JP2011107195A - Optical element, method of manufacturing the same, minutely rugged structure, and molding die - Google Patents

Optical element, method of manufacturing the same, minutely rugged structure, and molding die Download PDF

Info

Publication number
JP2011107195A
JP2011107195A JP2009259039A JP2009259039A JP2011107195A JP 2011107195 A JP2011107195 A JP 2011107195A JP 2009259039 A JP2009259039 A JP 2009259039A JP 2009259039 A JP2009259039 A JP 2009259039A JP 2011107195 A JP2011107195 A JP 2011107195A
Authority
JP
Japan
Prior art keywords
convex
fine concavo
concave
convex structure
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009259039A
Other languages
Japanese (ja)
Inventor
Takeshi Hidaka
猛 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009259039A priority Critical patent/JP2011107195A/en
Publication of JP2011107195A publication Critical patent/JP2011107195A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for improving optical performances such as antireflection performance. <P>SOLUTION: A minutely rugged structure 10 has recesses 15 surrounded by a ridgeline 13 of projected tops 12 and reticularly-continuing protrusions 11. An upper recess 18 (for example the upper recess 18a to the upper recess 18e) minuter than the recess 15 is formed at random on each of the projected tops 12 and the height of the protrusion 11, on the projected top 12 of which the upper recess 18 is formed, is not made constant. As a result, an influence of the flatness on the outermost surface through which light enters is eliminated to improve such an effect of the minutely rugged structure 10 that the reflection of the light having no anisotropy is prevented. Even a minutely rugged structure having the rugged shape reverse to that of the minutely rugged structure 10 can also have the same antireflection effect. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学素子および光学素子の製造方法ならびに微細凹凸構造および成形型に関する。   The present invention relates to an optical element, a method for manufacturing the optical element, a fine concavo-convex structure, and a mold.

光学素子を用いて構成される光学系では、個々の光学素子の光学機能面における入射光の反射は、入射光量の損失や、反射光の予期し得ない散乱による光学性能の低下等の要因となり好ましくない。
そこで、従来ではレンズ等の光学素子の表面に反射防止コーティングが行なわれていた。
In an optical system composed of optical elements, the reflection of incident light on the optical function surface of each optical element causes a loss of the incident light quantity and a decrease in optical performance due to unexpected scattering of the reflected light. It is not preferable.
Therefore, conventionally, an antireflection coating has been applied to the surface of an optical element such as a lens.

そして近年では、反射防止コーティングの代わりに、広い波長帯域および広範囲の入射角度での光の反射抑制が可能、光学素子との一体化が可能、等の種々の利点を有する表面無反射構造が提案されている。   In recent years, instead of anti-reflection coatings, surface non-reflection structures with various advantages such as the ability to suppress reflection of light in a wide wavelength band and a wide range of incident angles and integration with optical elements have been proposed. Has been.

この表面無反射構造、すなわち反射防止構造は、光学素子の光学機能面に入射光の波長以下の微細な凹凸を形成することによって実現されている。   This surface non-reflective structure, that is, an antireflection structure is realized by forming fine irregularities having a wavelength equal to or less than the wavelength of incident light on the optical function surface of the optical element.

例えば、特許文献1には、反射防止膜製造用のスタンパを金型として用いて射出成形することにより、均一なピッチおよび高さ、あるいは深さの微細構造体を、光透過性プラスチック基板の表面に形成することで、反射防止効果を発現させようとする技術が開示されている。   For example, Patent Document 1 discloses that a microstructure having a uniform pitch and height or depth is formed on the surface of a light-transmitting plastic substrate by injection molding using a stamper for manufacturing an antireflection film as a mold. The technique which tries to express the antireflection effect by forming is disclosed.

特開2003−43203号公報JP 2003-43203 A

しかしながら、上述の従来技術では以下の技術的課題が残されていた。
すなわち、反射防止効果を効果的に得るためには、光が入射する最表面部の平坦部を極力減らし鋭利な形状とすることが必要であるが、射出成形等で作製した微細構造体においては、光が入射する最表面部を鋭利な形状にすることが難しく、平坦部の占める割合が多くなり反射防止効果が減少する、という技術的課題がある。
However, the following technical problems remain in the above-described conventional technology.
That is, in order to effectively obtain the antireflection effect, it is necessary to reduce the flat part of the outermost surface part where light is incident as much as possible to a sharp shape, but in a microstructure manufactured by injection molding or the like, There is a technical problem that it is difficult to form a sharp shape on the outermost surface where light is incident, and the ratio of the flat portion is increased and the antireflection effect is reduced.

本発明の目的は、反射防止性能等の光学性能を向上させることが可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of improving optical performance such as antireflection performance.

本発明の第1の観点は、稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣接する前記凸部または前記凹部の中心部を通る断面における前記凸部の頂部および前記凹部の底部の少なくとも一方に、前記断面における前記凸部の第1凸部幅または前記凹部の第1凹部幅よりも小さい第2凸部幅または第2凹部幅を有する複数の微細構造体が形成された微細凹凸構造を具備した光学素子を提供する。   A first aspect of the present invention includes a convex portion in which a ridge line portion is continuous in a mesh shape and a plurality of concave portions surrounded by the convex portion, in a cross section passing through the adjacent convex portion or the central portion of the concave portion. At least one of the top part of the convex part and the bottom part of the concave part has a second convex part width or a second concave part width smaller than the first convex part width of the convex part or the first concave part width of the concave part in the cross section. Provided is an optical element having a fine concavo-convex structure in which a plurality of fine structures are formed.

本発明の第2の観点は、稜線部が網目状に連続する凸部に囲まれた複数の凹部を含み、隣接する前記凸部または前記凹部の中心部を通る断面における前記凸部の頂部および前記凹部の底部の少なくとも一方に、前記断面における前記凸部の第1凸部幅または前記凹部の第1凹部幅よりも小さい第2凸部幅または第2凹部幅を有する複数の微細構造体が形成された微細凹凸構造を、光学素子の表面に形成する光学素子の製造方法を提供する。   The second aspect of the present invention includes a plurality of concave portions surrounded by convex portions whose ridge line portions are continuous in a mesh shape, and the top portions of the convex portions in a cross section passing through the adjacent convex portions or the central portion of the concave portions, and A plurality of microstructures having a second protrusion width or a second recess width smaller than the first protrusion width of the protrusion in the cross section or the first recess width of the recess in at least one of the bottom portions of the recess. Provided is a method for manufacturing an optical element, in which the formed fine uneven structure is formed on the surface of the optical element.

本発明の第3の観点は、稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣接する前記凸部または前記凹部の中心部を通る断面における前記凸部の頂部および前記凹部の底部の少なくとも一方に、前記断面における前記凸部の第1凸部幅または前記凹部の第1凹部幅よりも小さい第2凸部幅または第2凹部幅を有する複数の微細構造体が形成されている微細凹凸構造を提供する。   According to a third aspect of the present invention, the ridge line portion includes a convex portion that is continuous in a mesh shape and a plurality of concave portions surrounded by the convex portion, and in a cross section that passes through the adjacent convex portion or the central portion of the concave portion. At least one of the top part of the convex part and the bottom part of the concave part has a second convex part width or a second concave part width smaller than the first convex part width of the convex part or the first concave part width of the concave part in the cross section. Provided is a fine concavo-convex structure in which a plurality of fine structures are formed.

本発明によれば、反射防止性能等の光学性能を向上させることが可能な技術を提供することができる。   According to the present invention, a technique capable of improving optical performance such as antireflection performance can be provided.

本発明の一実施の形態である微細凹凸構造の構成の一例を示す略平面図である。It is a schematic plan view which shows an example of the structure of the fine concavo-convex structure which is one embodiment of the present invention. 本発明の一実施の形態である微細凹凸構造の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the fine concavo-convex structure which is one embodiment of this invention. 本発明の一実施の形態である微細凹凸構造における基本構造の一例を説明するための概念図である。It is a conceptual diagram for demonstrating an example of the basic structure in the fine concavo-convex structure which is one embodiment of this invention. 本発明の他の実施の形態である微細凹凸構造の構成例を示す平面図である。It is a top view which shows the structural example of the fine concavo-convex structure which is other embodiment of this invention. 本発明の他の実施の形態である微細凹凸構造の構成例を示す断面図である。It is sectional drawing which shows the structural example of the fine concavo-convex structure which is other embodiment of this invention. 本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。It is sectional drawing which shows the structural example of the fine concavo-convex structure which is further another embodiment of this invention. 本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。It is sectional drawing which shows the structural example of the fine concavo-convex structure which is further another embodiment of this invention. 本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。It is sectional drawing which shows the structural example of the fine concavo-convex structure which is further another embodiment of this invention. 本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。It is sectional drawing which shows the structural example of the fine concavo-convex structure which is further another embodiment of this invention. 本発明の一実施の形態である光学素子の製造方法によって得られた光学素子の構成例を示す斜視図である。It is a perspective view which shows the structural example of the optical element obtained by the manufacturing method of the optical element which is one embodiment of this invention. 本発明の他実施の形態である光学素子の製造方法によって得られた光学素子の構成例を示す斜視図である。It is a perspective view which shows the structural example of the optical element obtained by the manufacturing method of the optical element which is other embodiment of this invention.

本実施の形態では、一態様しとして、凹または凸形状の微細構造体の隣接する断面での凸断面形状の頂点部に、前記断面形状での凹部幅もしくは凸部幅よりも小さな凹形状または凸形状の微細構造体を形成させる。これにより、光が入射する最表面部の平坦部を減らすことができ、反射防止効果をより効率的に得ることができる。   In this embodiment, as one aspect, a concave shape smaller than the concave width or the convex width in the cross-sectional shape or the apex portion of the convex cross-sectional shape in the adjacent cross section of the concave or convex fine structure or A convex microstructure is formed. Thereby, the flat part of the outermost surface part which light injects can be reduced, and the antireflection effect can be acquired more efficiently.

