JP2011102426A - Photoelectrochemical electrode and photoelectrochmical treatment method using the same - Google Patents

Photoelectrochemical electrode and photoelectrochmical treatment method using the same Download PDF

Info

Publication number
JP2011102426A
JP2011102426A JP2009258583A JP2009258583A JP2011102426A JP 2011102426 A JP2011102426 A JP 2011102426A JP 2009258583 A JP2009258583 A JP 2009258583A JP 2009258583 A JP2009258583 A JP 2009258583A JP 2011102426 A JP2011102426 A JP 2011102426A
Authority
JP
Japan
Prior art keywords
photoelectrochemical
absorption layer
light absorption
semiconductor
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009258583A
Other languages
Japanese (ja)
Inventor
Masahiro Deguchi
正洋 出口
Satoshi Yotsuhashi
聡史 四橋
Reiko Taniguchi
麗子 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009258583A priority Critical patent/JP2011102426A/en
Publication of JP2011102426A publication Critical patent/JP2011102426A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectrochmical electrode used in a photoelectrochemical reaction cell and an efficient photoelectrochemical treatment method. <P>SOLUTION: The photoelectrochemical electrode 11 comprises a translucent base material 12, a semiconductor optical absorption layer 14 arranged on the translucent base material and absorbing visible light and a catalytic component 17 arranged on the surface of the semiconductor optical absorption layer. The content of an impurity element added to control conductivity of the semiconductor optical absorption layer 14 is not uniform in the thickness direction of the semiconductor optical absorption layer 14 and the concentration on the side being in contact with the catalytic component is lower than that on the side being in contact with the translucent base material 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、可視光エネルギーを併用した電気化学反応処理において用いられる光電気化学電極に関し、特に含有される不純物濃度が一様でない半導体材料からなる光吸収層と、その表面に配置された粒子形状の触媒成分からなる。本発明の光電気化学電極及びそれを用いた光電気化学処理方法は、可視光利用効率が従来電極よりも向上するため、太陽光などを用いた光電気化学処理において触媒反応効率を高めることに適している。   The present invention relates to a photoelectrochemical electrode used in an electrochemical reaction treatment using visible light energy, and in particular, a light absorbing layer made of a semiconductor material having a non-uniform impurity concentration, and a particle shape arranged on the surface thereof The catalyst component. In the photoelectrochemical electrode and the photoelectrochemical treatment method using the same of the present invention, the visible light utilization efficiency is improved as compared with the conventional electrode. Is suitable.

触媒材料を用いて電気や光のエネルギーを化学エネルギーに変換する技術は、創エネルギー技術の一つとして盛んに研究開発がなされている。例えば、触媒作用を有する銅(Cu)や白金(Pt)などの金属材料を反応電極とし、電気化学反応によって水(H2O)や二酸化炭素(CO2)から化学エネルギー物質である水素(H2)や蟻酸(HCOOH)、炭化水素などの有機物成分を生成することは古くより取り組まれている。さらに近年は、光触媒作用を有する材料を反応電極に用いて化学エネルギー物質を生成する光電気化学的な手法も光エネルギーを有効利用する観点から注目されている。   A technology for converting energy of electricity and light into chemical energy using a catalyst material has been actively researched and developed as one of energy creation technologies. For example, a metal material such as copper (Cu) or platinum (Pt) having a catalytic action is used as a reaction electrode, and hydrogen (H2) or formic acid which is a chemical energy substance from water (H2O) or carbon dioxide (CO2) by an electrochemical reaction. The production of organic components such as (HCOOH) and hydrocarbons has long been addressed. Furthermore, in recent years, a photoelectrochemical method for generating a chemical energy substance using a photocatalytic material as a reaction electrode has attracted attention from the viewpoint of effective use of light energy.

図4は光触媒材料を光反応電極として用いた光電気化学セル40の模式図であり、適切なバイアス電圧印加のもと、光触媒材料からなる光反応電極41に光を照射することで、例えばH2Oから水素(H2)と酸素(O2)を発生させることが可能となる。このような光反応電極41として用いられる材料としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTiO3)、硫化カドミウム(CdS)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、炭化ケイ素(SiC)などが知られているが、とりわけ顕著な光触媒反応を示す材料はTiO2である。TiO2を用いた光電気化学電極及びそれを用いた光電気化学処理に関する報告例は非常に多数あり、水素生成以外にもアルコール等の有機物質生成も可能であることが開示されている(例えば、特許文献1、非特許文献1)。   FIG. 4 is a schematic diagram of a photoelectrochemical cell 40 using a photocatalyst material as a photoreaction electrode. By applying light to a photoreaction electrode 41 made of a photocatalyst material under application of an appropriate bias voltage, for example, H2O. Hydrogen (H 2) and oxygen (O 2) can be generated from the gas. Examples of the material used as the photoreactive electrode 41 include titanium oxide (TiO2), zinc oxide (ZnO), strontium titanate (SrTiO3), barium titanate (BaTiO3), cadmium sulfide (CdS), and gallium nitride (GaN). ), Gallium phosphide (GaP), silicon carbide (SiC), and the like are known, and TiO2 is a material that exhibits a particularly remarkable photocatalytic reaction. There are a large number of reports on photoelectrochemical electrodes using TiO2 and photoelectrochemical treatment using the same, and it is disclosed that organic substances such as alcohol can be generated in addition to hydrogen generation (for example, Patent Document 1, Non-Patent Document 1).

しかしながら、光触媒として用いられる従来半導体材料はその禁制帯幅(バンドギャップEg)が比較的大きな物質であり、例えばTiO2(アナターゼ型)のEg値は約3.2eVなので、利用可能な光は紫外線などの短波長光に限定される。その結果、太陽光などを光電気化学反応に利用しようとした場合、触媒反応効率が充分でなかった。   However, a conventional semiconductor material used as a photocatalyst is a substance having a relatively large forbidden band (bandgap Eg). For example, TiO2 (anatase type) has an Eg value of about 3.2 eV. It is limited to short wavelength light. As a result, when trying to use sunlight or the like for the photoelectrochemical reaction, the catalytic reaction efficiency was not sufficient.

これを改善するために、TiO2と比較してEg値が小さな光触媒半導体を作製し、光反応電極としてそれら材料の単層膜あるいは積層膜を用いることで、より長波長側の光を利用する方法が検討されている(特許文献2、3)。この方法によれば、TiO2よりも広い波長域の光が利用可能となるため、実用上有利な面を持っている。   In order to improve this, a photocatalytic semiconductor having a smaller Eg value compared to TiO 2 is used, and a single-layer film or a laminated film of these materials is used as a photoreactive electrode, thereby utilizing light on a longer wavelength side. (Patent Documents 2 and 3). According to this method, light in a wider wavelength range than that of TiO 2 can be used, and thus has a practically advantageous aspect.

さらに他の取り組みとして、主に可視光吸収を担う半導体材料の表面に、電気化学反応において優れた特性を有する触媒材料を担持し、半導体層内で生成された光キャリアの一部を利用して触媒反応を効率的に得る、光吸収層−触媒反応領域分離型光電気化学電極の構成も報告されている(非特許文献2)。この報告によれば、光を照射せずに実施した電気化学反応のときよりも、可視光を吸収する半導体層表面に微粒子状の金属触媒材料を担持することで作用する、光照射効果を付加した光電気化学反応のときの方が、触媒反応に必要なバイアス電圧量を低減できることが示されている。図5にこの光吸収層−触媒反応領域分離型光電気化学セルの模式図を示す。   As another approach, a surface of a semiconductor material mainly responsible for visible light absorption is loaded with a catalyst material having excellent characteristics in electrochemical reaction, and a part of the photocarrier generated in the semiconductor layer is used. A configuration of a photoabsorption layer-catalytic reaction region separation type photoelectrochemical electrode that efficiently obtains a catalytic reaction has also been reported (Non-patent Document 2). According to this report, the effect of light irradiation, which works by supporting fine metal catalyst material on the surface of the semiconductor layer that absorbs visible light, is added rather than the electrochemical reaction performed without light irradiation. It has been shown that the amount of bias voltage required for the catalytic reaction can be reduced when the photoelectrochemical reaction is performed. FIG. 5 shows a schematic diagram of this photoabsorption layer-catalytic reaction region separation type photoelectrochemical cell.

特開昭55−105625号公報JP-A-55-105625 特開昭60−118239号公報JP 60-118239 A 特開2003−154272号公報JP 2003-154272 A

ネィチャー 277号 637頁(1979)Nature 277, p. 637 (1979) ジャーナル・オブ・フィジカル・ケミストリー B 102号974頁(1998)Journal of Physical Chemistry B 102, page 974 (1998)

前記の様に、各種材料が有する触媒作用を利用した有用エネルギー物質生成は、創エネルギー技術として期待されるが、光エネルギーを利用しない電気化学反応のみではエネルギー変換に必要なバイアス電圧の低減が困難な状況である。一方、光エネルギーを利用する光電気化学反応では、印加バイアス量の低減が可能となり得るが、TiO2のような従来光触媒材料はEg値が大きいため可視光利用ができなかった。また可視光に対応させるためにEg値を狭域化した他の光触媒材料では充分な光触媒反応を得られておらず、可視光の有効利用と高触媒反応性を両立することが困難であった。   As described above, the production of useful energy substances using the catalytic action of various materials is expected as a creation energy technology, but it is difficult to reduce the bias voltage required for energy conversion only by an electrochemical reaction that does not use light energy. It is a situation. On the other hand, in the photoelectrochemical reaction using light energy, it may be possible to reduce the amount of applied bias, but a conventional photocatalyst material such as TiO 2 cannot use visible light because of its large Eg value. In addition, other photocatalyst materials with a narrowed Eg value to cope with visible light have not been able to obtain a sufficient photocatalytic reaction, making it difficult to achieve both effective use of visible light and high catalytic reactivity. .

またその課題を解決する手段として、可視光吸収する半導体光吸収層上に反応性の高い触媒材料を担持する光吸収層−触媒反応領域分離型光電気化学電極が提案されており、光照射の効果として印加バイアス電圧の低減、すなわち触媒反応効率の向上が得られているが、現構成では光吸収により半導体層中に生成される光励起キャリアの内、有効に触媒反応に関与するキャリア数が律速しているため、充分にその利点を活かすことができていないといった課題があった。   As a means for solving the problem, a photoabsorption layer-catalytic reaction region separation type photoelectrochemical electrode supporting a highly reactive catalyst material on a semiconductor light absorption layer that absorbs visible light has been proposed. As an effect, the applied bias voltage has been reduced, that is, the catalytic reaction efficiency has been improved. However, in the present configuration, the number of carriers that are effectively involved in the catalytic reaction among the photoexcited carriers generated in the semiconductor layer by light absorption is rate-limiting Therefore, there is a problem that the advantage cannot be fully utilized.

本発明は光電気化学反応セルにおいて用いられる光吸収層−触媒反応領域分離型光電気化学電極の課題を解決するもので、半導体光吸収層内で生成される光キャリアを効率的に触媒反応領域に供給することによって、触媒反応特性をさらに向上させることが可能な光電気化学電極、及びそれを用いた光電気化学処理方法を提供することを目的とする。   The present invention solves the problem of a photoabsorption layer-catalytic reaction region separation type photoelectrochemical electrode used in a photoelectrochemical reaction cell, and efficiently converts photocarriers generated in a semiconductor light absorption layer into a catalytic reaction region. It is an object of the present invention to provide a photoelectrochemical electrode capable of further improving the catalytic reaction characteristics by supplying it to the photoelectrochemical process and a photoelectrochemical treatment method using the same.

前記従来の課題を解決するために、本発明の光電気化学電極は透光性基材と、前記透光性基材上に配置された可視光を吸収する半導体光吸収層と、前記半導体光吸収層表面に配置された触媒成分からなる光電気化学電極であって、前記半導体光吸収層の導電性を制御するために添加される不純物元素の含有量(不純物濃度)が前記半導体光吸収層の膜厚方向において一様ではなく、かつ前記透光性基材と接している側の不純物濃度よりも前記触媒成分と接している側の不純物濃度が低いことを特徴としている。本構成により、不純物濃度が一様な従来半導体光吸収層を用いた場合よりも、優れた光電気化学反応特性を有した光電気化学反応セルを構成することが可能となる。とりわけ、p型の導電性を有する半導体光吸収層に還元性触媒を担持した場合は還元性光電気化学反応電極として、またn型の導電性を有する半導体光吸収層に酸化性触媒を担持した場合は酸化性光電気化学反応電極として顕著な効果を得ることができる。   In order to solve the conventional problems, a photoelectrochemical electrode of the present invention includes a translucent base material, a semiconductor light absorption layer that absorbs visible light disposed on the translucent base material, and the semiconductor light. A photoelectrochemical electrode comprising a catalyst component disposed on the surface of the absorption layer, wherein the content (impurity concentration) of an impurity element added to control the conductivity of the semiconductor light absorption layer is the semiconductor light absorption layer In the film thickness direction, the impurity concentration on the side in contact with the catalyst component is lower than the impurity concentration on the side in contact with the translucent substrate. With this configuration, it is possible to configure a photoelectrochemical reaction cell having superior photoelectrochemical reaction characteristics as compared with the case where a conventional semiconductor light absorption layer having a uniform impurity concentration is used. In particular, when a reducing catalyst is supported on a semiconductor light absorbing layer having p-type conductivity, an oxidizing catalyst is supported on a reducing photoelectrochemical reaction electrode and on a semiconductor light absorbing layer having n-type conductivity. In this case, a remarkable effect can be obtained as an oxidizing photoelectrochemical reaction electrode.

さらに本構成において、前記半導体光吸収層の厚さが100nm以上、10μm以下であることが好ましい。とりわけ、前記半導体光吸収層の厚さが500nmから5μmの範囲であることが好適である。本構成により、充分な光吸収量を確保しつつ、かつ直列抵抗成分の影響を抑制した光電気化学電極を作製することができる。   Furthermore, in this configuration, it is preferable that the thickness of the semiconductor light absorption layer is 100 nm or more and 10 μm or less. In particular, the thickness of the semiconductor light absorption layer is preferably in the range of 500 nm to 5 μm. With this configuration, it is possible to produce a photoelectrochemical electrode in which a sufficient amount of light absorption is ensured and the influence of the series resistance component is suppressed.

さらに本構成において、前記触媒成分が粒子形状であることが好ましい。とりわけ、触媒粒子の平均サイズが100nm以下、望ましくは10〜30nm程度であることが好適である。本構成により、触媒として作用する反応面積を大きくすることが可能になると共に、半導体光吸収層への光照射も両立できる。   Furthermore, in this configuration, it is preferable that the catalyst component has a particle shape. In particular, it is preferable that the average size of the catalyst particles is 100 nm or less, desirably about 10 to 30 nm. With this configuration, it is possible to increase the reaction area that acts as a catalyst, and it is possible to achieve both light irradiation to the semiconductor light absorption layer.

前記従来の課題を解決するために、本発明の光電気化学処理方法は透光性基材と、前記透光性基材上に配置された可視光を吸収する半導体光吸収層と、前記半導体光吸収層表面に配置された触媒成分からなる光電気化学電極を用いた光電気化学処理方法であって、前記光吸収層の導電性を制御するために添加される不純物元素の含有量(不純物濃度)が前記半導体光吸収層の膜厚方向において一様ではなく、かつ前記透光性基材と接している側の不純物濃度よりも前記触媒成分と接している側の不純物濃度が低い半導体光吸収層を有する光電気化学電極に対して、可視光を透光性基板側より照射することからなる。   In order to solve the conventional problems, a photoelectrochemical treatment method of the present invention includes a translucent base material, a semiconductor light absorption layer that absorbs visible light disposed on the translucent base material, and the semiconductor. A photoelectrochemical treatment method using a photoelectrochemical electrode comprising a catalyst component disposed on the surface of a light absorption layer, the content of impurity elements (impurities) added to control the conductivity of the light absorption layer Semiconductor light whose concentration is not uniform in the film thickness direction of the semiconductor light absorption layer and whose impurity concentration on the side in contact with the catalyst component is lower than the impurity concentration on the side in contact with the translucent substrate. It consists of irradiating visible light from the translucent substrate side with respect to the photoelectrochemical electrode which has an absorption layer.

本処理方法により、光吸収半導体層表面に配置される触媒量を増加させることが可能となるため、より効率的な光電気化学反応処理が可能となる。   This treatment method makes it possible to increase the amount of catalyst disposed on the surface of the light-absorbing semiconductor layer, thereby enabling more efficient photoelectrochemical reaction treatment.

本発明の光電気化学電極によれば、従来利用が困難であった可視域の光を吸収し、触媒領域へ光励起キャリアを効率的に供給することが可能な半導体光吸収層と、供給されたキャリアより効率的に触媒反応する触媒領域に機能分離されている。よって、この光電気化学電極を用いて光電気化学反応を実施すれば、低い印加バイアス電圧下で効率的な還元反応あるいは酸化反応が得られる光電気化学処理を実施することができる。   According to the photoelectrochemical electrode of the present invention, a semiconductor light absorption layer capable of absorbing light in the visible range, which has been difficult to use in the past, and efficiently supplying photoexcited carriers to the catalyst region, and It is functionally separated into a catalyst region that catalyses the catalyst more efficiently than the carrier. Therefore, if a photoelectrochemical reaction is carried out using this photoelectrochemical electrode, a photoelectrochemical treatment that provides an efficient reduction reaction or oxidation reaction under a low applied bias voltage can be carried out.

さらに透光性基材上に適切な不純物濃度と厚さを有する半導体光吸収層を形成した光電気化学電極では、光の照射方向として基材側からも可能となるため、光透過しない触媒材料を半導体光吸収層表面に多数配置することが可能になる。その結果、触媒作用による有用エネルギー物質生成量を増加させることが可能となる。   Furthermore, in a photoelectrochemical electrode in which a semiconductor light absorption layer having an appropriate impurity concentration and thickness is formed on a translucent base material, it is possible from the base material side as the light irradiation direction, so that a catalyst material that does not transmit light Can be arranged on the surface of the semiconductor light absorption layer. As a result, it is possible to increase the amount of useful energy substance produced by the catalytic action.

本発明の光電気化学電極を用いた光電気化学セルの模式図Schematic diagram of a photoelectrochemical cell using the photoelectrochemical electrode of the present invention 本発明と従来技術の光電気化学電極表面の断面構造図およびエネルギーバンド図Cross-sectional structure diagram and energy band diagram of photoelectrochemical electrode surface of the present invention and the prior art 本発明の光電気化学電極を用いられる半導体光吸収層に含有される不純物元素の濃度プロファイル図Concentration profile of impurity elements contained in a semiconductor light absorption layer using the photoelectrochemical electrode of the present invention 光触媒材料を光反応電極として用いた光電気化学セルの模式図Schematic diagram of photoelectrochemical cell using photocatalytic material as photoreactive electrode 光吸収層−触媒反応領域分離型光反応電極を用いた光電気化学セルの模式図Schematic diagram of a photoelectrochemical cell using a light-absorbing layer-catalytic reaction region-separated photoreactive electrode

以下本発明の実施の形態について図面を参照しながら説明する。図1は本発明における光電気化学電極11を用いた光電気化学セル10の構成を概念的に示した模式図である。図1(a)は光を光電気化学電極11表面側、すなわち触媒成分を配置した側から照射した場合、図1(b)は光を光電気化学電極11裏面側、すなわち透光性基材側から照射した場合を示している。いずれの場合も本発明の光電気化学電極11は、透光性基材12(透明導電膜13)と、可視光を吸収する半導体光吸収層14と、前記半導体光吸収層表面に配置された触媒成分17からなる。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view conceptually showing the structure of a photoelectrochemical cell 10 using a photoelectrochemical electrode 11 in the present invention. FIG. 1A shows the case where light is irradiated from the surface side of the photoelectrochemical electrode 11, that is, the side where the catalyst component is arranged, and FIG. The case where it irradiated from the side is shown. In any case, the photoelectrochemical electrode 11 of the present invention is disposed on the translucent substrate 12 (transparent conductive film 13), the semiconductor light absorbing layer 14 that absorbs visible light, and the surface of the semiconductor light absorbing layer. It consists of a catalyst component 17.

透光性基材12は光を透過し、半導体光吸収層14に光が充分に到達する材質であれば良く、特に限定されるものはないが、ガラスや石英基板が好適である。また光電気化学電極11を作製するプロセスにおいてガラス材料の適用が困難な場合は、サファイアなども好適な材料として挙げることができる。   The translucent substrate 12 may be any material that transmits light and allows the light to sufficiently reach the semiconductor light absorption layer 14, and is not particularly limited, but a glass or a quartz substrate is preferable. In addition, when it is difficult to apply a glass material in the process of manufacturing the photoelectrochemical electrode 11, sapphire can be cited as a suitable material.

透光性基板上に配置される半導体光吸収層14は、可視光吸収が可能な材料という観点から、そのバンドギャップEg値が2.5eV以下の半導体材料からなり、とりわけEg値が0.7〜2.0eV程度のものが好ましい。この観点から具体的な半導体材料例としては、シリコン(Si)やガリウム砒素(GaAs)、ガリウムリン(GaP)、インジウムリン(InP)、セレン化銅インジウム化合物(CuInSe2:CIS)などを挙げることができる。一般的にこれらの半導体材料には導電性を制御するための不純物元素が添加されており、ドナーを形成する不純物元素を添加すればn型に、アクセプタを形成する不純物元素を添加すればp型になる。本発明において、この半導体光吸収層14に添加されている不純物濃度は膜厚方向において一様ではなく、透光性基材12と接している側は高不純物濃度領域15(すなわち、低抵抗領域)であり、触媒成分17と接している側は低不純物濃度領域16(すなわち、高抵抗領域)となっている。それぞれの領域に含有される不純物濃度Nは用いる半導体材料や触媒材料などに依存するため一概には規定できないが、高不純物濃度領域15では概ねN=1×1017−19cm−3程度、低不純物濃度領域16では概ね、N=1×1013−15cm−3程度である。また膜厚も同様に光吸収層として用いる半導体材料に依存するため一概には規定できないが、高不純物濃度領域15は最大で10μm程度、低不純物濃度領域16は概ね、50nm〜1μm程度である。   The semiconductor light absorption layer 14 disposed on the translucent substrate is made of a semiconductor material having a band gap Eg value of 2.5 eV or less from the viewpoint of a material capable of absorbing visible light, and particularly has an Eg value of 0.7. The thing of about -2.0 eV is preferable. Specific examples of semiconductor materials from this viewpoint include silicon (Si), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), copper indium selenide compound (CuInSe2: CIS), and the like. it can. In general, an impurity element for controlling conductivity is added to these semiconductor materials. If an impurity element that forms a donor is added, the impurity element is added to an n-type, and if an impurity element that forms an acceptor is added, a p-type is added. become. In the present invention, the impurity concentration added to the semiconductor light absorption layer 14 is not uniform in the film thickness direction, and the side in contact with the translucent substrate 12 is the high impurity concentration region 15 (that is, the low resistance region). ) And the side in contact with the catalyst component 17 is a low impurity concentration region 16 (that is, a high resistance region). The impurity concentration N contained in each region depends on the semiconductor material or catalyst material used and cannot be defined unconditionally. However, in the high impurity concentration region 15, the impurity concentration is approximately N = 1 × 10 17 −19 cm −3 and is low in impurity concentration. In the region 16, approximately N = 1 × 10 13 −15 cm −3. Similarly, the film thickness depends on the semiconductor material used for the light absorption layer and cannot be defined unconditionally. However, the high impurity concentration region 15 is about 10 μm at the maximum, and the low impurity concentration region 16 is generally about 50 nm to 1 μm.

また触媒材料17は、所望の触媒反応を得ることが可能な材料より選択されるものであり、一般的には触媒性能の高い金(Au)や銅(Cu)などの金属材料及びそれらの合金材料、ナノサイズ炭素材料などで構成される。その形状は粒子状であることが好ましく、その平均サイズは概ね100nm以下で、とりわけ10〜30nmであることが取扱いや効果の点で好適である。   The catalyst material 17 is selected from materials capable of obtaining a desired catalytic reaction. Generally, a metal material such as gold (Au) or copper (Cu) having high catalytic performance and alloys thereof. It is composed of materials and nano-sized carbon materials. The shape is preferably particulate, and the average size is approximately 100 nm or less, and particularly 10 to 30 nm is preferable in terms of handling and effects.

半導体光吸収層表面に触媒材料17を形成する方法は特に限定されないが、予め粒子化された触媒材料を塗布しても良いし、半導体表面に触媒前駆体物質を形成した後、何らかの処理(例えば、熱処理など)で触媒化しても良い。例えば、触媒作用を示す金属材料の酸化物粒子を半導体表面に塗布した後、還元処理することも好適な形成方法の一つである。   The method for forming the catalyst material 17 on the surface of the semiconductor light absorption layer is not particularly limited, but a pre-particulated catalyst material may be applied, or after forming a catalyst precursor substance on the semiconductor surface, some treatment (for example, Or heat treatment). For example, it is one of the preferable forming methods that after applying oxide particles of a metal material exhibiting a catalytic action on a semiconductor surface, reduction treatment is performed.

図2(a)は本発明における光電気化学電極表面の断面構造模式図であり、図2(b)は半導体光吸収層としてp型半導体を用い、触媒材料として金属材料を担持した場合のエネルギーバンド図である。また図2(c)(d)は一様な不純物濃度を有する半導体光吸収層を用いた従来型の光電気化学電極表面の断面構造模式図とエネルギーバンド図である。図2(b)(d)のエネルギーバンド図に示すように、一般的な触媒金属材料をp型半導体層に接合させたときには、その界面にショットキー接合が形成され、図のような空乏層領域においてバンドベンディングが生じる。光を触媒材料が配置された側から照射する場合、触媒材料で被覆されていない半導体領域においてバンドギャップ以上のエネルギーを有する光が半導体光吸収層21で吸収され、その結果、キャリア励起により半導体層の価電子帯に正孔24が、伝導帯に電子25が生成される。その中でバンドベンディングが起こっていない領域(半導体層内部)で生成された電子と正孔は拡散による移動しかできないため、再結合によって消滅する確率が高くなり、触媒反応に寄与するキャリア(図2では電子)を触媒領域に供給する効率が低下する。一方、バンドベンディングが生じている半導体表層領域(空乏層領域)では、キャリアが電界によってドリフト移動できるため、再結合確率が低下する、すなわち効率的に触媒領域へキャリアを供給することが可能になる。故に、半導体層で生成されたキャリアを効率的に触媒領域に供給するためには、言い換えれば照射光の利用効率を向上させるためには、ある程度空乏層幅Wを広くすることが重要である。半導体−金属界面(ショットキー界面)に形成される空乏層幅Wは、半導体材料の比誘電率、不純物濃度、及び各種材料の仕事関数などで決まるが、使用する材料が決まった場合、半導体材料の不純物濃度Nに依存し、W値は半導体に含有される不純物濃度(正確にはドナーあるいはアクセプタ濃度)の平方根に反比例する(W∝√(1/N))。   FIG. 2A is a schematic sectional view of the photoelectrochemical electrode surface in the present invention, and FIG. 2B shows the energy when a p-type semiconductor is used as the semiconductor light absorption layer and a metal material is supported as the catalyst material. It is a band diagram. FIGS. 2C and 2D are a schematic sectional view and an energy band diagram of the surface of a conventional photoelectrochemical electrode using a semiconductor light absorption layer having a uniform impurity concentration. As shown in the energy band diagrams of FIGS. 2B and 2D, when a general catalytic metal material is bonded to the p-type semiconductor layer, a Schottky junction is formed at the interface, and a depletion layer as shown in FIG. Band bending occurs in the region. When light is irradiated from the side on which the catalyst material is disposed, light having energy greater than or equal to the band gap is absorbed by the semiconductor light absorption layer 21 in the semiconductor region not covered with the catalyst material, and as a result, the semiconductor layer is excited by carrier excitation. Holes 24 are generated in the valence band and electrons 25 are generated in the conduction band. Among them, electrons and holes generated in a region where the band bending does not occur (inside the semiconductor layer) can only move by diffusion, so that the probability of disappearing due to recombination increases and carriers contributing to the catalytic reaction (FIG. 2). Then, the efficiency of supplying electrons) to the catalyst region decreases. On the other hand, in the semiconductor surface layer region (depletion layer region) where band bending occurs, carriers can drift and move due to an electric field, so the recombination probability decreases, that is, carriers can be efficiently supplied to the catalyst region. . Therefore, in order to efficiently supply carriers generated in the semiconductor layer to the catalyst region, in other words, to improve the utilization efficiency of irradiation light, it is important to widen the depletion layer width W to some extent. The depletion layer width W formed at the semiconductor-metal interface (Schottky interface) is determined by the relative dielectric constant, impurity concentration, work function of various materials, and the like of the semiconductor material. The W value is inversely proportional to the square root of the impurity concentration (exactly the donor or acceptor concentration) contained in the semiconductor (W) √ (1 / N)).

さて図2(c)に示した従来構成の光電気化学電極の場合、半導体光吸収層21を構成している半導体層は一様な不純物濃度である。その際、この半導体光吸収層は電極としても作用するため、全体的に低抵抗、すなわち半導体材料に含有される不純物濃度が高いものが好適である。しかしながら、低抵抗な高不純物濃度の半導体材料を光電気化学電極に用いた場合、触媒材料との界面に形成される空乏層幅Wが薄くなってしまう。その結果、光励起によって半導体層内部に生成されたキャリアの多くが再結合によって消滅するため、有効に利用されにくくなる。一方、単純に空乏層幅Wを広げるために不純物濃度を小さくした場合、半導体層が高抵抗化するためセル回路の直列抵抗成分となり、結果、反応効率の低減をまねく。よって、この観点より、半導体光吸収層の膜厚方向において不純物濃度に分布を持たせることが重要となる。   Now, in the case of the conventional photoelectrochemical electrode shown in FIG. 2C, the semiconductor layer constituting the semiconductor light absorption layer 21 has a uniform impurity concentration. In this case, since the semiconductor light absorption layer also functions as an electrode, it is preferable that the semiconductor light absorption layer has a low resistance as a whole, that is, a high impurity concentration contained in the semiconductor material. However, when a semiconductor material having a low resistance and a high impurity concentration is used for the photoelectrochemical electrode, the depletion layer width W formed at the interface with the catalyst material becomes thin. As a result, many of the carriers generated inside the semiconductor layer by photoexcitation disappear due to recombination, and thus are not effectively used. On the other hand, if the impurity concentration is reduced to simply widen the depletion layer width W, the resistance of the semiconductor layer increases, resulting in a series resistance component of the cell circuit, resulting in a reduction in reaction efficiency. Therefore, from this point of view, it is important that the impurity concentration has a distribution in the film thickness direction of the semiconductor light absorption layer.

以上の観点から本発明に係る光電気化学電極は、半導体−金属界面に形成される空乏層幅を広くするために、図2(a)のように透光性基材12側の半導体層を高不純物濃度領域(低抵抗領域)23とし、触媒材料17が形成されている側の半導体層に含有される不純物濃度を下げて、低不純物濃度領域(高抵抗領域)22とする。結果として、全体的な直列抵抗成分の増加を抑制しつつ、光の利用効率を高め、触媒反応を向上させることが可能になる。   From the above viewpoint, the photoelectrochemical electrode according to the present invention has a semiconductor layer on the translucent substrate 12 side as shown in FIG. 2A in order to increase the width of the depletion layer formed at the semiconductor-metal interface. A high impurity concentration region (low resistance region) 23 is formed, and the impurity concentration contained in the semiconductor layer on the side where the catalyst material 17 is formed is lowered to form a low impurity concentration region (high resistance region) 22. As a result, it is possible to increase the light use efficiency and improve the catalytic reaction while suppressing an increase in the overall series resistance component.

本構成において用いられる半導体光吸収層31としては、不純物濃度が異なる層を2層積層(図3(a))しても良いし、さらに多段積層(図3(b))してもよい。また半導体中の不純物濃度が連続的に低下するように半導体層中のドーピング濃度を変化させてもよい(図3(c))。また実質的に透光性基材側の不純物濃度が高く、触媒材料側の不純物濃度が低くなっているのならば、必ずしも単調に不純物濃度が変化する必要はない(図3(d))。   As the semiconductor light absorption layer 31 used in this configuration, two layers having different impurity concentrations may be stacked (FIG. 3A), or may be stacked in multiple layers (FIG. 3B). Further, the doping concentration in the semiconductor layer may be changed so that the impurity concentration in the semiconductor continuously decreases (FIG. 3C). Further, if the impurity concentration on the light-transmitting substrate side is substantially high and the impurity concentration on the catalyst material side is low, the impurity concentration does not necessarily change monotonously (FIG. 3 (d)).

また図2では触媒材料が担持されてる方向から光照射した様子を示しているが、この場合、半導体光吸収層上に配置された光不透過の触媒材料によって光が遮断されるため、半導体光吸収層に届く光量が低減してしまう。故に透光性基板側より光を照射する構成にすることより、この遮蔽の影響を軽減することができる。しかしながら透光性基材側から光照射する場合、半導体光吸収層全体の膜厚が厚すぎると、励起キャリアが再結合する確率が高くなってしまう。故に半導体光吸収層全体の膜厚を制御すると共に、半導体−金属界面に形成される空乏層幅を広げるために、図3に示した例のような不純物元素の濃度プロファイルを有した半導体光吸収層を形成することで、基材側からの光照射が可能となる。その結果本構成では、触媒材料による半導体光吸収層表面の被覆率に対する制約がなくなるため、触媒材料の担持量を大幅に増やすことができる。故に、触媒反応面積が増大し、得られる反応量が向上する。   FIG. 2 shows a state in which light is irradiated from the direction in which the catalyst material is supported. In this case, the light is blocked by the light-impermeable catalyst material disposed on the semiconductor light absorption layer. The amount of light reaching the absorption layer is reduced. Therefore, the influence of this shielding can be reduced by adopting a configuration in which light is irradiated from the light-transmitting substrate side. However, when irradiating light from the translucent substrate side, if the thickness of the entire semiconductor light absorption layer is too thick, the probability that the excited carriers are recombined increases. Therefore, in order to control the film thickness of the entire semiconductor light absorption layer and widen the width of the depletion layer formed at the semiconductor-metal interface, the semiconductor light absorption having the impurity element concentration profile as shown in FIG. By forming the layer, light irradiation from the substrate side becomes possible. As a result, in this configuration, since there is no restriction on the coverage of the surface of the semiconductor light absorption layer with the catalyst material, the loading amount of the catalyst material can be greatly increased. Therefore, the catalytic reaction area is increased and the amount of reaction obtained is improved.

以下、本発明の実施例および比較例に基づいて具体的に説明するが、以下の実施例は本発明の実施態様の一部を例示するものにすぎず、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples and comparative examples of the present invention. However, the following examples are merely illustrative of some of the embodiments of the present invention, and the present invention is limited to these examples. Is not to be done.

<実施例1>
厚さが1mmのガラス基板の片面に酸化インジウムスズ膜(ITO:透明導電膜)が形成された基材上に膜厚5μmのp+型シリコン(Si)層(電気抵抗率ρ:0.02Ω・cm、不純物濃度N:5×1018cm−3)と、膜厚が200nmのp形Si層(ρ:10Ω・cm、N:1×1015cm−3)を積層し、半導体光吸収層14を形成した。さらにこの半導体光吸収層14の表面に、粒子径が20−30nmの酸化銅(CuO)粒子を約1×1010個/cm2の分布密度で塗布後、還元処理することで銅(Cu)微粒子化し、本発明にかかる光電気化学電極11を作製した。この光電気化学電極11を用いて、図1のような光電気化学セル10を構成した。対向電極18には白金(Pt)を、電解液には0.1Mの炭酸水素カリウム(KHCO3)水溶液に二酸化炭素を飽和させたものを準備した。
<Example 1>
A p + type silicon (Si) layer having a film thickness of 5 μm (electric resistivity ρ: 0.02Ω · cm and an impurity concentration N: 5 × 10 18 cm −3) and a p-type Si layer (ρ: 10 Ω · cm, N: 1 × 10 15 cm −3) having a film thickness of 200 nm were stacked to form the semiconductor light absorption layer 14. . Further, copper oxide (CuO) particles having a particle diameter of 20-30 nm are applied to the surface of the semiconductor light absorption layer 14 at a distribution density of about 1 × 10 10 particles / cm 2 and then reduced to form copper (Cu) fine particles. The photoelectrochemical electrode 11 according to the present invention was produced. A photoelectrochemical cell 10 as shown in FIG. 1 was constructed using this photoelectrochemical electrode 11. Platinum (Pt) was prepared for the counter electrode 18, and 0.1M potassium hydrogen carbonate (KHCO3) aqueous solution saturated with carbon dioxide was prepared for the electrolyte.

光照射しない状態でポテンショスタットによって電圧を印加し、電気化学処理を行なった所、およそ−1.2V vs.SCEのバイアス電圧で触媒反応電流が観測され始め、水素やメタンなどが生成されることが確認された。さらにタングステン−ハロゲンランプより太陽光スペクトルに模した光(AM1.5、100mW/cm2相当)を光電気化学電極11の表面(触媒側)に照射し、光電気化学処理を行なったところ、同様の反応生成物が得られると共に、光照射により触媒反応に必要な印加バイアス量(−0.6V vs.SCE)が低減し、効率的に触媒反応が起こっていることが確認された。   When a voltage was applied by a potentiostat in the absence of light irradiation and an electrochemical treatment was performed, approximately -1.2 V vs. approximately. Catalytic reaction current began to be observed at the SCE bias voltage, confirming that hydrogen, methane, and the like were produced. Furthermore, when the surface of the photoelectrochemical electrode 11 (catalyst side) was irradiated with light (AM 1.5, equivalent to 100 mW / cm 2) simulating the sunlight spectrum from a tungsten-halogen lamp, While a reaction product was obtained, the applied bias amount (−0.6 V vs. SCE) required for the catalytic reaction was reduced by light irradiation, and it was confirmed that the catalytic reaction was efficiently occurring.

<比較例1−1>
ITO膜が形成されたガラス基板上に半導体光吸収層として膜厚が5.2μmのp+形Si層(ρ:0.02Ω・cm、N:5×1018cm−3)のみを形成して、実施例1と同様の光電気化学処理を行なった。その結果、実施例1と同様に光照射効果は得られたものの、半導体光吸収層−金属触媒界面に形成される空乏層の厚さが薄くなり、触媒領域への供給キャリア数が減少したため、反応電流が低下した。
<Comparative Example 1-1>
Only p + type Si layer (ρ: 0.02Ω · cm, N: 5 × 1018 cm−3) with a film thickness of 5.2 μm was formed as a semiconductor light absorption layer on the glass substrate on which the ITO film was formed The same photoelectrochemical treatment as in Example 1 was performed. As a result, although the light irradiation effect was obtained as in Example 1, the thickness of the depletion layer formed at the semiconductor light absorption layer-metal catalyst interface was reduced, and the number of carriers supplied to the catalyst region was reduced. The reaction current decreased.

<比較例1−2>
ITO膜が形成されたガラス基板に半導体光吸収層として膜厚が5.2μmのp形Si層(ρ:10Ω・cm、N:1×1015cm−3)のみを形成して、実施例1と同様の光電気化学処理を行なった。その結果、実施例1と同様に光照射効果は得られたものの、半導体光吸収層の直列抵抗成分が大きいため、触媒反応に必要なバイアス電圧の増加と反応電流の飽和が観測された。
<Comparative Example 1-2>
Only a p-type Si layer (ρ: 10 Ω · cm, N: 1 × 10 15 cm −3) having a film thickness of 5.2 μm was formed as a semiconductor light absorption layer on the glass substrate on which the ITO film was formed. The same photoelectrochemical treatment was performed. As a result, although the light irradiation effect was obtained in the same manner as in Example 1, an increase in the bias voltage and saturation of the reaction current necessary for the catalytic reaction were observed because the series resistance component of the semiconductor light absorption layer was large.

<実施例2>
厚さが1mmのガラス基板の片面にITO膜が形成された基材上に膜厚が5μmのp+形Si層(ρ:0.02Ω・cm、N:5×1018cm−3)と、膜厚が200nmのp形Si層(ρ:10Ω・cm、N:1×1015cm−3)を積層し、半導体光吸収層14を形成した。さらにこの半導体光吸収層14の表面に、粒子径が20−30nmのCuO粒子を約1×1011個/cm2の分布密度で塗布後、還元処理することでCu微粒子化し、本発明にかかる光電気化学電極11を作製した。その結果、Cu微粒子が半導体光吸収層14表面にほぼ隙間無く配置された。この光電気化学電極11を用いて図1のような光電気化学セルを構成し、触媒材料が配置された半導体表面側と透光性基材12側から光照射を行なった場合の光電気化学測定を実施した。その結果、触媒材料が配置された側から光照射した場合は半導体光吸収層14にほとんど光が透過しないため、光照射効果は得られなくなったが、透光性基材側から光照射した場合は、半導体光吸収層14での光吸収が可能であるため、効率的な触媒還元反応を得ることができた。さらに半導体光吸収層表面14に担持したCu微粒子触媒の量を増やしているため、実施例1と比較して数倍程度の反応電流が得られることが確認された。
<Example 2>
A p + type Si layer (ρ: 0.02 Ω · cm, N: 5 × 1018 cm−3) having a film thickness of 5 μm on a base material having an ITO film formed on one side of a glass substrate having a thickness of 1 mm, and a film thickness A p-type Si layer (ρ: 10 Ω · cm, N: 1 × 10 15 cm −3) having a thickness of 200 nm was laminated to form the semiconductor light absorption layer 14. Further, CuO particles having a particle diameter of 20-30 nm are coated on the surface of the semiconductor light absorption layer 14 at a distribution density of about 1 × 10 11 particles / cm 2, and then reduced to form Cu fine particles. A chemical electrode 11 was produced. As a result, Cu fine particles were arranged on the surface of the semiconductor light absorption layer 14 with almost no gap. A photoelectrochemical cell as shown in FIG. 1 is configured using this photoelectrochemical electrode 11, and photoelectrochemistry in the case where light irradiation is performed from the semiconductor surface side on which the catalyst material is disposed and the translucent substrate 12 side is performed. Measurements were performed. As a result, when light is irradiated from the side where the catalyst material is disposed, light is hardly transmitted to the semiconductor light absorption layer 14, so that the light irradiation effect cannot be obtained, but when light is irradiated from the translucent substrate side. Since the light absorption by the semiconductor light absorption layer 14 is possible, an efficient catalytic reduction reaction could be obtained. Furthermore, since the amount of the Cu fine particle catalyst supported on the surface 14 of the semiconductor light absorption layer was increased, it was confirmed that a reaction current several times that of Example 1 was obtained.

<比較例2−1>
ITO膜が形成されたガラス基板に膜厚が20μmのp+形Si層(電気抵抗率が0.02Ω・cm、N:5×1018cm−3)と、膜厚が200nmのp形Si層(ρ:10Ω・cm、N:1×1015cm−3)を積層し、実施例2と同様の光電気化学処理を行なった。その結果、実施例2と同様に光照射効果は得られたものの、半導体光吸収層の厚さが厚くなり、触媒領域に供給されるキャリア数が減少するため、触媒反応電流量が低下した。
<Comparative Example 2-1>
A p + type Si layer (electric resistivity is 0.02 Ω · cm, N: 5 × 1018 cm−3) and a p type Si layer (ρ) having a thickness of 200 nm on a glass substrate on which an ITO film is formed. : 10 Ω · cm, N: 1 × 10 15 cm −3), and the same photoelectrochemical treatment as in Example 2 was performed. As a result, although the light irradiation effect was obtained in the same manner as in Example 2, the thickness of the semiconductor light absorption layer was increased and the number of carriers supplied to the catalyst region was decreased, so that the amount of catalytic reaction current was reduced.

本発明にかかる光電気化学電極は、水や二酸化炭素などの反応物質を光電気化学反応によって還元処理及び酸化処理するための光電気化学セルに適用可能である。   The photoelectrochemical electrode according to the present invention can be applied to a photoelectrochemical cell for reducing and oxidizing a reactive substance such as water or carbon dioxide by a photoelectrochemical reaction.

10 光電気化学セル
11 光電気化学電極
12 透光性基材
13 透明導電膜
14 半導体光吸収層
15 高不純物濃度領域
16 低不純物濃度領域
17 触媒材料
18,42,54 対向電極
19,43,55 参照電極
110,44,56 電解液
111,45,57 電源(ポテンショスタット)
112,46,58 攪拌子
21,31 半導体光吸収層
22 低不純物濃度領域
23 高不純物濃度領域
24 正孔
25 電子
26 触媒材料
40 光電気化学セル
41 光反応電極(光触媒材料)
50 光電気化学セル
51 光反応電極(光吸収層−触媒反応領域分離型)
52 半導体光吸収層
53 金属触媒微粒子
DESCRIPTION OF SYMBOLS 10 Photoelectrochemical cell 11 Photoelectrochemical electrode 12 Translucent base material 13 Transparent electrically conductive film 14 Semiconductor light absorption layer 15 High impurity concentration area | region 16 Low impurity concentration area | region 17 Catalytic material 18,42,54 Counter electrode 19,43,55 Reference electrode 110, 44, 56 Electrolyte 111, 45, 57 Power supply (potentiostat)
112, 46, 58 Stirrer 21, 31 Semiconductor light absorption layer 22 Low impurity concentration region 23 High impurity concentration region 24 Hole 25 Electron 26 Catalyst material 40 Photoelectrochemical cell 41 Photoreactive electrode (photocatalyst material)
50 Photoelectrochemical cell 51 Photoreactive electrode (light absorption layer-catalytic reaction region separation type)
52 Semiconductor light absorption layer 53 Metal catalyst fine particles

Claims (4)

透光性基材と、
前記透光性基材上に配置された可視光を吸収する半導体光吸収層と、
前記半導体光吸収層表面に配置された触媒成分と、を具備し、
前記半導体光吸収層の膜厚方向において、前記半導体光吸収層に添加される不純物元素の含有量が、前記透光性基材と接している側の不純物濃度よりも前記触媒成分と接している側の不純物濃度が低い、光電気化学電極。
A translucent substrate;
A semiconductor light absorbing layer that absorbs visible light disposed on the translucent substrate;
A catalyst component disposed on the surface of the semiconductor light absorption layer,
In the film thickness direction of the semiconductor light absorption layer, the content of the impurity element added to the semiconductor light absorption layer is in contact with the catalyst component rather than the impurity concentration on the side in contact with the translucent substrate. Photoelectrochemical electrode with low impurity concentration on the side.
前記半導体光吸収層の厚さが、100nm以上、10μm以下である、請求項1記載の光電気化学電極。 The photoelectrochemical electrode according to claim 1, wherein the thickness of the semiconductor light absorption layer is 100 nm or more and 10 μm or less. 前記触媒成分が、粒子形状である、請求項1記載の光電気化学電極。 The photoelectrochemical electrode according to claim 1, wherein the catalyst component has a particle shape. 透光性基材と、触媒成分と、前記透光性基材と前記触媒成分との間に配置され、膜厚方向において、添加される不純物元素の含有量が、前記透光性基材と接している側の不純物濃度よりも前記触媒成分と接している側の不純物濃度が低い半導体光吸収層と、を具備する光電気化学電極に対して、可視光を透光性基板側から照射し、前記触媒成分により触媒反応を起こす、光電気化学処理方法。 The translucent base material, the catalyst component, and the translucent base material and the catalyst component are arranged between the translucent base material and the catalyst component. A photoelectrochemical electrode comprising a semiconductor light absorption layer having a lower impurity concentration on the side in contact with the catalyst component than on the side in contact with the catalyst component, and irradiating visible light from the translucent substrate side. A photoelectrochemical treatment method in which a catalytic reaction is caused by the catalyst component.
JP2009258583A 2009-11-12 2009-11-12 Photoelectrochemical electrode and photoelectrochmical treatment method using the same Pending JP2011102426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258583A JP2011102426A (en) 2009-11-12 2009-11-12 Photoelectrochemical electrode and photoelectrochmical treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258583A JP2011102426A (en) 2009-11-12 2009-11-12 Photoelectrochemical electrode and photoelectrochmical treatment method using the same

Publications (1)

Publication Number Publication Date
JP2011102426A true JP2011102426A (en) 2011-05-26

Family

ID=44192876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258583A Pending JP2011102426A (en) 2009-11-12 2009-11-12 Photoelectrochemical electrode and photoelectrochmical treatment method using the same

Country Status (1)

Country Link
JP (1) JP2011102426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147990A (en) * 2014-02-07 2015-08-20 日立化成株式会社 Electrode, method of producing electrode, electrochemical reduction method and method of producing electrochemical reduction product
CN109928466A (en) * 2019-04-10 2019-06-25 淮海工学院 A kind of photoelectrocatalysis purification water treatment facilities and processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147990A (en) * 2014-02-07 2015-08-20 日立化成株式会社 Electrode, method of producing electrode, electrochemical reduction method and method of producing electrochemical reduction product
CN109928466A (en) * 2019-04-10 2019-06-25 淮海工学院 A kind of photoelectrocatalysis purification water treatment facilities and processing method

Similar Documents

Publication Publication Date Title
Pan et al. Recent progress in photocatalytic hydrogen evolution
JP5236125B1 (en) How to reduce carbon dioxide
JP5830527B2 (en) Semiconductor device, hydrogen production system, and methane or methanol production system
Qu et al. Progress, challenge and perspective of heterogeneous photocatalysts
Hassan et al. High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications
JP5236124B1 (en) How to reduce carbon dioxide
JP5885662B2 (en) Photocatalytic material and photocatalytic device
WO2016136374A1 (en) Photocatalyst structure and photocell
Wu et al. Enhanced visible light photoelectrocatalytic activity over Cu x Zn 1− x In 2 S 4@ TiO 2 nanotube array hetero-structures
JP5636139B2 (en) Photochemical electrode for carbon dioxide reduction, and method for reducing carbon dioxide using the photochemical electrode
JP6369202B2 (en) Semiconductor photocatalyst and artificial photosynthesis device using the same
WO2020116151A1 (en) Method for producing nitride semiconductor photoelectrode
JP2017210666A (en) Reduction method of carbon dioxide and reduction apparatus of carbon dioxide
KR101749067B1 (en) Hetero-junction metastrucutred thin film and method for manufacturing the same
JP6474000B2 (en) Carbon dioxide reduction method and carbon dioxide reduction device
JP2014227563A (en) Photochemical electrode for reducing carbon dioxide, apparatus for reducing carbon dioxide, and method for reducing carbon dioxide
Navid et al. On the design and performance of InGaN/Si double-junction photocathodes
JP2011102426A (en) Photoelectrochemical electrode and photoelectrochmical treatment method using the same
Ikeue et al. Photoelectrochemical water oxidation properties of Mo-doped CuWO4: Effect of p-type sulfide loading and annealing
Mohamed et al. Recent advances in the use of silicon-based photocathodes for solar fuel production
JP2016098419A (en) Hydrogen generation method, hydrogen generating apparatus and anode electrode for hydrogen generation
WO2019230343A1 (en) Semiconductor photoelectrode
KR20200054749A (en) Photoelectrochemical Hydrogen production system with wavelength selective type
KR102198369B1 (en) Photoelectrochemical Hydrogen production system with wavelength selective type
JP7343810B2 (en) Method for manufacturing nitride semiconductor photoelectrode