JP2011110435A - Device and method for forming minute air bubble in liquid to make liquid to generate heat - Google Patents

Device and method for forming minute air bubble in liquid to make liquid to generate heat Download PDF

Info

Publication number
JP2011110435A
JP2011110435A JP2009265832A JP2009265832A JP2011110435A JP 2011110435 A JP2011110435 A JP 2011110435A JP 2009265832 A JP2009265832 A JP 2009265832A JP 2009265832 A JP2009265832 A JP 2009265832A JP 2011110435 A JP2011110435 A JP 2011110435A
Authority
JP
Japan
Prior art keywords
liquid
suction
microbubbles
changing
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265832A
Other languages
Japanese (ja)
Other versions
JP5448065B2 (en
Inventor
Tomotaka Marui
智敬 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009265832A priority Critical patent/JP5448065B2/en
Publication of JP2011110435A publication Critical patent/JP2011110435A/en
Application granted granted Critical
Publication of JP5448065B2 publication Critical patent/JP5448065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Accessories For Mixers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for forming minute air bubbles in a liquid to make the liquid to generate heat and a technique to which the feature for raising the temperature of the liquid is added as a value added. <P>SOLUTION: In the use state of the device, suction pressure is at least once set to a strong suction state. That is, low pressure of a numerical value exceeding 110% is set with respect to suction low pressure at the time of rated operation of a vortex flow pump. The thermodynamical energy possessed themselves by minute bubbles, which are repeatedly circulated by suction/discharge is made easy to release in adiabatic compression and atmospheric release. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、たとえば生体表面(皮膚)に刺激を与え、表面組織を活性化させるバイオ分野用途、晶析の際のシード(核)に用いるネガティブシーディング用途、一般の気液化学反応の気相反応原料に用いる化学反応用途など、多岐にわたる応用が期待されるマイクロバブルを発生する装置と発生する方法に関するものである。   The present invention is applied to, for example, a bio field in which a surface of a living body (skin) is stimulated to activate a surface tissue, a negative seeding used for a seed (nucleus) in crystallization, and a gas phase of a general gas-liquid chemical reaction. The present invention relates to a device and a method for generating microbubbles that are expected to be used in a wide variety of applications, such as chemical reaction applications used as reaction raw materials.

発明者のひとりは、いくつかのマイクロバブル技術を提案している。(特許文献2から特許文献4参照)
これらの技術のベースは、特許文献1に明記された、「渦流ポンプ」と特殊構造の「吐出ノズル」の組み合わせであって、かかる組み合わせが以下に説明する、より微細なるマイクロバブルの生成に効果的と考えられる。
One of the inventors has proposed several microbubble technologies. (See Patent Document 2 to Patent Document 4)
The basis of these technologies is a combination of a “vortex pump” and a “discharge nozzle” having a special structure specified in Patent Document 1, and this combination is effective for generating finer microbubbles, which will be described below. It is considered to be the target.

マイクロバブルは、「微小気泡(微小泡)」であって、バブルをなすガスが、大気、またたとえば窒素(N2)または酸素(O2)または二酸化炭素(CO2)でもよく、特に大気とN2ーO2ーCO2組成を異にすると、通常の気泡とは異なった性質があり、生体表面(皮膚)にあたえる影響もおおきいことがわかっている。   A microbubble is a “microbubble”, and the gas forming the bubble may be the atmosphere, for example, nitrogen (N2), oxygen (O2), or carbon dioxide (CO2), particularly the atmosphere and N2—O2. -It has been found that different CO2 compositions have different properties from normal bubbles and have a significant effect on the surface of the living body (skin).

この「マイクロバブル」には、低濃度タイプ:直径が30μm 付近に分布のピークがあり、気泡濃度としては数百個/mL 程度。見た目は水が少し曇った状態のもの。および、高濃度タイプ:10μm付近に気泡分布のピークがあり、気泡個数は数千個/mL 以上。見た目は牛乳のような状態のものがある。   This “microbubble” is a low concentration type: there is a distribution peak around 30 μm in diameter, and the bubble concentration is about several hundreds / mL. It looks like a little cloudy water. And high-concentration type: There is a bubble distribution peak near 10μm, and the number of bubbles is more than several thousand / mL. It looks like milk.

この「マイクロバブル」が生体表面(皮膚)に刺激を与え、表面組織を活性化させることで、人体に適用すれば健康増進効果がえられる。この効果は温泉とほとんど同様で、実際、温泉もマイクロバブルが含まれているものが多いと考えられる。   This “microbubble” stimulates the surface of the living body (skin) and activates the surface tissue, so that when applied to the human body, a health promoting effect can be obtained. This effect is almost the same as that of hot springs. In fact, many hot springs are thought to contain microbubbles.

ここで、この「マイクロバブル」2種:低濃度タイプ(30μm)、高濃度タイプ(10μm)による経験的差異は、概して、高濃度タイプ(10μm)の与える種々の効果の方が、低濃度タイプ(30μm)のそれよりもはるかに大きいということである。   Here, the empirical difference between the two types of “microbubbles”: the low concentration type (30 μm) and the high concentration type (10 μm) is generally different from the various effects given by the high concentration type (10 μm). It is much larger than that of (30 μm).

ゆえに本発明の実施の際も同様に、高濃度タイプ(10μm)にて実施するのがよりよい効果を与える。   Therefore, when the present invention is carried out, the high concentration type (10 μm) is similarly effective.

高濃度タイプ(10μm)マイクロバブルを生成する技術は、たとえば、特許文献1に記載されている。   A technique for generating high-concentration type (10 μm) microbubbles is described in Patent Document 1, for example.

それに対し、低濃度タイプ(30μm)あるいは、さらにバブル径が大きな低級(ミリスケール)タイプによる細胞培養技術が特許文献5および特許文献6に記載されている。   On the other hand, Patent Literature 5 and Patent Literature 6 describe cell culture techniques of a low concentration type (30 μm) or a lower (millimeter scale) type having a larger bubble diameter.

ひるがえって、特許文献1では、大気圧で気体吸引をなす、渦流ポンプが用いられている。   On the other hand, in Patent Document 1, a vortex pump that performs gas suction at atmospheric pressure is used.

これら公知技術が、本発明のバックグラウンドである。
特許第3620797号公報「微細気泡発生装置」アイピーエムエス 特願2009−234683号「細胞変化を促進する微小気泡含有組成物、およびその微小気泡含有組成物を製造する装置、ならびに微小気泡含有組成物を用いた細胞変化促進方法」丸井智敬 特願2009−243940号「微小気泡含有組成物、および、微小気泡発生器」丸井智敬 特願2009−249900号「液体中に微小気泡を発生させる装置」丸井智敬 特許第2762372号公報「微細気泡発生装置」小松製作所 特公平5-60353号公報「液中通気による培養方法及び培養装置」日立製作所
These known techniques are the background of the present invention.
Japanese Patent No. 3620797, “Microbubble generator”, IPMS Japanese Patent Application No. 2009-234683 “A composition containing microbubbles for promoting cell change, an apparatus for producing the composition containing microbubbles, and a method for promoting cell change using the composition containing microbubbles” Tomotaka Marui Japanese Patent Application No. 2009-243940 “Composition of microbubbles and microbubble generator” Tomotaka Marui Japanese Patent Application No. 2009-249900 "Device for generating microbubbles in liquid" Tomotaka Marui Japanese Patent No. 2762372 “Microbubble Generator” Komatsu Ltd. Japanese Patent Publication No. 5-60353 “Culture method and apparatus by aeration in liquid” Hitachi, Ltd.

