JP2011104603A - Structural member for vehicle and method for manufacturing the same - Google Patents

Structural member for vehicle and method for manufacturing the same Download PDF

Info

Publication number
JP2011104603A
JP2011104603A JP2009259527A JP2009259527A JP2011104603A JP 2011104603 A JP2011104603 A JP 2011104603A JP 2009259527 A JP2009259527 A JP 2009259527A JP 2009259527 A JP2009259527 A JP 2009259527A JP 2011104603 A JP2011104603 A JP 2011104603A
Authority
JP
Japan
Prior art keywords
main body
tubular
structural member
shape
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009259527A
Other languages
Japanese (ja)
Inventor
Akira Katsuno
彰 勝野
Haruo Okada
晴雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI WORLD KK
Original Assignee
FUJI WORLD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI WORLD KK filed Critical FUJI WORLD KK
Priority to JP2009259527A priority Critical patent/JP2011104603A/en
Publication of JP2011104603A publication Critical patent/JP2011104603A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structural member for a vehicle capable of obtaining rigidity more than that of a structural member formed mainly of a pipe and of achieving reduction of weight and cost, and also to provide a method for manufacturing the same. <P>SOLUTION: The method for manufacturing the structural member for the vehicle includes a preliminary bending step for forming a strip-shaped metal material 100 into a nearly U-shaped cross section and a main bending step for forming it into an arc shape to obtain a tubular body part. The main bending step has a first body bending step for molding the tubular body part 11 having a nearly arc shape by interposing the strip-shaped metal material 100 between a first concave part 510 and a first convex part 520 while the curled piece 12 of the strip-shaped metal material 100 is positioned at a first convex mold 52 side using a first concave mold 51 and the first convex mold 52. The first convex mold 52 used in the first body bending step is formed of a plurality of first parallel protruding corner parts 523 extending along a longitudinal direction at the surface of the first convex part 520. A plurality of impressions 181 pressed to the first protruding corner part 523 are formed along the longitudinal direction at the inner face of the tubular body part 11 by performing the first body bending step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車等の車両に用いられる構造部材及びその製造方法に関する。   The present invention relates to a structural member used in a vehicle such as an automobile and a method for manufacturing the same.

例えば、自動車のドアには、側面から衝突された際の剛性を高めるための部材として、インパクトビームと呼ばれる補強部材が取り付けられている。また、自動車の車体の構造そのもについても、剛性を高めるための様々な工夫が行われている。上記補強部材を含め、車両の剛性向上を図るための構造部材は、その部材そのものの剛性向上と共に、軽量化及び低コスト化を図ることが求められている。   For example, a reinforcing member called an impact beam is attached to a door of an automobile as a member for increasing rigidity when the vehicle is collided from a side surface. Also, various devices for increasing the rigidity of the structure of the body of an automobile have been made. A structural member for improving the rigidity of a vehicle including the reinforcing member is required to reduce the weight and cost as well as the rigidity of the member itself.

上記構造部材としてインパクトビームを例に取れば、従来のものは、円管状のパイプを本体部として、その両端に支持ブラケットを取り付けたものが一般的である(例えば特許文献1参照)。また、その他の構造部材についても、パイプを主体とし、これを加工して構成したものが多い。   If an impact beam is taken as an example of the structural member, a conventional one having a circular pipe as a main body and supporting brackets attached to both ends thereof is generally used (see, for example, Patent Document 1). In addition, other structural members are also mainly composed of pipes that are processed.

特開2006−239764号公報JP 2006-239664 A

しかしながら、上記のパイプを主体とした構造部材は、パイプそのものが同じ重量の帯状素材(板状素材)に比べて割高であり、素材コストの低減に限界がある。一方、帯状素材を用いて単純に管状やU字状に加工した場合には、パイプの場合よりも剛性が劣ってしまうという問題があった。   However, the structural member mainly composed of the pipe is expensive compared to the strip material (plate material) having the same weight as the pipe itself, and there is a limit in reducing the material cost. On the other hand, when it is simply processed into a tubular or U-shape using a strip-shaped material, there is a problem that the rigidity is inferior to that of a pipe.

このため、パイプの素材よりも高剛性の帯状金属素材を用いて管状に成形することにより、素材重量を増加させることなく高剛性化することが考えられる。しかしながら、例えば超高張力鋼板に代表されるような非常に強度の高い素材を用いた場合には、管状に成形すること自体が困難である。
また、管状に成形した後に、溶接等を行う必要があれば、パイプの場合よりも高コスト化するおそれもあるので、管状部については成形したままの状態で十分にパイプと同等以上の剛性を発揮しうる形状の採用も望まれる。
For this reason, it is conceivable to increase the rigidity without increasing the weight of the material by forming it into a tubular shape using a band-shaped metal material having a rigidity higher than that of the pipe material. However, for example, when a material having a very high strength such as an ultra high strength steel plate is used, it is difficult to form a tube itself.
Also, if it is necessary to perform welding after forming into a tubular shape, there is a risk that the cost will be higher than in the case of a pipe. Adoption of a shape that can be demonstrated is also desired.

本発明は、かかる従来の問題点に鑑みてなされたものであり、従来のパイプを主体とする構造部材と比べて同等以上の剛性が得られ、かつ、軽量化及び低コスト化を図ることができる車両用構造部材及びその製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and can achieve rigidity equal to or higher than that of a structural member mainly composed of a conventional pipe, and can achieve weight reduction and cost reduction. An object of the present invention is to provide a vehicle structural member and a method for manufacturing the same.

第1の発明は、内部を中空部とした管状形状を呈する管状部を有する車両用構造部材を製造する方法であって、
平板帯状の帯状金属素材の幅方向両側端部を折り曲げて起立させたカール片部を形成し、断面略コ字状とする予備曲げ工程と、
上記カール片部が存在する側の面が内面となるように上記帯状金属素材を円弧状に成形して管状本体部とすると共に、上記カール片部の曲げ起点部分同士を近接させることによって上記カール片部を上記管状本体部の中空部内に配置する本体曲げ工程とを有し、
該本体曲げ工程は、略円弧状の凹部であって上記管状本体部の最終形状の曲率半径よりも大きい曲率半径の第1凹部を有する第1凹型と、該第1凹部に対応する第1凸部を有する第1凸型とを用い、上記帯状金属素材の上記カール片部を上記第1凸型側に位置させた状態で、該帯状金型素材を上記第1凹部と上記第1凸部との間に挟むことによって、上記最終形状の曲率半径より大きい曲率半径の略円弧状を呈する上記管状本体部を成形する第1本体曲げ工程と、
略円弧状の凹部であって上記管状本体部の最終形状の曲率半径よりも小さい曲率半径の第2凹部を有する第2凹型と、該第2凹部に対応すると共に該第2凹部の開口幅よりも小さい幅寸法の第2凸部を有する第2凸型とを用い、上記カール片部を上記第2凸型側に位置させた状態で、上記管状本体部を上記第2凹部と上記第2凸部との間に挟むことによって、上記管状本体部の中央底部近傍を上記最終形状の曲率半径より小さい曲率半径の略円弧状に成形する第2本体曲げ工程と、
略円弧状の凹部であって上記管状本体部の最終形状の曲率半径と同等の曲率半径の第3凹部及び第4凹部をそれぞれ有する第3凹型及び第4凹型とを用い、上記カール片部を上記第4凹部に収容するように位置させた状態で、上記管状本体部を上記第3凹部と上記第4凹部との間に挟むことによって、上記管状本体部を所望の管状形状に成形する第3本体曲げ工程とを有し、
かつ、上記第1本体曲げ工程に用いる上記第1凸型は、上記第1凸部の表面に長手方向に沿って伸びる第1突出角部を平行に複数設けてなり、上記第1本体曲げ工程の実施により、上記管状本体部の内面に上記第1突出角部に押圧された圧痕を長手方向に沿って複数形成することを特徴とする車両用構造部材の製造方法にある(請求項1)。
A first invention is a method of manufacturing a structural member for a vehicle having a tubular portion that has a tubular shape with a hollow inside.
A pre-bending step of forming a curled piece part that is bent and raised from both sides in the width direction of a flat belt-like metal strip, and having a substantially U-shaped cross section;
The band-shaped metal material is formed into an arc shape so that the surface on the side where the curl piece portion exists is an inner surface, and the curl piece portion is brought close to each other to form the tubular body portion, and the curl piece portion is brought close to each other. A main body bending step of disposing one part in the hollow part of the tubular main body part,
The main body bending step includes a first concave mold having a substantially arc-shaped concave portion having a first concave portion having a radius of curvature larger than the radius of curvature of the final shape of the tubular main body portion, and a first convex corresponding to the first concave portion. In the state where the curled piece portion of the band-shaped metal material is positioned on the first convex mold side, the band-shaped mold material is moved to the first concave portion and the first convex portion. A first main body bending step of forming the tubular main body portion having a substantially arc shape with a radius of curvature larger than the radius of curvature of the final shape,
A second concave mold having a substantially arc-shaped concave portion and a second concave portion having a radius of curvature smaller than the radius of curvature of the final shape of the tubular main body, and corresponding to the second concave portion and from the opening width of the second concave portion And the second convex part having the second convex part having a smaller width dimension, and the tubular main body part being placed on the second concave part and the second part in a state where the curled piece part is positioned on the second convex part side. A second body bending step of forming the vicinity of the center bottom of the tubular body portion into a substantially arc shape with a smaller radius of curvature than the final shape by sandwiching between the convex portions,
Using the third concave part and the fourth concave part, each having a substantially arc-shaped concave part and having a third concave part and a fourth concave part having a radius of curvature equivalent to the radius of curvature of the final shape of the tubular main body part, the curled piece part is In a state where the tubular main body portion is positioned so as to be accommodated in the fourth concave portion, the tubular main body portion is sandwiched between the third concave portion and the fourth concave portion, thereby forming the tubular main body portion into a desired tubular shape. 3 body bending process,
The first convex mold used in the first main body bending step is provided with a plurality of first projecting corners extending in the longitudinal direction in parallel on the surface of the first convex portion, and the first main body bending step. According to the present invention, a plurality of indentations pressed by the first projecting corners are formed along the longitudinal direction on the inner surface of the tubular main body part (claim 1). .

第2の発明は、内部を中空部とした管状形状を呈する管状部を有する車両用構造部材であって、
上記管状部は、帯状金属素材を用いて円弧状に成形された管状本体部と、上記帯状金属素材の幅方向両側端部を曲げ返してなるカール片部とを有し、該カール片部の曲げ起点部分同士を近接させると共に、上記カール片部を上記中空部内に配置してなり、
第1の発明の車両用構造部材の製造方法により製造してなることを特徴とする車両用構造部材にある(請求項4)。
A second invention is a structural member for a vehicle having a tubular portion having a tubular shape with a hollow portion inside,
The tubular portion includes a tubular main body formed in an arc shape using a band-shaped metal material, and curled pieces formed by bending back both ends in the width direction of the band-shaped metal material. The bend starting point portions are brought close to each other, and the curled piece portion is arranged in the hollow portion,
A vehicle structural member manufactured by the method for manufacturing a vehicle structural member according to the first aspect of the invention (claim 4).

第1の発明の車両用構造部材の製造方法においては、平板帯状の上記帯状金属素材を準備して、これに上記予備曲げ工程と上記本体曲げ工程とを実施する。また、上記本体曲げ工程は、上述したごとく、少なくとも、第1本体曲げ工程、第2本体曲げ工程及び第3本体曲げ工程という3回の曲げ工程を含むものとする。さらに、上記第1本体曲げ工程に用いる上記第1凸型は、上記のごとく、上記第1凸部の表面に長手方向に沿って伸びる第1突出角部を平行に複数設けてなるものを用いる。   In the method for manufacturing the structural member for a vehicle according to the first aspect of the invention, the strip-shaped metal material having a flat plate shape is prepared, and the preliminary bending step and the main body bending step are performed on the strip-shaped metal material. In addition, as described above, the main body bending process includes at least three bending processes of a first main body bending process, a second main body bending process, and a third main body bending process. Further, as described above, the first convex mold used in the first main body bending step uses a plurality of first projecting corners extending in the longitudinal direction on the surface of the first convex section in parallel. .

このような特殊な形状の第1凸型を積極的に用いることにより、上記第1本体曲げ工程の実施によって、上記管状本体部の内面に上記第1突出角部に押圧された圧痕を長手方向に沿って複数形成することができる。そして、この圧痕が形成されることにより、第1本体曲げ工程での成形性、及びその後の第2、第3本体曲げ工程での成形性を向上させることができ、精度の高い成形が可能となる。この成形性向上効果は、上記帯状金属素材の強度が低い場合でも有効であるが、特に上記帯状金属素材が、超高張力鋼のような高い強度を有しているものについては非常に有効である。超高張力鋼のような高強度材は、一般的に成形が困難であって管状にすること自体がなしえないこともあるところ、上記圧痕の形成による成形性向上によって管状への成形が可能となる。   By actively using the first convex mold having such a special shape, the indentation pressed by the first projecting corner portion on the inner surface of the tubular main body portion is performed in the longitudinal direction by performing the first main body bending step. A plurality can be formed along. And by forming this indentation, the moldability in the first body bending process and the moldability in the subsequent second and third body bending processes can be improved, and highly accurate molding is possible. Become. This formability improvement effect is effective even when the strength of the band-shaped metal material is low, but it is very effective particularly when the band-shaped metal material has a high strength such as ultra high strength steel. is there. High-strength materials such as ultra-high-strength steel are generally difficult to form and cannot be made into a tube itself, but can be formed into a tube by improving the formability by forming the indentation. It becomes.

つまり、本発明によって、従来のパイプの素材よりも格段に高強度の板素材を用いても上記管状部を成形可能となる。そのため、車両用構造部材の用途に合わせて上記帯状金属素材として非常に高強度なものを採用したとしても、容易に製造できる。それ故、本発明によれば、従来のパイプを主体とする構造部材と比べて同等以上の剛性が得られ、かつ、軽量化及び低コスト化を図ることができる車両用構造部材の製造方法を提供することができる。   That is, according to the present invention, the tubular portion can be formed even if a plate material having a strength much higher than that of a conventional pipe material is used. Therefore, even if an extremely high strength material is used as the band-shaped metal material in accordance with the use of the vehicle structural member, it can be easily manufactured. Therefore, according to the present invention, there is provided a method for manufacturing a structural member for a vehicle, which can obtain a rigidity equal to or higher than that of a structural member mainly composed of a conventional pipe, and can be reduced in weight and cost. Can be provided.

第2の発明の車両用構造部材は、上記中空部を備えた上記管状部を有している。そして、上記管状部は、帯状金属素材を用いて成形してある。そのため、従来のパイプを用いた場合よりも素材の低コスト化を図ることができる。また、上記管状部は、上記カール片部を備え、これを円弧状の管状本体部の内周側に位置させると共に、上記折り返し起点同士を近接させるという特殊な形状を有している。これにより、上記管状部は、単純に帯状素材を管状に成形した場合よりも剛性が大きく向上し、従来のパイプの場合と同等以上の剛性特性を得ることができる。さらに、この形状の工夫による剛性向上によって、上記カール片部の曲げ起点部分間を溶接等で構造的に接合する必要性が少ないので、加工コストも低コストに抑えることが可能となる。   A structural member for a vehicle according to a second aspect of the invention has the tubular portion provided with the hollow portion. And the said tubular part is shape | molded using the strip | belt-shaped metal raw material. Therefore, the cost of the material can be reduced as compared with the case where a conventional pipe is used. The tubular portion includes the curl piece portion, which is positioned on the inner peripheral side of the arcuate tubular main body portion, and has a special shape in which the folding start points are brought close to each other. Thereby, the said tubular part can improve rigidity significantly compared with the case where a strip | belt-shaped raw material is shape | molded in the shape of a tube simply, and can obtain the rigidity characteristic more than the case of the conventional pipe. Furthermore, by improving the rigidity by devising this shape, there is little need to structurally join between the bending start portions of the curl pieces by welding or the like, so that the processing cost can be reduced.

さらに、上記車両用構造部材は、上記第1の発明の製造方法によって製造する。これにより、上記帯状金属素材が非常に高強度なものでも優れた形状精度が得られる。したがって、上記帯状金属素材の材質の選択の自由度が非常に大きくなり、超高張力鋼のような非常に高強度の素材の採用も可能となり、さらなる高強度化を図ることができる。   Further, the vehicle structural member is manufactured by the manufacturing method of the first invention. Thereby, even if the band-shaped metal material has a very high strength, excellent shape accuracy can be obtained. Therefore, the degree of freedom in selecting the material of the band-shaped metal material becomes very large, and it becomes possible to employ a very high-strength material such as ultra-high-strength steel, thereby further increasing the strength.

実施例1における、車両用構造部材の(a)平面図、(b)背面図、(c)側面図。(A) Top view of the structural member for vehicles in Example 1, (b) Rear view, (c) Side view. 実施例1における、図1のA−A線矢視断面図。FIG. 2 is a cross-sectional view taken along line AA in FIG. 実施例1における、図1のB−B線矢視断面図。FIG. 2 is a cross-sectional view taken along the line BB in FIG. 実施例1における、図1のC−C線矢視断面図。The CC sectional view taken on the line of FIG. 1 in Example 1. FIG. 実施例1における、拡開端部近傍を示す斜視図。FIG. 3 is a perspective view showing the vicinity of the expanded end portion in the first embodiment. 実施例1における、管状部の(a)成形前、(b)予備曲げ工程後、(c)第1本体曲げ工程後、(d)第2本体曲げ工程後、(e)第3本体曲げ工程後の断面形状を示す説明図。In Example 1, (a) before forming the tubular portion, (b) after the pre-bending step, (c) after the first main body bending step, (d) after the second main body bending step, and (e) the third main body bending step. Explanatory drawing which shows subsequent cross-sectional shape. 実施例1における、予備曲げ工程で使用する(a)予備凹型、(b)予備凸型を示す斜視図。The perspective view which shows the (a) preliminary | backup concave type used in the preliminary | backup bending process in Example 1, and (b) the preliminary | backup convex type | mold. 実施例1における、予備曲げ工程での管状部の(a)帯状金属素材をセットした状態、(b)成形完了した状態を示す説明図。Explanatory drawing which shows the state which set the (a) strip | belt-shaped metal raw material of the tubular part in the pre-bending process in Example 1, and (b) shaping | molding completed. 実施例1における、予備曲げ工程での拡開端部の(a)帯状金属素材をセットした状態、(b)成形完了した状態を示す説明図。Explanatory drawing which shows the state which set the (a) strip | belt-shaped metal raw material of the expansion end part in Example 1 in the pre-bending process, and (b) shaping | molding completion. 実施例1における、第1本体曲げ工程で使用する(a)第1凹型、(b)第2凸型を示す斜視図。The perspective view which shows the (a) 1st concave type and (b) 2nd convex type which are used at the 1st main body bending process in Example 1. FIG. 実施例1における、第1本体曲げ工程での管状部の(a)帯状金属素材をセットした状態、(b)成形完了した状態を示す説明図。Explanatory drawing which shows the state which set the (a) strip | belt-shaped metal raw material of the tubular part in the 1st main body bending process in Example 1, and (b) shaping | molding completed. 実施例1における、第2本体曲げ工程で使用する(a)第2凹型、(b)第2凸型を示す斜視図。The perspective view which shows the (a) 2nd concave mold | type used by the 2nd main body bending process in Example 1, and the (b) 2nd convex mold | type. 実施例1における、第2本体曲げ工程での管状部の(a)帯状金属素材をセットした状態、(b)成形完了した状態を示す説明図。Explanatory drawing which shows the state which set the (a) strip | belt-shaped metal raw material of the tubular part in the 2nd main body bending process in Example 1, and (b) shaping | molding completed. 実施例1における、第2本体曲げ工程での拡開端部の(a)帯状金属素材をセットした状態、(b)成形完了した状態を示す説明図。Explanatory drawing which shows the state which set the (a) strip | belt-shaped metal raw material of the expansion end part in the 2nd main body bending process in Example 1, and (b) shaping | molding completed. 実施例1における、第3本体曲げ工程で使用する(a)第2凹型、(b)第2凸型を示す斜視図。The perspective view which shows the (a) 2nd concave type and (b) 2nd convex type which are used at the 3rd main body bending process in Example 1. FIG. 実施例1における、第3本体曲げ工程での管状部の(a)帯状金属素材をセットした状態、(b)成形完了した状態を示す説明図。Explanatory drawing which shows the state which set the (a) strip | belt-shaped metal raw material of the tubular part in the 3rd main body bending process in Example 1, and (b) shaping | molding completed. 実施例1における、第3本体曲げ工程での拡開端部の(a)帯状金属素材をセットした状態、(b)成形完了した状態を示す説明図。Explanatory drawing which shows the state which set the (a) strip | belt-shaped metal raw material of the expansion end part in the 3rd main body bending process in Example 1, and (b) shaping | molding completed. 実施例2における、車両用構造部材の底面図。The bottom view of the structural member for vehicles in Example 2. FIG. 実施例2における、図18のD−D線矢視断面図。FIG. 19 is a sectional view taken along line D-D in FIG. 実施例3における、車両用構造部材の底面図。The bottom view of the structural member for vehicles in Example 3. FIG. 実施例3における、図20のE−E線矢視断面図。FIG. 21 is a cross-sectional view taken along line EE in FIG. 実施例4における、車両用構造部材の管状部の断面図。Sectional drawing of the tubular part of the structural member for vehicles in Example 4. FIG. 実施例5における、車両用構造部材の管状部の断面図。Sectional drawing of the tubular part of the structural member for vehicles in Example 5. FIG. 実施例6における、車両用構造部材の端部構造の別例を示す斜視図。The perspective view which shows the other example of the edge part structure of the structural member for vehicles in Example 6. FIG. 実施例6における、車両用構造部材の端部構造の別例を示す斜視図。The perspective view which shows the other example of the edge part structure of the structural member for vehicles in Example 6. FIG. 実施例6における、車両用構造部材の端部構造の別例を示す斜視図。The perspective view which shows the other example of the edge part structure of the structural member for vehicles in Example 6. FIG. 実施例7における、車両用構造部材の端部近傍を示す斜視図。The perspective view which shows the edge part vicinity of the structural member for vehicles in Example 7. FIG. 実施例8における、実験結果を示す説明図。Explanatory drawing which shows the experimental result in Example 8. FIG.

本発明の車両用構造部材の製造方法においては、上記第1本体曲げ工程だけでなく、上記第2本体曲げ工程に用いる凸型も特殊な形状とすることがより好ましい。
即ち、上記第2本体曲げ工程に用いる上記第2凸型は、上記第2凸部の表面に長手方向に沿って伸びる第2突出角部を平行に複数設けてなり、上記第2本体曲げ工程の実施により、上記管状本体部の内面に上記第2突出角部に押圧された圧痕を長手方向に沿って複数形成することが好ましい(請求項2)。この場合には、上記の特殊な形状の第2凸型を積極的に用いることにより、上記第2本体曲げ工程の実施によって、上記管状本体部の内面に上記第2突出角部に押圧された圧痕を長手方向に沿って複数形成することができる。そして、この圧痕が形成されることにより、第2本体曲げ工程での成形性、及びその後の第3本体曲げ工程での成形性を向上させることができ、精度の高い成形が可能となる。この成形性向上は、上記と同様に、帯状金属素材の強度が低い場合はもとより、超高張力鋼のような高い強度を有しているものについては非常に有効である。
In the method for manufacturing a structural member for a vehicle according to the present invention, it is more preferable that not only the first main body bending step but also the convex shape used in the second main body bending step has a special shape.
That is, the second convex mold used in the second main body bending step is provided with a plurality of parallel second protrusion corners extending along the longitudinal direction on the surface of the second convex portion, and the second main body bending step. It is preferable to form a plurality of indentations pressed by the second protruding corners along the longitudinal direction on the inner surface of the tubular main body. In this case, by actively using the second convex mold having the special shape described above, the second projecting corner is pressed against the inner surface of the tubular main body by performing the second main body bending step. A plurality of indentations can be formed along the longitudinal direction. And by forming this indentation, the moldability in the second body bending process and the moldability in the subsequent third body bending process can be improved, and high-precision molding becomes possible. Similar to the above, this formability improvement is very effective not only when the strength of the band-shaped metal material is low but also when it has high strength such as ultra high strength steel.

したがって、本発明の製造方法を採用する限り、上記帯状金属素材は、引張強さが1GPa以上の超高張力鋼とすることができる(請求項3)。上記超高張力鋼を用いる場合には、帯状素材を管状に成形することが非常に困難であるが、本発明の製造方法によって容易に成形を実現できる。そして、得られた車両用構造部材は、高い剛性を有するものとなり、従来よりも軽量化を図ることが容易となる。   Therefore, as long as the production method of the present invention is employed, the band-shaped metal material can be an ultra-high strength steel having a tensile strength of 1 GPa or more (Claim 3). In the case of using the ultra high strength steel, it is very difficult to form the strip material into a tubular shape, but the forming can be easily realized by the manufacturing method of the present invention. And the obtained structural member for vehicles has high rigidity, and it becomes easy to aim at weight reduction conventionally.

また、本発明で製造する上記車両用構造部材は、上記管状部のみによって構成することができる。この場合には、別途準備したブラケット部材を上記管状部に接合し、当該ブラケット部材を介して他の部材に接合する構成を取ることができる。
また、上記車両用構造部材は、上記管状部の長手方向の一端又は両端に他の部材に接続するためのブラケット部を一体的に備える構造とすることもできる。ブラケット部としては、後述する拡開端部のように上記管状部と同じ素材から延設した構造を採用してもよいし、別途準備したブラケット部材を溶接等によって一体化させた構造を採用することもできる。ブラケット部材としては、パイプ状、平板状、その他の公知の様々な形状のものを採用できる。
Moreover, the said structural member for vehicles manufactured by this invention can be comprised only by the said tubular part. In this case, it is possible to adopt a configuration in which a separately prepared bracket member is joined to the tubular portion and joined to another member via the bracket member.
Moreover, the said structural member for vehicles can also be set as the structure which equips the one end or both ends of the longitudinal direction of the said tubular part with the bracket part for connecting to another member integrally. As a bracket part, you may employ | adopt the structure extended from the same raw material as the said tubular part like the expansion end part mentioned later, and employ | adopt the structure which integrated the bracket member prepared separately by welding etc. You can also. As the bracket member, pipes, flat plates, and other known various shapes can be employed.

また、上記管状部の上記カール部の曲げ起点部分同士は、両者が接触するまで近接していることが好ましい。これにより、上記管状部の構造安定性がより向上する。
また、上記カール片部同士は、管状形状の内部においてその先端同士が互いに離れた形状とすることが好ましい。これにより、形状安定性が向上する。
Moreover, it is preferable that the bending origin part of the said curl part of the said tubular part is adjoining until both contact. Thereby, the structural stability of the tubular portion is further improved.
Moreover, it is preferable that the said curl piece parts are made into the shape where the front-end | tips mutually separated in the inside of a tubular shape. Thereby, shape stability improves.

また、上記管状本体部の断面外形に接する輪郭が、長手方向の少なくとも一部において略真円形状であることが好ましい(請求項5)。上記管状本体部の断面外形に接する輪郭の形状が略真円形状(幾何学上定義される真円形状にかがらず、一般的に真円形状であると認識される形状を含む)である場合には、どの方向から応力が加えられてもほぼ均一な剛性特性を発揮させることができる。そのため、上記管状部においては、その全長をそのようなほぼ均一な剛性特性のものとしたい場合には、全長の上記輪郭形状を略真円形状とすることが好ましく、一部分のみそのようにしたい場合には、全長のうち一部の輪郭形状のみを略真円形状としてもよい。   Moreover, it is preferable that the outline which contact | connects the cross-sectional external shape of the said tubular main-body part is a substantially perfect circle shape in at least one part of a longitudinal direction. The contour shape in contact with the cross-sectional outer shape of the tubular main body portion is a substantially perfect circle shape (including a shape generally recognized as a perfect circle shape, not a geometrically defined perfect circle shape). In some cases, a substantially uniform rigidity characteristic can be exhibited regardless of the direction in which stress is applied. Therefore, in the tubular part, when it is desired to make the entire length of such a substantially uniform rigidity characteristic, it is preferable to make the contour shape of the full length a substantially perfect circle shape, and when only a part is desired to do so Alternatively, only a part of the contour shape of the entire length may be a substantially perfect circle shape.

また、上記管状本体部の断面外形に接する輪郭が、長手方向の少なくとも一部において略楕円形状であってもよい(請求項6)。上記管状本体部の輪郭形状が略楕円形状(幾何学上定義される楕円形状に限らず、長径部と短径部とを有する一般的に楕円形状であると認識される形状を含む)の場合には、楕円形状の長径方向における曲げ剛性をさらに向上させることができる。この楕円形状の部分も、上記管状部の全長に設けてもよいし、一部のみに設けてもよい。   Moreover, the outline which touches the cross-sectional external shape of the said tubular main-body part may be substantially ellipse shape in at least one part of a longitudinal direction (Claim 6). When the contour shape of the tubular main body portion is substantially elliptical (including not only the geometrically defined elliptical shape but also a shape generally recognized as an elliptical shape having a major axis and a minor axis) The bending rigidity in the major axis direction of the elliptical shape can be further improved. This elliptical portion may also be provided on the entire length of the tubular portion, or may be provided on only a part thereof.

また、上記管状部の長手方向端部の少なくとも一方には、上記曲げ起点部分間の間隔を拡げて幅寸法を上記管状部の外径寸法より大きくした拡開端部が形成されていることが好ましい(請求項7)。この場合には、上記拡開端部を他の部材と接合するためのブラケット部として用いることができる。また、上記拡開端部自体をブラケット部とせず、上記拡開端部を介して他部品よりなるブラケット部材を溶接等によって一体化させる構造をとることもできる。
上記拡開端部自体をブラケット部として用いる場合には、上記拡開端部には、他部品との接続固定を行うための貫通穴が形成されていることが好ましい(請求項8)。これにより、他部品との接続固定を容易に行うことができる。
Moreover, it is preferable that at least one of the longitudinal ends of the tubular portion is formed with an expanded end portion in which the interval between the bending start point portions is widened to make the width dimension larger than the outer diameter dimension of the tubular portion. (Claim 7). In this case, the said extended end part can be used as a bracket part for joining with another member. Moreover, the structure which integrates the bracket member which consists of another components by welding etc. can be taken via the said expansion end part, without making the said expansion end part itself into a bracket part.
In the case where the expanded end portion itself is used as a bracket portion, it is preferable that a through hole for connecting and fixing to other parts is formed in the expanded end portion. Thereby, connection fixation with other components can be performed easily.

また、上記管状部は、長手方向の少なくとも一部において、上記管状本体部を内方に窪ませて形成したビード部を有する構造をとることもできる(請求項9)。この場合には、上記ビード部の存在によって、さらに剛性を高めることができる。   Moreover, the said tubular part can also take the structure which has a bead part formed by denting the said tubular main body part inward in at least one part of a longitudinal direction (Claim 9). In this case, the rigidity can be further increased by the presence of the bead portion.

また、上記ビード部は、窪んだ両壁部分を密着させた密着部を有していることが好ましい(請求項10)。この場合には、上記ビード部による剛性向上効果をさらに高めることができる。   Moreover, it is preferable that the said bead part has the contact part which closely_contact | adhered the both wall part which became depressed. In this case, the rigidity improvement effect by the bead portion can be further enhanced.

また、上記車両用構造部材の具体的な用途としては、代表的には、自動車のドア等に配設されるインパクトビームがある。さらに、センターピラー、フロントピラー、フロアサイドメンバー、フロントサイドメンバー、カウルパネル、ロッカパネルなどの自動車の車体骨格部品、サスペンション部品、その他の部品の一部を本発明の車両用構造部材に置き換えたり、あるいは追加して補強したりする用途がある。また、二輪車においては、フロントフォーク等の車体骨格部品の一部を本発明の車両用構造部材に置き換えたり、あるいは追加して補強したりする用途がある。   As a specific application of the vehicle structural member, there is typically an impact beam disposed on an automobile door or the like. Furthermore, the vehicle body skeleton parts, suspension parts, and other parts of automobiles such as center pillars, front pillars, floor side members, front side members, cowl panels, rocker panels, etc. may be replaced with the vehicle structural members of the present invention, Or there is a use which adds and reinforces. Moreover, in a two-wheeled vehicle, there is an application in which a part of a vehicle body skeleton part such as a front fork is replaced with the vehicle structural member of the present invention or is additionally reinforced.

(実施例1)
本発明の実施例に係る車両用構造部材及びその製造方法につき、図1〜図17を用いて説明する。
本例の車両用構造部材1は、図1〜図5に示すごとく、内部を中空部19(図2)とした管状形状を呈する管状部10を有する車両用構造部材である。
管状部10は、帯状金属素材100(図6(a))を用いて円弧状に成形された管状本体部11と、上記帯状金属素材100の両側端部を曲げ返してなるカール片部12(図2)とを有する。カール片部12の曲げ起点部分15同士を近接させると共に、カール片部12を中空部19内に配置してなる。
Example 1
A vehicle structural member and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 to 5, the vehicle structural member 1 of this example is a vehicle structural member having a tubular portion 10 that has a tubular shape with a hollow portion 19 (FIG. 2) inside.
The tubular portion 10 includes a tubular main body portion 11 formed into an arc shape by using a strip-shaped metal material 100 (FIG. 6A), and curled piece portions 12 ( 2). The bending start point portions 15 of the curled piece portion 12 are brought close to each other, and the curled piece portion 12 is disposed in the hollow portion 19.

図1、図2に示すごとく、上記管状部10の管状本体部11は、断面外形に接する輪郭形状が、その全長においてほぼ真円に近い円形状となっている。もちろんカール片部12近傍は、真円から外れる形状を呈している。
カール片部12は、曲げ起点部分15近傍から略180°反転するように曲げ返されている。そして、2つのカール片部12の先端同士は互いに離れ、それぞれ管状本体部11の内周面に近づくように成形されている。このカール片部12の形状は、後述するごとく、本体曲げ工程の実施によって形成される。
As shown in FIGS. 1 and 2, the tubular main body portion 11 of the tubular portion 10 has a circular shape that is in contact with the cross-sectional outer shape and is nearly a perfect circle in its entire length. Of course, the vicinity of the curled piece 12 has a shape deviating from a perfect circle.
The curled piece portion 12 is bent back so as to be inverted by approximately 180 ° from the vicinity of the bending start point portion 15. And the front-end | tip of the two curl piece parts 12 is mutually separated, and it shape | molds so that it may approach the internal peripheral surface of the tubular main-body part 11, respectively. The shape of the curled piece 12 is formed by performing a main body bending step, as will be described later.

また、図1、図3〜図5に示すごとく、管状部10の長手方向両端には、他部品との接続固定を行うためのブラケットとなる拡開端部2が、管状部10と同じ帯状金属素材100から形成されている。拡開端部2は、管状部10の長手方向端部において、それぞれの曲げ起点部分25(24)間の間隔を徐々に拡げて幅寸法を管状部10の外径寸法より大きくしたものである。そのため、拡開端部2は、上記管状本体部11に連なって平板状となった平面部21と、その両端において上記カール片部12から連なる端部カール片部22とによって構成されている。
また、本例の拡開端部2は、他部品との接続固定を行うための貫通穴25が上記平面部21に設けられている。
As shown in FIGS. 1 and 3 to 5, at both ends in the longitudinal direction of the tubular portion 10, the widened end portion 2 serving as a bracket for connecting and fixing to other parts is the same strip-shaped metal as the tubular portion 10. It is formed from the material 100. The widened end portion 2 is formed by gradually widening the interval between the respective bending start point portions 25 (24) at the longitudinal end portion of the tubular portion 10 to make the width dimension larger than the outer diameter dimension of the tubular portion 10. Therefore, the widened end portion 2 is constituted by a flat surface portion 21 that is continuous with the tubular main body portion 11 and has a flat plate shape, and an end curl piece portion 22 that is continuous with the curled piece portion 12 at both ends thereof.
Further, in the expanded end portion 2 of the present example, a through hole 25 for connecting and fixing to other parts is provided in the flat portion 21.

次に、車両用構造部材1の製造方法について説明する。
本例では、図6(a)に示すごとく、上記管状部10及び両端の拡開端部2を形成するに当たっては、超高張力鋼よりなる平板帯状の上記帯状金属素材100を準備する。そして、予備曲げ工程S1と本体曲げ工程S21〜S23とを行う。
予備曲げ工程S1は、図6(b)に示すごとく、帯状金属素材100の両側の曲げ起点部分15からカール片部12を折り曲げて起立させて断面略コ字状とする工程である。
本体曲げ工程S21〜S23は、図6(c)〜(e)に示すごとく、カール片部12が存在する側の面101が内面となるように帯状金属素材100を円弧状に成形して管状本体部11とすると共に、曲げ起点部分15同士を近接させる工程であり、後述する3つの工程から構成してある。
Next, the manufacturing method of the structural member 1 for vehicles is demonstrated.
In this example, as shown in FIG. 6A, in forming the tubular portion 10 and the widened end portions 2 at both ends, the above-described strip-shaped metal material 100 in the form of a flat plate made of ultra high strength steel is prepared. And preliminary | backup bending process S1 and main body bending process S21-S23 are performed.
As shown in FIG. 6B, the pre-bending step S1 is a step in which the curled piece 12 is bent and raised from the bending starting point portions 15 on both sides of the band-shaped metal material 100 to have a substantially U-shaped cross section.
In the main body bending steps S21 to S23, as shown in FIGS. 6C to 6E, the band-shaped metal material 100 is formed into an arc shape so that the surface 101 on the side where the curl piece 12 is present becomes the inner surface. This is a step of making the main body part 11 and the bending start point portions 15 close to each other, and is composed of three steps to be described later.

上記予備曲げ工程S1は、図7、図8に示すごとく、略コ字状の成形面を有する予備凹部410を備えた予備凹型41と、予備凹部410に対応する予備凸部420を有する予備凸型42とを用いて行う。予備凹部410及び予備凸部420は、上記管状部10を成形する役割を果たす。図7、図9に示すごとく、予備凹型41は、上記予備凹部410に連ねて、最終的に拡開端部2となる部位を成形するための端部用予備凹部412を有している。この端部用予備凹部412は、コ字状の両側の起立部分が徐々に拡開するよう傾斜した凹部形状を呈している。また、予備凸型42は、予備凸部420に連ねて、拡開端部2形成用の端部用予備凸部422を有しいる。この端部用予備凸部422は、端部用予備凹部412に対応してコ字状の両側の起立部分が傾斜した凸状形状を呈している。   As shown in FIGS. 7 and 8, the preliminary bending step S1 includes a preliminary concave mold 41 having a preliminary concave portion 410 having a substantially U-shaped molding surface and a preliminary convex portion having a preliminary convex portion 420 corresponding to the preliminary concave portion 410. This is performed using the mold 42. The preliminary concave portion 410 and the preliminary convex portion 420 serve to mold the tubular portion 10. As shown in FIG. 7 and FIG. 9, the preliminary concave mold 41 has an end preliminary concave portion 412 for forming a part that will eventually become the expanded end portion 2, continuously with the preliminary concave portion 410. The end preliminary recesses 412 have a concave shape that is inclined so that standing portions on both sides of the U-shape gradually expand. Further, the preliminary convex mold 42 has an end preliminary convex portion 422 for forming the widened end portion 2 in continuation with the preliminary convex portion 420. The end preliminary projections 422 have a convex shape in which the standing portions on both sides of the U-shape are inclined corresponding to the end preliminary recesses 412.

予備曲げ工程S1を行うに当たっては、図8(a)及び図9(a)に示すごとく、予備凹型41と予備凸型42との間に間隙を空けておき、その間隙に平板状の帯状金属素材100を配置する。次いで、図8(b)に示すごとく、管状部10の成形部位においては、予備凸型42を相対的に予備凹型42に近づけることにより、予備凹部410と予備凸部420によって帯状金属素材100を挟み込み、その両側の曲げ起点部分15からカール片部12を折り曲げて起立させて断面略コ字状とする加工を実施する。これと同時に、図9(b)に示すごとく、拡開端部2の成形部位においては、予備凸型42を相対的に予備凹型42に近づけることにより、端部用予備凹部412と端部用予備凸部422によって帯状金属素材100を挟み込み、その両側の曲げ起点部分251から端部カール片部22を折り曲げて斜めに起立させて徐々に拡開するような断面略コ字状とする加工を実施する。   In performing the preliminary bending step S1, as shown in FIGS. 8 (a) and 9 (a), a gap is formed between the preliminary concave mold 41 and the preliminary convex mold 42, and a flat strip-like metal is formed in the gap. The material 100 is arranged. Next, as shown in FIG. 8 (b), in the forming portion of the tubular portion 10, the belt-shaped metal material 100 is formed by the preliminary concave portion 410 and the preliminary convex portion 420 by moving the preliminary convex die 42 relatively close to the preliminary concave die 42. The curling piece 12 is bent and raised from the bending starting point portions 15 on both sides thereof, and the cross-sectional shape is made substantially U-shaped. At the same time, as shown in FIG. 9B, in the molding portion of the widened end portion 2, the preliminary convex mold 42 is relatively brought close to the preliminary concave mold 42, so that the preliminary preliminary recess 412 and the preliminary preliminary portion 42 are provided. The band-shaped metal material 100 is sandwiched between the convex portions 422, and the end curl piece portion 22 is bent from the bending starting point portions 251 on both sides of the band-shaped metal material 100 so as to stand up diagonally and gradually expand so as to be gradually expanded. To do.

次に、上記本体曲げ工程において第1番目に行う第1本体曲げ工程S21は、図10、図11に示すごとく、略円弧状の凹部であって管状本体部11の最終形状の曲率半径R1(図2)よりも大きい曲率半径の第1凹部510を有する第1凹型51と、第1凹部510に対応する第1凸部520を有する第1凸型52とを用いる。第1凹部510及び第1凸部520は、管状部10を成形する役割を果たす。図10に示すごとく、凹型51は、第1凹部510に連ねて、最終的に拡開端部2となる部位を成形するための端部用凹部512を有している。この端部用凹部512は、上述した予備凹型41の端部用予備凹部412と同じ形状を有している。また、第1凸型52は、第1凸部520に連ねて、拡開端部2形成用の端部用予備凸部522を有しいる。この端部用凸部522は、端部用予備凸部422と同じ形状を有している。   Next, the first main body bending step S21 performed first in the main body bending step is a substantially arc-shaped concave portion as shown in FIG. 10 and FIG. A first concave mold 51 having a first concave portion 510 having a radius of curvature larger than that of FIG. 2) and a first convex mold 52 having a first convex portion 520 corresponding to the first concave portion 510 are used. The first concave portion 510 and the first convex portion 520 serve to mold the tubular portion 10. As shown in FIG. 10, the concave mold 51 has an end concave portion 512 for forming a part that will eventually become the widened end portion 2, connected to the first concave portion 510. The end recessed portion 512 has the same shape as the end recessed preliminary recess 412 of the above-described preliminary recessed mold 41. In addition, the first convex mold 52 includes an end preliminary convex portion 522 for forming the widened end portion 2 that is connected to the first convex portion 520. This end convex portion 522 has the same shape as the end preliminary projection 422.

図10、図11に示すごとく、第1凹部510は、滑らかな曲面形状を呈している。また、同図に示すごとく、第1凸部520は、全体的に第1凹部510の曲面形状に対応する形状となっているが、断面で見れば、直線を順次屈曲させた多角形の一部のような形状を呈している。そして、その屈曲部が第1突出角部523であり、これが長手方向に沿って平行に複数存在する。   As shown in FIGS. 10 and 11, the first recess 510 has a smooth curved surface shape. In addition, as shown in the figure, the first convex portion 520 has a shape corresponding to the curved surface shape of the first concave portion 510 as a whole. It is shaped like a part. And the bent part is the 1st protrusion corner | angular part 523, and this exists in parallel along a longitudinal direction.

そして、第1本体曲げ工程S21は、まず、図11(a)に示すごとく、帯状金属素材100のカール片部12を第1凸型52側に位置させた状態で、第1凹型51と第1凸型52との間の間隙に帯状金属素材100を配置する。次いで、図11(b)に示すごとく、両型を近接させ、帯状金型素材100を第1凹部510と第1凸部520との間に挟むことによって、最終形状の曲率半径より大きい曲率半径の略円弧状を呈する途中形状の管状本体部11を成形する。また、このとき、管状本体部11の内面には、第1突出角部523に押圧された圧痕181が長手方向に沿って複数形成される。この圧痕181は、第1本体曲げ工程S21での曲げ加工性及び後述する第2、第3本体曲げ工程S22、S23での曲げ加工性を向上させる役割を果たす。
また、上記管状部10の成形と同時に、帯状金型素材100を端部用第1凹部512と端部用第1凸部522との間に挟むことによって、拡開端部2形成部位は、予備曲げ工程S1での形状がそのまま維持される。
In the first main body bending step S21, first, as shown in FIG. 11A, the first concave mold 51 and the first concave mold 51 are arranged in a state where the curl piece 12 of the band-shaped metal material 100 is positioned on the first convex mold 52 side. The band-shaped metal material 100 is disposed in the gap between the one convex mold 52. Next, as shown in FIG. 11B, both dies are brought close to each other, and the band-shaped mold material 100 is sandwiched between the first concave portion 510 and the first convex portion 520, so that the curvature radius larger than the curvature radius of the final shape is obtained. A tubular main body 11 having a substantially arc shape is formed. At this time, a plurality of indentations 181 pressed by the first projecting corners 523 are formed on the inner surface of the tubular main body 11 along the longitudinal direction. The indentation 181 plays a role of improving bending workability in the first body bending step S21 and bending workability in second and third body bending steps S22 and S23 described later.
Simultaneously with the forming of the tubular portion 10, the widened end portion 2 forming portion can be spared by sandwiching the belt-shaped mold material 100 between the first end recessed portion 512 and the first end protruding portion 522. The shape in the bending step S1 is maintained as it is.

次に、上記本体曲げ工程において第2番目に行う第2本体曲げ工程S22は、図12、図13に示すごとく、略円弧状の凹部であってその中央底面部分が管状本体部11の最終形状の曲率半径R1(図2)よりも小さい曲率半径である第2凹部610を有する第2凹型61と、第2凹部610の中央底面部分に対応する形状の先端部分を有すると共に第2凹部610の開口幅よりも小さい幅寸法の第2凸部620を有する第2凸型62とを用いる。第2凹部610及び第2凸部620は、管状部10を成形する役割を果たす。図12、図14に示すごとく、第2凹型61は、第2凹部610に連ねて、最終的に拡開端部2となる部位を成形するための端部用第2凹部612を有している。この端部用予備凹部612は、コ字状の幅が予備凹型41及び第1凹型51の場合よりも狭い凹部形状を呈している。また、第2凸型62は、第2凸部620に連ねて、拡開端部2形成用の端部用第2凸部622を有しいる。この端部用第2凸部622は、その先端側が端部用第2凹部612に対応しており、その基端側の幅寸法を小さくした特殊形状としてある。   Next, as shown in FIGS. 12 and 13, the second body bending step S <b> 22 performed second in the body bending step is a substantially arc-shaped concave portion whose central bottom surface portion is the final shape of the tubular body portion 11. The second concave mold 61 having the second concave portion 610 having a smaller radius of curvature than the radius of curvature R1 (FIG. 2) of the second concave portion 610, and a tip portion having a shape corresponding to the central bottom surface portion of the second concave portion 610, and the second concave portion 610 A second convex mold 62 having a second convex portion 620 having a width dimension smaller than the opening width is used. The second concave portion 610 and the second convex portion 620 serve to mold the tubular portion 10. As shown in FIG. 12 and FIG. 14, the second concave mold 61 has an end second concave portion 612 for forming a part that will eventually become the expanded end portion 2, continuing to the second concave portion 610. . This end preliminary recess 612 has a concave shape whose U-shaped width is narrower than that of the preliminary concave mold 41 and the first concave mold 51. Further, the second convex mold 62 has an end second convex portion 622 for forming the expanded end portion 2, which is connected to the second convex portion 620. The second convex portion 622 for the end portion has a special shape in which the distal end side corresponds to the second concave portion 612 for the end portion and the width dimension on the proximal end side is reduced.

図13に示すごとく、第2凹部610は、その中央底面部分近傍が、管状本体部11の最終形状の曲率半径R1(図2)よりも小さい曲率半径の滑らかな曲面形状となっており、開口部側は曲率半径が大きく、斜めのほぼ直線状となって、開口部に近づくほど拡開している。
また、第2凸部620は、その先端部が第2凹部610の中央底面部分の曲面形状に対応する形状となっているが、断面で見れば、直線を順次屈曲させた多角形の一部のような形状を呈している。そして、その屈曲部が第2突出角部623であり、これが長手方向に沿って平行に複数存在する。
As shown in FIG. 13, the second recess 610 has a smooth curved surface with a radius of curvature smaller than the radius of curvature R1 (FIG. 2) of the final shape of the tubular body 11 in the vicinity of the center bottom surface portion. The part side has a large radius of curvature and is substantially in the form of a slanting straight line that expands toward the opening.
The second convex portion 620 has a tip corresponding to the curved surface shape of the central bottom surface portion of the second concave portion 610. However, when viewed in cross section, a part of a polygon obtained by sequentially bending a straight line. It has a shape like And the bending part is the 2nd protrusion corner | angular part 623, and this exists in parallel along a longitudinal direction.

そして、第2本体曲げ工程S22は、まず、図13(a)及び図14(a)に示すごとく、カール片部12を第2凸型62側に位置させた状態で、第2凹型61と第2凸型62との間の間隙に帯状金属素材100を配置する。次いで、図13(b)に示すごとく、両型を近接させ、管状本体部11を第2凹部610と第2凸部620との間に挟むことによって、管状本体部11の中央底部近傍を最終形状の曲率半径R1(図2)より小さい曲率半径の略円弧状に成形する。また、このとき、管状本体部11の内面には、第2突出角部623に押圧された圧痕182が長手方向に沿って複数形成される。この圧痕182は、第2本体曲げ工程S22での曲げ加工性及び後述する第3本体曲げ工程S23での曲げ加工性を向上させる役割を果たす。   Then, in the second main body bending step S22, as shown in FIGS. 13 (a) and 14 (a), the second concave mold 61 and the curled piece portion 12 are positioned on the second convex mold 62 side. The band-shaped metal material 100 is disposed in the gap between the second convex mold 62. Next, as shown in FIG. 13B, both molds are brought close to each other, and the tubular main body 11 is sandwiched between the second concave portion 610 and the second convex portion 620, whereby the vicinity of the center bottom portion of the tubular main body portion 11 is finally obtained. The shape is formed into a substantially arc shape having a smaller radius of curvature R1 (FIG. 2). At this time, a plurality of indentations 182 pressed by the second projecting corners 623 are formed on the inner surface of the tubular main body 11 along the longitudinal direction. The indentation 182 serves to improve the bending workability in the second body bending step S22 and the bending workability in the third body bending step S23 described later.

また、図14(b)に示すごとく、上記管状本体部11の成形と同時に、途中形状の拡開端部2を端部用第2凹部612と端部用第2凸部622との間に挟むことによって、端部カール片部22をより広い領域として最終形状に近づけた途中形状の拡開端部2を成形する。   Further, as shown in FIG. 14B, simultaneously with the forming of the tubular main body 11, the expanded end portion 2 having an intermediate shape is sandwiched between the second end concave portion 612 and the second end convex portion 622. As a result, the widened end portion 2 is formed in the middle of the enlarged end portion 2 having a shape that is close to the final shape.

次に、上記本体曲げ工程において第3番目に行う第3本体曲げ工程S23は、図15、図16に示すごとく、略円弧状の凹部であって管状本体部11の最終形状の曲率半径R1(図2)と同等の曲率半径の第3凹部710及び第4凹部720をそれぞれ有する第3凹型71及び第4凹型72とを用いる。第3凹部710及び第4凹部720は、管状部10を成形する役割を果たす。図15、図17に示すごとく、第3凹型71および第4凹型72には、その両端に拡開端部形成用の端部用第3凹部712および端部用第4凹部722をそれぞれ第3凹部710および第4凹部720と連ねて備えている。   Next, the third main body bending step S23 performed third in the main body bending step is a substantially arc-shaped concave portion having a final radius of curvature R1 (as shown in FIGS. 15 and 16). The third concave mold 71 and the fourth concave mold 72 having the third concave portion 710 and the fourth concave portion 720 having the same radius of curvature as those in FIG. 2) are used. The third recess 710 and the fourth recess 720 serve to mold the tubular portion 10. As shown in FIG. 15 and FIG. 17, the third concave mold 71 and the fourth concave mold 72 are provided with a third concave section 712 for forming an end portion and a fourth concave section 722 for forming an end portion at both ends thereof, respectively. 710 and the fourth recess 720 are provided.

図15(b)、図16に示すごとく、第3凹部710は、略半円状であって、その曲率半径が上記のごとく管状本体部11の最終形状の曲率半径R1(図2)と同等である。また、第3凹部710の側方は、幅方向外側から内側に近づくにしたがって徐々に山状に盛り上がる山形状となるように、一対のテーパ部713が形成されている。   As shown in FIGS. 15B and 16, the third recess 710 has a substantially semicircular shape, and its radius of curvature is equal to the radius of curvature R1 (FIG. 2) of the final shape of the tubular main body 11 as described above. It is. In addition, a pair of tapered portions 713 are formed on the side of the third recess 710 so as to have a mountain shape that gradually rises in a mountain shape as it approaches the inner side from the outer side in the width direction.

図15(a)、図16に示すごとく、第4凹部720は、略半円状であって、その曲率半径が上記のごとく管状本体部11の最終形状の曲率半径R1(図2)と同等である。また、第4凹部720の側方は、幅方向外側から内側に近づくにしたがって徐々に谷状に窪む谷形状となるように、一対のテーパ部723が形成されている。   As shown in FIGS. 15 (a) and 16, the fourth recess 720 has a substantially semicircular shape, and its radius of curvature is equivalent to the radius of curvature R1 (FIG. 2) of the final shape of the tubular body 11 as described above. It is. In addition, a pair of taper portions 723 are formed on the side of the fourth recess 720 so as to have a valley shape that gradually decreases in a valley shape from the outside in the width direction toward the inside.

図15(b)、図17に示すごとく、端部用第3凹部712は、拡開端部2の平面部21の最終形状の幅寸法と同じ凹部を有している。また、端部用第3凹部712の側方は、幅方向外側から内側に近づくにしたがって徐々に山状に盛り上がる山形状となるように、一対のテーパ部714が形成されている。   As shown in FIG. 15B and FIG. 17, the end third recessed portion 712 has the same recessed portion as the width of the final shape of the flat surface portion 21 of the expanded end portion 2. In addition, a pair of tapered portions 714 is formed on the side of the third recessed portion 712 for the end so as to have a mountain shape that gradually rises in a mountain shape from the outside in the width direction toward the inside.

図15(b)、図17に示すごとく、端部用第4凹部722は、拡開端部2の端部カール片部22に対応する2つの凹所を持つ形状を有している。また、端部用第4凹部722の側方は、幅方向外側から内側に近づくにしたがって徐々に谷状に窪む谷形状となるように、一対のテーパ部724が形成されている。   As shown in FIG. 15B and FIG. 17, the end fourth recessed portion 722 has a shape having two recesses corresponding to the end curl piece portion 22 of the expanded end portion 2. In addition, a pair of tapered portions 724 are formed on the side of the fourth end recessed portion 722 so as to have a valley shape that gradually decreases in a valley shape from the outside in the width direction toward the inside.

そして、第3凹型71と第4凹型72とは、両者を組み合わせたときに、第3凹部710と第4凹部720の側方のテーパ部713とテーパ部723とが当接し、また、端部用第3凹部712と端部用第4凹部722の側方のテーパ部714とテーパ部724とが当接するよう構成されている。また、その状態で、第3凹部710と第4凹部720がほぼ真円を形作り、端部用第3凹部712と端部用第4凹部722が拡開端部2の輪郭に沿った形状を形作るよう構成されている。また、テーパ部713とテーパ部723及びテーパ部714とテーパ部724の傾斜角度は、両型のプレス方向に対して45°傾斜した角度とした。   When the third concave mold 71 and the fourth concave mold 72 are combined, the third concave portion 710 and the tapered portion 713 and the tapered portion 723 on the side of the fourth concave portion 720 come into contact with each other. The tapered portion 714 and the tapered portion 724 on the side of the third concave portion 712 and the end fourth concave portion 722 are configured to contact each other. Further, in this state, the third recess 710 and the fourth recess 720 form a substantially perfect circle, and the third end recess 712 and the fourth end recess 722 form a shape along the contour of the expanded end 2. It is configured as follows. In addition, the inclination angles of the taper portion 713 and the taper portion 723, and the taper portion 714 and the taper portion 724 are 45 ° with respect to the press direction of both dies.

第3本体曲げ工程S23は、まず、図16(a)、図17(a)に示すごとく、カール片部12を第4凹部720に収容するように位置させた状態で、第3凹型71と第4凹型72との間の間隙に帯状金属素材100を配置する。次いで、図16(b)に示すごとく、両型を近接させ、管状本体部11を第3凹部710と第4凹部720との間に挟むことによって、管状本体部11を所望の管状形状に成形する。同時に、図17(a)(b)に示すごとく、途中形状の拡開端部2を端部用第3凹部712と端部用第4凹部722との間に挟むことによって、所望形状の拡開端部2を成形する。   In the third main body bending step S23, as shown in FIGS. 16 (a) and 17 (a), the curled piece portion 12 is positioned so as to be accommodated in the fourth concave portion 720, and the third concave die 71 and The band-shaped metal material 100 is disposed in the gap between the fourth concave mold 72. Next, as shown in FIG. 16B, both molds are brought close to each other, and the tubular body 11 is sandwiched between the third recess 710 and the fourth recess 720, thereby forming the tubular body 11 into a desired tubular shape. To do. At the same time, as shown in FIGS. 17 (a) and 17 (b), the widened end portion 2 having an intermediate shape is sandwiched between the third end recessed portion 712 and the fourth end recessed portion 722, thereby expanding the desired end shape. Part 2 is molded.

管状部10は、図16(a)の状態から図16(b)の状態に成形される途中で、カール片部12の曲げ起点部分15近傍が第4凹型72のテーパ部723に当接し、これに沿って両側のものが互いに近づくよう変形する。また、その変形途中で、カール片部12が互いに先端側から当接し、成形が進むにつれてカール片部12自体も変形していく。そして、最終的に、図16(b)に示すごとく、カール片部12は、曲げ起点部分15近傍から略180°反転するように曲げ返され、2つのカール片部12の先端同士は互いに離れ、それぞれ管状本体部11の内周面に近づくように成形される。   While the tubular portion 10 is being molded from the state of FIG. 16A to the state of FIG. 16B, the vicinity of the bending start portion 15 of the curled piece 12 abuts against the tapered portion 723 of the fourth concave mold 72, Along this, the two sides are deformed so as to approach each other. In the middle of the deformation, the curled pieces 12 come into contact with each other from the tip side, and the curled pieces 12 themselves are deformed as the molding proceeds. Finally, as shown in FIG. 16 (b), the curled piece 12 is bent back so as to be inverted by approximately 180 ° from the vicinity of the bending start point 15, and the tips of the two curled pieces 12 are separated from each other. These are molded so as to approach the inner peripheral surface of the tubular main body 11.

その後、拡開端部2の平面部21に貫通穴25を形成することによって、本例の車両用構造部材1が完成する。   Then, the through-hole 25 is formed in the plane part 21 of the expansion end part 2, and the structural member 1 for vehicles of this example is completed.

このようにして製造された本例の車両用構造部材1は、上述したごとく、内部を中空部19とした管状形状を呈する管状部10を有する。そして、この管状部10は、帯状金属素材100を用いて成形してあるので、従来のパイプを用いた場合よりも素材の低コスト化を図ることができる。   As described above, the vehicle structural member 1 of this example manufactured in this way has the tubular portion 10 having a tubular shape with the hollow portion 19 inside. And since this tubular part 10 is shape | molded using the strip | belt-shaped metal raw material 100, cost reduction of a raw material can be achieved rather than the case where the conventional pipe is used.

また、管状部10は、円弧状に成形された管状本体部11と上記カール片部12とを有し、カール片部12の曲げ起点部分15同士を近接させると共に、カール片部12を中空部19内に配置するという特殊な形状を有している。これにより、管状部10は、単純に帯状素材を管状に成形した場合よりも剛性が大きく向上し、従来のパイプの場合と同等以上の剛性特性を得ることができる。   The tubular portion 10 includes a tubular main body portion 11 formed in an arc shape and the curled piece portion 12. The bent starting point portions 15 of the curled piece portion 12 are brought close to each other, and the curled piece portion 12 is formed into a hollow portion. It has a special shape that it is arranged in 19. Thereby, the rigidity of the tubular portion 10 is greatly improved as compared with the case where the band-shaped material is simply formed into a tubular shape, and a rigidity characteristic equal to or higher than that of a conventional pipe can be obtained.

また、車両用構造部材1は、管状部10の長手方向両端に、上記拡開端部2を管状部10と同じ素材から一体的に成形してなる。そのため、別途ブラケット部材を準備する場合よりも総合的なコストを低減することが可能となる。また、ブラケット部材となる拡開端部2が管状部10と同じ素材から一体的に成形されているので、組み付け安定性も高い。   The vehicular structural member 1 is formed by integrally forming the expanded end portion 2 from the same material as the tubular portion 10 at both longitudinal ends of the tubular portion 10. Therefore, it is possible to reduce the overall cost compared to the case of separately preparing a bracket member. Moreover, since the expansion end part 2 used as a bracket member is integrally molded from the same material as the tubular part 10, assembly stability is also high.

また、上記製造方法においては、平板帯状の上記帯状金属素材100を準備して、これに予備曲げ工程S1と第1〜第3の本体曲げ工程S21〜S23とを実施する。予備曲げ工程S1を実施してカール片部12を事前に形成し、その後本体曲げ工程S21〜S23を行う。そして、特に注目すべきことは、本例では、第1本体曲げ工程S21と第2本体曲げ工程S22とにおいて、第1突出角部523及び第2突出角部を有する金型によって、管状本体部11の内面に圧痕181、圧痕182を複数形成することである。これにより、本例のように帯状金属素材100が超高張力鋼のような高強度材料であっても、曲げ加工を容易化することができ、精度よく管状部10を成形することができる。   Moreover, in the said manufacturing method, the said strip | belt-shaped strip | belt-shaped metal raw material 100 is prepared, and preliminary | backup bending process S1 and 1st-3rd main body bending process S21-S23 are implemented to this. The pre-bending step S1 is performed to form the curled piece 12 in advance, and then the main body bending steps S21 to S23 are performed. Of particular note, in this example, in the first body bending step S21 and the second body bending step S22, the tubular body portion is formed by the mold having the first projecting corner portion 523 and the second projecting corner portion. 11 to form a plurality of indentations 181 and indents 182 on the inner surface. Thereby, even if the strip | belt-shaped metal raw material 100 is a high intensity | strength material like super high-strength steel like this example, a bending process can be facilitated and the tubular part 10 can be shape | molded accurately.

(実施例2)
本例の車両用構造部材102は、実施例1の車両用構造部材1の管状部10の形状を変更したものである。
即ち、図18、図19に示すごとく、本例の車両用構造部材102の管状部10は、長手方向の一部において、管状本体部10を内方に窪ませて形成したビード部3を有する。ビード部3は、同図に示すごとく、管状部10の周方向における位置については、カール片部12の曲げ起点部分15と反対側の位置に形成されている。ビード部3の長手方向おける位置については、中央部と、両端近傍の3箇所に分かれている。
また、ビード部3の断面形状は、窪んだ両壁35の間に空隙がある略U字状の形状である。
(Example 2)
The vehicle structural member 102 of this example is obtained by changing the shape of the tubular portion 10 of the vehicle structural member 1 of the first embodiment.
That is, as shown in FIGS. 18 and 19, the tubular portion 10 of the vehicle structural member 102 of this example has a bead portion 3 formed by indenting the tubular main body portion 10 inward in a part in the longitudinal direction. . As shown in the figure, the bead portion 3 is formed at a position on the opposite side of the bending start point portion 15 of the curled piece portion 12 with respect to the circumferential position of the tubular portion 10. The position of the bead portion 3 in the longitudinal direction is divided into a central portion and three locations near both ends.
Moreover, the cross-sectional shape of the bead part 3 is a substantially U-shaped shape with a space between the recessed walls 35.

このようなビード部3を形成するに当たっては、前述した実施例1における第1本体曲げ工程S21を行う前に、ビード成形工程を実施する(図示略)。ビード成形工程は、2つの成形工程より行い、まずは、最終のビード形状よりも緩やかな突出形状の凸型及び凹型を用いて張り出し成形を行い、その後、最終のビード形状に近い突出形状の凸型及び凹型を用いてさらに張り出し形状を行ってビード部を形成する。
その後、本体曲げ工程では、各凸型の頂点部分に、ビード部3と干渉しないように削った窪み部を設けて実施する。本体曲げ工程自体は、実施例1と同様である。
In forming such a bead portion 3, a bead molding step is performed (not shown) before the first main body bending step S21 in the first embodiment described above. The bead molding process is performed in two molding processes. First, the projecting shape is formed by using a convex shape and a concave shape that are looser than the final bead shape, and then a convex shape that is close to the final bead shape. Further, the bead portion is formed by further projecting the shape using the concave mold.
Thereafter, in the main body bending step, a concave portion that is cut so as not to interfere with the bead portion 3 is provided at the apex portion of each convex shape. The body bending process itself is the same as in the first embodiment.

得られた車両用構造部材102は、上記ビード部3の存在によって、これがない場合に比べてさらに剛性を高めることができる。その他は、実施例1と同様の作用効果が得られる。   The obtained vehicle structural member 102 can be further increased in rigidity due to the presence of the bead portion 3 as compared with the case without the bead portion 3. In other respects, the same effects as those of the first embodiment can be obtained.

(実施例3)
本例の車両用構造部材103も、実施例1の車両用構造部材1の管状部10の形状を変更したものである。
即ち、図20、図21に示すごとく、本例の車両用構造部材103の管状部10は、長手方向ほぼ全長において、管状本体部10を内方に窪ませて形成したビード部32を有する。ビード部32は、同図に示すごとく、管状部10の周方向における位置については、カール片部12の曲げ起点部分15と反対側の位置に形成されている。ビード部32のの断面形状は、窪んだ両壁325部分を密着させた密着部を有している。
(Example 3)
The vehicle structural member 103 of this example is also obtained by changing the shape of the tubular portion 10 of the vehicle structural member 1 of the first embodiment.
That is, as shown in FIGS. 20 and 21, the tubular portion 10 of the vehicle structural member 103 of the present example has a bead portion 32 formed by indenting the tubular main body portion 10 inward in substantially the entire length in the longitudinal direction. As shown in the figure, the bead portion 32 is formed at a position on the opposite side of the bending start point portion 15 of the curled piece portion 12 with respect to the position of the tubular portion 10 in the circumferential direction. The cross-sectional shape of the bead portion 32 has a close contact portion in which the recessed both wall 325 portions are in close contact.

このようなビード部32を形成するに当たっては、基本的に実施例2と同様であるが、最終的に窪んだ両壁325が密着するようにしごき加工ができるような金型を用いる(図示略)。   The formation of such a bead portion 32 is basically the same as that of the second embodiment, but a mold that can be ironed so that the finally depressed both walls 325 are in close contact is used (not shown). ).

得られた車両用構造部材103は、上記ビード部32の存在によって、これがない場合に比べてさらに剛性を高めることができる。その他は、実施例1と同様の作用効果が得られる。   The obtained vehicle structural member 103 can further increase the rigidity due to the presence of the bead portion 32 as compared with the case where the bead portion 32 is not provided. In other respects, the same effects as those of the first embodiment can be obtained.

(実施例4)
本例の車両用構造部材104も、実施例1の車両用構造部材1の管状部10の形状を変更したものである。
即ち、図22に示すごとく、本例の車両用構造部材104の管状部10は、長手方向ほぼ全長において、管状本体部11の断面外形に接する輪郭が、略楕円形状である。本例の管状本体部11の楕円形状は、カール片部12の曲げ起点部分15の位置する部分を長径部とし、これに直交する部分を短径部とした、いわば縦型楕円形状である。
Example 4
The vehicle structural member 104 of this example is also obtained by changing the shape of the tubular portion 10 of the vehicle structural member 1 of the first embodiment.
That is, as shown in FIG. 22, the tubular portion 10 of the vehicle structural member 104 of the present example has a substantially elliptical outline in contact with the cross-sectional outer shape of the tubular main body portion 11 in substantially the entire length in the longitudinal direction. The elliptical shape of the tubular main body portion 11 of this example is a so-called vertical elliptical shape in which the portion where the bending start portion 15 of the curl piece portion 12 is located is the long diameter portion, and the portion orthogonal to this is the short diameter portion.

このような管状本体部11の縦型楕円形状を得るに当たっては、実施例1における第3本体曲げ工程S23で用いる第3凹型71及び第4凹型72の第3凹部710及び第4凹部720を、所望の縦型楕円形状に対応する形状にとする。   In obtaining such a vertical elliptical shape of the tubular body 11, the third recess 710 and the fourth recess 720 of the third recess 71 and the fourth recess 72 used in the third body bending step S23 in the first embodiment are The shape corresponds to a desired vertical elliptical shape.

得られた車両用構造部材104は、管状部10が上記のごとく縦型楕円形状であるので、その長径部方向からの応力に対する剛性をさらに高めることができる。その他は、実施例1と同様の作用効果が得られる。   In the obtained vehicle structural member 104, since the tubular portion 10 has the vertical elliptical shape as described above, it is possible to further increase the rigidity against stress from the direction of the long diameter portion. In other respects, the same effects as those of the first embodiment can be obtained.

(実施例5)
本例の車両用構造部材105も、実施例1の車両用構造部材1の管状部10の形状を変更したものである。
即ち、図23に示すごとく、本例の車両用構造部材105の管状部10は、長手方向ほぼ全長において、管状本体部11の断面外形に接する輪郭が、略楕円形状である。本例の管状本体部11の楕円形状は、カール片部12の曲げ起点部分15の位置する部分を短径部とし、これに直交する部分を長径部とした、いわば横型楕円形状である。
(Example 5)
The vehicle structural member 105 of this example is also obtained by changing the shape of the tubular portion 10 of the vehicle structural member 1 of the first embodiment.
That is, as shown in FIG. 23, the tubular portion 10 of the vehicle structural member 105 of the present example has a substantially elliptical outline in contact with the cross-sectional outer shape of the tubular main body portion 11 in substantially the entire length in the longitudinal direction. The elliptical shape of the tubular main body 11 of this example is a so-called horizontal elliptical shape in which the portion where the bending start portion 15 of the curl piece portion 12 is located is the short diameter portion, and the portion orthogonal to this is the long diameter portion.

このような管状本体部11の横型楕円形状を得るに当たっては、実施例1における第3本体曲げ工程S23で用いる第3凹型71及び第4凹型72の第3凹部710及び第4凹部720を、所望の横型楕円形状に対応する形状にとする。   In obtaining such a horizontal elliptical shape of the tubular main body 11, the third concave portion 710 and the fourth concave portion 720 of the third concave mold 71 and the fourth concave mold 72 used in the third main body bending step S23 in Embodiment 1 are desired. The shape corresponding to the horizontal ellipse shape.

得られた車両用構造部材105は、管状部10が上記のごとく横型楕円形状であるので、その長径部方向からの応力に対する剛性をさらに高めることができる。その他は、実施例1と同様の作用効果が得られる。   In the obtained vehicle structural member 105, since the tubular portion 10 has the horizontal elliptical shape as described above, the rigidity against the stress from the direction of the long diameter portion can be further increased. In other respects, the same effects as those of the first embodiment can be obtained.

(実施例6)
本例では、実施例1の車両用構造部材1の両端または一端の拡開端部2の構成の変更あるいは他のブラケット部材への変更例を示す。
まず、図24に示す例は、実施例1の拡開端部2と基本形状を同じとした拡開端部202の例である。拡開端部202は、貫通穴26を1つ設け、その開口部周縁に円筒状のリブ部265を形成し、さらに、リブ部265の周囲に位置する端部カール片部22に円弧状に切り欠きを設けた構造を有している。その他は、実施例1と同様である。
(Example 6)
In this example, a modification of the configuration of the expanded end portion 2 at both ends or one end of the vehicle structural member 1 of the first embodiment or a modification to another bracket member is shown.
First, the example shown in FIG. 24 is an example of the expanded end 202 having the same basic shape as the expanded end 2 of the first embodiment. The widened end portion 202 is provided with one through hole 26, a cylindrical rib portion 265 is formed at the periphery of the opening portion, and the end curl piece portion 22 located around the rib portion 265 is cut into an arc shape. It has a structure with a notch. Others are the same as in the first embodiment.

図25に示す例は、実施例1とほぼ同様の拡開端部の先端に平板状の接合板部27を連ねたタイプの拡開端部203の例である。接合板部27は、車両用構造部材の素材の一部を成形せずに平板状に残すことによって容易に得ることができる。接合板部27は、溶接によって他部材と接合可能である。また、接合板部27に貫通穴を設けてボルト等の連結部材によって他部材と接合することも可能である。その他は、実施例1と同様である。   The example shown in FIG. 25 is an example of a widened end portion 203 of a type in which a flat joint plate 27 is connected to the tip of the widened end portion that is substantially the same as in the first embodiment. The joining plate part 27 can be easily obtained by leaving a part of the material of the vehicle structural member in a flat plate shape without molding. The joining plate part 27 can be joined to other members by welding. Moreover, it is also possible to provide a through-hole in the joining plate portion 27 and join it to another member by a connecting member such as a bolt. Others are the same as in the first embodiment.

図26に示す例は、実施例1のような拡開端部を成形することなく、管状部10の端部に筒状のブラケット部材204を溶接により接合した例である。その他は、実施例1と同様である。   The example shown in FIG. 26 is an example in which a cylindrical bracket member 204 is joined to the end portion of the tubular portion 10 by welding without forming an expanded end portion as in the first embodiment. Others are the same as in the first embodiment.

以上のように、本発明の車両用構造部材における長手方向の両端部は、様々な構造を採用することができ、車両用構造部材の用途に応じて最適な接合方法を選択することが可能である。   As described above, various structures can be adopted at both ends in the longitudinal direction of the vehicle structural member of the present invention, and an optimum joining method can be selected according to the use of the vehicle structural member. is there.

(実施例7)
本例の車両用構造部材107は、実施例1の車両用構造部材1における管状部10のみで構成したものである。すなわち、図27に示すごとく、車両用構造部材107の長手方向端面は、管状部10の形状のままであり、円弧状に成形された管状本体部11と、曲げ返してなるカール片部12とを有し、カール片部12の曲げ起点部分15同士を近接させると共に、カール片部12を中空部19内に配置した形状を呈している。
この場合には、別部材のブラケット部材を準備して、車両用構造部材107(管状部10)に取り付けることにより、他部材との接合を行うことができる。そして、このような、管状部10のみからなる車両用構造部材107は、ある程度長尺に設けておけば、用途に応じて切断して最適な長さとすることができ、汎用性に優れる。その他は、実施例1と同様の作用効果が得られる。
(Example 7)
The vehicle structural member 107 of this example is configured by only the tubular portion 10 in the vehicle structural member 1 of the first embodiment. That is, as shown in FIG. 27, the longitudinal direction end surface of the vehicle structural member 107 remains in the shape of the tubular portion 10, and the tubular main body portion 11 formed into an arc shape and the curled piece portion 12 formed by bending back. The curl piece 12 has a shape in which the bending start point portions 15 of the curl piece 12 are brought close to each other and the curl piece 12 is disposed in the hollow portion 19.
In this case, a separate bracket member is prepared and attached to the vehicle structural member 107 (tubular portion 10), so that it can be joined to the other member. And if such a structural member 107 for vehicles which consists only of the tubular part 10 is provided in elongate to some extent, it can be cut | disconnected according to a use and it can be made optimal length, and it is excellent in versatility. In other respects, the same effects as those of the first embodiment can be obtained.

(実施例8)
本例では、実施例1の車両用構造部材1の優れた剛性を定量的に評価するための実験を行った。
実験に供する試料としては、本発明の例として3種類(試料E1〜E3)、従来例として1種類(試料C4)準備した。
(Example 8)
In this example, an experiment for quantitatively evaluating the excellent rigidity of the vehicle structural member 1 of the first embodiment was performed.
As samples used for the experiment, three types (samples E1 to E3) were prepared as examples of the present invention, and one type (sample C4) was prepared as a conventional example.

試料E1は、実施例1と同形状であって、管状部11の外径が31.8mm、肉厚が2.0mmであり、長手方向端部に上述した拡開端部2を有するものである。全長は、210mmである。
素材材質は、引張強さが1180MPaの超高張力鋼である。
Sample E1 has the same shape as that of Example 1, the outer diameter of the tubular portion 11 is 31.8 mm, the wall thickness is 2.0 mm, and the above-mentioned expanded end portion 2 is provided at the longitudinal end portion. . The total length is 210 mm.
The material of the material is ultra high strength steel having a tensile strength of 1180 MPa.

試料E2は、実施例1と同形状の管状部11のみからなるものであって、外径が31.8mm、肉厚が2.0mmであり、長手方向端部に上述した拡開端部2を持たず、全長は、210mmである。
素材材質は、引張強さが1180MPaの超高張力鋼である。
The sample E2 is composed only of the tubular portion 11 having the same shape as that of the first embodiment, and has an outer diameter of 31.8 mm and a wall thickness of 2.0 mm. The total length is 210 mm.
The material of the material is ultra high strength steel having a tensile strength of 1180 MPa.

試料E3は、実施例1と同形状の管状部11のみからなるものであって、外径が28.0mm、肉厚が2.0mmであり、長手方向端部に上述した拡開端部2を持たず、全長は、210mmである。
素材材質は、引張強さが1180MPaの超高張力鋼である。
The sample E3 is composed only of the tubular portion 11 having the same shape as that of the first embodiment, has an outer diameter of 28.0 mm and a wall thickness of 2.0 mm, and has the above-mentioned expanded end portion 2 at the longitudinal end portion. The total length is 210 mm.
The material of the material is ultra high strength steel having a tensile strength of 1180 MPa.

試料C4は、丸パイプであって、外径が31.8mm、肉厚が2.0mmであり、長手方向端部の何も設けず、全長は、210mmである。
素材材質は、引張強さが1180MPaの高周波焼き入れ鋼である。
Sample C4 is a round pipe having an outer diameter of 31.8 mm and a wall thickness of 2.0 mm. Nothing is provided at the end in the longitudinal direction, and the total length is 210 mm.
The material of the material is induction hardened steel having a tensile strength of 1180 MPa.

実験は、アムスラー式試験機を用いて、試験子R13、加圧支点間距離200mmという条件で行い、その曲げ剛性を測定した。   The experiment was performed using an Amsler type tester under the conditions that the distance between the test piece R13 and the pressure fulcrum was 200 mm, and the bending stiffness was measured.

実験の結果は、図28に示す。同図は、横軸に試験子のストローク(mm)を取り、縦軸に試験子に与える荷重(kN)を取った。同図に、試料E1〜E3は、符号E1〜E3で示し、試料C4は符号C4で示した。   The result of the experiment is shown in FIG. In the figure, the horizontal axis represents the stroke (mm) of the test piece, and the vertical axis represents the load (kN) applied to the test piece. In the figure, samples E1 to E3 are indicated by reference numerals E1 to E3, and sample C4 is indicated by reference numeral C4.

同図から知られるごとく、本発明の実施例である試料E1、試料E2は、同等のサイズの従来例の試料C4に比べ、その曲げ剛性が大きく向上していることがわかる。また、本発明の実施例である試料E3は、従来例の試料C4に比べてサイズが小さくてもほぼ同等の曲げ剛性が得られることがわかる。   As can be seen from the figure, the bending rigidity of the sample E1 and the sample E2, which are examples of the present invention, is greatly improved as compared with the sample C4 of the conventional example having the same size. Further, it can be seen that the sample E3 which is an example of the present invention can obtain almost the same bending rigidity even if the size is smaller than the sample C4 of the conventional example.

以上の結果から、本発明の車両用構造部材は、従来のパイプを主体とする構造部材と比べて同等以上の剛性が得られ、かつ、軽量化及び低コスト化を図ることができることがわかる。   From the above results, it can be seen that the vehicle structural member of the present invention can achieve equal or higher rigidity than the conventional structural member mainly composed of pipes, and can be reduced in weight and cost.

1、102〜105、107 車両用構造部材
10 管状部
11 管状本体部
12 カール片部
15 曲げ起点部分
2 拡開端部
41 予備凹型
410 予備凹部
42 予備凸型
420 予備凸部
51 第1凹型
510 第1凹部
52 第1凸型
520 第1凸部
61 第2凹型
610 第2凹部
62 第2凸型
620 第2凸部
71 第3凹型
710 第3凹部
72 第4凹型
720 第4凹部
DESCRIPTION OF SYMBOLS 1,102-105,107 Structural member for vehicles 10 Tubular part 11 Tubular main body part 12 Curl piece part 15 Bending origin part 2 Expanded end part 41 Preliminary concave 410 Preliminary concave 42 Preliminary convex 420 Preliminary convex 51 First concave 510 1 concave portion 52 first convex portion 520 first convex portion 61 second concave portion 610 second concave portion 62 second convex portion 620 second convex portion 71 third concave portion 710 third concave portion 72 fourth concave portion 720 fourth concave portion

Claims (10)

内部を中空部とした管状形状を呈する管状部を有する車両用構造部材を製造する方法であって、
平板帯状の帯状金属素材の幅方向両側端部を折り曲げて起立させたカール片部を形成し、断面略コ字状とする予備曲げ工程と、
上記カール片部が存在する側の面が内面となるように上記帯状金属素材を円弧状に成形して管状本体部とすると共に、上記カール片部の曲げ起点部分同士を近接させることによって上記カール片部を上記管状本体部の中空部内に配置する本体曲げ工程とを有し、
該本体曲げ工程は、略円弧状の凹部であって上記管状本体部の最終形状の曲率半径よりも大きい曲率半径の第1凹部を有する第1凹型と、該第1凹部に対応する第1凸部を有する第1凸型とを用い、上記帯状金属素材の上記カール片部を上記第1凸型側に位置させた状態で、該帯状金型素材を上記第1凹部と上記第1凸部との間に挟むことによって、上記最終形状の曲率半径より大きい曲率半径の略円弧状を呈する上記管状本体部を成形する第1本体曲げ工程と、
略円弧状の凹部であって上記管状本体部の最終形状の曲率半径よりも小さい曲率半径の第2凹部を有する第2凹型と、該第2凹部に対応すると共に該第2凹部の開口幅よりも小さい幅寸法の第2凸部を有する第2凸型とを用い、上記カール片部を上記第2凸型側に位置させた状態で、上記管状本体部を上記第2凹部と上記第2凸部との間に挟むことによって、上記管状本体部の中央底部近傍を上記最終形状の曲率半径より小さい曲率半径の略円弧状に成形する第2本体曲げ工程と、
略円弧状の凹部であって上記管状本体部の最終形状の曲率半径と同等の曲率半径の第3凹部及び第4凹部をそれぞれ有する第3凹型及び第4凹型とを用い、上記カール片部を上記第4凹部に収容するように位置させた状態で、上記管状本体部を上記第3凹部と上記第4凹部との間に挟むことによって、上記管状本体部を所望の管状形状に成形する第3本体曲げ工程とを有し、
かつ、上記第1本体曲げ工程に用いる上記第1凸型は、上記第1凸部の表面に長手方向に沿って伸びる第1突出角部を平行に複数設けてなり、上記第1本体曲げ工程の実施により、上記管状本体部の内面に上記第1突出角部に押圧された圧痕を長手方向に沿って複数形成することを特徴とする車両用構造部材の製造方法。
A method for manufacturing a structural member for a vehicle having a tubular portion having a tubular shape with a hollow inside,
A pre-bending step of forming a curled piece part that is bent and raised from both sides in the width direction of a flat belt-like metal strip, and having a substantially U-shaped cross section;
The band-shaped metal material is formed into an arc shape so that the surface on the side where the curl piece portion exists is an inner surface, and the curl piece portion is brought close to each other to form the tubular body portion, and the curl piece portion is brought close to each other. A main body bending step of disposing one part in the hollow part of the tubular main body part,
The main body bending step includes a first concave mold having a substantially arc-shaped concave portion having a first concave portion having a radius of curvature larger than the radius of curvature of the final shape of the tubular main body portion, and a first convex corresponding to the first concave portion. In the state where the curled piece portion of the band-shaped metal material is positioned on the first convex mold side, the band-shaped mold material is moved to the first concave portion and the first convex portion. A first main body bending step of forming the tubular main body portion having a substantially arc shape with a radius of curvature larger than the radius of curvature of the final shape,
A second concave mold having a substantially arc-shaped concave portion and a second concave portion having a radius of curvature smaller than the radius of curvature of the final shape of the tubular main body, and corresponding to the second concave portion and from the opening width of the second concave portion And the second convex part having the second convex part having a smaller width dimension, and the tubular main body part being placed on the second concave part and the second part in a state where the curled piece part is positioned on the second convex part side. A second body bending step of forming the vicinity of the center bottom of the tubular body portion into a substantially arc shape with a smaller radius of curvature than the final shape by sandwiching between the convex portions,
Using the third concave part and the fourth concave part, each having a substantially arc-shaped concave part and having a third concave part and a fourth concave part having a radius of curvature equivalent to the radius of curvature of the final shape of the tubular main body part, the curled piece part is In a state where the tubular main body portion is positioned so as to be accommodated in the fourth concave portion, the tubular main body portion is sandwiched between the third concave portion and the fourth concave portion, thereby forming the tubular main body portion into a desired tubular shape. 3 body bending process,
The first convex mold used in the first main body bending step is provided with a plurality of first projecting corners extending in the longitudinal direction in parallel on the surface of the first convex portion, and the first main body bending step. By carrying out the above, a plurality of indentations pressed by the first projecting corners are formed along the longitudinal direction on the inner surface of the tubular main body part.
請求項1に記載の車両用構造部材の製造方法において、上記第2本体曲げ工程に用いる上記第2凸型は、上記第2凸部の表面に長手方向に沿って伸びる第2突出角部を平行に複数設けてなり、上記第2本体曲げ工程の実施により、上記管状本体部の内面に上記第2突出角部に押圧された圧痕を長手方向に沿って複数形成することを特徴とする車両用構造部材の製造方法。   The method for manufacturing a structural member for a vehicle according to claim 1, wherein the second convex mold used in the second main body bending step has a second protruding corner portion extending along a longitudinal direction on a surface of the second convex portion. A vehicle comprising a plurality of indentations pressed along the longitudinal direction on the inner surface of the tubular main body portion by pressing the second projecting corner portion by performing the second main body bending step. Method of manufacturing structural member. 請求項1又は2に記載の車両用構造部材の製造方法において、上記帯状金属素材は、引張強さが1GPa以上の超高張力鋼よりなることを特徴とする車両用構造部材の製造方法。   3. The method for manufacturing a vehicle structural member according to claim 1 or 2, wherein the band-shaped metal material is made of ultra high strength steel having a tensile strength of 1 GPa or more. 内部を中空部とした管状形状を呈する管状部を有する車両用構造部材であって、
上記管状部は、帯状金属素材を用いて円弧状に成形された管状本体部と、上記帯状金属素材の幅方向両側端部を曲げ返してなるカール片部とを有し、該カール片部の曲げ起点部分同士を近接させると共に、上記カール片部を上記中空部内に配置してなり、
請求項1〜3のいずれか1項に記載の車両用構造部材の製造方法により製造してなることを特徴とする車両用構造部材。
A vehicle structural member having a tubular portion having a tubular shape with a hollow inside,
The tubular portion includes a tubular main body formed in an arc shape using a band-shaped metal material, and curled pieces formed by bending back both ends in the width direction of the band-shaped metal material. The bend starting point portions are brought close to each other, and the curled piece portion is arranged in the hollow portion,
It manufactures with the manufacturing method of the structural member for vehicles of any one of Claims 1-3, The structural member for vehicles characterized by the above-mentioned.
請求項4に記載の車両用構造部材において、上記管状本体部の断面外形に接する輪郭が、長手方向の少なくとも一部において略真円形状であることを特徴とする車両用構造部材。   5. The vehicle structural member according to claim 4, wherein a contour in contact with a cross-sectional outer shape of the tubular main body portion is a substantially perfect circle shape in at least a part of the longitudinal direction. 請求項4又は5に記載の車両用構造部材において、上記管状本体部の断面外形に接する輪郭が、長手方向の少なくとも一部において略楕円形状であることを特徴とする車両用構造部材。   6. The vehicle structural member according to claim 4 or 5, wherein a contour in contact with a cross-sectional outer shape of the tubular main body is substantially elliptical in at least a part of the longitudinal direction. 請求項4〜6のいずれか1項に記載の車両用構造部材において、上記管状部の長手方向端部の少なくとも一方には、上記曲げ起点部分間の間隔を拡げて幅寸法を上記管状部の外径寸法より大きくした拡開端部が形成されていることを特徴とする車両用構造部材。   The structural member for a vehicle according to any one of claims 4 to 6, wherein at least one of the end portions in the longitudinal direction of the tubular portion is widened so that a width between the bending start portion portions is increased. A structural member for a vehicle, wherein an enlarged end portion larger than an outer diameter is formed. 請求項7に記載の車両用構造部材において、上記拡開端部には、他部品との接続固定を行うための貫通穴が形成されていることを特徴とする車両用構造部材。   8. The structural member for a vehicle according to claim 7, wherein a through hole for connecting and fixing to another part is formed in the expanded end portion. 請求項4〜8のいずれか1項に記載の車両用構造部材において、上記管状部は、長手方向の少なくとも一部において、上記管状本体部を内方に窪ませて形成したビード部を有することを特徴とする車両用構造部材。   The structural member for a vehicle according to any one of claims 4 to 8, wherein the tubular portion has a bead portion formed by indenting the tubular main body portion inward in at least a part of the longitudinal direction. The structural member for vehicles characterized by these. 請求項9に記載の車両用構造部材において、上記ビード部は、窪んだ両壁部分を密着させた密着部を有していることを特徴とする車両用構造部材。   The vehicle structural member according to claim 9, wherein the bead portion has a close contact portion in which both depressed wall portions are in close contact.
JP2009259527A 2009-11-13 2009-11-13 Structural member for vehicle and method for manufacturing the same Pending JP2011104603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259527A JP2011104603A (en) 2009-11-13 2009-11-13 Structural member for vehicle and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259527A JP2011104603A (en) 2009-11-13 2009-11-13 Structural member for vehicle and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011104603A true JP2011104603A (en) 2011-06-02

Family

ID=44228714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259527A Pending JP2011104603A (en) 2009-11-13 2009-11-13 Structural member for vehicle and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011104603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169525A1 (en) * 2011-06-07 2012-12-13 株式会社エフテック Beam member
CN103350142A (en) * 2013-07-18 2013-10-16 上海电机学院 Method for manufacturing water chamber end socket
JP2015116948A (en) * 2013-12-19 2015-06-25 豊田鉄工株式会社 Pipe-like reinforcing member for vehicle
CN114309268A (en) * 2021-12-27 2022-04-12 贵州航天南海科技有限责任公司 Sheet metal part bending forming method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169525A1 (en) * 2011-06-07 2012-12-13 株式会社エフテック Beam member
JP2012254652A (en) * 2011-06-07 2012-12-27 F Tech:Kk Beam member
CN103442971A (en) * 2011-06-07 2013-12-11 株式会社F.泰克 Beam member
US8857852B2 (en) 2011-06-07 2014-10-14 F-Tech Inc. Beam member
CN103442971B (en) * 2011-06-07 2016-01-13 株式会社F.泰克 Beam parts
CN103350142A (en) * 2013-07-18 2013-10-16 上海电机学院 Method for manufacturing water chamber end socket
JP2015116948A (en) * 2013-12-19 2015-06-25 豊田鉄工株式会社 Pipe-like reinforcing member for vehicle
WO2015093069A1 (en) * 2013-12-19 2015-06-25 豊田鉄工株式会社 Pipe-like reinforcement member for vehicle
CN105916713A (en) * 2013-12-19 2016-08-31 丰田铁工株式会社 Pipe-like reinforcement member for vehicle
EP3085560A4 (en) * 2013-12-19 2017-10-18 Toyoda Iron Works Co., Ltd. Pipe-like reinforcement member for vehicle
CN114309268A (en) * 2021-12-27 2022-04-12 贵州航天南海科技有限责任公司 Sheet metal part bending forming method
CN114309268B (en) * 2021-12-27 2023-09-26 贵州航天南海科技有限责任公司 Sheet metal part bending forming method

Similar Documents

Publication Publication Date Title
TWI583579B (en) Collision box and manufacturing method thereof
US10603703B2 (en) Method of manufacturing press-formed product, and press-formed product
KR102007557B1 (en) Method for manufacturing press-molded article, and press-molded article
ES2819974T3 (en) Method of producing a die cast product, die cast product and press device
JP6090464B2 (en) PRESS-MOLDED PRODUCT, PRESS-MOLDED PRODUCTION METHOD, AND PRESS-MOLDED PRODUCTION DEVICE
KR101152093B1 (en) Method for manufacturing of an automove part in the form of torsion profile
CN107107968B (en) Construct component
US20060096099A1 (en) Automotive crush tip and method of manufacturing
CN102481616B (en) Curved closed-section structural component and manufacture method thereof
JPWO2013024883A1 (en) Shock absorbing member
US8359893B2 (en) Method for producing a shock absorber and shock absorber thus obtained
KR101579028B1 (en) Method for manufacturing closed-structure part and apparatus for the same
JP2011104603A (en) Structural member for vehicle and method for manufacturing the same
JP5352965B2 (en) Rack manufacturing method
CA2684303C (en) Hydroformed product
JP2010051977A (en) Method of manufacturing hollow tube body
JP5072971B2 (en) Square shape can
WO2006042032A2 (en) Automotive crush tip and method of manufacturing
JP6323414B2 (en) Press forming method
JP5631723B2 (en) Shock absorbing member
JP6966492B2 (en) How to make a pipe
JP2018043548A (en) Instrument panel reinforcement and manufacturing method of instrument panel reinforcement
JP4553767B2 (en) Method for manufacturing tubular member
US11426779B2 (en) Method of manufacturing pipe
JP4288100B2 (en) Suspension member