JP2011101872A - Foamed metal body for cleaning exhaust gas of hybrid car and exhaust gas cleaning catalyst - Google Patents

Foamed metal body for cleaning exhaust gas of hybrid car and exhaust gas cleaning catalyst Download PDF

Info

Publication number
JP2011101872A
JP2011101872A JP2009258676A JP2009258676A JP2011101872A JP 2011101872 A JP2011101872 A JP 2011101872A JP 2009258676 A JP2009258676 A JP 2009258676A JP 2009258676 A JP2009258676 A JP 2009258676A JP 2011101872 A JP2011101872 A JP 2011101872A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
metal body
cleaning
foamed metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258676A
Other languages
Japanese (ja)
Other versions
JP5625327B2 (en
Inventor
Kenji Orito
賢治 織戸
Eiko Kanda
栄子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009258676A priority Critical patent/JP5625327B2/en
Publication of JP2011101872A publication Critical patent/JP2011101872A/en
Application granted granted Critical
Publication of JP5625327B2 publication Critical patent/JP5625327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamed metal body for cleaning the exhaust gas of a hybrid car using an internal combustion engine and a motor as power and an exhaust gas cleaning catalyst. <P>SOLUTION: In the foamed metal body for cleaning the exhaust gas of the hybrid car, the skeleton surface of foamed metal is constituted of the foamed metal body coated with an oxidized layer 50-500 nm in average film thickness, the porosity of the foamed metal body is 50-99 volume%, the mean opening diameter of voids opening to the outermost surface of the foamed metal body is 50-600 μm, and the mean aperture ratio of the voids is 15-85 area%. In the catalyst for cleaning the exhaust gas of the hybrid car, the surface of the foamed metal body for cleaning exhaust gas is coated with colloidal particles of a noble metal, for example, platinum. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、動力として内燃機関とモータとを使用するハイブリット車の排気浄化用発泡金属体および排気浄化用触媒に関するものである。   The present invention relates to a metal foam for purifying exhaust gas and a catalyst for purifying exhaust gas in a hybrid vehicle using an internal combustion engine and a motor as power.

近年、省エネ、省資源および環境問題対策として、動力として内燃機関とモータとを使用するハイブリット車が実用化されてきており、特に、ガソリン車に比して、二酸化炭素排出量等の削減が可能であることから環境にやさしい車として脚光を浴びている。
そして、ハイブリット車における排気浄化システムとしては、例えば、特許文献1に示すように、内燃機関を発電専用として使用し、モータで駆動するシリーズ式ハイブリット車においては、ハニカム構造のセラミックス製の触媒担体上に白金等の触媒金属を担持した三元触媒により、排ガス中の炭化水素と一酸化炭素を、二酸化炭素と水に変えるとともに、窒素酸化物のうち一酸化窒素を二酸化窒素に変化させる排気浄化システムが知られている。
In recent years, hybrid vehicles that use an internal combustion engine and a motor as power have been put to practical use as energy, resource saving, and environmental countermeasures, and in particular, carbon dioxide emissions can be reduced compared to gasoline vehicles. Therefore, it is in the limelight as an environmentally friendly car.
As an exhaust purification system in a hybrid vehicle, for example, as shown in Patent Document 1, in a series hybrid vehicle that uses an internal combustion engine exclusively for power generation and is driven by a motor, a honeycomb-structured ceramic catalyst carrier is used. Exhaust purification system that converts hydrocarbons and carbon monoxide in exhaust gas to carbon dioxide and water, and changes nitrogen monoxide from nitrogen oxides to nitrogen dioxide, using a three-way catalyst that supports a catalytic metal such as platinum It has been known.

特許4066191号明細書Japanese Patent No. 4066191

前記従来の白金等の触媒金属を担持した三元触媒により、ハイブリット車の排ガス中に含まれる有害物質、即ち、炭化水素、一酸化炭素および窒素酸化物、を同時に除去しようとした場合、三元触媒を機能させるためには加熱が必要となるが、特に、プラグインハイブリッド車では発熱が少ないため、三元触媒は十分な触媒機能を発揮することができないという問題点があった。
つまり、三元触媒は比較的低温では還元能力が低いため、これを改善するためにエンジン排気部に近づけて配置し、早期に昇温させ還元能力が高まるのを促進しているが、その反面、過度に高温にさらされ続けると三元触媒が熱的に破損することから、排気量がそれほど多くなく、また、発熱が少ないハイブリッド車では、三元触媒は十分な触媒機能を発揮することができない。
そこで、この発明では、ハイブリット車の排気を効率よく浄化することができる排気浄化用発泡金属体および排気浄化用触媒を提供することを目的とする。
When the conventional three-way catalyst supporting a catalyst metal such as platinum is used to simultaneously remove harmful substances contained in the exhaust gas of the hybrid vehicle, that is, hydrocarbons, carbon monoxide and nitrogen oxides, three-way Heating is required to make the catalyst function, but in particular, there is a problem that the three-way catalyst cannot exhibit a sufficient catalytic function because the plug-in hybrid vehicle generates little heat.
In other words, the three-way catalyst has a low reducing ability at a relatively low temperature. Therefore, in order to improve this, the three-way catalyst is arranged close to the engine exhaust part, and promotes an increase in the reducing ability by raising the temperature early. Because the three-way catalyst will be thermally damaged if it is exposed to excessively high temperatures, the three-way catalyst may exhibit a sufficient catalytic function in a hybrid vehicle that does not have a large displacement and generates little heat. Can not.
Accordingly, an object of the present invention is to provide a foam metal body for exhaust purification and an exhaust purification catalyst capable of efficiently purifying exhaust from a hybrid vehicle.

本発明者は、三元触媒を機能させるためのエネルギーを低下させ、ハイブリット車の排気を短時間で効率よく浄化することができる排気浄化用発泡金属体および排気浄化用触媒について鋭意研究を行なった結果、次のような知見を得たのである。
即ち、発泡金属の骨格表面を酸化層で被覆して三元触媒を担持する発泡金属体を構成することにより、発泡金属と触媒との相互拡散を防止し、さらに、該発泡金属体の気孔率、該発泡金属体の最外面に開口する空隙の平均開口径および空隙の開口率を所定数値範囲内に定めることにより、三元触媒を機能させるための投入エネルギーを低下させ、昇温速度を速めることにより、ハイブリット車の排気を短時間で効率よく浄化できるハイブリット車の排気浄化用発泡金属体および排気浄化用触媒を見出したのである。
The present inventor has conducted intensive research on an exhaust purification foam metal body and an exhaust purification catalyst capable of efficiently purifying the exhaust of a hybrid vehicle in a short time by reducing the energy required for the function of the three-way catalyst. As a result, the following knowledge was obtained.
That is, by forming a foam metal body supporting the three-way catalyst by coating the surface of the foam metal skeleton with an oxide layer, mutual diffusion between the foam metal and the catalyst is prevented, and the porosity of the foam metal body is further reduced. In addition, by setting the average opening diameter of the voids and the opening ratio of the voids in the outermost surface of the metal foam body within a predetermined numerical range, the input energy for functioning the three-way catalyst is reduced and the heating rate is increased. Thus, the present inventors have found a metal foam for purifying exhaust gas and a catalyst for purifying exhaust gas that can efficiently purify the exhaust gas of the hybrid car in a short time.

ここで、発泡金属とは、Ti、Cu、Ni、Al、Ag、ステンレス鋼等の金属焼結体の骨格により辺が構成されてなる複数の多面体状の空隙が相互に連続状態に形成されている金属多孔質体をいい、空隙は、骨格により辺が構成された複数の多面体状のポア(気孔)が相互に連続するように形成されている。   Here, the foam metal is formed by continuously forming a plurality of polyhedral voids whose sides are constituted by a skeleton of a sintered metal such as Ti, Cu, Ni, Al, Ag, and stainless steel. The void is formed such that a plurality of polyhedral pores (pores) whose sides are constituted by a skeleton are continuous with each other.

この発明でいう発泡金属に占める空隙全体の気孔率(体積割合)とは、発泡金属の重量をWpおよび同じ外形寸法の中実体の同じ金属材料とした時の重量をWとした場合、
気孔率(体積%)=(W−Wp)/W×100
によって算出される値である。
また、平均開口径は、最外面を撮影した25〜300倍の顕微鏡写真を用い、画像処理ソフト(WinROOF)で画像処理及び平均口径計測を行って得られた値である。
The porosity (volume ratio) of the entire void in the foam metal as referred to in the present invention is the weight of the foam metal when Wp and the weight when the same metal material of the same external dimensions is the same as W,
Porosity (% by volume) = (W−Wp) / W × 100
Is a value calculated by.
The average aperture diameter is a value obtained by performing image processing and average aperture measurement with image processing software (WinROOF) using a photomicrograph of 25 to 300 times of the outermost surface.

また、この発明の発泡金属は、その最外面に多数の空隙開口を有しており、この最外面に開口する空隙の開口率(面積割合)とは、最外面を撮影した25〜300倍の顕微鏡写真を用い、視野面積Aと、この視野中に観察される最外面の全ての空隙開口の面積和Apとを観察測定した場合、
開口率(面積%)=Ap/A×100
によって算出される値である。
Moreover, the foam metal of this invention has many space | gap openings on the outermost surface, and the opening ratio (area ratio) of the space | gap opened on this outermost surface is 25-300 times which image | photographed the outermost surface. When using a micrograph to observe and measure the field area A and the area sum Ap of all the void openings on the outermost surface observed in this field of view,
Opening ratio (area%) = Ap / A × 100
Is a value calculated by.

この発明は、上記知見に基づいてなされたものであって、
「(1) 発泡金属の骨格表面が、平均膜厚50〜500nmの酸化層で被覆されてなる発泡金属体から構成され、該発泡金属体の気孔率は50〜99体積%であり、また、該発泡金属体の最外面に開口する空隙の平均開口径は50〜600μmであって、空隙の開口率は15〜85面積%を占めることを特徴とするハイブリッド車の排気浄化用発泡金属体。
(2) 前記(1)に記載されるハイブリッド車の排気浄化用発泡金属体の表面に、貴金属コロイド粒子が被覆されていることを特徴とするハイブリッド車の排気浄化用触媒。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) The skeleton surface of the foam metal is composed of a foam metal body coated with an oxide layer having an average film thickness of 50 to 500 nm, and the porosity of the foam metal body is 50 to 99% by volume, A foam metal body for purifying exhaust gas of a hybrid vehicle, characterized in that the average opening diameter of the voids opened on the outermost surface of the metal foam body is 50 to 600 μm, and the opening ratio of the voids occupies 15 to 85 area%.
(2) A catalyst for purifying exhaust gas of a hybrid vehicle, wherein the surface of the foam metal body for purifying exhaust gas of the hybrid vehicle described in (1) is coated with noble metal colloidal particles. "
It has the characteristics.

この発明のハイブリッド車の排気浄化用発泡金属体およびこれを用いた排気浄化用触媒は、発泡金属の骨格表面が平均膜厚50〜500nmの薄い酸化層で被覆されていることにより、発泡金属と三元触媒との相互拡散が防止されるとともに、酸化物層の厚さが薄いので、短時間で触媒表面層を所定の温度まで上げることができるので、排気浄化が効率よく行われる。   The metal foam for exhaust purification of the hybrid vehicle of this invention and the catalyst for exhaust purification using the same are obtained by coating the metal surface of the foam metal with a thin oxide layer having an average film thickness of 50 to 500 nm. Interdiffusion with the three-way catalyst is prevented and the thickness of the oxide layer is thin, so that the catalyst surface layer can be raised to a predetermined temperature in a short time, and thus exhaust purification is performed efficiently.

このような発泡金属体は、例えば、以下の工程で作製することができる。   Such a foam metal body can be produced, for example, by the following steps.

発泡性スラリーの作製:
まず、金属粉末と発泡剤とを含有する発泡性スラリーを作製する。
発泡性スラリーは、骨格を形成する金属粉末、バインダ(水溶性樹脂結合剤)、発泡剤および水と、必要に応じて界面活性剤および/または可塑剤とを混合することにより作製される。
より具体的には、まず金属粉末、バインダおよび水を含有するスラリーを作製した後、このスラリーに発泡剤を添加し、ミキサーなどの攪拌装置で攪拌する。金属粉末としては、特に限定されず、Ni,Cu,Ti,Al,Ag,ステンレス鋼等を用いることができる。
Production of foaming slurry:
First, a foamable slurry containing a metal powder and a foaming agent is prepared.
The foamable slurry is prepared by mixing a metal powder forming a skeleton, a binder (water-soluble resin binder), a foaming agent and water, and a surfactant and / or a plasticizer as necessary.
More specifically, first, a slurry containing a metal powder, a binder, and water is prepared, and then a foaming agent is added to the slurry, followed by stirring with a stirring device such as a mixer. It does not specifically limit as metal powder, Ni, Cu, Ti, Al, Ag, stainless steel, etc. can be used.

また、この金属粉末は平均粒径0.5μm以上30μm以下が好ましい。このような粉末は、水アトマイズ法,プラズマアトマイズ法などのアトマイズ法、酸化物還元法,湿式還元法,カルボニル反応法などの化学プロセス法によって製造することができる。   The metal powder preferably has an average particle size of 0.5 μm or more and 30 μm or less. Such a powder can be produced by an atomizing method such as a water atomizing method or a plasma atomizing method, a chemical process method such as an oxide reduction method, a wet reduction method, or a carbonyl reaction method.

バインダ(水溶性樹脂結合剤)としては、メチルセルロース,ヒドロキシプロピルメチルセルロース,ヒドロキシエチルメチルセルロース,カルボキシメチルセルロースアンモニウム,エチルセルロース,ポリビニルアルコールなどを使用することができる。   As the binder (water-soluble resin binder), methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose ammonium, ethylcellulose, polyvinyl alcohol, and the like can be used.

発泡剤は、ガスを発生してスラリーに気泡を形成できるものであればよく、揮発性有機溶剤、例えば、ペンタン,ネオペンタン,ヘキサン,イソヘキサン,イソペプタン,ベンゼン,オクタン,トルエンなどの炭素数5〜8の非水溶性炭化水素系有機溶剤を使用することができる。この発泡剤の含有量としては、発泡性スラリーに対して0.1〜5重量%とすることが好ましい。   The foaming agent is not particularly limited as long as it can generate gas and form bubbles in the slurry, and is a volatile organic solvent such as pentane, neopentane, hexane, isohexane, isopeptane, benzene, octane, toluene, etc. The water-insoluble hydrocarbon-based organic solvent can be used. The content of the foaming agent is preferably 0.1 to 5% by weight with respect to the foaming slurry.

界面活性剤としては、アルキルベンゼンスルホン酸塩,α‐オレフィンスルホン酸塩,アルキル硫酸エステル塩,アルキルエーテル硫酸エステル塩,アルカンスルホン酸塩等のアニオン界面活性剤、ポリエチレングリコール誘導体,多価アルコール誘導体などの非イオン性界面活性剤および両性界面活性剤などを使用することができる。   Surfactants include anionic surfactants such as alkylbenzene sulfonates, α-olefin sulfonates, alkyl sulfates, alkyl ether sulfates, alkane sulfonates, polyethylene glycol derivatives, polyhydric alcohol derivatives, etc. Nonionic surfactants and amphoteric surfactants can be used.

可塑剤は、スラリーを成形して得られる成形体に可塑性を付与するために添加され、例えばエチレングリコール,ポリエチレングリコール,グリセリンなどの多価アルコール、鰯油,菜種油,オリーブ油などの油脂、石油エーテルなどのエーテル類、フタル酸ジエチル,フタル酸ジNブチル,フタル酸ジエチルヘキシル,フタル酸ジオクチル,ソルビタンモノオレート,ソルビタントリオレート,ソルビタンパルミテート,ソルビタンステアレートなどのエステル等を使用することができる。   The plasticizer is added to impart plasticity to a molded product obtained by molding a slurry. For example, polyhydric alcohols such as ethylene glycol, polyethylene glycol, and glycerin, fats and oils such as coconut oil, rapeseed oil, and olive oil, petroleum ether, etc. Ethers such as diethyl phthalate, di-N-butyl phthalate, diethyl hexyl phthalate, dioctyl phthalate, sorbitan monooleate, sorbitan trioleate, sorbitan palmitate, sorbitan stearate, and the like can be used.

さらに、スラリーの特性や成形性を向上させるために任意の添加成分を加えてもよい。例えば、防腐剤を添加してスラリーの保存性を向上させたり、結合助材としてポリマー系化合物を加えて成形体の強度を向上させたりすることができる。
このように作成した発泡性スラリーから、成形装置を用いて、グリーンシートを成形し、これを発泡乾燥させ、焼結することにより、発泡金属を作製する。
Furthermore, an optional additive component may be added to improve the properties and moldability of the slurry. For example, a preservative can be added to improve the storage stability of the slurry, or a polymer compound can be added as a binding aid to improve the strength of the molded body.
From the foamable slurry prepared in this manner, a green sheet is formed using a forming apparatus, foamed and dried, and sintered to produce a foam metal.

グリーンシートの成形:
成形装置は、ドクターブレード法を用いてシートを形成する装置であり、発泡性スラリーが貯留されるホッパ、ホッパから供給された発泡性スラリーを移送するキャリアシート、キャリアシートを支持するローラ、キャリアシート上の発泡性スラリーを所定厚さに成形するブレード(ドクターブレード)、発泡性スラリーを発泡させる恒温・高湿度槽、発泡したスラリーを乾燥させる乾燥槽を備えている。
なお、キャリアシートの下面は、支持プレートによって支えられている。
上記の成形装置において、まず、均一化した発泡性スラリーをホッパに投入しておき、このホッパから発泡性スラリーをキャリアシート上に供給し、キャリアシート上に供給された発泡性スラリーは、キャリアシートとともに移動しながらブレードによって薄板状に成形される。
Green sheet molding:
The forming apparatus is an apparatus for forming a sheet using a doctor blade method, a hopper in which foamable slurry is stored, a carrier sheet for transferring the foamable slurry supplied from the hopper, a roller for supporting the carrier sheet, and a carrier sheet A blade (doctor blade) for forming the foamable slurry to a predetermined thickness, a constant temperature / high humidity tank for foaming the foamable slurry, and a drying tank for drying the foamed slurry are provided.
The lower surface of the carrier sheet is supported by a support plate.
In the above molding apparatus, first, the homogenized foaming slurry is put into a hopper, the foaming slurry is supplied from the hopper onto the carrier sheet, and the foaming slurry supplied onto the carrier sheet is the carrier sheet. It is formed into a thin plate shape by a blade while moving with it.

発泡乾燥工程:
次いで、薄板状の発泡性スラリーは、所定条件(例えば温度30℃〜40℃、湿度75%〜95%)の恒温・高湿度槽内を、例えば10分〜20分かけて移動しながら発泡する。続いて、この恒温・高湿度槽内で発泡したスラリーは、所定条件(例えば温度50℃〜80℃)の乾燥槽内を例えば10分〜20分かけて移動し、乾燥される。
これにより、スポンジ状のグリーンシートが得られる。
Foam drying process:
Next, the thin plate-like foaming slurry foams while moving in a constant temperature / high humidity tank under predetermined conditions (for example, temperature 30 ° C. to 40 ° C., humidity 75% to 95%) over 10 minutes to 20 minutes, for example. . Subsequently, the slurry foamed in the constant-temperature / high-humidity tank moves in a drying tank under a predetermined condition (for example, a temperature of 50 ° C. to 80 ° C.) over 10 to 20 minutes, for example, and is dried.
Thereby, a sponge-like green sheet is obtained.

焼結工程:
このようにして得られたグリーンシートを脱脂・焼結することにより、薄板状の焼結体からなる本発明の発泡金属を作製する。
具体的には、例えば真空中、温度550℃〜650℃、25分〜35分の条件下でグリーンシート中のバインダ(水溶性樹脂結合剤)を除去(脱脂)した後、さらに、真空中、1200℃〜1300℃、60分〜120分の条件下で焼結する。
なお、焼結後、圧延することにより、任意の厚さ、気孔率に調整することが可能である。
例えば、焼結後、5〜90%の圧延率で圧延することによって、本発明の気孔率50〜99体積%を得ることができる。
ここで、圧延率とは、[1−(圧延後の板厚/圧延前の板厚)]×100で表される。
Sintering process:
The green sheet thus obtained is degreased and sintered to produce the foam metal of the present invention comprising a thin plate-like sintered body.
Specifically, for example, after removing (degreasing) the binder (water-soluble resin binder) in the green sheet under vacuum at a temperature of 550 ° C. to 650 ° C. for 25 minutes to 35 minutes, Sintering is performed at 1200 to 1300 ° C. for 60 to 120 minutes.
In addition, it is possible to adjust to arbitrary thickness and porosity by rolling after sintering.
For example, after sintering, the porosity of 50 to 99% by volume of the present invention can be obtained by rolling at a rolling rate of 5 to 90%.
Here, the rolling rate is represented by [1- (plate thickness after rolling / plate thickness before rolling)] × 100.

この発明では、発泡金属に形成された空隙全体の気孔率(=(W−Wp)/W×100(体積%)。但し、Wp:発泡金属の重量,W:同じ外形寸法の中実体の同じ金属材料とした時の重量)は、50〜99体積%とすることが必要である。
気孔率が50体積%未満では、排気ガスの透過が妨げられ、排気を効率よく浄化できなくなり、一方、気孔率が99体積%を超えると、発泡金属体としての強度が不足するため、気孔率は50〜99体積%とすることが必要である。
In the present invention, the porosity of the entire void formed in the foam metal (= (W−Wp) / W × 100 (volume%), where Wp is the weight of the foam metal and W is the same solid body with the same outer dimensions. The weight of the metal material is required to be 50 to 99% by volume.
If the porosity is less than 50% by volume, the permeation of the exhaust gas is hindered and the exhaust gas cannot be efficiently purified. On the other hand, if the porosity exceeds 99% by volume, the strength as the foam metal body is insufficient, Is required to be 50 to 99% by volume.

また、この発明では、発泡金属の平均開口径を50〜600μmとすることが必要である。
発泡金属の平均開口径が50μm未満では、排気ガスの透過に時間を要し、効率の良い浄化の妨げとなる。また、排気ガスに含まれる粒状物質により開口が塞がれ、排気ガスが透過できなくなる問題も発生する。
一方、平均開口径が600μmを超えると、排気ガスの透過が早くなりすぎ、浄化反応が完了しないうちに通り抜けてしまう問題が発生する。
したがって、発泡金属の平均開口径は50〜600μmと定めた。
Moreover, in this invention, it is necessary for the average opening diameter of a foam metal to be 50-600 micrometers.
When the average opening diameter of the foam metal is less than 50 μm, it takes time for the exhaust gas to permeate, which hinders efficient purification. In addition, there is a problem in that the opening is blocked by the particulate matter contained in the exhaust gas, and the exhaust gas cannot be transmitted.
On the other hand, if the average opening diameter exceeds 600 μm, the exhaust gas permeates too quickly, causing a problem of passing through before the purification reaction is completed.
Therefore, the average opening diameter of the foam metal is set to 50 to 600 μm.

さらに、この発明では、発泡金属の開口率を15〜85面積%とすることが必要である。
発泡金属の開口率が15面積%未満では、平均開口径が50μm未満の場合と同様、排気ガスの透過に時間を要し、効率の良い浄化の妨げとなり、また、排気ガスに含まれる粒状物質により開口が塞がれ、排気ガスが透過できなくなる問題も発生する。
一方、開口率が85面積%を超えると、平均開口径が600μmを超えた場合と同様に、排気ガスの透過が早くなりすぎ、浄化反応が完了しないうちに通り抜けてしまう問題が発生する。
したがって、発泡金属の開口率は15〜85面積%と定めた。
Furthermore, in this invention, it is necessary to make the aperture ratio of a foam metal 15-85 area%.
When the opening ratio of the foam metal is less than 15% by area, as in the case where the average opening diameter is less than 50 μm, it takes time for the permeation of the exhaust gas, hindering efficient purification, and the particulate matter contained in the exhaust gas. This causes a problem that the opening is blocked and the exhaust gas cannot pass therethrough.
On the other hand, when the aperture ratio exceeds 85 area%, as in the case where the average aperture diameter exceeds 600 μm, the permeation of the exhaust gas becomes too fast and the problem of passing through before the purification reaction is completed occurs.
Therefore, the opening ratio of the foam metal was set to 15 to 85 area%.

この発明では、上記の製法で作製した所定の気孔率、平均開口径、開口率を有する発泡金属に対して白金等の貴金属コロイド粒子を被覆するが、貴金属コロイドの作製法および被覆法は次のとおりである。   In this invention, noble metal colloidal particles such as platinum are coated on a foam metal having a predetermined porosity, average opening diameter, and opening ratio prepared by the above-described manufacturing method. It is as follows.

貴金属コロイドの作製:
還元剤と溶媒を兼ねたエチレングリコールに、例えば、1g/lの濃度となるように塩化白金酸を溶かし、さらに、保護剤としてポリビニルピロリドンを1g/lの濃度となるように添加し溶解する。
この液を撹拌しながら徐々に150℃まで加温し、10時間保持すると、液の色が変わり白金が還元され、白金コロイドが形成される。
この液を1分間遠心分離器にかけ、固液を分離し、上澄み液を十分に捨てたところへ、エタノールを添加し、白金ナノ粒子をエタノールに再分散させて所定の濃度の白金コロイドとする。
Preparation of precious metal colloids:
For example, chloroplatinic acid is dissolved in ethylene glycol serving as a reducing agent and a solvent so as to have a concentration of 1 g / l, and polyvinyl pyrrolidone as a protective agent is added to a concentration of 1 g / l and dissolved.
When this liquid is stirred and gradually heated to 150 ° C. and held for 10 hours, the color of the liquid changes, platinum is reduced, and platinum colloid is formed.
This solution is centrifuged for 1 minute to separate the solid and liquid, and ethanol is added to the place where the supernatant is sufficiently discarded, and the platinum nanoparticles are redispersed in ethanol to obtain a platinum colloid having a predetermined concentration.

貴金属コロイドの被覆:
予め作製した所定の気孔率、平均開口径、開口率を有する発泡金属を、上記所定の濃度の白金コロイドに浸漬し、引き上げた後、液を十分にきってから室温で乾燥させる。
その後、真空または不活性雰囲気で750℃×1時間の焼付けを行い、さらに、450℃×0.5時間大気中で処理を行って平均膜厚50〜500nmの酸化層を形成することにより、本発明の、ハイブリッド車の排気浄化用触媒を作製する。
Precious metal colloid coating:
A foam metal having a predetermined porosity, an average opening diameter, and an opening ratio prepared in advance is immersed in the platinum colloid having the predetermined concentration and pulled up, and then the liquid is sufficiently drained and dried at room temperature.
Thereafter, baking is performed at 750 ° C. for 1 hour in a vacuum or an inert atmosphere, and further, processing is performed in the air at 450 ° C. for 0.5 hour to form an oxide layer having an average film thickness of 50 to 500 nm. The catalyst for purifying exhaust gas of the hybrid vehicle of the invention is produced.

この発明のハイブリッド車の排気浄化用発泡金属体および排気浄化用触媒は、発泡金属が所定の気孔率、平均開口径、開口率を有し、かつ、発泡金属と白金等の三元触媒間に所定平均膜厚の酸化層が形成されていることにより、発泡金属と三元触媒間の相互拡散が防止されるとともに、三元触媒の機能を発揮させるための昇温速度が速いことから、排気温度がそれほど高温にならないハイブリッド車においても、排気の浄化を短時間で効率よく行うことができる。
さらに、この発明のハイブリッド車の排気浄化用触媒は、排ガス処理後直ちに冷却可能であるため、白金等からなる三元触媒のシンタリング(熱劣化)が防止され、その結果、触媒の長寿命化が図られるという効果も得られる。
The foam metal body for exhaust gas purification and the catalyst for exhaust gas purification of the hybrid vehicle according to the present invention have a predetermined metal porosity, an average opening diameter, and an aperture ratio between the foam metal and a three-way catalyst such as platinum. By forming an oxide layer with a predetermined average thickness, mutual diffusion between the foam metal and the three-way catalyst is prevented, and the temperature rise rate for demonstrating the function of the three-way catalyst is fast. Even in a hybrid vehicle where the temperature does not become so high, exhaust purification can be performed efficiently in a short time.
Furthermore, since the exhaust gas purifying catalyst of the hybrid vehicle of the present invention can be cooled immediately after exhaust gas treatment, sintering (thermal degradation) of a three-way catalyst made of platinum or the like is prevented, and as a result, the life of the catalyst is extended. The effect that is achieved is also obtained.

本発明の排気浄化用触媒の昇温状況を測定するための装置の概略説明図を示す。The schematic explanatory drawing of the apparatus for measuring the temperature rising condition of the catalyst for exhaust purification of this invention is shown.

本発明について、実施例を用いて以下に説明する。   The present invention will be described below using examples.

発泡金属の作製:
金属粉末として平均粒径10μmのSUS316Lの粉末、バインダ(水溶性樹脂結合剤)としてメチルセルロース10%を含む水溶液、可塑剤としてエチレングリコール、界面活性剤としてアルキルベンゼンスルホン酸ナトリウム、発泡剤としてネオペンタンを用意し、これらを原料粉末20質量%、水溶性樹脂結合剤10質量%、可塑剤1質量%、界面活性剤3質量%、発泡剤0.6質量%、残部:水となるように配合し、15分間攪拌し、発泡スラリーを作製した。
得られた発泡スラリーをブレードギャップ0.5mmでドクターブレード法によりキャリアシート上に成形し、恒温・高湿度槽に供給し、そこで温度35℃、湿度90%の恒温・高湿度槽内を20分かけて移動し、引き続き温度80℃の乾燥槽内を20分かけて移動し、スポンジ状のグリーンシートを作製した。
このグリーンシートをキャリアシートから剥離し、アルミナ板上に載せ、真空焼結炉で、雰囲気5×10−3Pa、温度550℃、180分間保持の条件で脱脂し、引き続いて真空焼結炉で、雰囲気5×10−3Pa、温度1200℃、1時間保持の条件で焼結し、室温にて、表1に示す圧延条件(圧下率)で圧延することにより、同じく表1に示す種々の気孔率、平均開口径、開口率を有する、厚さ2.0mmのSUS316L製発泡金属1〜5(以下、発泡金属1〜5という)を作製した。
得られた発泡金属1〜5を縦20mm、横20mmの寸法になるように切断して試験片を作製した。
Production of foam metal:
SUS316L powder with an average particle size of 10 μm as a metal powder, an aqueous solution containing 10% methylcellulose as a binder (water-soluble resin binder), ethylene glycol as a plasticizer, sodium alkylbenzene sulfonate as a surfactant, and neopentane as a foaming agent These are blended so that the raw material powder is 20% by mass, the water-soluble resin binder is 10% by mass, the plasticizer is 1% by mass, the surfactant is 3% by mass, the foaming agent is 0.6% by mass, and the balance is water. Stirring was performed for a minute to prepare a foamed slurry.
The obtained foamed slurry is molded on a carrier sheet by a doctor blade method with a blade gap of 0.5 mm, and supplied to a constant temperature / high humidity tank, where the temperature is 35 ° C. and the humidity is 90% in the constant temperature / high humidity tank for 20 minutes. And then moved in a drying tank at a temperature of 80 ° C. over 20 minutes to produce a sponge-like green sheet.
This green sheet is peeled off from the carrier sheet, placed on an alumina plate, degreased in a vacuum sintering furnace under the conditions of atmosphere 5 × 10 −3 Pa, temperature 550 ° C., 180 minutes, and subsequently in a vacuum sintering furnace. By sintering under the conditions of atmosphere 5 × 10 −3 Pa, temperature 1200 ° C. and holding for 1 hour, and rolling at room temperature under the rolling conditions shown in Table 1 (reduction ratio), 2.0 mm thick SUS316L foamed metals 1-5 (hereinafter referred to as foamed metals 1-5) having a porosity, an average aperture diameter, and an aperture ratio were produced.
The obtained metal foams 1 to 5 were cut so as to have dimensions of 20 mm in length and 20 mm in width to prepare test pieces.

白金コロイドの作製:
エチレングリコールに、1g/lの濃度となるように塩化白金酸を溶かし、さらに、保護剤としてのポリビニルピロリドンを1g/lの濃度となるように添加し溶解した。
この液を撹拌しながら徐々に150℃まで加温して10時間保持した後、液の色が変わり白金が還元され、白金コロイドが形成された時点で、この液を1分間遠心分離器にかけ、固液分離し、上澄み液を捨て、その後、エタノールを添加して、白金ナノ粒子をエタノールに再分散させて白金コロイドを作製した。
Preparation of colloidal platinum:
Chloroplatinic acid was dissolved in ethylene glycol to a concentration of 1 g / l, and polyvinyl pyrrolidone as a protective agent was added and dissolved to a concentration of 1 g / l.
The solution is gradually heated to 150 ° C. with stirring and held for 10 hours, and when the color of the solution is changed and platinum is reduced to form a platinum colloid, the solution is centrifuged for 1 minute. Solid-liquid separation was performed, and the supernatant was discarded. Thereafter, ethanol was added, and platinum nanoparticles were redispersed in ethanol to produce a platinum colloid.

白金コロイド粒子の被覆:
ついで、上記の発泡金属1〜5を、上記で作製した白金コロイド中に浸漬し、引き上げた後、液を十分にきってから室温で乾燥させ、その後、真空または不活性雰囲気で750℃×1時間の焼付けを行い、さらに、表2に示す条件で大気中処理を行って、同じく表2に示す平均膜厚の酸化層を形成し、同時に、白金触媒を担持する本発明の排気浄化用触媒1〜5(以下、本発明触媒1〜5という)を作製した。
Coating of platinum colloidal particles:
Next, the foam metals 1 to 5 are immersed in the colloidal platinum produced above and pulled up, and then the liquid is sufficiently drained and dried at room temperature, and then 750 ° C. × 1 in a vacuum or an inert atmosphere. The catalyst for exhaust gas purification of the present invention, which is baked for a period of time and further processed in the atmosphere under the conditions shown in Table 2 to form an oxide layer having the average film thickness shown in Table 2 and simultaneously carrying a platinum catalyst. 1-5 (hereinafter referred to as the present catalysts 1-5) were prepared.

比較のために、本発明実施例と同様な方法で、発泡金属1〜5を作製し、これを、上記で作製した白金コロイド中に浸漬し、引き上げた後、液を十分にきってから室温で乾燥させ、その後、真空または不活性雰囲気で750℃×1時間の焼付けを行うことにより白金触媒を担持する比較例の排気浄化用触媒1〜5(以下、比較例触媒1〜5という)を作製した。
(つまり、本発明触媒1〜5とは異なり、比較例触媒1〜5では酸化層の形成を行っていない。)
For comparison, the metal foams 1 to 5 were prepared in the same manner as in the examples of the present invention. After the metal was immersed in the platinum colloid prepared above and pulled up, the solution was sufficiently drained and room temperature was reached. Then, the catalyst for purifying exhaust gas 1-5 (hereinafter referred to as Comparative Example Catalysts 1-5) carrying a platinum catalyst is baked at 750 ° C. for 1 hour in a vacuum or in an inert atmosphere. Produced.
(That is, unlike the catalysts 1 to 5 of the present invention, the comparative example catalysts 1 to 5 do not form an oxide layer.)

参考のために、市販の排気浄化用触媒を参考例触媒1として用いた。
なお、上記参考例触媒1は、メタルハニカムの上にアルミナを主成分とする触媒が担持された酸化物層が、厚さ0.5mm程度塗布されている構造になっている。
For reference, a commercially available exhaust purification catalyst was used as Reference Example Catalyst 1.
The reference example catalyst 1 has a structure in which an oxide layer in which a catalyst mainly composed of alumina is supported on a metal honeycomb is applied to a thickness of about 0.5 mm.

Figure 2011101872
Figure 2011101872

Figure 2011101872
Figure 2011101872

触媒昇温試験:
上記の本発明触媒1および参考例触媒1について、同一加熱条件でそれぞれの触媒を昇温させた場合の、触媒表面と触媒内部の温度変化を知るための触媒昇温試験を実施した。
即ち、上記で作製した本発明触媒1および参考例触媒1から、それぞれ、外径60mm、高さ50mmの試験片を切り出し、図1に示すように、外周をコイルヒータで囲まれた試験装置の中央にそれぞれの試験片を載置し、試験片には、その表面外周に外側温度測定用熱電対、また、試験片の中央部には中央温度測定用熱電対を装着する。
コイルヒータと試験片の間隙に温度制御用熱電対を配置し、試験片の外側温度が2分で650℃になるようにコイルヒータを昇温させ、一定時間ごとに、試験片の外側温度、中央温度を測定した。
この結果を表3に示す。
Catalyst temperature rise test:
With respect to the catalyst 1 of the present invention and the catalyst 1 of the reference example, a catalyst temperature increase test was conducted in order to know the temperature change of the catalyst surface and the inside of the catalyst when the temperature of each catalyst was increased under the same heating conditions.
That is, a test piece having an outer diameter of 60 mm and a height of 50 mm was cut out from the catalyst 1 of the present invention and the reference example catalyst 1 manufactured as described above, respectively, and as shown in FIG. Each test piece is placed in the center, and a thermocouple for measuring the outer temperature is attached to the outer periphery of the test piece, and a thermocouple for measuring the central temperature is attached to the center of the test piece.
A thermocouple for temperature control is arranged in the gap between the coil heater and the test piece, and the coil heater is heated so that the outside temperature of the test piece becomes 650 ° C. in 2 minutes. The median temperature was measured.
The results are shown in Table 3.

Figure 2011101872
Figure 2011101872

排ガス浄化試験:
上記本発明触媒1〜5、比較例触媒1〜5について、実機のガソリンエンジン排気部に取り付けた場合の排気ガス浄化率を測定した。
排気ガス浄化率は触媒を装着する前のCO,CH,NOの総量をB、試験中の処理ガス中のCO,CH,NOの総量をBpとした場合、
排気ガス浄化率=Bp/B×100
で表される値である。
この結果を表4に示す。
Exhaust gas purification test:
About the said invention catalysts 1-5 and comparative example catalysts 1-5, the exhaust-gas purification rate at the time of attaching to the gasoline engine exhaust part of an actual machine was measured.
CO before the exhaust gas purification rate for mounting the catalyst, when CH, total amount B of NO X, CO in the treated gas in the test, CH, and Bp the total amount of NO X,
Exhaust gas purification rate = Bp / B × 100
It is a value represented by
The results are shown in Table 4.

Figure 2011101872
Figure 2011101872

表3に示す触媒昇温試験の結果から、本発明触媒1については、試験片の外側温度、中央温度ともに昇温速度が速く、かつ、試験片の外側、中央ともに、短時間で内外均一に所定の温度にまで達することが分かる。
このことから、本発明触媒は、排気温度がそれほど高温にならないハイブリッド車においても、排気の浄化を短時間で効率よく行えることが分かる。
これに対して、参考例触媒1では、試験片の外側のみ急速昇温するものの、中央部の温度上昇は遅いことから、排気の浄化を短時間で効率よく行うことはできず、したがって、ハイブリッド車の排気浄化触媒として劣ることは明らかである。
From the results of the catalyst temperature increase test shown in Table 3, the catalyst 1 of the present invention has a high temperature increase rate for both the outside temperature and the center temperature of the test piece, and the outside and the center of the test piece are both uniform inside and outside in a short time. It can be seen that the predetermined temperature is reached.
From this, it can be seen that the catalyst of the present invention can efficiently purify the exhaust gas in a short time even in a hybrid vehicle in which the exhaust gas temperature is not so high.
On the other hand, in the reference example catalyst 1, the temperature is rapidly raised only outside the test piece, but the temperature rise in the center is slow, so exhaust purification cannot be performed efficiently in a short time. It is clear that it is inferior as a car exhaust purification catalyst.

また、表4に示す排ガス浄化試験の結果から、本発明触媒1〜5は、長時間使用しても排気ガス浄化率の低下が少ないのに対して、比較例触媒1〜5では使用時間とともに排気ガス浄化率が劣化していることが分かり、本発明触媒は長時間の使用によっても触媒機能の低下が少なく、長寿命を有することが明らかである。   Further, from the results of the exhaust gas purification test shown in Table 4, the catalysts 1 to 5 of the present invention show little decrease in the exhaust gas purification rate even when used for a long time, whereas the comparative catalysts 1 to 5 have a longer usage time. It can be seen that the exhaust gas purification rate has deteriorated, and it is clear that the catalyst of the present invention has a long service life with little decrease in catalyst function even after long-term use.

本発明の排気浄化用発泡金属体および排気浄化用触媒は、排気量、排気温度がそれほど高くならないハイブリッド車用の排気浄化システムとして好適であるが、これに限らず、一般的な排気浄化システムとして多方面の分野への適用が大いに期待できる。   The exhaust purification foam metal body and the exhaust purification catalyst of the present invention are suitable as an exhaust purification system for a hybrid vehicle in which the exhaust amount and the exhaust temperature are not so high. However, the present invention is not limited to this, and as a general exhaust purification system Application in various fields can be greatly expected.

Claims (2)

発泡金属の骨格表面が、平均膜厚50〜500nmの酸化層で被覆されてなる発泡金属体から構成され、該発泡金属体の気孔率は50〜99体積%であり、また、該発泡金属体の最外面に開口する空隙の平均開口径は50〜600μmであって、空隙の開口率は15〜85面積%を占めることを特徴とするハイブリッド車の排気浄化用発泡金属体。   The skeleton surface of the foam metal is composed of a foam metal body coated with an oxide layer having an average film thickness of 50 to 500 nm, the porosity of the foam metal body is 50 to 99% by volume, and the foam metal body The metal foam for purifying exhaust gas of a hybrid vehicle, characterized in that the average opening diameter of the air gaps opening in the outermost surface of the air bag is 50 to 600 μm, and the air hole opening ratio occupies 15 to 85 area%. 請求項1に記載されるハイブリッド車の排気浄化用発泡金属体の表面に、貴金属コロイド粒子が被覆されていることを特徴とするハイブリッド車の排気浄化用触媒。   A catalyst for purifying exhaust gas of a hybrid vehicle, wherein the surface of the foamed metal body for purifying exhaust gas of the hybrid vehicle according to claim 1 is coated with noble metal colloidal particles.
JP2009258676A 2009-11-12 2009-11-12 Three-way catalyst for purifying exhaust gas from hybrid vehicles Expired - Fee Related JP5625327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258676A JP5625327B2 (en) 2009-11-12 2009-11-12 Three-way catalyst for purifying exhaust gas from hybrid vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258676A JP5625327B2 (en) 2009-11-12 2009-11-12 Three-way catalyst for purifying exhaust gas from hybrid vehicles

Publications (2)

Publication Number Publication Date
JP2011101872A true JP2011101872A (en) 2011-05-26
JP5625327B2 JP5625327B2 (en) 2014-11-19

Family

ID=44192468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258676A Expired - Fee Related JP5625327B2 (en) 2009-11-12 2009-11-12 Three-way catalyst for purifying exhaust gas from hybrid vehicles

Country Status (1)

Country Link
JP (1) JP5625327B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435190A (en) * 1977-08-25 1979-03-15 Mitsubishi Heavy Ind Ltd Production of exhaust gas treatment metal catalyst
JPS57174145A (en) * 1981-04-20 1982-10-26 Kawasaki Heavy Ind Ltd Platelike catalytic body for denitration
JPH04124419A (en) * 1990-09-13 1992-04-24 Sumitomo Electric Ind Ltd Particulate trap medium for diesel engine exhaust
JPH05312017A (en) * 1992-05-07 1993-11-22 Sumitomo Electric Ind Ltd Particulate trap for purifying diesel engine exhaust gas
JPH06178401A (en) * 1992-12-07 1994-06-24 Nissan Motor Co Ltd Hybrid automobile
JPH07100380A (en) * 1993-03-25 1995-04-18 Yukong Ltd Production of catalyst body for removing particulate substance from diesel vehicle and removal of said particulate substance using said catalyst body
JPH11169668A (en) * 1997-12-15 1999-06-29 Sumitomo Electric Ind Ltd Exhaust gas cleaning device and its production
JP2001115869A (en) * 1999-08-09 2001-04-24 Honda Motor Co Ltd Hybrid automobile
JP2003526493A (en) * 1998-05-01 2003-09-09 エンゲルハード・コーポレーシヨン Catalyst member having substrate sprayed by electric arc spray method and method for producing the same
JP2007007606A (en) * 2005-07-01 2007-01-18 Inst Of Research & Innovation Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP2009521640A (en) * 2005-12-22 2009-06-04 ビーエーエスエフ、カタリスツ、エルエルシー General purpose engine sound and emissions reduction apparatus and method for general purpose engine noise level reduction and emissions reduction

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435190A (en) * 1977-08-25 1979-03-15 Mitsubishi Heavy Ind Ltd Production of exhaust gas treatment metal catalyst
JPS57174145A (en) * 1981-04-20 1982-10-26 Kawasaki Heavy Ind Ltd Platelike catalytic body for denitration
JPH04124419A (en) * 1990-09-13 1992-04-24 Sumitomo Electric Ind Ltd Particulate trap medium for diesel engine exhaust
JPH05312017A (en) * 1992-05-07 1993-11-22 Sumitomo Electric Ind Ltd Particulate trap for purifying diesel engine exhaust gas
JPH06178401A (en) * 1992-12-07 1994-06-24 Nissan Motor Co Ltd Hybrid automobile
JPH07100380A (en) * 1993-03-25 1995-04-18 Yukong Ltd Production of catalyst body for removing particulate substance from diesel vehicle and removal of said particulate substance using said catalyst body
JPH11169668A (en) * 1997-12-15 1999-06-29 Sumitomo Electric Ind Ltd Exhaust gas cleaning device and its production
JP2003526493A (en) * 1998-05-01 2003-09-09 エンゲルハード・コーポレーシヨン Catalyst member having substrate sprayed by electric arc spray method and method for producing the same
JP2001115869A (en) * 1999-08-09 2001-04-24 Honda Motor Co Ltd Hybrid automobile
JP2007007606A (en) * 2005-07-01 2007-01-18 Inst Of Research & Innovation Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP2009521640A (en) * 2005-12-22 2009-06-04 ビーエーエスエフ、カタリスツ、エルエルシー General purpose engine sound and emissions reduction apparatus and method for general purpose engine noise level reduction and emissions reduction

Also Published As

Publication number Publication date
JP5625327B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP6998871B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
EP1853399B1 (en) A method for fabricating an open-porous metal foam body
WO2010140290A1 (en) Process for production of aluminum complex comprising sintered porous aluminum body
JP5017230B2 (en) Porous film forming paint for automobile exhaust gas purification filter, porous membrane for automobile exhaust gas purification filter, automobile exhaust gas purification filter, and automobile exhaust gas purification filter manufacturing method.
EP2484424A1 (en) Exhaust gas purification filter
JP2012214364A (en) HONEYCOMB STRUCTURE, Si-SiC BASED COMPOSITE MATERIAL, METHOD FOR MANUFACTURING HONEYCOMB STRUCTURE, AND METHOD FOR MANUFACTURING Si-SiC BASED COMPOSITE MATERIAL
Giménez-Mañogil et al. Catalyzed particulate filter regeneration by platinum versus noble metal-free catalysts: from principles to real application
JP2010269268A (en) Honeycomb structure type filter
JP2010037569A (en) Metal porous electrode base material and method for producing the same
JP2010156206A (en) Exhaust gas purifying filter
CN110496967B (en) Method for preparing FeCrAl metal honeycomb carrier for infrared burner by plasticizing extrusion
JP2011111644A (en) Hydrophilic metal foam body
CN105032198A (en) Porous nickel flat sheet membrane preparation method and porous nickel flat sheet membrane prepared by using same
JP5446457B2 (en) Porous film-forming coating material and porous film
JP5625327B2 (en) Three-way catalyst for purifying exhaust gas from hybrid vehicles
JP4900663B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP2010269270A (en) Honeycomb structure type filter
JP5287231B2 (en) Porous film-forming coating material and porous film
JP5338603B2 (en) Porous film-forming coating material and porous film
JP2011111643A (en) Hydrophilic metal foam body
CN111375416B (en) Monolithic catalyst having perovskite oxide skeleton and method for producing same
JP3832729B2 (en) Method for producing porous sintered body
JP3894551B2 (en) Method for producing porous sintered body
JP2007177280A (en) Method for producing metal porous body
JP5376149B2 (en) Hydrophobic silica coated metal foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees