is preferable to be within the time range.

〔3〕ろ過・洗浄工程
続く工程では、水熱処理後の複合物をろ過・洗浄する。ろ過および洗浄の操作は、当分野における通常の手段を適宜用いて行うことができ、特に制限されるものではない。
[3] Filtration / washing step In the subsequent step, the composite after hydrothermal treatment is filtered and washed. Filtration and washing operations can be carried out by appropriately using ordinary means in this field, and are not particularly limited.

〔4〕乾燥工程
続く工程では、ろ過・洗浄後の複合物を乾燥させる。乾燥の操作は、当分野における通常の手段を適宜用いて行うことができ、特に制限されるものではない。乾燥の条件も特に制限されないが、80〜120℃の範囲内の温度で、10〜15時間乾燥させる条件が好適である。
[4] Drying step In the subsequent step, the composite after filtration and washing is dried. The drying operation can be performed by appropriately using ordinary means in this field, and is not particularly limited. The drying conditions are not particularly limited, but conditions for drying at a temperature in the range of 80 to 120 ° C. for 10 to 15 hours are preferable.

〔5〕焼成工程
続く工程では、乾燥後の複合物を焼成する。焼成の操作も、当分野における通常の手段を適宜用いて行うことができ、特に制限されるものではない。焼成の条件も特に制限されないが、550〜650℃の範囲内の温度で、5時間空気雰囲気下で焼成させる条件が好適である。
[5] Firing step In the subsequent step, the dried composite is fired. The firing operation can also be carried out by appropriately using ordinary means in this field, and is not particularly limited. There are no particular restrictions on the firing conditions, but the preferred conditions are firing at a temperature in the range of 550 to 650 ° C. for 5 hours in an air atmosphere.

このような本発明の製造方法により、上述した本発明のSi−Fe系複合酸化物を好適に製造できる。本発明のSi−Fe系複合酸化物は、たとえばボールミルなど公知の手段を用いて粉砕し、適当な粒径範囲(好ましくは300〜500μm)のものを分級することで、VOCの触媒燃焼法に好適に用いられ得る金属酸化物触媒として供することができる。   By such a production method of the present invention, the above-described Si—Fe based composite oxide of the present invention can be suitably produced. The Si—Fe-based composite oxide of the present invention is pulverized using a known means such as a ball mill and classified into an appropriate particle size range (preferably 300 to 500 μm), so that it can be used in a VOC catalytic combustion method. It can serve as a metal oxide catalyst that can be suitably used.

以下、実験例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example of an experiment is given and the present invention is explained in detail, the present invention is not limited to these.

<実験例1>
最終生成物に含まれるFe23重量組成がそれぞれ0重量%(サンプル1)、10重量%(サンプル2)、30重量%(サンプル3)、50重量%(サンプル4)、70重量%(サンプル5)となるように、秤量したFe(NO33・9H2OとCa(OH)2とSiO2とをCa/Siのモル比が0.6となるように調整し、蒸留水を加え均一に攪拌し、スラリー(pH2.0)を生成させた。その後、オートクレーブにて飽和蒸気圧199kPa、120℃、12時間の条件下で水熱処理を行った後、ろ過および洗浄した。これを100℃、6時間の条件下で乾燥させた後、600℃、5時間空気雰囲気下で焼成を行った。このようにしてFe含有量を変動させたSi−Fe系複合酸化物のサンプル1〜5を作製した。
<Experimental example 1>
The final composition of Fe 2 O 3 contained in the final product is 0% by weight (sample 1), 10% by weight (sample 2), 30% by weight (sample 3), 50% by weight (sample 4), 70% by weight ( Weighed Fe (NO 3 ) 3 · 9H 2 O, Ca (OH) 2, and SiO 2 so as to be sample 5) were adjusted so that the molar ratio of Ca / Si was 0.6, and distilled water Was added and stirred uniformly to produce a slurry (pH 2.0). Thereafter, hydrothermal treatment was performed in an autoclave under the conditions of saturated vapor pressure of 199 kPa, 120 ° C., and 12 hours, followed by filtration and washing. This was dried at 100 ° C. for 6 hours, and then fired at 600 ° C. for 5 hours in an air atmosphere. In this way, samples 1 to 5 of the Si—Fe based composite oxide with varying Fe content were prepared.

このようにして得られたサンプル1〜5をそれぞれボールミルで粉砕し、粒径300〜500μmに分級した後、Si−Fe系複合酸化物を、直径4mmのU字管に充填し、上下をアルミナウールで固定した。その後、気化させたトルエン5000ppm、SV40000/時間の相当流量に調整しつつU字管に送り、各200〜700℃で酸化分解反応させ、その分解物をGC(島津製作所製)にかけ、トルエンの濃度(%)を測定し、トルエンの50%が分解されたときの温度(T50)を算出した。またサンプル1〜5について、TEM画像を用いた解析手法によりFeを含む一次粒子の粒子径およびアスペクト比、窒素ガス吸着法を用いてBET比表面積をそれぞれ測定した。結果を表1に示す。   The samples 1 to 5 thus obtained were each pulverized with a ball mill and classified to a particle size of 300 to 500 μm, and then a Si-Fe composite oxide was filled in a U-shaped tube having a diameter of 4 mm, and the upper and lower sides were alumina. Fixed with wool. Thereafter, the vaporized toluene is adjusted to an equivalent flow rate of 5000 ppm and SV40000 / hour, and sent to a U-shaped tube. (%) Was measured, and the temperature (T50) when 50% of toluene was decomposed was calculated. For Samples 1 to 5, the particle diameter and aspect ratio of primary particles containing Fe were measured by an analysis method using a TEM image, and the BET specific surface area was measured using a nitrogen gas adsorption method. The results are shown in Table 1.

ここで、図1は、実験例1で得られた各サンプルについての温度とトルエンの分解率との関係を示すグラフであり、縦軸は分解率(%)、横軸は温度(℃)である。また図2(a)はサンプル1、図2(b)はサンプル2、図2(c)はサンプル3、図2(d)はサンプル4、図2(e)はサンプル5についてのSEM画像写真である。Fe含有量30〜50重量%であるサンプル3、4は、Fe含有量が0%であるサンプル1と比較すると、BET比表面積が大きく増大し、トルエン分解温度が大きく低下する、すなわち、触媒活性が向上する結果となっていることが分かる。また、Fe含有量が0%であるサンプル1は、SEM画像では板状の結晶状態となる(図2(a))が、Feを含むサンプル2〜5では、粒子状の結晶状態となり比表面積も大きく増大することが分かる(図2(b)、(c)、(d)、(e))。   Here, FIG. 1 is a graph showing the relationship between the temperature and the decomposition rate of toluene for each sample obtained in Experimental Example 1, the vertical axis is the decomposition rate (%), and the horizontal axis is the temperature (° C.). is there. 2A is a sample 1, FIG. 2B is a sample 2, FIG. 2C is a sample 3, FIG. 2D is a sample 4, FIG. 2E is a SEM image of the sample 5. It is. Samples 3 and 4 having an Fe content of 30 to 50% by weight greatly increase the BET specific surface area and greatly reduce the toluene decomposition temperature compared to Sample 1 having an Fe content of 0%, that is, catalytic activity. It can be seen that the result is improved. Sample 1 having an Fe content of 0% is in a plate-like crystal state in the SEM image (FIG. 2A), but samples 2 to 5 containing Fe are in a particle-like crystal state and have a specific surface area. (Fig. 2 (b), (c), (d), (e)).

<実験例2>
最終生成物に含まれるFe23重量組成が30重量%であり、仕込み時におけるCa/Siのモル比がそれぞれ0.3(サンプル6)、0.6(サンプル7)、0.9(サンプル8)、1.3(サンプル9)、2.0(サンプル10)となるように出発物質を配合したこと以外は実験例1と同様にしてSi−Fe系複合酸化物のサンプル6〜10を作製した。実験例1と同様にして、トルエンの分解率(%)、T50、粒子径、アスペクト比、BET比表面積を測定した。結果を表2に示す。
<Experimental example 2>
The Fe 2 O 3 weight composition contained in the final product is 30% by weight, and the molar ratio of Ca / Si at the time of charging is 0.3 (sample 6), 0.6 (sample 7), 0.9 ( Samples 6 to 10 of Si—Fe-based composite oxides in the same manner as in Experimental Example 1 except that the starting materials were blended so as to be Samples 8), 1.3 (Sample 9), and 2.0 (Sample 10). Was made. In the same manner as in Experimental Example 1, the decomposition rate (%) of toluene, T50, particle diameter, aspect ratio, and BET specific surface area were measured. The results are shown in Table 2.

ここで、図3は、実験例2で得られた各サンプルについての温度とトルエンの分解率との関係を示すグラフであり、縦軸は分解率(%)、横軸は温度(℃)である。また図4(a)はサンプル6、図4(b)はサンプル7、図4(c)はサンプル8、図4(d)はサンプル9、図4(e)はサンプル10についてのSEM画像写真である。Ca/Siのモル比が0.3〜0.9の範囲であるサンプル6〜8では、細かい粒子状の結晶状態を発現していることが確認されるが、Ca/Si比を1.3以上としたサンプル9、10では、粒が大きくなり触媒活性の低下に繋がることが分かる。   Here, FIG. 3 is a graph showing the relationship between the temperature and the decomposition rate of toluene for each sample obtained in Experimental Example 2, the vertical axis is the decomposition rate (%), and the horizontal axis is the temperature (° C.). is there. 4A is a sample 6, FIG. 4B is a sample 7, FIG. 4C is a sample 8, FIG. 4D is a sample 9, and FIG. 4E is a SEM image of the sample 10. It is. In Samples 6 to 8 in which the molar ratio of Ca / Si is in the range of 0.3 to 0.9, it is confirmed that a fine particulate crystal state is expressed, but the Ca / Si ratio is 1.3. In Samples 9 and 10 as described above, it can be seen that the grains become large, leading to a decrease in catalytic activity.

今回開示された実施の形態および実験例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments and experimental examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (4)

SiとFeとを含む複合酸化物であって、Feを含む一次粒子の粒径が100nm以下、かつ、アスペクト比が2.0以下である、酸化触媒作用を有するSi−Fe系複合酸化物。   A composite oxide containing Si and Fe, wherein the primary particles containing Fe have a particle size of 100 nm or less and an aspect ratio of 2.0 or less and have an oxidation catalytic action. Feの含有組成が酸化鉄として30〜50重量%である、請求項1に記載の複合酸化物。   The composite oxide according to claim 1, wherein the Fe-containing composition is 30 to 50% by weight as iron oxide. BET比表面積が100m2/g以上である、請求項1または2に記載の複合酸化物。 The composite oxide according to claim 1, wherein the BET specific surface area is 100 m 2 / g or more. 水酸化カルシウムとシリカと硝酸鉄とを配合し、純水を加えて混濁させスラリーを生成するスラリー生成工程と、
生成したスラリーを水熱処理する水熱処理工程と、
水熱処理後の複合物をろ過・洗浄するろ過・洗浄工程と、
ろ過・洗浄後の複合物を乾燥させる乾燥工程と、
乾燥後の複合物を焼成する焼成工程とを含む、Si−Fe系複合酸化物の製造方法。
A slurry generation step of blending calcium hydroxide, silica and iron nitrate, adding pure water to turbidity to generate a slurry,
A hydrothermal treatment step of hydrothermally treating the produced slurry;
Filtration and washing process for filtering and washing the composite after hydrothermal treatment,
A drying process for drying the composite after filtration and washing;
The manufacturing method of Si-Fe type complex oxide including the baking process which bakes the composite after drying.
JP2009268952A 2009-11-26 2009-11-26 Si-Fe BASED COMPOSITE OXIDE AND METHOD FOR MANUFACTURING THE SAME Pending JP2011110494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268952A JP2011110494A (en) 2009-11-26 2009-11-26 Si-Fe BASED COMPOSITE OXIDE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268952A JP2011110494A (en) 2009-11-26 2009-11-26 Si-Fe BASED COMPOSITE OXIDE AND METHOD FOR MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
JP2011110494A true JP2011110494A (en) 2011-06-09

Family

ID=44233265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268952A Pending JP2011110494A (en) 2009-11-26 2009-11-26 Si-Fe BASED COMPOSITE OXIDE AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP2011110494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607201A (en) * 2014-12-18 2015-05-13 上海纳米技术及应用国家工程研究中心有限公司 Ordered mesoporous LaCoO3 and LaMnO3 supported nano Ag catalyst and preparation and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220334A (en) * 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp Compound oxide catalyst and method for manufacturing the same
JP2004196574A (en) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology Spinel-containing ferrite spherical porous silica particle and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220334A (en) * 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp Compound oxide catalyst and method for manufacturing the same
JP2004196574A (en) * 2002-12-18 2004-07-15 National Institute Of Advanced Industrial & Technology Spinel-containing ferrite spherical porous silica particle and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607201A (en) * 2014-12-18 2015-05-13 上海纳米技术及应用国家工程研究中心有限公司 Ordered mesoporous LaCoO3 and LaMnO3 supported nano Ag catalyst and preparation and application thereof

Similar Documents

Publication Publication Date Title
Jampaiah et al. Ceria–zirconia modified MnO x catalysts for gaseous elemental mercury oxidation and adsorption
Wang et al. Crystal phase-controlled synthesis of BiPO4 and the effect of phase structure on the photocatalytic degradation of gaseous benzene
WO2011065416A1 (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
Levasseur et al. Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions
US11911742B2 (en) Hydrocarbon adsorbent
JP5703924B2 (en) Columnar ceria catalyst
WO2019039513A1 (en) Methane oxidizing catalyst
Durgasri et al. Facile synthesis of catalytically active CeO 2–Gd 2 O 3 solid solutions for soot oxidation
JP5612050B2 (en) Method for producing metal particle supported catalyst
JPH06100319A (en) Multiple oxide with perovskite structure and its production
WO2015076065A1 (en) Exhaust gas purification catalyst and process for manufacturing same
JP2008043829A (en) Humidity-adjusting ceramic material containing photocatalyst coated with silicon oxide film
JP2011016090A (en) Exhaust gas cleaning catalyst and method of manufacturing the same
Park et al. Highly fast and selective removal of nitrate in groundwater by bimetallic catalysts supported by fly ash-derived zeolite Na-X
JP2011110494A (en) Si-Fe BASED COMPOSITE OXIDE AND METHOD FOR MANUFACTURING THE SAME
JP2015157236A (en) Catalyst material for purifying engine exhaust gas, and particulate filter
CN114797847B (en) Metal doped mesoporous carbon-based catalyst and preparation method and application thereof
CN111068677B (en) Composite oxide supported noble metal nanocluster catalyst and preparation and application thereof
JP2009090239A (en) NOx REDUCTION CATALYST, METHOD OF MANUFACTURING THE SAME, AND METHOD FOR USE THEREOF
JP4281061B2 (en) Active oxygen storage material and method for producing the same
EP1544169A1 (en) Inorganic compound containing active oxygen and process for producing the same
JP2009247955A (en) Method of manufacturing catalyst
CN114425365B (en) Preparation method of defect-rich Mn-Co metal oxide catalyst
JP2010221091A (en) Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter
JP2009078202A (en) Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304