本発明の課題は、一部同発明者による特許文献2から特許文献4に開示された技術に、さらに、液体温度を上げるという機能を付加することにある。   An object of the present invention is to add a function of raising the liquid temperature to the techniques disclosed in Patent Documents 2 to 4 by the same inventor.

本発明装置のベースは、特許文献1の構成にある。すなわち、気体吸引手段と液体吸引手段と液体吐出手段が接続された渦流ポンプを具備し、前記気体吸引手段で気体を吸引しつつ、前記液体吸引手段で液体槽の液体を吸引して該液体槽の液体中に微小気泡を発生させる装置である。   The base of the device of the present invention is in the configuration of Patent Document 1. That is, a vortex pump in which a gas suction unit, a liquid suction unit, and a liquid discharge unit are connected is provided, and a liquid in the liquid tank is sucked by the liquid suction unit while the gas is sucked by the gas suction unit. Is a device for generating microbubbles in the liquid.

前記渦流ポンプはモータで内蔵インペラを回転するものである。こういった特許文献1の構成によって生成される微小気泡は、少なくともその粒径が30μm以下のマイクロバブルを含む。   The eddy current pump rotates a built-in impeller with a motor. The microbubbles generated by such a configuration of Patent Document 1 include at least microbubbles having a particle size of 30 μm or less.

本発明者らは、この構成による微小気泡生成を研究した結果、気泡を生成した液体にて物理化学的熱生成反応が生じ、液体温度が上昇する現象を発見した。この物理化学熱反応は、ポンプとノズルを流動する気泡の断熱圧縮によるものと推定される。   As a result of studying the generation of microbubbles by this configuration, the present inventors have found a phenomenon in which a physicochemical heat generation reaction occurs in the liquid in which bubbles are generated, and the liquid temperature rises. This physicochemical thermal reaction is presumed to be due to adiabatic compression of bubbles flowing through the pump and nozzle.

すなわち、渦流ポンプにては乱流によって生まれた低圧にて液体吸引され、この低圧ゾーンに気体も吸引され混合されるが、その後、かかる気体は吐出ノズルにおいて、およそ5気圧の高圧となり、気泡ガスは断熱圧縮状態となる。   That is, in the vortex pump, liquid is sucked at a low pressure generated by turbulent flow, and gas is also sucked and mixed in this low pressure zone. Becomes an adiabatic compression state.

ここで蓄積されたエネルギーが、液体槽にて解放されて熱エネルギーとなる。ゆえに液体温度は上昇する。   The energy stored here is released in the liquid tank and becomes thermal energy. Therefore, the liquid temperature rises.

図6の「◇」に示すデータが、通常のマイクロバブル生成プロセスでの液体温度の測定値であって、気温と液体槽の熱伝達熱伝導条件で異なるものの、1時間程度の生成プロセスにて初期液体温度は3−5度の上昇を示す。   The data shown in “◇” in FIG. 6 is a measurement value of the liquid temperature in the normal microbubble generation process, which differs depending on the air temperature and the heat transfer heat conduction condition of the liquid tank. The initial liquid temperature shows an increase of 3-5 degrees.

一方、図6の「◆」に示すデータが、本発明の液体中に微小気泡を生成して液体を発熱させる方法によるものである。   On the other hand, the data shown by “♦” in FIG. 6 is based on the method of generating microbubbles in the liquid of the present invention to generate heat.

かかる方法には(請求項1請求項2の一部)、液体吸引手段の吸引端に吸引負荷を変化させる手段が配備され、該吸引負荷を変化させる手段に対して、少なくとも1回の強い吸引状態となる指令を所望の時間だけ継続して出し、それ以外は強くない吸引状態となる指令を出す吸引負荷の制御手段が必要である。   In this method (part of claim 1 and claim 2), means for changing the suction load is provided at the suction end of the liquid suction means, and at least one strong suction is performed for the means for changing the suction load. There is a need for a suction load control means for continuously issuing a command to enter a state for a desired time, and issuing a command to enter a suction state that is not strong otherwise.

あるいは、かかる方法には(請求項3の一部)、渦流ポンプはモータの回転数を変化させる手段、および、かかるモータの回転数の制御指令を出す手段が配備されているのが必要で、装置の使用状態において、前記のモータの回転数の制御指令を出す手段が、少なくとも1回の強い吸引状態となるような回転数指令を所望の時間だけ継続して出し、それ以外は強くない吸引状態となるような回転数指令を出すことが必要である。   Alternatively, such a method (part of claim 3) requires that the eddy current pump is provided with means for changing the rotational speed of the motor, and means for issuing a control command for the rotational speed of the motor, In the operating state of the apparatus, the means for issuing a control command for the rotational speed of the motor continuously outputs the rotational speed command for at least one strong suction state for a desired time, and the suction is not strong otherwise. It is necessary to issue a rotational speed command so as to be in a state.

すなわち(請求項11)、液体中に微小気泡を生成して液体を発熱させる装置を用いて、液体中に微小気泡を生成して液体を発熱させる方法であって、装置が液体を吸引する状態が、吸引負荷を変化させる手段、あるいは、渦流ポンプモータの回転数の制御指令を出す手段によって、少なくとも1回の強い吸引状態とする工程を有することで液体中に微小気泡を生成して液体を発熱させる。   That is, (Claim 11) is a method of generating microbubbles in a liquid and generating heat by using a device that generates microbubbles in the liquid, and in which the apparatus sucks the liquid However, by having a step of making the suction state at least once by means for changing the suction load or means for issuing a control command for the rotational speed of the vortex pump motor, microbubbles are generated in the liquid and the liquid is supplied. Causes fever.

ここで強い吸引状態とは、渦流ポンプの定格運転時における吸引低圧に対して110%を超える数値の低圧で吸引する状態である。   Here, the strong suction state is a state in which suction is performed at a low pressure exceeding 110% with respect to the suction low pressure at the rated operation of the vortex pump.

図6の実施例では、実験開始より15から30分にかけて、強い吸引状態とした。その結果、液体(水)温度は、50℃まで上昇した。   In the Example of FIG. 6, it was set as the strong suction state from 15 to 30 minutes from the start of experiment. As a result, the liquid (water) temperature rose to 50 ° C.