より具体的には、一例として、光学素子表面の少なくとも一部に、ベースとなる微細構造体の頂点部や、凹部の底に小さなサイズの微細構造体を形成させる。
これにより、光が入射する最表面部の平坦部を減らすことが可能となり、例えば、可視光波長に対して反射防止効果を効率的に得ることが可能となる。
More specifically, as an example, a small-sized microstructure is formed on at least a part of the surface of the optical element at the apex of the microstructure or the bottom of the recess.
Thereby, it becomes possible to reduce the flat part of the outermost surface part into which light enters, for example, it becomes possible to obtain the antireflection effect efficiently with respect to visible light wavelength.

また、それぞれの小さいサイズの微細構造体が形成されたベースの微細構造体の高さまたは深さがバラツキを持ち一定でない形状とする。   Further, the height or depth of the base microstructure on which each small-sized microstructure is formed has a variation and a non-constant shape.

これにより、反射防止効果がさらに向上するとともに、均一なピッチや高さおよび深さの微細構造体において生じるような、特定の光入射方向に対して反射防止効果が大きく減少する異方性や、干渉縞等を抑止できる。   As a result, the antireflection effect is further improved, and anisotropy in which the antireflection effect is greatly reduced with respect to a specific light incident direction, as occurs in a fine structure having a uniform pitch, height and depth, Interference fringes can be suppressed.

以上のことから、光学素子の最表面の平坦部を減らすことが比較的容易に可能となるとともに、高さまたは深さがランダムなことから異方性も抑制され、反射防止性能等の光学性能を向上させた光学素子を得ることができる。
なお、「反射防止効果が、レンズ表面に入射するある特定の入射方向の光に対して悪化すること。」を本願では反射防止効果の異方性という。
以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
From the above, it is relatively easy to reduce the flat portion of the outermost surface of the optical element, and the anisotropy is also suppressed because the height or depth is random, and the optical performance such as antireflection performance. An optical element with improved can be obtained.
In this application, “anisotropy of the antireflection effect” means that “the antireflection effect is deteriorated with respect to light in a specific incident direction incident on the lens surface”.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1Aは、本発明の一実施の形態である微細凹凸構造の構成の一例を示す略平面図である。
図1Bは、本発明の一実施の形態である微細凹凸構造の構成の一例を示す断面図である。
図1Cは、本発明の一実施の形態である微細凹凸構造における基本構造の一例を説明するための概念図である。
(Embodiment 1)
FIG. 1A is a schematic plan view showing an example of the configuration of a fine relief structure according to an embodiment of the present invention.
FIG. 1B is a cross-sectional view showing an example of the configuration of a fine relief structure according to an embodiment of the present invention.
FIG. 1C is a conceptual diagram for explaining an example of a basic structure in a fine relief structure according to an embodiment of the present invention.

なお、本実施の形態では、各図において、互いに直交するX方向、Y方向、Z方向、は図示のとおりとする。
図1Aは基板上に形成された微細凹凸構造10(微細凹凸構造)を上面から見た図であり、図1Bは図1Aの線A−A’部分の断面図を示している。
In the present embodiment, in each drawing, the X direction, the Y direction, and the Z direction orthogonal to each other are as illustrated.
FIG. 1A is a top view of a fine concavo-convex structure 10 (fine concavo-convex structure) formed on a substrate, and FIG. 1B is a cross-sectional view taken along line AA ′ of FIG. 1A.

本実施の形態の微細凹凸構造10は、凸頂部12(頂部)を連ねた稜線部13(稜線部)に沿って網目状に連続する凸部11(凸部)に取り囲まれるように複数の凹部15(凹部)が配列された構成となっている。   The fine concavo-convex structure 10 according to the present embodiment includes a plurality of concave portions so as to be surrounded by a convex portion 11 (convex portion) that is continuous in a mesh shape along a ridge line portion 13 (ridge line portion) connecting the convex top portions 12 (top portions). 15 (concave part) is arranged.

例えば、微細凹凸構造10が配置形成される後述のプリズム110のような光学素子の光学面が平面の場合には、当該光学面に平行なX−Y平面が凹部15の配列面であり、凹部15の深さ方向(すなわち光学面の法線方向)がZ方向である。   For example, when the optical surface of an optical element such as a prism 110 described later on which the fine concavo-convex structure 10 is arranged and formed is a flat surface, an XY plane parallel to the optical surface is an array surface of the concave portions 15. The depth direction of 15 (that is, the normal direction of the optical surface) is the Z direction.

本実施の形態の微細凹凸構造10の場合、凸部11の稜線部13から分かれる稜曲面14(すなわち凹部15の内周面17)は、外側、すなわち凹部15の側に凸となっており、凸部11の断面の幅寸法が凹部15の深さ方向に曲線的に増加している。
すなわち、連続した凸部11に囲まれた凹部15の断面形状は、例えば、凹底部16に向かって先細りの略ロート形を呈している。
In the case of the fine concavo-convex structure 10 of the present embodiment, the ridge curved surface 14 (that is, the inner peripheral surface 17 of the concave portion 15) separated from the ridge line portion 13 of the convex portion 11 is convex toward the outside, that is, the concave portion 15 side. The width dimension of the cross section of the convex portion 11 is increased in a curved manner in the depth direction of the concave portion 15.
That is, the cross-sectional shape of the concave portion 15 surrounded by the continuous convex portion 11 has, for example, a substantially funnel shape that tapers toward the concave bottom portion 16.

このように、本実施の形態の微細凹凸構造10は、単に配列面であるX−Y平面に穴を離散的に配列形成した構造とは全く異なり、隣り合う凹部15と凹部15の境界部にはX−Y平面に平行な平坦部はほとんど存在せず、凸部11の凸頂部12を連ねて網目状に連続する稜線部13を境に隣り合う凹部15の内部に落ち込む稜曲面14が存在するだけである。そして、この凸部11の稜曲面14が、同時に凹部15の内周面17となる構造である。   As described above, the fine concavo-convex structure 10 of the present embodiment is completely different from the structure in which holes are discretely formed on the XY plane, which is an arrangement surface, and is located at the boundary between adjacent concave portions 15 and concave portions 15. There is almost no flat part parallel to the XY plane, and there is a ridged curved surface 14 that falls into the inside of the concave part 15 adjacent to the ridgeline part 13 that continues in a mesh shape by connecting the convex top parts 12 of the convex part 11. Just do it. And the ridge curved surface 14 of this convex part 11 becomes a structure used as the internal peripheral surface 17 of the recessed part 15 simultaneously.

そして、微細凹凸構造10が配置される光学面が平面の場合には、微細凹凸構造10の稜線部13の包絡面が平面となり、光学面が曲面の場合には、微細凹凸構造10の稜線部13の包絡面が当該曲面となる。
ここで、本実施の形態の微細凹凸構造10の形状を特徴付ける各種寸法の一例について説明する。
When the optical surface on which the fine concavo-convex structure 10 is disposed is a flat surface, the envelope surface of the ridge line portion 13 of the fine concavo-convex structure 10 is a flat surface, and when the optical surface is a curved surface, the ridge line portion of the fine concavo-convex structure 10 is provided. The 13 envelope surfaces are the curved surfaces.
Here, an example of various dimensions characterizing the shape of the fine relief structure 10 of the present embodiment will be described.

凸頂部12から凹底部16までのZ方向の距離が、凸部11の凸部高さHであり、同時に凹部15の凹部深さDであり、構造的に両者は等しい。
また、凹部15の中心(本実施の形態での正確な定義は後述する)を通り、Z方向に平行な線が、凹部15の中心線15cである。
The distance in the Z direction from the convex top part 12 to the concave bottom part 16 is the convex part height H of the convex part 11 and the concave part depth D of the concave part 15 at the same time.
A line parallel to the Z direction passing through the center of the recess 15 (exact definition in the present embodiment will be described later) is a center line 15c of the recess 15.

そして、隣り合う個々の凹部15の中心線15cを含む断面が、線A−A’の断面である。
なお、図1Aの例では、線A−A’は直線であるが、複数の凹部15の各々の中心線15cを連ねるX−Y平面内の直線がジグザグの場合もあり得る。
And the cross section including the center line 15c of each adjacent recessed part 15 is a cross section of line AA '.
In the example of FIG. 1A, the line AA ′ is a straight line, but the straight line in the XY plane connecting the center lines 15c of the plurality of recesses 15 may be zigzag.

線A−A’の断面において、凸部高さHの1/2(=H/2)の位置における幅が、凸部11の凸部幅Wh(第1凸部幅)である。
同様に、凹部15の凹部幅Wd(第1凹部幅)は、凹部深さDの1/2(=D/2)における幅である。
In the cross section taken along line AA ′, the width at the position of ½ (= H / 2) of the convex portion height H is the convex portion width Wh (first convex portion width) of the convex portion 11.
Similarly, the recess width Wd (first recess width) of the recess 15 is a width at ½ (= D / 2) of the recess depth D.

また、線A−A’の断面において凸部11を挟んで隣り合う二つの凹部15の中心線15cの距離が凹部中心部間距離Lである。
本実施の形態の微細凹凸構造10における上述の各部寸法の具体的な一例を以下に例示する。
すなわち、凹部深さDの平均値は、一例として200nm、凸部高さHの平均値は、一例として200nmである。
In addition, the distance between the center lines 15c of the two recesses 15 adjacent to each other with the projection 11 in the cross section taken along the line AA ′ is the distance L between the center portions of the recesses.
A specific example of the dimensions of the above-described parts in the fine concavo-convex structure 10 of the present embodiment is illustrated below.
That is, the average value of the concave portion depth D is 200 nm as an example, and the average value of the convex portion height H is 200 nm as an example.

また、凸部幅Whの平均値は、一例として60nm、凹部幅Wdの平均値は、一例として45nm、である。
また、凹部中心部間距離Lの平均値は、一例として105nmである。
Moreover, the average value of the convex part width Wh is 60 nm as an example, and the average value of the concave part width Wd is 45 nm as an example.
Moreover, the average value of the distance L between the center parts of the recesses is 105 nm as an example.

そして、本実施の形態の微細凹凸構造10による反射防止を実現する対象が、例えば可視光線(波長380nm〜780nm)の場合には、微細凹凸構造10における凹部中心部間距離Lの最大値Lmaxは、Lmax<380nmに設定される。   And when the object which implement | achieves reflection prevention by the fine concavo-convex structure 10 of this Embodiment is visible light (wavelength 380 nm-780 nm), for example, the maximum value Lmax of the distance L between recessed part center parts in the fine concavo-convex structure 10 is , Lmax <380 nm.

ここで、図1Cを参照して、本実施の形態の微細凹凸構造10における各部の寸法やばらつきを評価する方法の一例を説明する。
上述の図1Aの例では、個々の凹部15のX−Y平面に平行な平面での断面形状は略円形の場合が例示されているが、例えば、楕円形、繭形、勾玉形等の任意の閉曲線の図形でもよい。
Here, with reference to FIG. 1C, an example of a method for evaluating the size and variation of each part in the fine concavo-convex structure 10 of the present embodiment will be described.
In the example of FIG. 1A described above, the cross-sectional shape of each concave portion 15 in a plane parallel to the XY plane is exemplified as a substantially circular shape. It may be a closed curve.

また、図1Cでは、図示の便宜上、凹部15の輪郭を円形の実線で例示しているが、実際は、周囲の凸部11の稜線部13から凹底部16まで連続する曲面としての内周面17(稜曲面14)によって凹部15は形成されている。
なお、図1Cでは、凸頂部12(稜線部13)に形成される上部凹部18(微細構造体)の図示は省略されている。
In FIG. 1C, for convenience of illustration, the contour of the concave portion 15 is illustrated by a circular solid line. However, in practice, the inner peripheral surface 17 as a curved surface continuous from the ridge line portion 13 to the concave bottom portion 16 of the surrounding convex portion 11. The recess 15 is formed by the (ridged curved surface 14).
In FIG. 1C, the illustration of the upper concave portion 18 (fine structure) formed in the convex apex portion 12 (ridge line portion 13) is omitted.

この本実施の形態では、一例として、図1Cに例示されるように、任意の形状の凹部15の中心は、当該凹部15を取り囲む凸部11の稜線部13が交差するすべての稜線交点13aを頂点とする多角形15aの重心15b(中心部)と定義する。
そして、中心線15cは、この重心15bを通りZ方向に平行な線分である。
In this embodiment, as an example, as illustrated in FIG. 1C, the center of the concave portion 15 having an arbitrary shape has all the ridge line intersection points 13 a intersecting with the ridge line portion 13 of the convex portion 11 surrounding the concave portion 15. It is defined as the center of gravity 15b (center portion) of the polygon 15a as the vertex.
The center line 15c is a line segment that passes through the center of gravity 15b and is parallel to the Z direction.

また、凹部中心部間距離Lは、微細凹凸構造10の配置面が平面や曲面に関係なく、隣り合う凹部15の重心15b間の距離とする。   Further, the distance L between the center portions of the recesses is a distance between the centroids 15b of the adjacent recesses 15 regardless of whether the arrangement surface of the fine concavo-convex structure 10 is a flat surface or a curved surface.

本実施の形態の微細凹凸構造10では、必要に応じて凹部15のサイズや形状(この場合、多角形15aの大きさや形状、さらには凹部15の位置関係、等)にばらつきを持たせて、微細凹凸構造10がむらなく配置されるようにすることができる。   In the fine concavo-convex structure 10 of the present embodiment, the size and shape of the concave portion 15 (in this case, the size and shape of the polygon 15a, the positional relationship of the concave portion 15, etc.) are varied as necessary, The fine uneven structure 10 can be arranged evenly.

この場合の微細凹凸構造10における凹部15のサイズや形状、配列位置関係等のばらつきを評価する指標として、本実施の形態では、一例として、上述の多角形15aの稜線交点間距離15dのばらつきを用いることができる。   In this embodiment, as an index for evaluating variations in the size and shape of the concave portions 15 in the fine concavo-convex structure 10 in this case, the arrangement positional relationship, and the like, as an example, the variation in the distance 15d between the ridge line intersections of the polygon 15a described above is used. Can be used.

ここで、図1Aおよび図1Bに例示されるように、本実施の形態の微細凹凸構造10の場合には、凹部15の間に位置する凸頂部12の稜線部13には、微細な上部凹部18がランダムに形成されている。   Here, as illustrated in FIG. 1A and FIG. 1B, in the case of the fine concavo-convex structure 10 of the present embodiment, the ridge line portion 13 of the convex top portion 12 located between the concave portions 15 has a fine upper concave portion. 18 are randomly formed.

この上部凹部18の上部凹部幅Wdt(第2凹部幅)は、凹部15の凹部幅Wd(第1凹部幅)よりも小さくなっている。なお、上部凹部幅Wdtの測定位置は、凹部幅Wdと同様に、上部凹部18の上部凹部深さDtの1/2の位置である。   The upper recess width Wdt (second recess width) of the upper recess 18 is smaller than the recess width Wd (first recess width) of the recess 15. Note that the measurement position of the upper recess width Wdt is a position that is 1/2 of the upper recess depth Dt of the upper recess 18 in the same manner as the recess width Wd.

図1Aおよび図1Bに例示された断面A−A′の例では、断面上に位置する個々の凸頂部12に対して、上部凹部18として、右側から順に、一つの上部凹部18a、二つの上部凹部18bおよび上部凹部18c、一つの上部凹部18d、上部凹部18eが形成された場合が例示されている。   In the example of the cross section AA ′ illustrated in FIG. 1A and FIG. 1B, one upper concave portion 18 a and two upper portions are formed as the upper concave portion 18 in order from the right side with respect to the individual convex top portions 12 located on the cross section. The case where the recessed part 18b and the upper recessed part 18c, the one upper recessed part 18d, and the upper recessed part 18e are formed is illustrated.

なお、図1Aおよび図1Bの場合には、説明を分かりやすくするため、上部凹部18は、凸頂部12の稜線部13に一致する位置に形成された場合が例示されているが、上部凹部18の中心が稜線部13から逸れた位置に、隣り合う凹部15の周辺部を浸食する状態で形成される場合もある。   In the case of FIG. 1A and FIG. 1B, for the sake of easy understanding, the upper concave portion 18 is illustrated as being formed at a position that coincides with the ridge line portion 13 of the convex top portion 12. May be formed in a state in which the periphery of the adjacent recess 15 is eroded at a position where the center of the ridge is deviated from the ridge line portion 13.

そして、この上部凹部18a〜上部凹部18eの形成によって凸頂部12が高さ方向に浸食されることにより、上部凹部18の形成位置の凸頂部12では、凸部高さHが、凸部高さH1〜凸部高さH4のように、上部凹部18のない凸部11の凸部高さHよりも小さい範囲で、一定でないように、ばらついている。   Then, the convex top 12 is eroded in the height direction by the formation of the upper concave portion 18a to the upper concave portion 18e, so that the convex height H of the convex top portion 12 at the formation position of the upper concave portion 18 is the height of the convex portion. As shown in H1 to the height H4 of the convex portion, it varies so as not to be constant in a range smaller than the convex portion height H of the convex portion 11 without the upper concave portion 18.

すなわち、この例では、比較的小さな上部凹部18aが形成された凸頂部12では、凸部高さH4が凸部高さHよりもわずかに小さくなり、二つの上部凹部18bおよび上部凹部18cが形成された凸頂部12では、比較的大きく凸頂部12が浸食されることにより、凸部高さH4よりも低い凸部高さH3となっている。   That is, in this example, in the convex top part 12 in which the relatively small upper concave part 18a is formed, the convex part height H4 is slightly smaller than the convex part height H, and two upper concave parts 18b and an upper concave part 18c are formed. In the projected top portion 12, the convex top portion 12 is eroded relatively large, so that the convex portion height H <b> 3 is lower than the convex portion height H <b> 4.

また、一つの上部凹部18dが、凸頂部12の両隣の凹部15に達する程度に大きく形成された部位では、凸頂部12の凸部高さH2が、上述の二つの場合の凸部高さH3と同程度になっている。
また、一つの上部凹部18eが形成された部位の凸頂部12では、凸頂部12の凸部高さH1が、凸部高さH2よりもわずかに高くなっている。
Moreover, in the site | part formed so large that the one upper recessed part 18d reached the recessed part 15 of the both sides of the convex top part 12, the convex part height H2 of the convex top part 12 is convex part height H3 in the above-mentioned two cases. It is about the same.
Moreover, in the convex top part 12 of the site | part in which the one upper recessed part 18e was formed, the convex part height H1 of the convex top part 12 is slightly higher than the convex part height H2.

このように、凹部15の間の凸頂部12に、さらに微細な上部凹部18が形成されていることにより、光が入射する最表面である凸頂部12の平坦部を減らすことができ、凸頂部12における光の反射が防止され、微細凹凸構造10の反射防止効果が一層大きくなる。   As described above, since the finer upper concave portion 18 is formed on the convex top portion 12 between the concave portions 15, the flat portion of the convex top portion 12, which is the outermost surface on which light is incident, can be reduced. 12 is prevented, and the antireflection effect of the fine concavo-convex structure 10 is further increased.

また、上部凹部18の形成部位である凸頂部12の凸部高さHが、凸部高さH1〜凸部高さH4のように、適度にばらつくことにより、光の反射防止効果が一層向上するとともに、反射防止効果の異方性も効果的に解消される。   Further, the convexity height H of the convex apex 12 which is the formation site of the upper concave portion 18 varies moderately as the convexity height H1 to the convexity height H4, thereby further improving the light reflection preventing effect. In addition, the anisotropy of the antireflection effect is effectively eliminated.

また、凸頂部12の稜線部13が網目状に連続していることにより、摺動摩擦等に対する変形強度も大きくなり、外力による損傷を受けにくくなる。   In addition, since the ridge line portion 13 of the convex top portion 12 is continuous in a mesh shape, the deformation strength against sliding friction or the like is increased, and it is difficult to be damaged by an external force.

(実施の形態2)
図2Aは、本発明の他の実施の形態である微細凹凸構造の構成例を示す平面図である。
図2Bは、本発明の他の実施の形態である微細凹凸構造の構成例を示す断面図である。なお、図2Bは、図2Aにおける線B−B′の部分の断面を示している。
(Embodiment 2)
FIG. 2A is a plan view showing a configuration example of a fine relief structure according to another embodiment of the present invention.
FIG. 2B is a cross-sectional view showing a configuration example of a fine relief structure according to another embodiment of the present invention. FIG. 2B shows a cross section of the portion along line BB ′ in FIG. 2A.

この実施の形態2の微細凹凸構造20の場合、凹部15の凹底部16に、凹部15よりも小さい下部凹部19(微細構造体)が形成されている。
すなわち、微細凹凸構造20の個々の凹部15の凹底部16には、ランダムな個数の下部凹部19(例えば、下部凹部19a〜下部凹部19g)が形成されている。
In the case of the fine concavo-convex structure 20 of the second embodiment, a lower concave portion 19 (fine structure) smaller than the concave portion 15 is formed in the concave bottom portion 16 of the concave portion 15.
That is, a random number of lower concave portions 19 (for example, the lower concave portion 19a to the lower concave portion 19g) are formed in the concave bottom portions 16 of the individual concave portions 15 of the fine concavo-convex structure 20.

下部凹部19の下部凹部深さDbは、凹部15の凹部深さDよりも小さい。同様に、下部凹部19の下部凹部幅Wdb(第2凹部幅)は、凹部15の凹部幅Wdよりも小さい。
なお、下部凹部19の下部凹部幅Wdbは、下部凹部深さDbの1/2の位置での測定値である。
The lower recess depth Db of the lower recess 19 is smaller than the recess depth D of the recess 15. Similarly, the lower recess width Wdb (second recess width) of the lower recess 19 is smaller than the recess width Wd of the recess 15.
Note that the lower recess width Wdb of the lower recess 19 is a measured value at a position that is 1/2 of the lower recess depth Db.

このように、本実施の形態の微細凹凸構造20では、個々の凹部15の凹底部16に、凹部15よりも小さい下部凹部19がランダムに形成されていることにより、微細凹凸構造20の凹部15の凹底部16における平坦部がほとんどなくなり、反射防止効果が、凹部15のみの場合よりも一層高くなるという効果が得られる。   Thus, in the fine concavo-convex structure 20 of the present embodiment, the concave portions 15 of the fine concavo-convex structure 20 are formed by randomly forming the lower concave portions 19 smaller than the concave portions 15 in the concave bottom portions 16 of the individual concave portions 15. The flat part in the concave bottom part 16 is almost eliminated, and the effect that the antireflection effect becomes higher than in the case of only the concave part 15 is obtained.

(実施の形態3)
図3は、本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。
この実施の形態3の微細凹凸構造30は、上述の微細凹凸構造10と微細凹凸構造20の構造を組み合わせた例が示されている。
(Embodiment 3)
FIG. 3 is a cross-sectional view showing a configuration example of a fine concavo-convex structure which is still another embodiment of the present invention.
The fine concavo-convex structure 30 of the third embodiment is an example in which the structures of the fine concavo-convex structure 10 and the fine concavo-convex structure 20 described above are combined.

すなわち、凹部15の間の凸部11の凸頂部12には、凹部15よりも小さい上部凹部18(例えば、上部凹部18a〜上部凹部18e)がランダムに形成されているとともに、凹部15の凹底部16には、凹部15よりも小さい下部凹部19(例えば、下部凹部19a〜下部凹部19g)がランダムに形成されている。   That is, an upper concave portion 18 (for example, upper concave portion 18a to upper concave portion 18e) smaller than the concave portion 15 is randomly formed on the convex top portion 12 of the convex portion 11 between the concave portions 15, and the concave bottom portion of the concave portion 15 is formed. 16, lower recesses 19 (for example, lower recesses 19a to 19g) smaller than the recesses 15 are randomly formed.

この微細凹凸構造30の場合には、凸部11の凸頂部12および凹部15の凹底部16の双方の平坦部が、上部凹部18および下部凹部19の形成によって解消され、微細凹凸構造10や微細凹凸構造20よりもさらに高い光の反射防止効果、さらには反射防止効果の異方性の低減効果が得られる。   In the case of this fine concavo-convex structure 30, the flat portions of both the convex top portion 12 of the convex portion 11 and the concave bottom portion 16 of the concave portion 15 are eliminated by the formation of the upper concave portion 18 and the lower concave portion 19. An antireflection effect of light higher than that of the concavo-convex structure 20 and an anisotropy reduction effect of the antireflection effect can be obtained.

(実施の形態4)
図4は、本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。
この微細凹凸構造40(第2微細凹凸構造)は、上述の実施の形態1に例示された微細凹凸構造10を型として当該微細凹凸構造10の凹凸パターンが転写された凹凸形状を有する。
(Embodiment 4)
FIG. 4 is a cross-sectional view showing a configuration example of a fine relief structure according to still another embodiment of the present invention.
The fine concavo-convex structure 40 (second fine concavo-convex structure) has a concavo-convex shape to which the concavo-convex pattern of the fine concavo-convex structure 10 is transferred using the fine concavo-convex structure 10 exemplified in the first embodiment as a mold.

すなわち、この微細凹凸構造40では、上述の微細凹凸構造10の複数の凹部15に対応した複数の孤立した凸部41を備え、これらの凸部41の間の位置に、上述の上部凹部18に対応した下部凸部42(例えば、下部凸部42a〜下部凸部42e)が形成された形状を呈している。   That is, the fine concavo-convex structure 40 includes a plurality of isolated convex portions 41 corresponding to the plurality of concave portions 15 of the fine concavo-convex structure 10 described above, and the upper concave portion 18 is provided at a position between the convex portions 41. It has a shape in which corresponding lower protrusions 42 (for example, lower protrusions 42a to 42e) are formed.

この場合、凸部41の凸部高さHrは、上述の凹部15の凹部深さDとほぼ等しい。同様に、下部凸部42の下部凸部高さHbrは、上部凹部深さDtとほぼ等しい。
凸部41の凸部幅Whrは、凹部幅Wdとほぼ等しい。また、下部凸部42の下部凸部幅Whbr(第2凸部幅)は、上部凹部幅Wdtとほぼ等しい。
下部凸部幅Whbr(第2凸部幅)は、凸部幅Whr(第1凸部幅)よりも小さい。
In this case, the convex portion height Hr of the convex portion 41 is substantially equal to the concave portion depth D of the concave portion 15 described above. Similarly, the lower convex portion height Hbr of the lower convex portion 42 is substantially equal to the upper concave portion depth Dt.
The convex portion width Whr of the convex portion 41 is substantially equal to the concave portion width Wd. Further, the lower convex portion width Whbr (second convex portion width) of the lower convex portion 42 is substantially equal to the upper concave portion width Wdt.
The lower convex portion width Whbr (second convex portion width) is smaller than the convex portion width Whr (first convex portion width).

この微細凹凸構造40の場合には、孤立した微細な凸部41の間に、さらに微細な下部凸部42が存在するとともに、個々の凸部41の凸部高さHrもランダムになるので、光が入射する最表面部での平坦部がほとんどなくなり、高い光の反射防止効果が得られる。
また、凸部41の高さは一定でないので、反射防止効果の異方性の低減に効果がある。
In the case of this fine concavo-convex structure 40, there are further fine lower convex portions 42 between the isolated fine convex portions 41, and the convex portion heights Hr of the individual convex portions 41 are also random. There is almost no flat portion at the outermost surface where light enters, and a high light reflection preventing effect is obtained.
Moreover, since the height of the convex portion 41 is not constant, it is effective in reducing the anisotropy of the antireflection effect.

(実施の形態5)
図5は、本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。
この実施の形態5の微細凹凸構造50(第2微細凹凸構造)は、上述の実施の形態2に例示された微細凹凸構造20を型に用いて転写形成された構造を有している。
(Embodiment 5)
FIG. 5 is a cross-sectional view showing a configuration example of a fine concavo-convex structure which is still another embodiment of the present invention.
The fine concavo-convex structure 50 (second fine concavo-convex structure) of the fifth embodiment has a structure that is transferred and formed using the fine concavo-convex structure 20 exemplified in the above-described second embodiment as a mold.

すなわち、この微細凹凸構造50では、上述の微細凹凸構造20の凹部15に対応した孤立した複数の凸部41が形成されている。   That is, in the fine concavo-convex structure 50, a plurality of isolated convex portions 41 corresponding to the concave portions 15 of the fine concavo-convex structure 20 described above are formed.

さらに、個々の凸部41の先端部には、上述の微細凹凸構造20の下部凹部19(例えば、下部凹部19a〜下部凹部19g)に対応した一つまたは複数の、さらに微細な上部凸部43(例えば、上部凸部43a〜上部凸部43g)がランダムに形成されている。   Further, one or a plurality of finer upper convex portions 43 corresponding to the lower concave portions 19 (for example, the lower concave portion 19a to the lower concave portion 19g) of the fine concavo-convex structure 20 are provided at the tip portions of the individual convex portions 41. (For example, the upper convex part 43a-the upper convex part 43g) are formed at random.

この場合も、凸部41の凸部高さHrは、凹部15の凹部深さDにほぼ等しく、上部凸部43の上部凸部高さHtrは、下部凹部19の下部凹部深さDbにほぼ等しい。また、上部凸部43の上部凸部幅Whtr(第2凸部幅)は、下部凹部幅Wdbとほぼ等しい。
上部凸部幅Whtr(第2凸部幅)は、凸部幅Whr(第1凸部幅)よりも小さい。また、上部凹部幅Wdtr(第2凹部幅)は、凹部幅Wdr(第1凹部幅)より小さい。
Also in this case, the convex portion height Hr of the convex portion 41 is substantially equal to the concave portion depth D of the concave portion 15, and the upper convex portion height Htr of the upper convex portion 43 is substantially equal to the lower concave portion depth Db of the lower concave portion 19. equal. Further, the upper convex portion width Whtr (second convex portion width) of the upper convex portion 43 is substantially equal to the lower concave portion width Wdb.
The upper convex portion width Whtr (second convex portion width) is smaller than the convex portion width Whr (first convex portion width). The upper recess width Wdtr (second recess width) is smaller than the recess width Wdr (first recess width).

このように、この実施の形態5の微細凹凸構造50の場合には、孤立した微細な凸部41の先端部に、さらに微細な上部凸部43がランダムに形成された構造であるため、光の反射防止効果および反射防止効果の異方性の低減効果を大きくすることができる。   Thus, in the case of the fine concavo-convex structure 50 of the fifth embodiment, since the fine upper convex portion 43 is randomly formed at the tip of the isolated fine convex portion 41, the light The antireflection effect and the anisotropy reduction effect of the antireflection effect can be increased.

(実施の形態6)
図6は、本発明のさらに他の実施の形態である微細凹凸構造の構成例を示す断面図である。
この実施の形態6の微細凹凸構造60(第2微細凹凸構造)は、上述の実施の形態3に例示された微細凹凸構造30を型として用いて転写形成された構造を有している。
(Embodiment 6)
FIG. 6 is a cross-sectional view showing a configuration example of a fine relief structure according to still another embodiment of the present invention.
The fine concavo-convex structure 60 (second fine concavo-convex structure) of the sixth embodiment has a structure that is transferred and formed using the fine concavo-convex structure 30 exemplified in the above-described third embodiment as a mold.

すなわち、この微細凹凸構造60は、孤立した複数の凸部41と、その先端部にランダムに形成された、さらに微細な上部凸部43(例えば、上部凸部43a〜上部凸部43g)、および凸部41の間にランダムに形成された下部凸部42(例えば、下部凸部42a〜下部凸部42e)を備えた構造となっている。   That is, the fine concavo-convex structure 60 includes a plurality of isolated convex portions 41, and further finer upper convex portions 43 (for example, upper convex portion 43a to upper convex portion 43g) that are randomly formed at the tip portions thereof, and The structure is provided with lower protrusions 42 (for example, lower protrusions 42a to 42e) that are randomly formed between the protrusions 41.

これにより、上述の微細凹凸構造40と、微細凹凸構造50の光の反射防止効果を併せた、一層大きな反射防止効果および反射防止効果の異方性の低減効果が得られる。   As a result, an even greater antireflection effect and an effect of reducing the anisotropy of the antireflection effect, which combine the above-described fine concavo-convex structure 40 and the light antireflection effect of the fine concavo-convex structure 50, can be obtained.

(実施の形態7)
図7は、本発明の一実施の形態である光学素子の製造方法によって得られた光学素子の構成例を示す斜視図である。
図7には、上述の実施の形態1〜実施の形態6に例示された微細凹凸構造10〜微細凹凸構造60を備えた光学素子K1の一例としてプリズム110の場合が例示されている。
(Embodiment 7)
FIG. 7 is a perspective view showing a configuration example of an optical element obtained by the optical element manufacturing method according to an embodiment of the present invention.
FIG. 7 illustrates the case of the prism 110 as an example of the optical element K1 including the fine concavo-convex structure 10 to the fine concavo-convex structure 60 exemplified in the first to sixth embodiments.

このプリズム110は、三角柱の三つの側面の各々に、反射コート形成面111、入射面112、出射面113が配置されている。
反射コート形成面111は、例えば、アルミニウム被覆層からなる反射面である。
In the prism 110, a reflective coating forming surface 111, an incident surface 112, and an output surface 113 are arranged on each of the three side surfaces of the triangular prism.
The reflective coat forming surface 111 is a reflective surface made of, for example, an aluminum coating layer.

そして、光120の光路121に例示されるように、入射面112から入射した光120は、反射コート形成面111で反射され、出射面113から出射する。
入射面112および出射面113の各々の表面には、上述の微細凹凸構造10〜微細凹凸構造60のいずれかが形成されている。
Then, as illustrated in the optical path 121 of the light 120, the light 120 incident from the incident surface 112 is reflected by the reflective coating formation surface 111 and is emitted from the emission surface 113.
Any one of the fine concavo-convex structure 10 to the fine concavo-convex structure 60 described above is formed on each of the incident surface 112 and the exit surface 113.

この場合、入射面112および出射面113の各々の平面が上述の微細凹凸構造10におけるX−Y平面であり、法線方向が、Z方向となる位置関係である。   In this case, the planes of the entrance surface 112 and the exit surface 113 are XY planes in the fine concavo-convex structure 10 described above, and the normal direction is a positional relationship in the Z direction.

本実施の形態の微細凹凸構造10〜微細凹凸構造60を備えた光学素子K1であるプリズム110によれば、入射面112および出射面113等の表面に形成された微細凹凸構造10〜微細凹凸構造60により、高い反射防止効果が実現され、高い光学性能を実現できる。   According to the prism 110 which is the optical element K1 provided with the fine concavo-convex structure 10 to the fine concavo-convex structure 60 of the present embodiment, the fine concavo-convex structure 10 to the fine concavo-convex structure formed on the surfaces such as the entrance surface 112 and the exit surface 113. By 60, a high antireflection effect is realized and high optical performance can be realized.

さらに、微細凹凸構造10〜微細凹凸構造30を備えた場合には、凹部15を取り囲む凸部11が、その凸頂部12を連ねた稜線部13が網目状に連続するように連続的に形成されていることにより、凸部が単独で孤立して形成されている形状に比べて、凸部11の外力に対する強度が大幅に向上する。   Further, when the fine concavo-convex structure 10 to the fine concavo-convex structure 30 are provided, the convex portion 11 surrounding the concave portion 15 is continuously formed so that the ridge line portion 13 connecting the convex top portions 12 is continuous in a mesh shape. As a result, the strength of the convex portion 11 with respect to the external force is greatly improved as compared with a shape in which the convex portion is formed independently.

さらに、本実施形態においては、一例として、凹部中心部間距離Lの平均値を可視光波長以下の105nmとすることにより、可視光線に対する微細凹凸構造10の反射防止効果がより顕著に発現される。   Furthermore, in the present embodiment, as an example, the antireflection effect of the fine concavo-convex structure 10 with respect to visible light is more remarkably exhibited by setting the average value of the distance L between the recesses to 105 nm which is equal to or less than the visible light wavelength. .

(実施の形態8)
図8は、本発明の他実施の形態である光学素子の製造方法によって得られた光学素子の構成例を示す斜視図である。
(Embodiment 8)
FIG. 8 is a perspective view showing a configuration example of an optical element obtained by the optical element manufacturing method according to another embodiment of the present invention.

本実施の形態8の光学素子K2は、図8に例示されるように、例えば、第1面として有効径D0が5.4mm、曲率半径R0が3.5mmの球面である凸光学面131と、第2面として平光学面132を備えた平凸レンズ130である。   As illustrated in FIG. 8, the optical element K2 of the eighth embodiment includes, for example, a convex optical surface 131 that is a spherical surface having an effective diameter D0 of 5.4 mm and a curvature radius R0 of 3.5 mm as the first surface. A plano-convex lens 130 having a flat optical surface 132 as a second surface.

そして、第1面である凸光学面131に、上述の実施の形態1〜実施の形態6に例示された微細凹凸構造10〜微細凹凸構造60が形成されている。
なお、必要に応じて、平光学面132にも微細凹凸構造10〜微細凹凸構造60を形成してよい。
The fine concavo-convex structure 10 to the fine concavo-convex structure 60 exemplified in the first to sixth embodiments is formed on the convex optical surface 131 which is the first surface.
If necessary, the fine uneven structure 10 to the fine uneven structure 60 may also be formed on the flat optical surface 132.

この場合、微細凹凸構造10〜微細凹凸構造60が形成される凸光学面131が曲面であるため、上述のZ方向(凹部15の中心線15cの方向)が、凸光学面131の法線方向となるように、当該微細凹凸構造10が形成される。   In this case, since the convex optical surface 131 on which the fine concavo-convex structure 10 to the fine concavo-convex structure 60 is formed is a curved surface, the Z direction (the direction of the center line 15 c of the concave portion 15) is the normal direction of the convex optical surface 131. Thus, the fine concavo-convex structure 10 is formed.

この場合、曲面からなる凸光学面131の表面全体で均一に、しかも異方性を生じないような反射防止効果が得られるように、凸光学面131の設計形状に合わせて、凹部15または凸部41のサイズや配列状態が決定することができる。すなわち、凹部15や凸部41に関する上述の凹部中心部間距離Lや、稜線交点間距離15dの標準偏差等のパラメータが設定される。   In this case, in order to obtain an antireflection effect that is uniform over the entire surface of the convex optical surface 131 that is a curved surface and that does not cause anisotropy, the concave portion 15 or the convex shape is adjusted in accordance with the design shape of the convex optical surface 131. The size and arrangement state of the unit 41 can be determined. That is, parameters such as the above-described distance L between the center portions of the recesses 15 and the protrusion 41 and the standard deviation of the distance 15d between the ridge line intersections are set.

本実施の形態8の光学素子K2によれば、表面に微細凹凸構造10〜微細凹凸構造60を形成することにより、光が入射する最表面での平坦部による影響を解消して高い反射防止効果を実現できる。   According to the optical element K2 of the eighth embodiment, by forming the fine concavo-convex structure 10 to the fine concavo-convex structure 60 on the surface, the influence of the flat portion on the outermost surface where light enters is eliminated, and a high antireflection effect Can be realized.

さらに、本実施の形態2においては凹部中心部間距離Lを可視光波長以下の105nmとすることにより、可視光線に対する微細凹凸構造10の反射防止効果がより顕著に発現される光学素子K2を提供することができる。   Furthermore, in the second embodiment, by providing the distance L between the center portions of the recesses to 105 nm which is equal to or less than the visible light wavelength, an optical element K2 is provided in which the antireflection effect of the fine concavo-convex structure 10 with respect to visible light is more remarkably exhibited. can do.

すなわち、光学素子K2としての平凸レンズ130の凸光学面131に微細凹凸構造10〜微細凹凸構造60が形成されていることにより、可視光波長に対して反射防止効果および高い光の透過率を具備する光学素子K2を提供することができ、また、入射光を効率よく集光することができる。   That is, by forming the fine concavo-convex structure 10 to the fine concavo-convex structure 60 on the convex optical surface 131 of the plano-convex lens 130 as the optical element K2, it has an antireflection effect and a high light transmittance with respect to visible light wavelengths. The optical element K2 can be provided, and incident light can be collected efficiently.

このように、微細凹凸構造10を備えた平凸レンズ130は、入射光を効率よく集光できることにより、様々な光学系への適応が可能となる。   As described above, the plano-convex lens 130 including the fine concavo-convex structure 10 can be applied to various optical systems by efficiently collecting incident light.

なお、光学系において、特に入射側の第1面などの光が入射する位置に本実施の形態の、光学素子K1や光学素子K2を配置することにより、光学面内においてより効果的に反射防止効果を得ることができるため、高い反射防止能を有する光学系を構築することが可能となる。   In the optical system, in particular, the optical element K1 or the optical element K2 of the present embodiment is disposed at a position where light such as the first surface on the incident side is incident, thereby preventing reflection more effectively in the optical surface. Since an effect can be obtained, it becomes possible to construct an optical system having high antireflection performance.

なお、上述の実施の形態1〜実施の形態3において凸部11と凸部11の間の凹部15の深さが反射防止効果および強度などの効果が実現できる範囲で異なってもよい。このような場合でも、凸頂部12が稜線部13をなすように連続して形成された凸部11と見なすことができる。   In the first to third embodiments described above, the depth of the concave portion 15 between the convex portion 11 and the convex portion 11 may be different within a range in which an effect such as an antireflection effect and strength can be realized. Even in such a case, it can be regarded as the convex part 11 formed so that the convex top part 12 may form the ridgeline part 13.

なお、実施の形態8において、光学素子K2として、一方が凸光学面131で他方が平光学面132の平凸レンズ130を例示したが、両面とも曲面でも良く、また曲面形状であれば球面、非球面、自由曲面など、どのような曲面であっても構わない。また、微細凹凸構造10〜微細凹凸構造60が形成される光学面が凹面の凹レンズでもよい。   In the eighth embodiment, the optical element K2 is exemplified by the plano-convex lens 130 having one convex optical surface 131 and the other flat optical surface 132. However, both surfaces may be curved surfaces. Any curved surface such as a spherical surface or a free-form surface may be used. The optical surface on which the fine concavo-convex structure 10 to the fine concavo-convex structure 60 is formed may be a concave lens having a concave surface.

なお、実施の形態8において、凸光学面131における微細凹凸構造10〜微細凹凸構造60の形成方向(この場合、凹部15の中心線15cの方向、またはZ方向)は反射防止効果および強度などの本発明の効果が保たれる範囲で、平凸レンズ130の光軸133に対して、同じ方向や傾いた方向など、凸光学面131の法線方向からずれて形成しても構わない。   In the eighth embodiment, the direction in which the fine concavo-convex structure 10 to the fine concavo-convex structure 60 are formed on the convex optical surface 131 (in this case, the direction of the center line 15c of the concave portion 15 or the Z direction) is the antireflection effect and strength. As long as the effect of the present invention is maintained, the optical axis 133 of the plano-convex lens 130 may be formed so as to deviate from the normal direction of the convex optical surface 131 such as the same direction or an inclined direction.

ここで、本発明の上述の各実施の形態における光学素子K1および光学素子K2等に備えられる反射防止効果を有する微細凹凸構造10〜微細凹凸構造60の形成方法について説明する。
本実施の形態の光学素子においては、どのような方法を用いて光学素子基板および光学素子曲面に微細凹凸構造10〜微細凹凸構造60を形成しても構わない。
Here, a method of forming the fine concavo-convex structure 10 to the fine concavo-convex structure 60 having the antireflection effect provided in the optical element K1 and the optical element K2 in each of the above-described embodiments of the present invention will be described.
In the optical element of the present embodiment, any method may be used to form the fine concavo-convex structure 10 to the fine concavo-convex structure 60 on the optical element substrate and the optical element curved surface.

微細凹凸構造10〜微細凹凸構造30を形成する方法としては、形成しようとする微細凹凸構造10〜微細凹凸構造30とは逆の凹凸形状を有する成形型を用いて光学素子を成形すると同時に光学素子曲面に微細凹凸構造10〜微細凹凸構造30を形成する方法を用いることができる。   As a method of forming the fine concavo-convex structure 10 to the fine concavo-convex structure 30, the optical element is simultaneously formed by using the forming die having the concavo-convex shape opposite to the fine concavo-convex structure 10 to the fine concavo-convex structure 30 to be formed. A method of forming the fine uneven structure 10 to the fine uneven structure 30 on the curved surface can be used.

また、微細凹凸構造40〜微細凹凸構造60は、上述のように、微細凹凸構造10〜微細凹凸構造30を型として形成することができる。   Moreover, the fine concavo-convex structure 40 to the fine concavo-convex structure 60 can be formed using the fine concavo-convex structure 10 to the fine concavo-convex structure 30 as a mold as described above.

あるいは、光学素子の表面に硬化性材料を形成した後に形成しようとする微細凹凸構造10〜微細凹凸構造60とは逆の凹凸形状を有する成形型を用いて硬化性材料に微細凹凸構造10〜微細凹凸構造60の形状を転写し、硬化性材料を硬化させる方法を用いることができる。   Alternatively, after forming the curable material on the surface of the optical element, the concavo-convex structure 10 to the fine concavo-convex structure 10 to the fine concavo-convex structure 10 to the fine concavo-convex structure to be formed using a mold having the concavo-convex shape opposite to the fine concavo-convex structure 60 A method of transferring the shape of the concavo-convex structure 60 and curing the curable material can be used.

あるいは、光学素子曲面に直接的に電子線描画する方法を用いることができる。
また、これらの方法を任意に組み合わせて用いても構わない。
なお、形成しようとする微細凹凸構造10〜微細凹凸構造60とは逆の凹凸形状を有する成形型の製作方法においてもどのような方法を用いても構わない。
Alternatively, a method of directly drawing an electron beam on the optical element curved surface can be used.
Moreover, you may use combining these methods arbitrarily.
Note that any method may be used in the manufacturing method of the mold having the concave and convex shapes opposite to the fine concave and convex structures 10 to 60 to be formed.

例えば半導体プロセスの電子線描画やイオンエッチングなどのリソグラフィー技術を利用して型基材に形成しようとする微細凹凸構造とは逆形状の微細凹凸構造を形成して型を作製する方法を用いることができる。   For example, a method of forming a mold by forming a fine concavo-convex structure opposite to the fine concavo-convex structure to be formed on a mold base using lithography techniques such as electron beam drawing and ion etching in a semiconductor process is used. it can.

あるいは、型基材に、目的の微細凹凸構造10〜微細凹凸構造60を形成した後、ニッケル(Ni)などの金属を用いて電鋳法により反転型を作製する方法を用いることもできる。   Alternatively, after forming the desired fine concavo-convex structure 10 to fine concavo-convex structure 60 on the mold base, a method of producing an inverted mold by electroforming using a metal such as nickel (Ni) can also be used.

なお、この微細凹凸構造10〜微細凹凸構造60の転写による形成の場合には、光学素子K1〜光学素子K2の基材の成形時に同時に形成してもよいし、基材の表面に被着された樹脂層に微細凹凸構造10〜微細凹凸構造60を転写形成してもよい。   In the case of forming the fine concavo-convex structure 10 to the fine concavo-convex structure 60 by transfer, the fine concavo-convex structure 10 may be formed simultaneously with the formation of the base material of the optical element K1 to the optical element K2, or may be attached to the surface of the base material. Alternatively, the fine concavo-convex structure 10 to the fine concavo-convex structure 60 may be transferred and formed on the resin layer.

あるいは、微細凹凸構造10〜微細凹凸構造60が転写された透明なシートを光学素子K1や光学素子K2の基材の表面に貼りつける方法でもよい。
以上のように、本発明の各実施の形態の光学素子によれば、光が入射する最表面部の平坦部をほとんどなくして、異方性のない高い反射防止効果等の光学性能を有する光学素子を提供することができる。
Or the method of affixing the transparent sheet | seat in which the fine concavo-convex structure 10-the fine concavo-convex structure 60 was transferred on the surface of the base material of the optical element K1 or the optical element K2 may be used.
As described above, according to the optical element of each embodiment of the present invention, an optical element having almost no flat portion on the outermost surface on which light is incident and having an optical performance such as a high antireflection effect without anisotropy. An element can be provided.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

(付記1).可視光波長よりも短い周期の凹部または凸部の複数の微細構造体の、隣接する凹部または凸部の中心線を通る断面において、凸断面形状頂点部の少なくとも一部に、前記断面における凹部幅または凸部幅よりも小さい凹部幅または凸部幅を有する複数の微細構造体が、光学素子表面の少なくとも一部に形成されていることを特徴とする反射防止光学素子。   (Appendix 1). In the cross section passing through the center line of the adjacent concave or convex portions of the plurality of concave or convex fine structures having a period shorter than the visible light wavelength, the concave portion width in the cross section is at least part of the convex sectional shape apex portion. Alternatively, an antireflection optical element, wherein a plurality of microstructures having a recess width or a protrusion width smaller than the protrusion width are formed on at least a part of the surface of the optical element.

(付記2).微細構造体の凹部深さまたは凸部高さが一定ではないことを特徴とする付記1記載の反射防止光学素子。
(付記3).光学素子表面が曲面であることを特徴とする付記1または付記2に記載の反射防止光学素子。
(Appendix 2). 2. The antireflection optical element according to appendix 1, wherein the concave portion depth or the convex portion height of the fine structure is not constant.
(Appendix 3). The antireflection optical element according to Supplementary Note 1 or Supplementary Note 2, wherein the surface of the optical element is a curved surface.

10 微細凹凸構造
11 凸部
12 凸頂部
13 稜線部
13a 稜線交点
14 稜曲面
15 凹部
15a 多角形
15b 重心
15c 中心線
15d 稜線交点間距離
16 凹底部
17 内周面
18 上部凹部
18a 上部凹部
18b 上部凹部
18c 上部凹部
18d 上部凹部
18e 上部凹部
19 下部凹部
19a 下部凹部
19g 下部凹部
20 微細凹凸構造
30 微細凹凸構造
40 微細凹凸構造
41 凸部
42 下部凸部
42a 下部凸部
42e 下部凸部
43 上部凸部
43a 上部凸部
43g 上部凸部
50 微細凹凸構造
60 微細凹凸構造
110 プリズム
111 反射コート形成面
112 入射面
113 出射面
120 光
121 光路
130 平凸レンズ
131 凸光学面
132 平光学面
133 光軸
D 凹部深さ
Db 下部凹部深さ
Dt 上部凹部深さ
H 凸部高さ
Hbr 下部凸部高さ
Hr 凸部高さ
Htr 上部凸部高さ
K1 光学素子
K2 光学素子
Wd 凹部幅
Wdb 下部凹部幅
Wdt 上部凹部幅
Wdr 凹部幅
Wdtr 上部凹部幅
Wh 凸部幅
Whbr 下部凸部幅
Whr 凸部幅
Whtr 上部凸部幅
DESCRIPTION OF SYMBOLS 10 Fine concavo-convex structure 11 Convex part 12 Convex top part 13 Edge line part 13a Edge line intersection 14 Edge curved surface 15 Recess 15a Polygon 15b Center of gravity 15c Center line 15d Distance between ridge line intersections 16 Concave bottom 17 Inner peripheral surface 18 Upper recessed part 18a Upper recessed part 18b Upper recessed part 18c Upper recessed part 18d Upper recessed part 18e Upper recessed part 19 Lower recessed part 19a Lower recessed part 19g Lower recessed part 20 Fine uneven structure 30 Fine uneven structure 40 Fine uneven structure 41 Convex part 42 Lower convex part 42a Lower convex part 42e Lower convex part 43 Upper convex part 43a Upper convex portion 43g Upper convex portion 50 Fine concavo-convex structure 60 Fine concavo-convex structure 110 Prism 111 Reflective coat forming surface 112 Incident surface 113 Outgoing surface 120 Light 121 Optical path 130 Plano-convex lens 131 Convex optical surface 132 Flat optical surface 133 Optical axis D Concave depth Db Lower concave part depth Dt Upper concave part depth H Convex part height Hbr Lower part Convex Height Hr Convex Height Htr Upper Convex Height K1 Optical Element K2 Optical Element Wd Concave Width Wdb Lower Concave Width Wdt Upper Concave Width Wdr Concave Width Wdtr Upper Concave Width Wh Convex Width Whbr Lower Convex Width Whr Convex Part width Whtr Upper convex part width

Claims (13)

稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣接する前記凸部または前記凹部の中心部を通る断面における前記凸部の頂部および前記凹部の底部の少なくとも一方に、前記断面における前記凸部の第1凸部幅または前記凹部の第1凹部幅よりも小さい第2凸部幅または第2凹部幅を有する複数の微細構造体が形成された微細凹凸構造を具備したことを特徴とする光学素子。   The ridge line part includes a convex part that is continuous in a mesh shape and a plurality of concave parts surrounded by the convex part, and the top part of the convex part and the concave part in a cross section that passes through the adjacent convex part or the central part of the concave part. A plurality of microstructures having a second convex portion width or a second concave portion width smaller than the first convex portion width of the convex portion or the first concave portion width of the concave portion in the cross section is formed on at least one of the bottom portions. An optical element comprising a fine concavo-convex structure. 請求項1記載の光学素子において、
前記微細凹凸構造における前記断面において、前記凸部の凸部高さ、および前記凹部の凹部深さ、の少なくとも一方が、一定ではないことを特徴とする光学素子。
The optical element according to claim 1, wherein
In the cross section of the fine concavo-convex structure, at least one of a convex part height of the convex part and a concave part depth of the concave part is not constant.
請求項1または請求項2記載の光学素子において、
前記微細凹凸構造を型として得られ、当該微細凹凸構造とは凹凸が逆の第2微細凹凸構造を備えたことを特徴とする光学素子。
The optical element according to claim 1 or 2,
An optical element obtained by using the fine concavo-convex structure as a mold, and having a second fine concavo-convex structure having concavities and convexities opposite to the fine concavo-convex structure.
請求項1から請求項3のいずれか1項に記載の光学素子において、
前記微細凹凸構造における隣り合う前記凹部の前記中心部の距離の最大値が、使用する光の波長よりも小さいことを特徴とする光学素子。
The optical element according to any one of claims 1 to 3,
An optical element, wherein a maximum value of a distance between the central portions of adjacent concave portions in the fine concavo-convex structure is smaller than a wavelength of light to be used.
稜線部が網目状に連続する凸部に囲まれた複数の凹部を含み、隣接する前記凸部または前記凹部の中心部を通る断面における前記凸部の頂部および前記凹部の底部の少なくとも一方に、前記断面における前記凸部の第1凸部幅または前記凹部の第1凹部幅よりも小さい第2凸部幅または第2凹部幅を有する複数の微細構造体が形成された微細凹凸構造を、光学素子の表面に形成することを特徴とする光学素子の製造方法。   At least one of the top part of the convex part and the bottom part of the concave part in a cross section passing through the central part of the adjacent convex part or the concave part includes a plurality of concave parts surrounded by a convex part whose ridge line part is continuous in a mesh shape, A fine concavo-convex structure in which a plurality of fine structures having a second convex portion width or a second concave portion width smaller than the first convex portion width of the convex portion or the first concave portion width of the concave portion in the cross section is formed. A method for producing an optical element, comprising forming on a surface of the element. 請求項5記載の光学素子の製造方法において、
前記微細凹凸構造における前記断面において、前記凸部の凸部高さ、および前記凹部の凹部深さ、の少なくとも一方を変化させることを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element according to claim 5,
In the cross section in the fine concavo-convex structure, at least one of a convex part height of the convex part and a concave part depth of the concave part is changed.
請求項5または請求項6記載の光学素子の製造方法において、
前記微細凹凸構造を型として、当該微細凹凸構造とは凹凸が逆の第2微細凹凸構造を、前記光学素子の表面に形成することを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of Claim 5 or Claim 6,
A method of manufacturing an optical element, wherein a second fine concavo-convex structure having a concavo-convex opposite to the fine concavo-convex structure is formed on the surface of the optical element using the fine concavo-convex structure as a mold.
請求項5から請求項7のいずれか1項に記載の光学素子の製造方法において、
前記微細凹凸構造における隣り合う前記凹部の前記中心部の距離の最大値が、使用する光の波長よりも小さいことを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of any one of Claims 5-7,
The method of manufacturing an optical element, wherein a maximum value of a distance between the central portions of adjacent concave portions in the fine concavo-convex structure is smaller than a wavelength of light to be used.
稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣接する前記凸部または前記凹部の中心部を通る断面における前記凸部の頂部および前記凹部の底部の少なくとも一方に、前記断面における前記凸部の第1凸部幅または前記凹部の第1凹部幅よりも小さい第2凸部幅または第2凹部幅を有する複数の微細構造体が形成されていることを特徴とする微細凹凸構造。   The ridge line part includes a convex part that is continuous in a mesh shape and a plurality of concave parts surrounded by the convex part, and the top part of the convex part and the concave part in a cross section that passes through the adjacent convex part or the central part of the concave part. A plurality of microstructures having a second convex portion width or a second concave portion width smaller than the first convex portion width of the convex portion or the first concave portion width of the concave portion in the cross section are formed on at least one of the bottom portions. A fine concavo-convex structure characterized by having 請求項9記載の微細凹凸構造において、
前記微細凹凸構造における前記断面において、前記凸部の凸部高さ、および前記凹部の凹部深さ、の少なくとも一方が一定ではないことを特徴とする微細凹凸構造。
The fine concavo-convex structure according to claim 9,
In the cross section in the fine concavo-convex structure, at least one of the convex part height of the convex part and the concave part depth of the concave part is not constant.
請求項9または請求項10記載の微細凹凸構造において、
隣り合う前記凹部の前記中心部の距離の最大値が、使用する光の波長よりも小さいことを特徴とする微細凹凸構造。
In the fine concavo-convex structure according to claim 9 or 10,
A fine concavo-convex structure, wherein a maximum value of a distance between the central portions of adjacent concave portions is smaller than a wavelength of light to be used.
請求項9から請求項11のいずれか1項に記載の微細凹凸構造を型として得られ、当該微細凹凸構造とは凹凸が逆の第2微細凹凸構造を呈することを特徴とする微細凹凸構造。   A fine concavo-convex structure obtained by using the fine concavo-convex structure according to any one of claims 9 to 11 as a mold and exhibiting a second fine concavo-convex structure in which the concavo-convex is opposite to the fine concavo-convex structure. 請求項9から請求項12のいずれか1項に記載の微細凹凸構造を成形面に付与したことを特徴とする成形型。   A mold having the fine concavo-convex structure according to any one of claims 9 to 12 applied to a molding surface.
JP2009259039A 2009-11-12 2009-11-12 Optical element, method of manufacturing the same, minutely rugged structure, and molding die Pending JP2011107195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259039A JP2011107195A (en) 2009-11-12 2009-11-12 Optical element, method of manufacturing the same, minutely rugged structure, and molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259039A JP2011107195A (en) 2009-11-12 2009-11-12 Optical element, method of manufacturing the same, minutely rugged structure, and molding die

Publications (1)

Publication Number Publication Date
JP2011107195A true JP2011107195A (en) 2011-06-02

Family

ID=44230782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259039A Pending JP2011107195A (en) 2009-11-12 2009-11-12 Optical element, method of manufacturing the same, minutely rugged structure, and molding die

Country Status (1)

Country Link
JP (1) JP2011107195A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137251A1 (en) * 2012-03-15 2013-09-19 綜研化学株式会社 Anti-reflection film
JP2014026247A (en) * 2012-07-30 2014-02-06 Dainippon Printing Co Ltd Scattering-preventive film, board material for displaying use, and display window
JP2014032250A (en) * 2012-08-01 2014-02-20 Dainippon Printing Co Ltd Antireflection article, plate material for display, and showcase
JP2014032251A (en) * 2012-08-01 2014-02-20 Dainippon Printing Co Ltd Anti-reflection sheet
JP2014066976A (en) * 2012-09-27 2014-04-17 Asahi Kasei E-Materials Corp Fine concavo-convex molded body, fine concavo-convex pattern forming mold, and manufacturing method therefor
KR101441796B1 (en) * 2013-03-13 2014-09-17 서동필 Optical assembly for preventing reflection
KR101447418B1 (en) * 2012-09-28 2014-10-06 다이니폰 인사츠 가부시키가이샤 Antireflection article
WO2016009826A1 (en) * 2014-07-15 2016-01-21 王子ホールディングス株式会社 Optical element
JP2016085397A (en) * 2014-10-28 2016-05-19 大日本印刷株式会社 Anti-reflection articles, manufacturing method therefor, and image display device
JP2017203934A (en) * 2016-05-13 2017-11-16 凸版印刷株式会社 Reflective photomask
JP2018527629A (en) * 2015-08-14 2018-09-20 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. Fabrication of nanostructured substrates containing multiple nanostructure gradients on a single substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085831A (en) * 2002-08-26 2004-03-18 Ntt Advanced Technology Corp Fine grating and manufacturing method therefor
JP2005157119A (en) * 2003-11-27 2005-06-16 Olympus Corp Reflection preventing optical element and optical system using the same
JP2006119390A (en) * 2004-10-22 2006-05-11 Hokuto Seisakusho:Kk Low reflective component, manufacturing method thereof, and display device
JP2008090212A (en) * 2006-10-05 2008-04-17 Nissan Motor Co Ltd Antireflection optical structure, antireflection optical structure body and its manufacturing method
JP2009139796A (en) * 2007-12-10 2009-06-25 Toyota Central R&D Labs Inc Antireflection film, method for manufacturing antireflection film, template for antireflection film, antireflection film made with template for antireflection film, and antireflection film made with replica film
JP2011227387A (en) * 2010-04-22 2011-11-10 Olympus Corp Optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085831A (en) * 2002-08-26 2004-03-18 Ntt Advanced Technology Corp Fine grating and manufacturing method therefor
JP2005157119A (en) * 2003-11-27 2005-06-16 Olympus Corp Reflection preventing optical element and optical system using the same
JP2006119390A (en) * 2004-10-22 2006-05-11 Hokuto Seisakusho:Kk Low reflective component, manufacturing method thereof, and display device
JP2008090212A (en) * 2006-10-05 2008-04-17 Nissan Motor Co Ltd Antireflection optical structure, antireflection optical structure body and its manufacturing method
JP2009139796A (en) * 2007-12-10 2009-06-25 Toyota Central R&D Labs Inc Antireflection film, method for manufacturing antireflection film, template for antireflection film, antireflection film made with template for antireflection film, and antireflection film made with replica film
JP2011227387A (en) * 2010-04-22 2011-11-10 Olympus Corp Optical device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169746A (en) * 2012-03-15 2014-11-26 综研化学株式会社 Anti-reflection film
CN104169746B (en) * 2012-03-15 2016-06-08 综研化学株式会社 Antireflection film
WO2013137251A1 (en) * 2012-03-15 2013-09-19 綜研化学株式会社 Anti-reflection film
JP2014026247A (en) * 2012-07-30 2014-02-06 Dainippon Printing Co Ltd Scattering-preventive film, board material for displaying use, and display window
JP2014032250A (en) * 2012-08-01 2014-02-20 Dainippon Printing Co Ltd Antireflection article, plate material for display, and showcase
JP2014032251A (en) * 2012-08-01 2014-02-20 Dainippon Printing Co Ltd Anti-reflection sheet
JP2014066976A (en) * 2012-09-27 2014-04-17 Asahi Kasei E-Materials Corp Fine concavo-convex molded body, fine concavo-convex pattern forming mold, and manufacturing method therefor
US9158040B2 (en) 2012-09-28 2015-10-13 Dai Nippon Printing Co., Ltd. Anti-reflection article
KR101447418B1 (en) * 2012-09-28 2014-10-06 다이니폰 인사츠 가부시키가이샤 Antireflection article
KR101441796B1 (en) * 2013-03-13 2014-09-17 서동필 Optical assembly for preventing reflection
WO2016009826A1 (en) * 2014-07-15 2016-01-21 王子ホールディングス株式会社 Optical element
JPWO2016009826A1 (en) * 2014-07-15 2017-04-27 王子ホールディングス株式会社 Optical element
US10073193B2 (en) 2014-07-15 2018-09-11 Oji Holdings Corporation Optical element
JP2016085397A (en) * 2014-10-28 2016-05-19 大日本印刷株式会社 Anti-reflection articles, manufacturing method therefor, and image display device
JP2018527629A (en) * 2015-08-14 2018-09-20 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. Fabrication of nanostructured substrates containing multiple nanostructure gradients on a single substrate
JP2017203934A (en) * 2016-05-13 2017-11-16 凸版印刷株式会社 Reflective photomask

Similar Documents

Publication Publication Date Title
JP2011107195A (en) Optical element, method of manufacturing the same, minutely rugged structure, and molding die
US11592156B2 (en) Diffuser plate, designing method of diffuser plate, manufacturing method of diffuser plate, display device, projection device, and lighting device
KR102136021B1 (en) Diffuser and projection projector units
CN107430219B (en) Diffusion plate
KR102026005B1 (en) Composite diffusion plate
JP6424418B2 (en) Optical element, projection device, measurement device, and manufacturing method
CN108351437B (en) Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
US10345611B2 (en) Illumination system
US11002889B2 (en) Reflective diffuser plate, display device, projection device, and lighting device
WO2021230324A1 (en) Optical system device and method for producing optical element
JP7488309B2 (en) Concave-convex structure, optical member and electronic device
US20240077658A1 (en) Diffuser plate, display device, projecting device, and lighting device
JP4206447B2 (en) Fine lattice and its mold
JP2019139163A (en) Diffusion plate, method for designing diffusion plate, display device, projection device, and illumination device
JP2011227387A (en) Optical device
JP6841889B1 (en) Microlens array, projection image display device, microlens array design method and microlens array manufacturing method
JP2009187001A (en) Antireflection structure, method of manufacturing antireflection structure, and optical device provided with antireflection structure
JP2003114316A (en) Optical element
CN109154682B (en) Optical output device and design method
JP2011017781A (en) Optical device and optical system
CN114114477A (en) Micro-lens array light uniformizing structure and manufacturing method thereof, TOF lens and equipment
JP2011059264A (en) Optical element
JP2016057346A (en) Retroreflector and manufacturing method therefor
JP5484837B2 (en) Optical element, method for manufacturing optical element, and fine uneven structure
JP2005026223A (en) Light guide plate for surface light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203