このように吸引負荷の制御やポンプモータの回転数制御が、どうして断熱圧縮発熱を顕在化させる引き金(トリガ)になるのか、は現時点で不明で研究中である。しかし、この発熱現象は再現可能なので実用的には問題はない。本発明の装置構成を、一部は繰り返しになるが以下に記載する。   The reason why the control of the suction load and the control of the rotation speed of the pump motor in this way is the trigger (trigger) that makes the adiabatic compression heat manifest becomes unknown at present and is under investigation. However, since this exothermic phenomenon can be reproduced, there is no practical problem. The apparatus configuration of the present invention will be described below although partly repeating.

すなわち(請求項1)、気体吸引手段と液体吸引手段と液体吐出手段が接続された渦流ポンプを具備し、前記気体吸引手段で気体を吸引しつつ、前記液体吸引手段で液体槽の液体を吸引して該液体槽の液体中に微小気泡を発生させる装置であって、 前記渦流ポンプはモータで内蔵インペラを回転するもので、
該微小気泡は、少なくともその粒径が30μm以下のマイクロバブルを含み、前記の液体吸引手段の吸引端に吸引負荷を変化させる手段が配備されてことを特徴とする 液体中に微小気泡を生成して液体を発熱させる装置である。この構成を図2に示す。
That is, (Claim 1) is provided with a vortex pump in which a gas suction means, a liquid suction means, and a liquid discharge means are connected, and the liquid suction means sucks the liquid in the liquid tank while the gas suction means sucks the gas. And a device for generating microbubbles in the liquid in the liquid tank, wherein the vortex pump rotates a built-in impeller with a motor,
The microbubbles include at least microbubbles having a particle size of 30 μm or less, and a means for changing the suction load is provided at the suction end of the liquid suction means. The microbubbles are generated in the liquid. It is a device that heats the liquid. This configuration is shown in FIG.

従来の装置(図1参照)から、図2の本発明構成の相違は、17(14に配設された吸引負荷の変化手段、14は液体吸引手段(の先端部分))である。   2 differs from the conventional apparatus (see FIG. 1) in the configuration of the present invention in FIG. 2 in 17 (the suction load changing means disposed in 14 and 14 is the liquid suction means (the front end portion thereof)).

小さな工夫であるが、従来の図1の構成における初期通水時の問題(図1の簡単な説明参照)を解決するために、W(ポンプと吸引吐出流路を初期に液体で満たすため液体を14または15に供給する手段)に加えて、X(初期通水のため16内部に液体を導入する手段)、および、Y(逆止弁、16から外部に液体を流出させないための弁)をポンプの上部に配設している。この構成で、従来面倒だった初期通水作業が簡単化される。   Although it is a small device, in order to solve the problem at the time of initial water flow in the conventional configuration of FIG. 1 (refer to the brief description of FIG. 1), W (liquid for filling the pump and the suction / discharge flow path with liquid initially) , X (means for introducing liquid into 16 for initial water flow), and Y (check valve, valve for preventing liquid from flowing out from 16) At the top of the pump. With this configuration, the initial water flow work that has been troublesome in the past is simplified.

さて、繰り返しになるが(請求項2)、装置の使用状態において、吸引負荷を変化させる手段に対して、少なくとも1回の強い吸引状態となる指令を所望の時間だけ継続して出し、それ以外は強くない吸引状態となる指令を出す吸引負荷の制御手段を兼備していることが必要である。   Now, again (Claim 2), in the state of use of the apparatus, a command to at least one strong suction state is continuously issued for a desired time to the means for changing the suction load, and otherwise It is also necessary to have a suction load control means for issuing a command to enter a non-strong suction state.

また、繰り返しになるが(請求項3)、気体吸引手段と液体吸引手段と液体吐出手段が接続された渦流ポンプを具備し、前記気体吸引手段で気体を吸引しつつ、前記液体吸引手段で液体槽の液体を吸引して、該液体槽の液体中に微小気泡を発生させる装置であって、前記渦流ポンプはモータで内蔵インペラを回転するもので、該微小気泡は、少なくともその粒径が30μm以下のマイクロバブルを含み、前記の渦流ポンプはモータの回転数を変化させる手段、および、かかるモータの回転数の制御指令を出す手段が配備されており、装置の使用状態において、前記のモータの回転数の制御指令を出す手段が、少なくとも1回の強い吸引状態となるような回転数指令を所望の時間だけ継続して出し、それ以外は強くない吸引状態となるような回転数指令を出すことを特徴とする液体中に微小気泡を生成して液体を発熱させる装置である。   Moreover, although it repeats (Claim 3), it comprises the eddy current pump to which the gas suction means, the liquid suction means, and the liquid discharge means are connected, and the liquid suction means sucks the gas while the liquid suction means sucks the liquid. A device for sucking liquid in a tank and generating microbubbles in the liquid in the liquid tank, wherein the vortex pump rotates a built-in impeller with a motor, and the microbubbles have a particle size of at least 30 μm. The vortex pump includes the following microbubbles, and the vortex pump is provided with means for changing the rotational speed of the motor, and means for issuing a control command for the rotational speed of the motor. The means for issuing the control command for the rotational speed continuously outputs the rotational speed command for at least one strong suction state for a desired time, and the rotation speed is such that the suction state is not strong otherwise. And it generates microbubbles in the liquid, characterized in that issue several commands a device for heating the liquid.

また、繰り返しになるが(請求項4)、強い吸引状態が、渦流ポンプの定格運転時における吸引低圧に対して110%を超える絶対値数値の低圧であるのが望ましい。   Moreover, although it repeats (Claim 4), it is desirable that the strong suction state is a low pressure with an absolute value exceeding 110% with respect to the suction low pressure during the rated operation of the vortex pump.

さて、次に「吸引負荷を変化させる手段」のバリエーションを示す。   Next, variations of “means for changing the suction load” will be described.

すなわち(請求項5)、吸引負荷を変化させる手段が、吸引手段を通過する液体流路において、流路断面積を変化させて吸引負荷を変化させるものである、あるいは、吸引負荷を変化させる手段が、吸引手段の端部の開口部面積を変化させるべく吸引手段の端部の開口部を一部閉塞する部材を着脱、ないしは、吸引手段の端部の開口部を一部閉塞する部材をスライド移動させて吸引負荷を変化させるものである、あるいは、液体吸引手段が、ふたつ以上の流路をもつもので、吸引負荷を変化させる手段が、ひとつ以上の流路を閉塞して吸引負荷を変化させるものである。   That is, the means for changing the suction load is a means for changing the suction load by changing the cross-sectional area of the liquid flow path passing through the suction means, or means for changing the suction load. However, in order to change the opening area of the end of the suction means, a member that partially closes the opening of the end of the suction means is attached or detached, or a member that partially closes the opening of the end of the suction means is slid. The suction load is changed by moving or the liquid suction means has two or more flow paths, and the means for changing the suction load changes the suction load by closing one or more flow paths. It is something to be made.

ここで(請求項6)、「吸引手段の流路断面積を変化させて吸引負荷を変化させる手段」、「吸引手段の端部の開口部を一部閉塞する部材を着脱して吸引手段の端部の開口部面積を変化させて吸引負荷を変化させる手段」、「吸引手段の端部の開口部を一部閉塞する部材をスライド移動させて吸引手段の端部の開口部面積を変化させて吸引負荷を変化させる手段」については、吸引手段の流路断面積を変化させて吸引負荷を変化させる手段が、可撓性の部材でなる管状流路の外部に機械的な力を加えて流路断面積を変化させるものである、あるいは、吸引手段の端部の開口部を一部閉塞する部材を着脱して吸引手段の端部の開口部面積を変化させて吸引負荷を変化させる手段が、メッシュサイズの異なるフィルタを着脱することで開口部面積を変化させるものである、あるいは、吸引手段の端部の開口部を一部閉塞する部材をスライド移動させて吸引手段の端部の開口部面積を変化させて吸引負荷を変化させる手段が、メッシュサイズの異なるフィルタをスライド移動させて開口部面積を変化させるものであるのが好適である。   (Claim 6), "Means for changing the suction load by changing the flow passage cross-sectional area of the suction means", "A member that partially closes the opening at the end of the suction means is attached and detached. "Means for changing the suction area by changing the opening area of the end", "Sliding a member that partially closes the opening of the end of the suction means to change the opening area of the end of the suction means With respect to the means for changing the suction load, the means for changing the suction load by changing the cross-sectional area of the suction means applies mechanical force to the outside of the tubular flow path made of a flexible member. Means for changing the cross-sectional area of the flow path, or means for changing the suction load by changing the opening area of the end of the suction means by attaching and detaching a member that partially closes the opening of the end of the suction means However, the opening area can be reduced by attaching and removing filters with different mesh sizes. The means for changing the suction load by changing the opening area of the end of the suction means by sliding a member that partially closes the opening of the end of the suction means is a mesh size. It is preferable that the opening area is changed by sliding the different filters.

さて次に、本発明装置に制御とそれに要するセンサーを付加した構成を示す(図3、図4参照)まず圧力をモニターしつつ、かかるモニター圧力に応じて前記のアクチュエータ、すなわち、吸引負荷の変化手段、および、ポンプモータの回転数変化手段に制御信号を送ってなるフィードバック制御系が有効であろう。液体圧力が、マイクロバブリング現象と発熱現象の制御キーであることは明らかだからである。   Next, a configuration in which a control and a sensor necessary for the control are added to the apparatus of the present invention will be shown (see FIGS. 3 and 4). First, while monitoring the pressure, the actuator, that is, the change in the suction load according to the monitoring pressure A feedback control system in which a control signal is sent to the means and the rotation speed changing means of the pump motor would be effective. This is because it is clear that the liquid pressure is a control key for the micro bubbling phenomenon and the heat generation phenomenon.

すなわち(請求項7)、液体中に微小気泡を生成して液体を発熱させる装置にて、液体吸引手段の内部液体、または、液体吸引手段の吸引端近傍の液体槽液体、または、渦流ポンプ内部の液体の圧力を検知するセンサーがさらに配備され、かつまた、かかる圧力を検知するセンサーの検知圧力にもとづいて、吸引負荷の制御手段が、あるいは、かかる圧力を検知するセンサーの検知圧力にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置である。   That is, (Claim 7) In an apparatus that generates microbubbles in a liquid to generate heat, the liquid inside the liquid suction means, the liquid tank liquid near the suction end of the liquid suction means, or the inside of the vortex pump A sensor for detecting the pressure of the liquid is further provided, and the control means of the suction load is based on the detection pressure of the sensor for detecting the pressure or the detection pressure of the sensor for detecting the pressure. The device for controlling the number of revolutions of the motor of the eddy current pump selectively issues a command to switch between a strong suction state and a non-strong suction state to generate microbubbles in the liquid and heat the liquid.

また同様に、特許文献2から特許文献4に記載がある光学センサーも、マイクロバブリング現象のモニタリングに有効である。   Similarly, the optical sensors described in Patent Document 2 to Patent Document 4 are also effective for monitoring the micro bubbling phenomenon.

すなわち(請求項8)、液体中に微小気泡を生成して液体を発熱させる装置にて、液体吸引手段の吸引端近傍の液体槽液体の光学的特性を検知するセンサーがさらに配備され、かつまた、かかる光学的特性を検知するセンサーの検知した光学的物理量にもとづいて、吸引負荷の制御手段が、あるいは、かかる光学的特性を検知するセンサーの検知した光学的物理量にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置である。   That is, in the apparatus for generating microbubbles in the liquid to generate heat, a sensor for detecting the optical characteristic of the liquid tank liquid in the vicinity of the suction end of the liquid suction means is further provided, and Based on the optical physical quantity detected by the sensor for detecting such optical characteristics, the suction load control means or the motor of the eddy current pump based on the optical physical quantity detected by the sensor for detecting such optical characteristics. The rotation speed control means generates a microbubble in the liquid and generates heat by selectively issuing a command to switch between a strong suction state and a weak suction state.

また、マイクロバブリングを実験してみると、渦流ポンプと吐出ノズルから、マイクロバブルの生成ありなしで、十分に弁別される発生音の相違が耳で聞いていてわかる。イニシャルでマイクロバブル発生の過程での吐出ノズルからは、発生前と発生後では、発生後のほうが「シュー・・・」という高周波音が多い音が聞こえる。渦流ポンプでも、発生前と発生後では、発生後のほうが高周波の音響成分が多い。   Also, when experimenting with micro bubbling, we can hear and hear the difference in the generated sound that is sufficiently discriminated from the vortex pump and the discharge nozzle without the generation of microbubbles. From the discharge nozzle in the process of generating microbubbles at the initial stage, before and after the occurrence, a sound with more high-frequency sound “shoe” is heard after the occurrence. Even in the vortex pump, there are more high frequency acoustic components before and after the generation.

また、本発明の骨子である「吸引負荷を変化させる手段」または「渦流ポンプのモータの回転数制御手段」をアクチュエートして、発熱現象を誘起した場合に、やはり音の変化が耳で聞いてわかる。こちらは、高負荷時に音の低周波成分が増えるようである。   In addition, when the heat generation phenomenon is induced by actuating the “means for changing the suction load” or the “rotational speed control means for the eddy current pump motor” which is the gist of the present invention, the change in sound is also heard by ear. I understand. This seems to increase the low frequency component of the sound at high load.

これらの定性的知見を図5に示す(図5の簡単な説明参照)。こういったデータより、バブリングしている液体の状態、ポンプや吐出部近傍の圧力状態に相関がとれるので、音響センサーを配備して、ぞの検知音響にもとづいて、前記のアクチュエータである、吸引負荷の変化手段、および、ポンプモータの回転数変化手段に制御信号を送ってなるフィードバック制御系が有効であろう。   These qualitative findings are shown in FIG. 5 (see the brief description of FIG. 5). From these data, since the state of the bubbling liquid and the pressure state near the pump and the discharge unit can be correlated, an acoustic sensor is provided, and the above-described actuator is used as the suction device. A feedback control system that sends control signals to the load changing means and the rotation speed changing means of the pump motor would be effective.

すなわち(請求項9)、液体中に微小気泡を生成して液体を発熱させる装置にて、 液体吸引手段の吸引端で発せられる音響、または、渦流ポンプ内部から発せられる音響を検知するセンサーがさらに配備され、かつまた、 かかる音響を検知するセンサーの検知した音響の物理量にもとづいて、吸引負荷の制御手段が、あるいは、かかる音響を検知するセンサーの検知した音響の物理量にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置である。   That is, the sensor for detecting the sound emitted from the suction end of the liquid suction means or the sound emitted from the inside of the vortex pump is further provided in the device that generates microbubbles in the liquid and generates heat. Based on the physical quantity of the sound that is deployed and also detected by the sensor that detects the sound, the control means of the suction load, or based on the physical quantity of the sound detected by the sensor that detects the sound, A device for generating heat by generating microbubbles in the liquid, wherein the rotation speed control means of the motor selectively issues a command to switch between a strong suction state and a weak suction state.

また、当然のことだが、液体温度が制御対象であるので、温度センサーを配備して、同様のフィードバック制御系をなしてもよい。   As a matter of course, since the liquid temperature is a control target, a temperature sensor may be provided to form a similar feedback control system.

すなわち(請求項10)、液体中に微小気泡を生成して液体を発熱させる装置にて、液体槽の液体温度を検知するセンサーがさらに配備され、かつまた、かかる温度を検知するセンサーの検知した液体温度にもとづいて、吸引負荷の制御手段が、あるいは、かかる温度を検知するセンサーの検知した液体温度にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置   In other words, in the device that generates microbubbles in the liquid to generate heat, a sensor for detecting the liquid temperature in the liquid tank is further provided, and the sensor for detecting such temperature is also detected. Based on the liquid temperature, the suction load control means, or based on the liquid temperature detected by the sensor for detecting such temperature, the rotational speed control means of the eddy current pump motor has a strong suction state and a weak suction state. A device that generates microbubbles in a liquid and heats the liquid

本発明によって、液体中に微小気泡を生成して、かつまた、その液体を発熱させる装置が提供される。この技術は、付加価値として、液体の温度をたかめるという特徴を付加することである。北海道や韓国・ロシアの朝は寒い。本発明を応用した、たとえば手洗い洗顔器は、こういった過酷な極寒環境に住む人たちに、あたたかい朝を迎えさせる手助けになるだろう。   The present invention provides an apparatus that generates microbubbles in a liquid and also generates heat in the liquid. This technique is to add the feature of increasing the temperature of the liquid as an added value. It's cold in the mornings of Hokkaido, Korea and Russia. For example, a hand-washing face-washing device to which the present invention is applied will help people who live in such harsh extreme cold environments to have a warm morning.

また、現在のところ定性的な推定に過ぎないが、本発明の発熱は、マイクロバブル存在下での化学反応促進に重要である。というのは、温度が40−50℃程度であって、化学反応一般には低温と見なされるものの、ミクロンサイズ反応場としての体積換算エネルギー密度はかなり高い、と考えられる。すなわち、液相と気相とを反応原料とした化学反応で、マイクロバブルである気相自体が圧力変化によって発熱する系であるので、かつまた、その発熱エネルギー密度はかなり高く、他の反応場との比較の上で、反応効率かなり高くなると予想される。本発明にてミクロンスケールないしはナノスケール高エネルギー反応場が提供され、種々の化学反応に用いて、反応歩留まり向上が期待される。
Moreover, although it is only a qualitative estimation at present, the heat generation of the present invention is important for promoting a chemical reaction in the presence of microbubbles. This is because the temperature is about 40-50 ° C. and the chemical reaction is generally regarded as a low temperature, but the volume-converted energy density as a micron size reaction field is considered to be quite high. That is, a chemical reaction using a liquid phase and a gas phase as reaction raw materials, and the gas phase itself, which is a microbubble, is a system that generates heat due to a pressure change, and its exothermic energy density is quite high. It is expected that the reaction efficiency will be considerably higher. The present invention provides a micron-scale or nano-scale high energy reaction field, and is expected to improve reaction yield when used in various chemical reactions.

従来の本発明類似のコモディティ製品の問題点の説明図。初期通水にて14または15をポンプと流路の最上点以上の高さに掲げて通水していて面倒だった。[(a)が使用状態、(b)が初期通水時]。このほか、そもそも微小泡含有液体を発熱させ適度な温度にして利用するという知見は従来なかった。よって、吸引部に負荷制御する手段もなかった。Explanatory drawing of the problem of conventional commodity products similar to the present invention. The initial water flow was troublesome because 14 or 15 was raised to a height higher than the highest point of the pump and flow path. [(A) is in use, (b) is during initial water flow]. In addition, there has been no knowledge in the past that the microbubble-containing liquid is heated and used at an appropriate temperature. Therefore, there was no means for controlling the load on the suction part. 本案発明の基本的ハード構成の説明図。(a)と(b)は断面が直交する2つの側断面図。特徴は17である。これは14に配設された吸引負荷の調整手段である。また、液体圧力を検知するセンサーも従来にないものである。Explanatory drawing of the basic hardware constitution of this invention. (A) And (b) is two sectional side views in which a cross section orthogonally crosses. The feature is 17. This is a suction load adjusting means disposed at 14. In addition, there is no sensor for detecting the liquid pressure. 本案発明の発熱のための制御についての説明図。吸引手段または渦流ポンプ内の圧力が発熱のきっかけを与えている。よって、かかる圧力を検知して制御に役立てる。また、発熱の結果は微小泡含有液体の温度として反映されるので、温度センサーでかかる液体温度を検知して制御に役立ててもよい。さらに従来技術である微小泡含有液体の微小泡自体の状況を光センサーで家検知して制御に役立ててもよい。Explanatory drawing about the control for the heat_generation | fever of this invention. The pressure in the suction means or vortex pump gives a trigger for heat generation. Therefore, such pressure is detected and used for control. Moreover, since the result of heat generation is reflected as the temperature of the liquid containing fine bubbles, the temperature of the liquid may be detected by a temperature sensor and used for control. Furthermore, the state of the microbubbles of the microbubble-containing liquid, which is a conventional technology, may be used for control by detecting the house with an optical sensor. 音響センサーAuSを追加した態様を示す図。The figure which shows the aspect which added the acoustic sensor AuS. 音響センサーAuSによるバブリング状態の弁別の模式図(a)微小泡がでている状態とでていない状態の弁別 (b)渦流ポンプの定格運転時にて微小泡がでている状態と渦流ポンプの定格運転時における吸引低圧に対して110%を超える数値の低圧である「強い吸引状態」との弁別。(a)と(b)ともに周波数領域の差とそれらにまたがる特定周波数のインテンシティ(強度)の比で弁別できる。Schematic diagram of discrimination in bubbling state by acoustic sensor AuS (a) Discrimination with and without microbubbles (b) Rating of vortex pump and eddy current pump rating Discrimination from “strong suction state”, which is a low pressure exceeding 110% of the suction low pressure during operation. Both (a) and (b) can be discriminated by the ratio of the frequency domain difference and the intensity (intensity) of a specific frequency across them. 本発明による典型的な液体温度上昇のパターン(実施例)液体は水、量は4リッター(ポンプ・配管内の推量を含む)、ポンプモータ電力容量450Wにて、気温20℃で実施。実験開始後15−30分で発明装置において「強い吸引状態」とした(◆)一方、比較例(◇)では、かかる状態なし。60分程度で発明装置の液体にて50℃まで温度上昇した一方、比較例では、25℃程度にとどまっていた。Typical liquid temperature increase pattern according to the present invention (Example) The liquid is water, the amount is 4 liters (including the estimated amount in the pump and piping), the pump motor power capacity is 450 W, and the temperature is 20 ° C. 15-30 minutes after the start of the experiment, the device was in a “strong suction state” (♦), whereas in the comparative example (◇), there was no such state. In about 60 minutes, the temperature rose to 50 ° C. with the liquid of the inventive device, while in the comparative example, it remained at about 25 ° C.

4 気体吸引手段
11 渦流ポンプの内蔵インペラ
12 渦流ポンプの内蔵インペラを回転する交流モータ
14 液体吸引手段(の先端部分)
15 液体吐出手段(の先端部分)
16 渦流ポンプ
17 14に配設された吸引負荷の変化手段
18 液体槽、コモディティ製品ではバスタブや犬猫洗浄槽。
19 本発明の18。たとえば温水手洗い・温水洗顔ユニットの液体槽。
30 渦流ポンプの内蔵インペラを回転する交流モータの制御手段
31 渦流ポンプの内蔵インペラを回転する交流モータの起動停止を制御する制御手段
32 渦流ポンプの内蔵インペラを回転する交流モータの回転数を制御する制御手段◆
AuS 音響センサー
OpS 液体槽の液体の光学的な特性を検知するセンサーであって、たとえば濁度を透過光または散乱光測定方式で測定する濁度センサーなど。
PS 液体の圧力を検知するセンサー
TS 液体の温度を検知するセンサー
W ポンプと吸引吐出流路を初期に液体で満たすため液体を14または15に供給する手段
X 初期通水のため16内部に液体を導入する手段
Y 逆止弁 16から外部に液体を流出させないための弁
4 Gas suction means 11 Built-in impeller 12 of eddy current pump AC motor 14 that rotates built-in impeller of vortex pump Liquid suction means (front end portion)
15 Liquid discharge means (front end)
16 Swivel load changing means 18 arranged in the vortex pump 17 14 Liquid tank, in the case of commodity products, a bathtub or a dog and cat washing tank.
19 18 of the present invention. For example, a hot water hand wash / warm face washing unit liquid tank.
30 Control means for an AC motor that rotates the impeller built in the eddy current pump 31 Control means for controlling start / stop of the AC motor that rotates the impeller built in the vortex pump 32 Controls the rotational speed of the AC motor that rotates the impeller built in the vortex pump Control means
AuS acoustic sensor OpS A sensor that detects the optical characteristics of the liquid in the liquid tank, for example, a turbidity sensor that measures turbidity by transmitted light or scattered light measurement method.
PS Sensor for detecting the pressure of the liquid TS Sensor for detecting the temperature of the liquid W Means for supplying the liquid to 14 or 15 in order to initially fill the pump and the suction / discharge channel with the liquid
X Means for introducing liquid into 16 for initial water flow Y Check valve Valve for preventing liquid from flowing out from 16

Claims (11)

気体吸引手段と液体吸引手段と液体吐出手段が接続された渦流ポンプを具備し、前記気体吸引手段で気体を吸引しつつ、前記液体吸引手段で液体槽の液体を吸引して該液体槽の液体中に微小気泡を発生させる装置であって、前記渦流ポンプはモータで内蔵インペラを回転するもので、該微小気泡は、少なくともその粒径が30μm以下のマイクロバブルを含み、
前記の液体吸引手段の吸引端に吸引負荷を変化させる手段が配備されてことを特徴とする液体中に微小気泡を生成して液体を発熱させる装置。
A vortex pump connected to the gas suction means, the liquid suction means, and the liquid discharge means, and sucking the gas in the liquid tank by the liquid suction means while sucking the gas by the gas suction means; A device for generating microbubbles therein, wherein the vortex pump rotates a built-in impeller with a motor, and the microbubbles include at least microbubbles having a particle size of 30 μm or less,
An apparatus for generating microbubbles in the liquid to generate heat by providing means for changing the suction load at the suction end of the liquid suction means.
請求項1の、装置の使用状態において、吸引負荷を変化させる手段に対して、少なくとも1回の強い吸引状態となる指令を所望の時間だけ継続して出し、それ以外は強くない吸引状態となる指令を出す吸引負荷の制御手段を兼備してなる液体中に微小気泡を生成して液体を発熱させる装置。   In the use state of the apparatus according to claim 1, a command for changing the suction load to at least one strong suction state is continuously issued for a desired time, and the suction state is not strong otherwise. An apparatus for generating heat by generating microbubbles in a liquid that also serves as a suction load control means for issuing a command. 気体吸引手段と液体吸引手段と液体吐出手段が接続された渦流ポンプを具備し、前記気体吸引手段で気体を吸引しつつ、前記液体吸引手段で液体槽の液体を吸引して該液体槽の液体中に微小気泡を発生させる装置であって、
前記渦流ポンプはモータで内蔵インペラを回転するもので、該微小気泡は、少なくともその粒径が30μm以下のマイクロバブルを含み、
前記の渦流ポンプはモータの回転数を変化させる手段、および、かかるモータの回転数の制御指令を出す手段が配備されており、装置の使用状態において、前記のモータの回転数の制御指令を出す手段が、少なくとも1回の強い吸引状態となるような回転数指令を所望の時間だけ継続して出し、それ以外は強くない吸引状態となるような回転数指令を出すことを特徴とする液体中に微小気泡を生成して液体を発熱させる装置。
A vortex pump connected to the gas suction means, the liquid suction means, and the liquid discharge means, and sucking the gas in the liquid tank by the liquid suction means while sucking the gas by the gas suction means; A device for generating microbubbles therein,
The vortex pump rotates a built-in impeller with a motor, and the microbubbles include at least microbubbles having a particle size of 30 μm or less,
The eddy current pump is provided with means for changing the rotational speed of the motor, and means for issuing a control command for the rotational speed of the motor, and issues a control command for the rotational speed of the motor when the apparatus is in use. The liquid is characterized in that the means issues a rotational speed command that makes at least one strong suction state continuously for a desired time, and issues a rotational speed command that makes the suction state not strong otherwise. A device that generates microbubbles and heats the liquid.
請求項2または請求項3の、強い吸引状態が、渦流ポンプの定格運転時における吸引低圧に対して110%を超える絶対値数値の低圧である、液体中に微小気泡を生成して液体を発熱させる装置。   The strong suction state according to claim 2 or claim 3 is a low pressure having an absolute value exceeding 110% with respect to the suction low pressure during the rated operation of the vortex pump, and generates heat by generating microbubbles in the liquid. Device to let you. 請求項1から請求項4のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置にて、
吸引負荷を変化させる手段が、吸引手段を通過する液体流路において、流路断面積を変化させて吸引負荷を変化させるものである、あるいは、
請求項1から請求項4のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置にて、
吸引負荷を変化させる手段が、吸引手段の端部の開口部面積を変化させるべく吸引手段の端部の開口部を一部閉塞する部材を着脱、ないしは、吸引手段の端部の開口部を一部閉塞する部材をスライド移動させて吸引負荷を変化させるものである、あるいは、
請求項1から請求項4のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置にて、
液体吸引手段が、ふたつ以上の流路をもつもので、吸引負荷を変化させる手段が、ひとつ以上の流路を閉塞して吸引負荷を変化させるものである液体中に微小気泡を生成して液体を発熱させる装置。
The apparatus according to any one of claims 1 to 4, wherein microbubbles are generated in the liquid and the liquid is heated.
The means for changing the suction load is for changing the suction load by changing the cross-sectional area of the liquid channel passing through the suction means, or
The apparatus according to any one of claims 1 to 4, wherein microbubbles are generated in the liquid and the liquid is heated.
The means for changing the suction load attaches or detaches a member that partially closes the opening at the end of the suction means in order to change the area of the opening at the end of the suction means, or removes the opening at the end of the suction means. The member that closes the part is slid to change the suction load, or
The apparatus according to any one of claims 1 to 4, wherein microbubbles are generated in the liquid and the liquid is heated.
The liquid suction means has two or more flow paths, and the means for changing the suction load creates a microbubble in the liquid that closes one or more flow paths and changes the suction load. A device that generates heat.
請求項5の、吸引手段の流路断面積を変化させて吸引負荷を変化させる手段が、可撓性の部材でなる管状流路の外部に機械的な力を加えて流路断面積を変化させるものである、あるいは、
請求項5の、吸引手段の端部の開口部を一部閉塞する部材を着脱して吸引手段の端部の開口部面積を変化させて吸引負荷を変化させる手段が、メッシュサイズの異なるフィルタを着脱することで開口部面積を変化させるものである、あるいは、
請求項5の、吸引手段の端部の開口部を一部閉塞する部材をスライド移動させて吸引手段の端部の開口部面積を変化させて吸引負荷を変化させる手段が、メッシュサイズの異なるフィルタをスライド移動させて開口部面積を変化させるものである、液体中に微小気泡を生成して液体を発熱させる装置。
The means for changing the suction load by changing the channel cross-sectional area of the suction means according to claim 5 applies a mechanical force to the outside of the tubular channel made of a flexible member to change the channel cross-sectional area. Or
The means for changing the suction load by changing the opening area of the end of the suction means by attaching and detaching a member that partially closes the opening of the end of the suction means according to claim 5 is a filter having a different mesh size. The opening area is changed by attaching or detaching, or
6. The filter according to claim 5, wherein the member that partially closes the opening at the end of the suction means is slid to change the opening area of the end of the suction means to change the suction load. Is a device that generates a microbubble in the liquid to generate heat by changing the opening area by sliding.
請求項1から請求項6のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置にて、
液体吸引手段の内部液体、または、液体吸引手段の吸引端近傍の液体槽液体、または、渦流ポンプ内部の液体の圧力を検知するセンサーがさらに配備され、かつまた、
かかる圧力を検知するセンサーの検知圧力にもとづいて、吸引負荷の制御手段が、あるいは、
かかる圧力を検知するセンサーの検知圧力にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置。
In the apparatus according to any one of claims 1 to 6, wherein microbubbles are generated in the liquid to generate heat.
There is further provided a sensor for detecting the pressure of the liquid inside the liquid suction means, the liquid tank liquid near the suction end of the liquid suction means, or the liquid inside the vortex pump, and
Based on the detection pressure of the sensor that detects such pressure, the suction load control means, or
Based on the detected pressure of the sensor that detects such pressure, the rotational speed control means of the motor of the vortex pump selectively issues a command to switch between a strong suction state and a non-strong suction state. That generates liquid and generates heat.
請求項1から請求項6のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置にて、
液体吸引手段の吸引端近傍の液体槽液体の光学的特性を検知するセンサーがさらに配備され、かつまた、
かかる光学的特性を検知するセンサーの検知した光学的物理量にもとづいて、吸引負荷の制御手段が、あるいは、
かかる光学的特性を検知するセンサーの検知した光学的物理量にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置。
In the apparatus according to any one of claims 1 to 6, wherein microbubbles are generated in the liquid to generate heat.
A sensor is further provided for detecting the optical properties of the liquid reservoir liquid near the suction end of the liquid suction means; and
Based on the optical physical quantity detected by the sensor for detecting such optical characteristics, the suction load control means, or
Based on the optical physical quantity detected by the sensor for detecting such optical characteristics, the rotational speed control means of the motor of the vortex pump selectively issues a command to enter a strong suction state and a weak suction state. A device that generates microbubbles in a liquid to generate heat.
請求項1から請求項6のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置にて、
液体吸引手段の吸引端で発せられる音響、または、渦流ポンプ内部から発せられる音響を検知するセンサーがさらに配備され、かつまた、
かかる音響を検知するセンサーの検知した音響の物理量にもとづいて、吸引負荷の制御手段が、あるいは、
かかる音響を検知するセンサーの検知した音響の物理量にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置。
In the apparatus according to any one of claims 1 to 6, wherein microbubbles are generated in the liquid to generate heat.
There is further provided a sensor for detecting the sound emitted from the suction end of the liquid suction means or the sound emitted from the inside of the vortex pump, and also
Based on the physical quantity of the sound detected by the sensor that detects the sound, the suction load control means, or
Based on the physical quantity of the sound detected by the sensor for detecting such sound, the rotational speed control means of the motor of the vortex pump selectively issues a command to switch between a strong suction state and a weak suction state. A device that generates microbubbles and heats the liquid.
請求項1から請求項6のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置にて、
液体槽の液体温度を検知するセンサーがさらに配備され、かつまた、
かかる温度を検知するセンサーの検知した液体温度にもとづいて、吸引負荷の制御手段が、あるいは、
かかる温度を検知するセンサーの検知した液体温度にもとづいて、渦流ポンプのモータの回転数制御手段が、強い吸引状態と強くない吸引状態となる指令を選択的に出すことを特徴とした液体中に微小気泡を生成して液体を発熱させる装置。
In the apparatus according to any one of claims 1 to 6, wherein microbubbles are generated in the liquid to generate heat.
A sensor for detecting the liquid temperature in the liquid tank is further provided, and also
Based on the liquid temperature detected by the sensor that detects the temperature, the suction load control means, or
Based on the temperature of the liquid detected by the sensor for detecting the temperature, the rotational speed control means of the motor of the eddy current pump selectively issues a command to switch between a strong suction state and a weak suction state. A device that generates microbubbles to generate heat.
請求項1から請求項10のいずれかの、液体中に微小気泡を生成して液体を発熱させる装置を用いて、液体中に微小気泡を生成して液体を発熱させる方法であって、
装置が液体を吸引する状態が、吸引負荷を変化させる手段、あるいは、渦流ポンプモータの回転数の制御指令を出す手段によって、少なくとも1回の強い吸引状態とする工程を有することで液体中に微小気泡を生成して液体を発熱させる方法。
ここで強い吸引状態とは、渦流ポンプの定格運転時における吸引低圧に対して110%を超える数値の低圧で吸引する状態である。
A method for generating microbubbles in a liquid to generate heat by using the apparatus for generating microbubbles in a liquid and generating heat by using the apparatus according to any one of claims 1 to 10,
The state in which the device sucks the liquid is minute in the liquid by having a step of making the strong suction state at least once by means for changing the suction load or means for issuing a control command for the rotational speed of the vortex pump motor. A method of generating air bubbles to generate heat.
Here, the strong suction state is a state in which suction is performed at a low pressure exceeding 110% with respect to the suction low pressure at the rated operation of the vortex pump.
JP2009265832A 2009-11-24 2009-11-24 An apparatus and method for generating heat by generating microbubbles in a liquid. Expired - Fee Related JP5448065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265832A JP5448065B2 (en) 2009-11-24 2009-11-24 An apparatus and method for generating heat by generating microbubbles in a liquid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265832A JP5448065B2 (en) 2009-11-24 2009-11-24 An apparatus and method for generating heat by generating microbubbles in a liquid.

Publications (2)

Publication Number Publication Date
JP2011110435A true JP2011110435A (en) 2011-06-09
JP5448065B2 JP5448065B2 (en) 2014-03-19

Family

ID=44233214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265832A Expired - Fee Related JP5448065B2 (en) 2009-11-24 2009-11-24 An apparatus and method for generating heat by generating microbubbles in a liquid.

Country Status (1)

Country Link
JP (1) JP5448065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102979766A (en) * 2011-09-06 2013-03-20 武汉百湖水务科技发展有限公司 Gas-liquid two-phase flow pump capable of refining and equalizing air bubbles particle deeply

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137989A (en) * 1987-08-26 1989-05-30 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Modification of oil and fat
JP2003117365A (en) * 2001-10-19 2003-04-22 Malhaty Pump Mfg Co Ltd Micro-bubble producing apparatus
JP2003245662A (en) * 2002-02-21 2003-09-02 Fm Ecology Kenkyusho:Kk Waste water treatment system
JP2005152763A (en) * 2003-11-25 2005-06-16 Koji Takahashi Gas-liquid mixed solution containing ultrafine bubble for reactor, production method of the same, chemical reactor apparatus, and bioreactor apparatus
JP2006272232A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
JP2008178440A (en) * 2007-01-23 2008-08-07 Sharp Corp Bathtub apparatus, diabetes treatment apparatus, beauty treatment apparatus, hair growth promoting apparatus, central nervous system disease treatment apparatus, cardiovascular system disease treatment apparatus, dysbolism treatment apparatus, digestive disease treatment apparatus, locomotorium disease treatment apparatus and dermatologic disease treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137989A (en) * 1987-08-26 1989-05-30 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Modification of oil and fat
JP2003117365A (en) * 2001-10-19 2003-04-22 Malhaty Pump Mfg Co Ltd Micro-bubble producing apparatus
JP2003245662A (en) * 2002-02-21 2003-09-02 Fm Ecology Kenkyusho:Kk Waste water treatment system
JP2005152763A (en) * 2003-11-25 2005-06-16 Koji Takahashi Gas-liquid mixed solution containing ultrafine bubble for reactor, production method of the same, chemical reactor apparatus, and bioreactor apparatus
JP2006272232A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
JP2008178440A (en) * 2007-01-23 2008-08-07 Sharp Corp Bathtub apparatus, diabetes treatment apparatus, beauty treatment apparatus, hair growth promoting apparatus, central nervous system disease treatment apparatus, cardiovascular system disease treatment apparatus, dysbolism treatment apparatus, digestive disease treatment apparatus, locomotorium disease treatment apparatus and dermatologic disease treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102979766A (en) * 2011-09-06 2013-03-20 武汉百湖水务科技发展有限公司 Gas-liquid two-phase flow pump capable of refining and equalizing air bubbles particle deeply

Also Published As

Publication number Publication date
JP5448065B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
CN100457243C (en) Superfine air bubble generation method and device and sterilization device using same
Chatel Sonochemistry: new opportunities for green chemistry
Kanthale et al. Experimental and theoretical investigations on sonoluminescence under dual frequency conditions
TW201018527A (en) Shower device with microbubble generating mechanism
JP2011088979A (en) Cleaning liquid, cleaning method, and cleaning liquid production device
CN108534361A (en) Water heater
Gielen et al. Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique
JP2006263246A (en) Microbubble-jetting device for bathtub or shower
JP2013529104A (en) Apparatus for using hydrodynamic cavitation for therapy
JP2011110435A (en) Device and method for forming minute air bubble in liquid to make liquid to generate heat
CN207561845U (en) A kind of micro-nano bubble bathtub
Talabazar et al. Chemical effects in “hydrodynamic cavitation on a chip”: The role of cavitating flow patterns
JP2001070770A (en) Ozone water generating device
CN107466149A (en) Plasma liquid generating device
CN206444464U (en) A kind of micro-nano bubble generator of chlorine dioxide
CN104048075A (en) Faucet
JP2010162149A (en) Fine air bubble generating device for bathtub and method of generating fine air bubbles for bathtub
Tesař What can be done with microbubbles generated by a fluidic oscillator?(survey)
CN109264832A (en) A kind of ozone water apparatus
CN213909960U (en) A kind of bathtub
CN210643827U (en) Microbubble bathtub
JP2010007914A (en) Electric instantaneous water heater
CN114011268A (en) Micro-nano bubble water generating device, water heater and control method thereof
TWM323278U (en) Voice activated ozone and water mixing device
CN203803672U (en) Micro-bubble shower head

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees